

Supplement of

Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions

Roberto Emanuele Rizzo et al.

Correspondence to: Roberto Emanuele Rizzo (robertoemanuele.rizzo@unifi.it, robertoemanuele.rizzo@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Tabl	e S1	
------	------	--

	Average							Gypsum							Bassanite					
	Model A	Model B	Model C	Model D	Model E	Model RF	Model A	Model B	Model C	Model D	Model E	Model RF	Model A	Model B	Model C	Model D	Model E	Model RF		
	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16		
Evaluation Metrics	Stride=1	Stride=0.5	Stride=1	Stride=1	Stride=1	Stride=1	Stride=1	Stride=0.5	Stride=1	Stride=1	Stride=1	Stride=1	Stride=1	Stride=0.5	Stride=1	Stride=1	Stride=1	Stride=1		
	Batch=64	Batch=128	Batch=128	Batch=128	Batch=64	Batch=512	Batch=64	Batch=128	Batch=128	Batch=128	Batch=64	Batch=512	Batch=64	Batch=128	Batch=128	Batch=128	Batch=64	Batch=512		
				Data Aug.	Data Aug.	Data Aug .				Data Aug.	Data Aug.	Data Aug .				Data Aug.	Data Aug.	Data Aug .		
RECALL	0.0130	0.0210	0.095	0.0882	0.966	0.961	0.034	0.338	0.642	0.390	0.996	0.990	0.000	0.000	0.046	0.000	0.790	0.990		
SPECIFICITY	0.6715	0.6907	0.699	0.6964	0.987	0.987	0.881	0.117	0.999	1.000	0.863	0.929	0.668	0.801	0.393	0.990	0.989	0.929		
ACCURACY	0.5076	0.5240	0.548	0.5451	0.982	0.981	0.778	0.129	0.998	0.998	0.971	0.971	0.124	0.148	0.110	0.183	0.965	0.971		
DICE	0.0130	0.0214	0.095	0.0880	0.964	0.961	0.035	0.041	0.651	0.546	0.983	0.979	0.001	0.000	0.077	0.000	0.845	0.979		
IoU	0.0065	0.0108	0.050	0.0460	0.931	0.925	0.018	0.021	0.483	0.375	0.966	0.958	0.000	0.000	0.040	0.000	0.731	0.958		
VOLUMETRIC SIMILARITY	0.9977	0.9768	0.998	0.9977	0.998	1.000	0.943	0.122	0.985	0.599	0.987	0.988	0.140	0.086	0.310	0.005	0.931	0.988		
AUC	0.3422	0.3558	0.397	0.3923	0.977	0.974	0.457	0.228	0.820	0.695	0.930	0.960	0.334	0.401	0.219	0.495	0.890	0.960		
КАРРА	-0.3150	-0.2928	-0.206	-0.2150	0.952	0.948	-0.090	-0.070	0.650	0.545	0.901	0.932	-0.129	-0.075	-0.234	-0.004	0.825	0.932		
	Pores Celestite									-										
Evaluation Metrics	Model A	Model B	Model C	Model D	Model E	Model RF	Model A	Model B	Model C	Model D	Model E	Model RF								
Evaluation methos	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16	Patch=16								
	Stride=1	Stride=0.5	Stride=1	Stride=1	Stride=1	Stride=1	Stride=1	Stride=0.5	Stride=1	Stride=1	Stride=1	Stride=1								
RECALL	0.155	0.018	1.000	0.712	0.968	0.895	0.000	0.000	0.000	0.000	0.000	0.705								
SPECIFICITY	0.131	0.933	0.161	0.004	0.997	0.994	1.000	1.000	1.000	0.963	1.000	1.000								
ACCURACY	0.132	0.822	0.208	0.090	0.995	0.983	0.997	0.997	0.878	0.910	0.997	0.999								
DICE	0.019	0.024	0.122	0.160	0.957	0.924	0.000	0.000	0.000	0.000	0.000	0.827								
IoU	0.010	0.012	0.065	0.087	0.918	0.858	0.000	0.000	0.000	0.000	0.000	0.705								
VOLUMETRIC SIMILARITY	0.125	0.665	0.122	0.225	0.989	0.968	0.000	0.000	0.000	0.777	0.000	0.827								
AUC	0.143	0.476	0.581	0.358	0.982	0.945	0.500	0.500	0.500	0.481	0.500	0.852								
КАРРА	-0.094	-0.062	0.021	-0.071	0.955	0.914	0.000	0.000	0.000	-0.045	0.000	0.826								