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Abstract. Geothermal heat flow is an important bound-
ary condition for ice sheets, affecting, for example, basal
melt rates, but for ice-covered regions, we only have sparse
heat flow observations with partly high uncertainty of up to
30 m W m−2. In this study, we first investigate the agreement
between such pointwise heat flow observations and solid
Earth models, applying a 1D steady-state approach to per-
form a statistical analysis for the entire Arctic region. We
find that most of the continental heat flow observations have
a high reliability and agreement to solid Earth models, except
a few data points, such as, for example, the NGRIP (North
Greenland Ice Core Project) point in central Greenland.

For further testing, we perform a conditional simulation
with focus on Greenland in which the local characteristics of
heat flow structures can be considered. Simple kriging shows
that including or excluding the less reliable NGRIP point has
a large influence on the surrounding heat flow. The geosta-
tistical analysis with the conditional simulation supports the
assumption that NGRIP might not only be problematic for
representing a regional feature but likely is an outlier. Basal
melt estimates show that such a local spot of high heat flow
results in local high basal melt rates but leads to less variation
than existing geophysical models.

1 Introduction

Geothermal heat flow (GHF) is a key factor of solid Earth–
cryosphere interaction. Under ice-covered regions, such as
Greenland, GHF is a boundary condition for ice sheet dy-
namics (Karlsson et al., 2021; Goodge, 2018). For example,
Karlsson et al. (2021) state that GHF can contribute up to
25 % of total basal melt rates, while locally high heat flow

can have a larger impact on ice sheet dynamics compared to
a regionally higher value (McCormack et al., 2022). GHF it-
self is influenced by the solid Earth, first of all reflecting the
thickness of the lithosphere (Lösing and Ebbing, 2021), as
well as hydrological processes (Gooch et al., 2016) or crustal
heat production variations (Bons et al., 2021), making heat
flow for continental settings highly variable (Reading et al.,
2022). Furthermore, maps of GHF are often based on inter-
polation of sparse observations, so isolated points might dis-
tort the distribution. However, geothermal heat flow is com-
plicated to measure directly. Borehole measurements are ex-
pensive and therefore sparse in large parts of the Arctic (and
Antarctic), which is covered with ice and snow most of the
year. Additionally, observations are often concentrated in ar-
eas of economic interest or areas that are easily accessible
(Stål et al., 2022). Therefore, Arctic heat flow observations
are distributed very heterogeneously, with dense data cov-
erage in regions around the mid-oceanic ridge, Scandinavia,
and the north of Canada, while Siberia, Greenland, and the
Arctic Ocean north of Alaska are poorly covered (Lucazeau,
2019; Fig. 2).

Ice temperature profiles present another option to estimate
GHF in glacial areas (e.g., Dahl-Jensen et al., 2003). If the
borehole reaches the ice–bedrock interface, GHF can be es-
timated using models of heat transport in the column of ice
(e.g., Weertman, 1968; Rasmussen et al., 2013). However,
not all boreholes reach the bedrock, so the ice temperature
profiles need to be extrapolated (e.g., Kinnard et al., 2006;
Buchardt and Dahl-Jensen, 2007), leading to large uncer-
tainties for estimated heat flow values. The NGRIP (North
Greenland Ice Core Project) point in central Greenland is a
particularly notorious example (Buchardt and Dahl-Jensen,
2007), with a wide range of values between 63 m W m−2
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(for example, Martos et al., 2018) and 970 m W m−2 (Smith-
Johnsen et al., 2020) being suggested in the literature. The
latter estimate is highly unlikely, but even the most conser-
vative estimates well exceed the mean of Greenland with
60 m W m−2 (Colgan et al., 2022).

In turn, estimating heat flow from geophysical data gives
the possibility of overcoming the sparseness, although with
the abovementioned uncertainty. For example, Curie depth
estimates based on magnetic data are a classical tool to infer
heat flow. For Greenland, heat flow was derived from Curie
depth estimates based on satellite magnetic (Fox Maule et al.,
2009) or aeromagnetic (Martos et al., 2018) compilations.
Thermal models of the entire lithosphere can also be con-
strained by a variety of geophysical data sets (i.e., gravity
and surface wave data), but these models typically lack lat-
eral resolution within the crust (Afonso et al., 2019; Pasyanos
et al., 2014; Fullea et al., 2021).

A more geostatistical approach is to compare proxies in a
region with poorly known heat flow with similar proxies in
regions with good coverage. Upper-mantle seismic velocity
was one of the first proxies used to infer GHF (Shapiro and
Ritzwoller, 2004), while Artemieva (2019) applied a ther-
mal isostasy model. More recently, machine learning algo-
rithms (specifically based on random forest regression) have
been used to predict geothermal heat flow based on a vari-
ety of geographical/geophysical proxies (Colgan et al., 2022;
Rezvanbehbahani et al., 2017; Lösing and Ebbing, 2021).
See Colgan et al. (2022) for an extended discussion of GHF
models for Greenland. However, such heat flow maps can
only present regional heat flow, as they are limited by the
availability and resolution of data. The non-linear optimiza-
tion heuristic used in the machine learning techniques is
also highly sensitive to isolated data points. Colgan et al.
(2022) and Rezvanbehbahani et al. (2017) study this by omit-
ting or varying the estimated GHF value for individual data
points, respectively, and find that particularly the NGRIP
point presents a challenge, as it is a highly uncertain and iso-
lated measurement. But without additional information, lo-
cal structures and regional features cannot be distinguished
based on sparse point measurements. Heat flow anomalies
can be as small as a few tens of kilometers due to shal-
low crustal heat production and the effect of subglacial to-
pography (Reading et al., 2022). Thus, the interpolation (or
random forest regression) of GHF observations is prone to
large biases if local anomalies are mistaken for regional fea-
tures. Nevertheless, local GHF anomalies are crucial for solid
Earth–cryosphere interaction (McCormack et al., 2022).

In this study, we approach the question of local vs. re-
gional effects on GHF from two angles. First, we evaluate
a database of GHF measurements by testing each individual
measurement’s consistency with a lithospheric temperature
model based on estimates of Moho and LAB (lithosphere–
asthenosphere boundary) depths. Second, we use geostatisti-
cal analysis and conditional simulation to investigate the spa-
tial scale of heat flow in Greenland. Our results can help de-

cide whether to exclude points for interpolation and machine
learning on a regional scale or in regions with sparse data, as
they are not trustworthy for such applications.

2 Methods

For any heat flow observation, it is unknown whether the ob-
served value reflects the regional setting or a local anomaly.
Assuming that regional structures are in agreement with LAB
and Moho depth models, it should be possible to find a set of
thermal parameters (heat conductivity and heat productivity),
such that GHF can be predicted from stationary 1D heat flow
modeling (Lösing et al., 2020; Furlong and Chapman, 1987;
Artemieva and Mooney, 2001). If no combination of the pa-
rameters within their given ranges lead to an agreement, the
GHF observation should be considered suspicious or a local
anomaly. For example, points in areas of exceptionally local
high heat production from radiogenic sources (Bons et al.,
2021) should lead to an incompatibility between the litho-
spheric model and GHF data.

We assume that geophysical LAB depth can be seen as
a representation of the large-scale lithospheric temperature
field, so we compare the predicted temperature at the LAB
to an assumed LAB temperature of 1315 °C. If the tempera-
ture deviation surpasses a threshold of 100 K, we assume that
the corresponding GHF observation probably is locally influ-
enced and therefore cannot resolve the regional assumptions
of the geophysical models. Choosing such high deviation, we
take uncertainties from the used models for Moho and LAB
depths into account.

We assume vertical heat flux within the lithosphere, which
is a common assumption at least for the continental domain
(Afonso et al., 2013; Lösing et al., 2020). Furthermore, the
lithospheric columns are assumed to be in thermal equilib-
rium, resulting in the following temperature equation:

k1
∂2T

∂z2 = h(z), (1)

with the crustal thermal conductivity k1, the temperature T ,
the depth z, and the heat productivity h.

Assuming no heat generation in the lithospheric mantle,
the temperature increases linearly with depth, so that the tem-
perature in the lithospheric mantle at a given depth can be
calculated with

T (z)= T (M)+
qD

k2
(z−M), (2)

with the Moho depth M , the mantle heat flux qD, and the
mantle thermal conductivity k2.

Heat productionA is assumed constant with depth, follow-
ing Lösing et al. (2020). The heat flux q at a certain depth is
then

q(z)= q0−Az, (3)
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Figure 1. Scheme of the MCMC algorithm as described in the text.

where q0 is the heat flux at the surface. When calculated at
z=M , we get qD.

For the temperature distribution in the crust we get

T (z)= T (0)+
zq0−

1
2Az

2

k1
. (4)

Further derivations can be taken from Lösing et al. (2020).
The Moho temperature then can be determined by means

of this temperature distribution; thus, a temperature at a cer-
tain depth in the lithospheric mantle is

T (z)= T (0)+
Mq0−

1
2AM

2

k1
+
qD

k2
(z−M). (5)

The mantle heat flux qD can be calculated using Eq. (3).
We now can use a Bayesian inversion coupled with a Monte
Carlo Markov Chain (MCMC) algorithm to fit the heat flow
observations to the temperature profile based on geophysi-
cal data and Eq. (5). This approach is based on the method
presented in Lösing et al. (2020). The goal is to adjust a pa-
rameter vector so that the calculated model corresponds as
closely as possible to the given model M (here the LAB tem-
perature). For this purpose, Eq. (5) is used to define a forward
operator F(2) that calculates the temperature at the LAB for
a given parameter vector 2. As a result, we also get estimates
for the crustal and mantle thermal conductivity k1 and k2 and
crustal heat production A. The principle of the algorithm is
explained in Fig. 1.

First, initial values for the thermal parameters are stored
in a vector 2. The forward operator now takes this vector
and calculates a corresponding proposed model F(2)=m.
A standard deviation of σ 2

T = 100 K is allowed, due to un-
certainties in the Moho and LAB depth models which were
not precisely quantified – at least for the LAB depth (Afonso

Table 1. Prior information for the inversion: initial value, range, and
proposal for each iteration.

Parameter Initial Initial range Proposal
value σ

k1 in W m−1 K−1 2.2 [1.0, 3.0] 0.5
k2 in W m−1 K−1 3.0 [2.5, 4.0] 0.5
A in µW−3 0.7 [0.25,1.75] 0.375

et al., 2019). The standard deviation is given by the relation-
ship σz = σT k/q resulting in a few tens of kilometers of un-
certainty for the input depths. For each iteration, we change
the initial parameter vector 2 by adding random perturba-
tions 2rand drawn from the so-called proposal distribution.
We use a component-wise Gaussian distribution as proposal,
which first randomly selects a thermal parameter to change
and then perturbs this parameter by a value drawn from a
zero-mean Gaussian distribution. The probability of a cer-
tain 2 depends on the prior distribution and the likelihood
function (i.e., data fit) according to Bayes’ law:

L(M|2)=

N∏
i=1

1√
2πσ 2

M

exp−
(F (2)i −M i)

2

2σ 2
M

. (6)

If the proposed model has a higher probability than the
current model, then its parameter vector will be used as
the new initial parameter vector. If the probability is lower,
the proposed model can still be accepted with a probability
Pnew/Pold > u, where u is a uniformly distributed random
number between 0 and 1. This prevents the algorithm being
caught in local minima (Lösing et al., 2020). To deliver rep-
resentative results, a certain number of iterations and burn-
in iterations are needed. In our case, 10 000 iterations with
5000 discarded burn-in iterations are sufficient, relying on
the convergence of the likelihood of the iterations as crite-
rion. To eliminate random fluctuations, the mean of the ac-
cepted iterations gives the resulting parameter vector. We use
wide uniform priors based on plausible ranges for each ther-
mal parameter relying on previous studies (e.g., Artemieva
and Mooney, 2001; Furlong and Chapman, 1987; Jaupart and
Mareschal, 2014). Although higher crustal heat production
up to 5 µW m−3 is seen for some local features, we use a
more conservative value appropriate for a regional scale. The
prior ranges, starting values, and proposal sizes are shown in
Table 1. The proposal was tuned to achieve an acceptance ra-
tio of 20 % to 40 %. We assume the surface temperature to
be 0 °C and the LAB temperature to be 1315 °C (according
to Lösing et al., 2020).

2.1 Kriging interpolation and conditional simulation

Kriging interpolation of irregularly spaced data sets provides
estimates with confidence intervals (Cosentino et al., 2023).
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Here, we assume the mean value m0 as given and constant,
thus “simple kriging” results (Chiles and Delfiner, 1999).

Z∗ =m0+
∑
α

λα (Zα −mα) , (7)

with the kriging estimator Z∗, the weights λα , the given ob-
servations Zα , and the mean of the observations mα . The
weights are adjusted so that the resulting estimator (Eq. 7)
is unbiased and the error variance minimal (Cosentino et al.,
2023). A crucial parameter for kriging interpolation is the co-
variance function, which determines how quickly the weight-
ing decreases with distance (Chiles and Delfiner, 1999).
Here, we use the Gaussian covariance model (Webster and
Oliver, 2007),

γ (r)= σ 2
(

1− exp
[
−

(
s ·
r

`

)2
])
+ n, (8)

in which r represents the distance of the points, σ 2 the vari-
ance of the model, s =

√
π/2 the rescaling factor, ` the

length scale, and n the nugget.
The correlation length scale ` can be estimated using a

semivariogram which represents the dissimilarity of pairs of
points at a certain distance. Closer points tend to be more
similar, increasing the distance of the points, so the dissim-
ilarity usually also increases. The correlation length is de-
fined as the point at which the dissimilarity reaches a certain
threshold. The nugget describes small-scale effects, which is
when points with very small distances have an offset to the
original point (Wackernagel, 1998). A minimum number of
100 points should be used for a representative variogram for
which we can define distances that resolve the resolution of
the data, as well as getting an accurate estimate for the mean
semivariance (Cosentino et al., 2023).

Kriging interpolation is based on a geostatistical approach,
such that the interpolation result is a multivariate normal dis-
tribution. The mean (i.e., expected) value at each point is typ-
ically taken as the result and the pointwise standard deviation
as uncertainty. However, this is much smoother than any real-
ization of the actual distribution because it neglects the cor-
relation of errors at different locations. Sparse and uneven
distributed data by itself can lead to overestimation of the
correlation lengths, which results in unrealistic uncertainty
estimates (Chiles and Delfiner, 1999; Hadavand and Deutsch,
2020). Assuming that there is a geological region similar to
the study area but with higher data coverage, we can use the
covariance function (especially the correlation length) esti-
mated for that region in the study area instead. Conditional
simulation can be used to generate realizations that show pos-
sible smaller-scale variations. We use this to assess the likeli-
hood of the NGRIP result being a local anomaly or measure-
ment error. Conditional simulation is based on a two-stage
kriging evaluation combined with an unconditional simula-
tion. First, the given points are interpolated using the kriging
method (Z∗(x)). Then a sample is drawn from the uncon-
ditional multivariate normal distribution (S(x)) based on the

Figure 2. Heat flow for the Arctic region. Data points are from Col-
gan et al. (2022) and Lucazeau (2019).

covariance matrix, which is in turn based on the Gaussian
covariance function Eq. (8).

Finally, the unconditional sample S is conditioned upon
the known data points. To do this, the difference be-
tween S(X) and the interpolated values of S(X) at the ob-
servation locations giving S∗(X) is calculated and gives the
kriging variation. A conditional sample T is then obtained by

T (x)= Z∗(x)+
(
S(x)− S∗(x)

)
. (9)

The small-scale structure of T represents possible random
fluctuations, while the overall large-scale trend agrees with
the kriging interpolation result (Chiles and Delfiner, 1999;
Hadavand and Deutsch, 2020). The advantage of conditional
simulation is the ability to overcome difficulties when deal-
ing with sparse data to estimate non-linear and small-scale
quantities (Hadavand and Deutsch, 2020).

2.2 Data

The heat flow observations analyzed in this work are located
in the Arctic region north of 65° N. Observations are taken
from the data sets of Lucazeau (2019) and Colgan et al.
(2022). Lucazeau (2019) has introduced a global compila-
tion of published heat flow observations. Compared to earlier
compilations (e.g., Pollack et al., 1993), significant changes
can be found, especially for oceanic heat flow, e.g., due to a
better quality of sampling in hydrothermal regions. There are
1488 observations available for our study area. Colgan et al.
(2022) compiled a database for Greenland, with 417 addi-
tional points. The analysis of the heat flow observations is
mainly based on these combined 1905 points (Fig. 2).
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Figure 3. Input data: (a) LAB depth from the LithoRef18 (Afonso et al., 2013) and (b) Moho depth from the ArcCRUST model (Lebedeva-
Ivanova et al., 2019).

In addition to the heat flow observations, we use models
for the LAB depth (Afonso et al., 2019) and Moho depth
(Lebedeva-Ivanova et al., 2019) for our calculations in or-
der to make statements about the reliability to the heat flow
points in relation to these solid Earth models (see Fig. 3).

The LAB depth is derived from a joint inversion of grav-
ity anomalies, geoid height, and satellite-derived gravity gra-
dients, and constraints from seismic, thermal, and petrolog-
ical data are used (Afonso et al., 2019). For Moho depth,
we use the ArcCRUST model, which is calculated from 3D-
forward and 3D-inverse gravity modeling, with constraints
from sediment thickness, rifting age, density, and oceanic
lithosphere age (Lebedeva-Ivanova et al., 2019). These mod-
els and databases are among the most recent available for the
Arctic.

For the regional analysis of continental Greenland, 47 heat
flow observations are used from the Colgan et al. (2022)
database which are located on Greenland or directly on the
coast and extend down to 60° N.

3 Results

3.1 Agreement to solid Earth models

At each heat flow point, an ensemble of possible thermal pa-
rameter results from the MCMC approach is calculated for
which we use the mean at each location as the most likely
result. The correlation between the estimated thermal param-
eters and input parameters can be found in Appendix A.

The distribution of these mean values for the thermal pa-
rameters (Fig. 4) highlights important spatial trends and un-
derlines where we have no fit to the LAB temperature. For
most of the points in the oceanic parts, but also some points

on continental lithosphere, the thermal parameters tend to
strive to the upper end of the allowed parameter range,
mostly coinciding with a bad fit of the LAB temperature
(compare to Fig. 5). These values are unrealistically high
for the thermal parameters in oceanic lithosphere, underlin-
ing the problems of applying the 1D steady-state approach
to oceanic lithosphere. But this we test with the half-space
cooling model. We could say that on continents that rules out
the data point but requires more work on the thermal model
in the oceans.

We see a trend towards the mean values of the prior pa-
rameter range for crustal (Fig. 4a) and mantle (Fig. 4b) ther-
mal conductivity, probably indicating that they are not well
resolved. This can also be seen in the distribution of the pa-
rameter correlation in Fig. A1 in the Appendix A, e.g., in
relation to the Moho depth. The distribution of the crustal
heat production tends to follow the GHF, with higher val-
ues at oceanic lithosphere and lower values in the continents.
We also find low crustal thermal conductivity in the region
of Scandinavia, which could give a hint to problematic input
parameters, e.g., that the LAB in the model by Afonso et al.
(2019) is too shallow (compare also to the lithospheric model
by, e.g., Artemieva and Thybo, 2008). The calculated man-
tle heat flow follows the LAB depth and is therefore higher
in oceanic lithosphere and lower in continental lithosphere.
Somewhat paradoxically, the standard deviations from the
MCMC runs are very small for the thermal conductivities
(Appendix A) at the locations where we could not fit the tem-
perature profile, which is caused by the result clinging to the
boundary of the parameter ranges.

Our analysis shows that about two-thirds of the heat flow
points can be fit with solid Earth models if adequate thermal
parameters are selected (Fig. 5). However, given the range of
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Figure 4. Distribution of the thermal parameter from the inversion with qD calculated with Eq. (3) after 10 000 iterations per point. (a) Crustal
thermal conductivity k1, (b) mantle thermal conductivity k2, (c) mantle heat flux qD, and (d) crustal heat production A.

parameters that we allow, it was impossible to achieve the de-
sired 100 K threshold for LAB temperature at 628 locations.
Most of these points are located in the oceanic lithosphere.

Comparing Figs. 4 and 5a, we see that most of the high-
parameter values occur where the LAB temperature could
not be fit, so this strictly linear approach might not be appro-
priate to resolve oceanic lithosphere in particular. Allowing
small jumps in the heat flow at the Moho leads to a non-linear
representation of the temperature profile and could improve
the fit of the LAB temperature for more heat flow points,
e.g., where half-space cooling is assumed. We can imply this
within our inversion by choosing qD as a free parameter and
estimate its value with the MCMC algorithm. To include qD
as free parameter to the inversion, we use the range based on
Lösing et al. (2020), with a minimum of 0 m W m−2, maxi-

mum of 200 m W m−2, and a proposed standard deviation of
50 m W m−2. With this, we reduce the number from 628 to
18 heat flow points that do not fit the solid Earth models and
are able to accommodate oceanic points (Fig. 5b).

Figure 6 shows the corresponding distribution of the ther-
mal parameters with qD as free parameter. Mantle heat flux is
highly variable, while mantle and crustal thermal conductiv-
ities and the crustal heat production tend towards the middle
of the prior ranges. At points where the LAB temperature
could not be fit, the crustal heat production and crustal ther-
mal conductivity tend to have higher values and correspond-
ingly lower standard deviations (Appendix A).

To further analyze a possible limitation of our model
within oceanic lithosphere, we compare a Curie depth cal-
culated with our approaches both with and without qD as
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Figure 5. Deviation of the calculated compared to the pre-defined LAB temperature (a) with qD calculated with the crustal heat productionA
and (b) qD as a free parameter within the inversion. Most of the points lie within the 100 K uncertainty. For panel (a), 628 points (red) have
a higher deviation, while for panel (b), the number reduces to 18 points.

free parameter to a Curie depth calculated with the half-space
cooling model (Fig. 7). For both of our 1D approaches, we
overestimate the Curie depth. We get a higher mean devia-
tion from the half-space cooling Curie depth when qD is not
a free parameter. With qD free, the Curie depths itself are
highly scattered for younger oceanic lithosphere. For older
lithosphere, our approaches underestimate the Curie depth,
with a better fit for fixed qD. Despite the deviation, we see a
similar trend for the different Curie depths in oceanic litho-
sphere. To further evaluate oceanic lithosphere, a more ad-
vanced model like a plate model could be considered, but
within our study, we may rely on the results from our sim-
plified approach and do not necessarily need to clip oceanic
lithosphere.

Comparing calculated Curie depths from our model, as
described above, with the Curie depths from models with
changed priors (Appendix B), we mostly get high correla-
tions, except for about one-sixth of the points of the half-
space cooling correlation. This shows that our approach
seems to be robust against changes in the prior parameter
ranges. The 18 remaining points are therefore especially in-
teresting, since non-linear assumptions still do not lead to
a fit. While 17 of the new low reliability points are close
to other observations and can therefore be excluded without
losing information on a regional scale, the NGRIP point is
nearly solitary for central Greenland. Leaving it out leads ei-
ther to a data gap or high uncertainties in the area of central
Greenland when taking the information only from the sur-
rounding points. However, considering this point within re-

Table 2. Thermal parameters estimated for the NGRIP point
with qD as a free parameter within the inversion.

k1 in k2 in qD in A in
W m−1 K−1 W m−1 K−1 mW m−2 µW m−3

range [1.0, 3.0] [2.5, 4.0] [0, 200] [0.25, 1.75]
value 3.0 3.3 10 1.75

gional studies could be problematic, since it appears to not
fit the regional geophysical models.

For NGRIP, also all parameters lie at the outer edge of
the ranges (seen in Fig. 4; discrete values in Table 2), which
shows that this heat flow observation of 130 m W m−2 (Col-
gan et al., 2022) cannot be brought in line with the solid Earth
models using these ranges and preferably should be assumed
as local structure or excluded from further studies.

3.2 Kriging interpolation

Simple kriging and conditional simulation allows an inves-
tigation of the influence of isolated points in sparse regions.
Due to computational costs, we limit the analysis to Green-
land, but the method could also be applied to other regions.
We rely on 47 heat flow observations on Greenland or di-
rectly at the coast. Within this data set, NGRIP is the only
point that does not show an agreement with the regional solid
Earth model.
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Figure 6. Distribution of the thermal parameter from the inversion with qD as a free parameter after 10 000 iterations per point. (a) Crustal
thermal conductivity k1, (b) mantle thermal conductivity k2, (c) mantle heat flux qD, and (d) crustal heat production A.

Unfortunately, there are not enough data points in Green-
land to get reliable results from the semivariogram analysis.
However, if applied to the whole Arctic, the semivariogram
results in a length scale of 600 km. Still, following Fox Maule
et al. (2005), smaller length scales could be more reason-
able. Additionally, the length scale for heat flow should be
similar in geologically similar regions. Since Greenland was
once part of Laurentia on the North American plate (Geof-
froy et al., 2001), as well as connected to Norway (Mosar
et al., 2002), we assume that a similar spatial variability oc-
curs as in the other Precambrian shields of Scandinavia or
North America (Näslund et al., 2005). Both regions are well
covered with heat flow data, so a more reliable semivari-
ogram can be estimated. With the Gaussian variogram model,
we obtain a length scale for GHF of 125 km from the Scan-

dinavian data set (Appendix C), which we then applied to
Greenland (Fig. 8).

Carrying out kriging interpolation, we find that, not sur-
prisingly, NGRIP has a crucial impact on the interpolated
heat flow field. Leaving it out (Fig. 8a) results in low to
medium heat flow values in central Greenland, whereas, with
NGRIP included (Fig. 8b), lower values are estimated in the
north and significantly higher values are found in the vicinity
of NGRIP, extending c. 300 km west and south. The corre-
sponding uncertainty maps show nearly constant uncertain-
ties of 32 m W m−2 for Fig. 8a and 22 m W m−2 for Fig. 8b
(Appendix D). With a shorter correlation length of 125 km,
and applying conditional simulation, a more realistic picture
of what heat flow might look like emerges (Fig. 8c). As ex-
pected, the reduced correlation length limits the influence of
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Figure 7. Comparison of the calculated associated parameter Curie
depth with three different approaches within oceanic lithosphere.
Blue triangles show the calculation with the half-space cool-
ing model, while orange marks and green dots show the Curie
depths calculated from the thermal parameters estimated with the
1D steady-state approach with and without qD as a free parameter,
respectively.

the NGRIP point’s high heat flow to a local area. In southern
Greenland – where more points exist – GHF is comparable
for all three approaches. Of course, the conditional simula-
tion does not provide any additional constraints on the actual
data (Hadavand and Deutsch, 2020).

To further judge the viability of the NGRIP point, we use
conditional simulation without NGRIP as input. Simulating
the unseen local structures in this way is useful if the station-
ary heat flow modeling (previous section) implies disagree-
ment between regional geophysical models and the measured
or inferred heat flow. Using conditional simulation, the statis-
tical distribution of the small-scale variations can be probed
to assess the possibility of a similarly extreme point occur-
ring. We generate 100 conditional simulations of heat flow
without NGRIP to investigate whether heat flow of more
than 100 m W m−2 is even possible at the NGRIP location
with our assumed geostatistical parameters. An area with
500 km radius around NGRIP will be used as the “vicinity”
of NGRIP.

In total, 38 % of the simulated heat flow fields exceed
100 m W m−2 in the vicinity of NGRIP (Fig. 9a). A single
realization reached 120 m W m−2, but the reported value of
130 m W m−2 is never attained. Additionally, most simula-
tions have less than 1 % of the NGRIP area vicinity with heat
flow values above 100 m W m−2 (Fig. 9b). An area of 1 % is
roughly 60 km by 60 km, so it is comparable to the length
scale a single GHF hot spot in the area around NGRIP would
have. However, in 13 simulations, an area of more than 1 %
is covered with heat flow values higher than 100 m W m−2,
up to almost 5 % in a single simulation. Within our analysis,
60 % of the realizations have a maximum heat flow of less
than 100 m W m−2 and 87 % of the realizations have an area
of less than 1 %, where 100 m W m−2 values are reached.

Thus, we can interpret this as a 40 % chance that there are any
“hot spots” above 100 m W m−2, and even if they did exist,
it would be very unlikely (much less than 5 %) that NGRIP
randomly “hits” the hot spot. Therefore, the high value of
NGRIP cannot be explained with lateral variation at a length
scale of 125 km and would be essentially incompatible with
the assumed geostatistical parameters.

EastGRIP (East Greenland Ice-Core Project; triangle in
Fig. 8) is a drill site in NNE Greenland with no published
heat flow value so far (Rasmussen et al., 2023). This point is
close to NGRIP (approximately 190 km) and could provide
information on the spatial influence of NGRIP. Although its
heat flow value is not yet published, we can still use the loca-
tion of this point and predict interpolated values for the three
different scenarios (Fig. 8). Without NGRIP, EastGRIP gets
a heat flow of 61 m W m−2. Including NGRIP increases the
heat flow at EastGRIP to 81 m W m−2 so that we see an influ-
ence of the high heat flow of NGRIP. The conditional simu-
lation example gives the EastGRIP heat flow at 59 m W m−2,
which is significantly lower than the NGRIP value. Perform-
ing 50 conditional simulations with NGRIP, we get a variety
of possible values for EastGRIP (Fig. 10).

In these 50 simulations, the heat flow for EastGRIP varies
from 40 to 110 m W m−2, with a mean and median of
75 m W m−2. Most of the simulated GHF values for East-
GRIP lie within the range of 65 to 85 m W m−2. So, we
would rather assume elevated GHF at EastGRIP if the high
heat flow at NGRIP is not an outlier.

3.3 Basal melt estimates

Although our models can be deemed unrealistic, we would
like to briefly explore the importance for basal melt rates,
following the approach from Karlsson et al. (2021) (Fig. 11).
This shows the effect that local heat flow structures (Fig. 11c)
might have on basal melts compared to two different regional
heat flow maps (Fig. 11a and b) with an estimated geothermal
basal melt for Greenland of 4.9 Gt yr−1 for local structures
and 5.0 Gt for regional structures.

All of our maps provide similar results for the basal melt
(Table 3), with insignificant variations within the single ar-
eas. It can be seen that the basal melt for a regional GHF
map also shows a regional pattern following the geother-
mal heat, flow while we see local spots of high basal melt
where we have hot spots of GHF within the local-scale map.
Karlsson et al. (2021) use an average of three GHF maps
(Fox Maule et al., 2009; Shapiro and Ritzwoller, 2004; Mar-
tos et al., 2018) and calculate a total geothermal basal melt
of 5.3+ 2.8/− 2.2 Gt. Basal melt calculated from our HF
(heat flow) maps is slightly below the estimates from Karls-
son et al. (2021) but would still be within their standard de-
viation.

The largest contribution to basal melt from our GHF maps
with 1.7 Gt comes from NE Greenland where the NGRIP
point, and therefore the hot spot around NGRIP, is located.
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Figure 8. Kriging interpolation results for heat flow observations, (a) With a length scale of 600 km excluding the NGRIP point and (b) with
a length scale of 600 km including NGRIP. (c) An example of a conditional simulation with a length scale of 125 km and NGRIP included.
The triangle marks the position of the EastGRIP drill site.

Figure 9. (a) Maximum GHF and (b) percentage of the area with a GHF over 100 m W m−2 from 100 conditional simulations without
NGRIP in the area 500 km around the NGRIP point.

Excluding NGRIP leads to the same basal melt rate for
this region. Karlsson et al. (2021) provide an estimate of
1.3+ 0.6/− 0.5 Gt for this region so that our estimates are
slightly higher but within the standard deviation. The ma-
jor difference between our estimates and the estimate from
Karlsson et al. (2021) can be found in southern Greenland,
where Karlsson et al. (2021) estimate significantly more
basal melt than our estimate, showing the importance of a
careful assessment of heat flow data and models in order to
provide accurate uncertainty estimates.

4 Discussion

We performed two analyses to appraise the spatial influence
of heat flow observations. First, we used 1D stationary heat
flow modeling to assess the compatibility between heat flow
measurements and regional geophysical models of crustal
thickness and LAB depth. Second, we focused on Greenland
and relied on two related geostatistical techniques to investi-
gate the impact of the enigmatic NGRIP point on the inferred
heat flow.

We find that most of the heat flow observations in the Arc-
tic and Greenland can be made compatible with solid Earth
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Figure 10. Heat flow values for EastGRIP extracted from 50 condi-
tional simulations with NGRIP.

Table 3. Basal melt rates in gigatonnes per year for Greenland for
four different HF maps. The different areas are the same used in
Karlsson et al. (2021): NO – north, NW – northwest, NW – north-
east, CW – central-west, CE – central-east, SW – southwest, SE –
southeast.

Karlsson et al. (2021) This study, This study, This study,
600 km, no 600 km, 125 km,

NGRIP NGRIP NGRIP

NO 0.4± 0.3 0.7± 0.3 0.6± 0.2 0.6
NW 0.6± 0.2 0.6± 0.3 0.9± 0.2 0.7
NE 1.3+ 0.6/− 0.5 1.7± 0.8 1.7± 0.6 1.7
CW 0.7+ 0.5/− 0.3 0.8± 0.5 0.7± 0.4 0.8
CE 0.5+ 0.5/− 0.3 0.4± 0.3 0.4± 0.2 0.3
SW 1.2± 0.4 0.5± 0.4 0.5± 0.3 0.4
SE 0.7+ 0.5/− 0.3 0.3± 0.3 0.3± 0.2 0.3

Total 5.3+ 2.8/− 2.2 5.0± 2.8 5.0± 2.1 4.9

models, at least when allowing non-stationary heat flow at the
Moho boundary. However, the stationary model fails consis-
tently in the oceanic domain, particularly in young oceanic
lithosphere. This is not surprising, since freshly formed
oceanic lithosphere is cooling rapidly and far from station-
ary conditions.

We allow wide ranges for the geothermal parameters.
Therefore, our quality criteria are fairly lenient and attention
should be focused on the heat flow points that are incom-
patible with the geophysical models. Non-agreement could
be due to four reasons: (i) our thermal model might not be
adequate for this point, (ii) it could be a measurement error,
(iii) the geophysical models are incorrect, or (iv) the mea-
surement is affected by local anomalies. Thus, incompatible
heat flow observations should be used with caution for re-
gional studies, as they could represent local anomalies due
to local crustal heat production (Bons et al., 2021; Hasterok
and Chapman, 2011) or hydrological processes or measure-
ment errors. In Scandinavia, incompatibility is probably due
to an incorrect LAB depth, highlighting how our method can
also be used to scrutinize the geophysical input models. Here,
other LAB depth models (e.g., Artemieva and Thybo, 2008;

Plomerová and Babuška, 2010) might improve the results,
but nevertheless, such models are only available for local ar-
eas and do not cover all of our investigation area.

Deciding between the four different reasons is difficult,
but the spatial distribution can be helpful. For example, in
the case of the incompatible points in northern Scandinavia,
there is a clear spatial correlation between incompatibility
and an unusually shallow LAB depth. Likewise, any cluster-
ing of incompatible points suggests systematic issues rather
than local anomalies or measurement errors. However, ulti-
mately additional (geophysical) data will be needed to clearly
determine the reason for the incompatibility.

Our second analysis is based on geostatistics. The NGRIP
point is our particular focus, since it controls the interpolated
heat flow over most of central Greenland, as the next heat
flow observation is about 300 km away. A thorough assess-
ment of this point is essential due to its impact on ice sheet
modeling (Rogozhina et al., 2016).

We perform jackknifing for NGRIP to test its influence
on the length scale of the available data that the whole of
the Arctic provides. Simple kriging interpolation with poor
data coverage always leads to high uncertainties (Chiles and
Delfiner, 1999), which reach up to about 32 m W m−2 when
NGRIP is excluded from the interpolation data set. Addition-
ally, performing the simple kriging interpolation with the re-
gional length scales of 600 km confirms that excluding or in-
cluding a single point can have a large influence on heat flow
estimated for central Greenland.

We infer that the high GHF (above 130 m W m−2) mea-
sured at NGRIP is also incompatible with other heat flow
estimates based on the conditional simulation. This assess-
ment is not necessarily in disagreement with the NGRIP data
because its GHF estimate is based on an extrapolated ice
temperature profile since the ice–bedrock interface was not
reached during drilling (Dahl-Jensen et al., 2003). An en-
semble of conditional simulations shows that the high GHF
(above 130 m W m−2) estimated at NGRIP is not compati-
ble with other heat flow measurements in Greenland. Con-
ditional simulations have higher variance than the pointwise
standard deviation inferred by kriging interpolation because
error covariances are taken into account. But even with these
additional sources of variance, only about 10 % of the simu-
lations reach values higher than 110 m W m−2 in the vicinity
of NGRIP. Provided that our geostatistical parameters (corre-
lation and length and variance) are correct, values of GHF of
more than 130 m W m−2 are implausible and probably con-
fined to a small region.

There are several studies of GHF in Greenland that as-
sume large areas of elevated GHF. Martos et al. (2018) in-
fer the GHF from the Curie depth calculated from mag-
netic data while assuming constant thermal conductivity
(2.8 W m−1 K−1) and heat production (2.5 µW m−3). They
predict an area of elevated GHF for NW–SE Greenland. After
removing incompatible points, our approach estimates ther-
mal conductivities of 2.25 W m−1 K−1 or lower for Green-
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Figure 11. Basal melt estimates for Greenland based on the kriging interpolated heat flow map (a) without NGRIP and 600 km correlation
length, (b) with NGRIP and 600 km correlation length, and (c) the heat flow map from the conditional simulation with 125 km correlation
length and NGRIP. Blanked out areas are considered to be frozen at the ice–bedrock interface. Red point marks the location of NGRIP.

land. The crustal heat production varies between 0.5 and
1.25 µW m−3. For both parameters, we estimate values that
are below the assumed constant values Martos et al. (2018)
use. In particular, the constant heat production they assume
exceeds our range for the crustal heat production by far.
Artemieva (2019) uses a thermal isostasy model based on
seismic Moho depth data, topography, and the assumption
that isostatic anomalies can be translated in LAB depth
topography. In the region of CE Greenland, anomalously
high GHF of 110 m W m−2 is calculated that extends across
Greenland. According to our analysis, such high heat flow
would not influence such a large area onshore, as predicted in
the model. However, the region around NGRIP shows GHF
of up to 75 m W m−2, which is compatible with our con-
ditional simulation and interpolation results. The machine
learning approach employed by Colgan et al. (2022) also sug-
gests that the NGRIP point is incompatible with their geo-
physical data sets. A machine learning model without this
point results in no elevated GHF for central Greenland. This
is in line with the results from kriging and the conditional
simulations and confirms that NGRIP should be used with
caution for regional studies.

Calculating the basal melt from our GHF maps, we find
that the general basal melt is similar to calculations with re-
gional heat flow models. Our local NGRIP structure seems
to punctually provide more basal melt. As stated in McCor-
mack et al. (2022), local hot spots could have a significant
influence, and not considering those structures could lead to
underestimating the basal melts. When considering a local
hot structure, we get similar basal melt to when choosing the
same mean heat flow for Greenland without local structures.
Within the single areas, the basal melt varies between the dif-
ferent models so that these local structures from the heat flow
give local structures with high basal melts. Such local high
basal melt rates could contribute to the sliding of ice shields.

Also, the area with the highest difference between the heat
flow maps is found at a region not included in the calculations
for basal melts, since radar data clearly show that there is no
basal melt at the blanked out regions. This could be changed
in future so that the contribution of these regions could be
considered.

In order to verify local GHF structures, local information
such as magnetic data or radar data should be included in the
calculation in addition to more direct GHF observations such
as the not-yet-published EastGRIP point. Furthermore, heat
flow modeling could be improved by including the tempera-
ture at the top of the bedrock, as derived from ice temperature
profiles in Yardim et al. (2021) and Løkkegaard et al. (2023).
Using the different GHF maps in conjunction with ice tem-
perature profiles within the 1D stationary HF equation could
provide information on the reliability of the GHF maps.

With this new approach, we provide information on the
reliability and locality of points and show that assuming
smaller length scales is appropriate for Greenland. This ap-
proach is also applicable to the global heat flow database for
evaluation of data points.

5 Conclusions

We evaluate whether the heat flow observations in the Arc-
tic region are in agreement with regional geophysical models
of LAB and Moho boundary depths using a 1D stationary
heat flow model. We adjust thermal parameters (heat con-
ductivity and radiogenic production) in a Bayesian frame-
work, trying to reconcile geophysical LAB estimates with
the heat flow data. GHF points where geophysical models
and the GHF measurements disagree, are flagged, and fur-
ther analyzed. The exact reason for the disagreement cannot
be determined from our approach alone; it is possible that a
GHF measurement only reflects local structures, e.g., due to
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an anomalously high crustal heat production or the disagree-
ment could indicate errors in the GHF or geophysical models.
In any case, GHF observations incompatible with regional
assumptions should be used with caution for interpolations or
machine learning approaches – irrespective of the reason of
the disagreement. Heat flow observations are scarcely avail-
able throughout the Arctic and distributed unevenly. Due to
this reason, single points are influencing large areas, creat-
ing the risk of systematic biases when used for interpolation
or machine learning approaches. Conditional simulation is
a geostatistical technique to incorporate local effects. While
closely related to kriging interpolation, conditional simula-
tion generates maps that include more spatial heterogeneity.
This helps to investigate the occurrence of local hot spots and
their spatial extent. We applied this technique to investigate
whether the anomalously high GHF measurement at NGRIP
is widely plausible, given the expected variability in heat
flow in Greenland. Our conditional simulation results over-
all indicate a low probability that reported high GHF values
for NGRIP are plausible. This is in line with the high uncer-
tainty in the GHF estimate. The reliability of the GHF maps
should be studied in the future in detail by replacing the con-
stant surface temperature with observations on ice tempera-
ture profiles from radar (Yardim et al., 2021) and additional
local geophysical data to obtain information on small scales.

Appendix A

The estimated mean parameters (Fig. A1; main diagonal)
cover the entire range of allowed values (Table 1). Both man-
tle and crustal thermal conductivities show a bimodal distri-
bution, with each having a peak at the upper boundary and
the middle of their prior range. The crustal heat production is
distributed nearly uniformly, again with a peak at the upper
boundary. The peaks at the upper boundary of the parame-
ter range are mostly due to points with a bad fit of the LAB
temperature. Other points where the parameters also fall at
the edge of the range might also be problematic, although
a fit to the LAB temperature was possible. Moho and LAB
depth are separated into two depths representing the conti-
nental and oceanic parts.

When looking at the correlation plots in the lower triangle,
we see a high correlation between the surface heat flow q0
and the mantle heat flow qD. In general, there is a positive
correlation from the fitted parameters to q0 and qD, respec-
tively, and a slightly negative correlation between the depths
and the surface heat flow and mantle heat flow.

The standard deviation of the thermal parameter estima-
tion with the inversion is displayed in Fig. A2 for qD (cal-
culated) and Fig. A3 for qD (treated as a free parameter).
For both calculations, most of the points get a standard de-
viation from about 0.4 to 0.5 W m−1 K−1 for k1 and 0.3 to
0.4 W m−1 K−1 for k2. Extremely low standard deviations
are mostly found where we cannot fit the temperature pro-
files and the parameters values themselves stick to the edges
of the range. With qD (calculated), we find low standard de-
viations for the crustal heat production A; when qD is a free
parameter, A gets higher standard deviations. We get highly
variable standard deviations for the estimated qD. In particu-
lar, the estimation of k1 and k2 seems to be quite uncertain.
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Figure A1. Correlations between the input parameters Moho and LAB depths and surface heat flow and the output parameters from the
inversion crustal thermal conductivity k1, mantle thermal conductivity k2, mantle heat flux qD, and crustal heat production A for all heat flow
points. The upper triangle shows the inversion results as scatterplots; on the diagonal we find the histograms for each parameter. The lower
triangle displays the density of the parameter combinations. Note that points with a GHF of more than 150 m W m−2 are neglected in this
figure for the purpose of clarification.
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Figure A2. Distribution of the standard deviation of the thermal parameters with qD calculated with Eq. (3). (a) Crustal thermal conductiv-
ity k1, (b) mantle thermal conductivity k2, and (c) crustal heat production A.
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Figure A3. Distribution of the standard deviation of the thermal parameters with qD as a free parameter. (a) Crustal thermal conductivity k1,
(b) mantle thermal conductivity k2, (c) mantle heat flux qD, and (d) crustal heat production A.

Appendix B

To verify that the results from our 1D stationary HF approach
could basically represent an appropriate parameter distribu-
tion for whole of the area, we calculate a reference depth
with different approaches. These approaches include more
appropriate assumptions especially for oceanic lithosphere.
The plots in Fig. B1 show the correlation between the Curie
depths. We compare the reference model from the 1D sta-
tionary HF approach

zCurie =

q0
k1
−

√(
q0
k1

)2
− 2 · A

k1
· (TCurie− T0)

A
k1

, (B1)

where TCurie = 580°C is the temperature at the Curie depth
with the Curie depth from the half-space cooling model, as
well as the Curie depths from the 1D stationary HF approach,
according to Eq. (B1), with variations in the prior and pro-
posal of the thermal parameters.

a. For oceanic lithosphere, the assumption of purely verti-
cal heat flow is not appropriate. We calculate the Curie
depth zCurie, based on the half-space cooling model,
which is the standard approach for oceanic lithosphere

zCurie(t)= 2
√
κt · erf−1

(
zCurie− T0

zLAB− T0

)
, (B2)
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Figure B1. Correlation of different Curie depth approaches (y axis) to the reference Curie depth calculated with the 1D stationary heat flow
equation with qD estimated within the inversion (x axis). (a) Half-space cooling model (oceanic lithosphere), (b) given k1 for Greenland
points, (c) lower crustal heat production (oceanic lithosphere), and (d) combination of panel (c) with a lower crustal thermal conductivity k1.

Table B1. Prior information for the inversion: initial value, range, and proposal for each iteration.

Parameter Initial value Prior range Proposal

k1 [W m−1 K−1
] 2.2 [1.0, 3.0] 0.5

k∗1 [W m−1 K−1
] 2.2 [0.5, 3.0] 0.5

k2 [W m−1 K−1
] 3.0 [2.5, 4.0] 0.375

qD [m W m−2
] 22 [0, 200] 50

A [µW m−3
] 1.5 [0.25, 1.75] 0.375

A∗ [µW m−3
] 1.5× 10−3

[0.25× 10−3, 1.75× 10−3
] 0.375× 10−3

with the time t , temperatures T for the Curie and LAB
depths, and the surface and the thermal diffusivity κ =
1.5× 10−6 m2 s−1 (Beardsmore and Cull, 2001). De-
spite the different approach, we find a high correlation
between the half-space cooling approach and the 1D sta-
tionary HF approach for shallow Curie depths.

b. For Greenland, we change the prior of the crustal ther-
mal conductivity to given values from the Colgan et al.
(2022) database and calculate the Curie depths based
on Eq. (B1). Due to a shift to lower Curie depths,
we get a low correlation. Probably the shift comes
from lower crustal thermal conductivities given in the
database compared to the estimated ones.

c. Crustal heat production can be assumed negligible
for oceanic lithosphere (Beardsmore and Cull, 2001).
Therefore, the prior range for heat production is set to
lower values (A∗ in Table B1), and the Curie depth is

calculated with Eq. (B1). Changing the crustal heat pro-
duction does not have a strong effect on the Curie depth.

d. Last, we can adjust both the range for the crustal heat
production and thermal conductivity. Based on the Col-
gan et al. (2022) database, the crustal thermal conduc-
tivity could be lower than initially assumed. The used
values A∗ and k∗1 are displayed in Table B1. Combin-
ing this with the assumption of lower crustal heat pro-
duction within the oceanic crust, we calculate the Curie
depths (Eq. B1). We get a good correlation but a higher
deviation for the Curie depths compared to approach (c).

Based on the correlation of the Curie depths, we can assume
that our initial approach is appropriate for the analysis, since
it is robust to changes in the parameter space. Even for the
comparison for the oceanic crust, we find somewhat high cor-
relations between the different approaches for shallow Curie
depths.
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Appendix C

Due to the geological similarity, we take the length scales cal-
culated from the semivariogram for the heat flow in Scandi-
navia (Lucazeau, 2019). Here, we have a high data coverage
so that estimates based on the semivariogram are appropri-
ate (Fig. C1). For Scandinavia, we calculate a length scale of
125 km.

Comparing the semivariograms (Fig. C2), we see that for
Scandinavia we get a lot of points, especially on short dis-
tances, so that the Gaussian variogram model can easily be
fitted. For the semivariogram of Greenland, we see that we
generally get fewer points to fit. A fit with the Gaussian var-
iogram model is possible, but there are large outliers up to
a distance of 500 km, so that it is less appropriate to rely on
this semivariogram for length-scale estimates.

Figure C1. Kriging interpolation of the heat flow and observation distribution in Scandinavia.

Figure C2. Semivariogram for the given heat flow observations for (a) Greenland and (b) Scandinavia.
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Appendix D

Kriging provides the uncertainties for our interpolated heat
flow map. For both regional heat flow maps, the uncer-
tainty maps are shown in Fig. D1. While excluding NGRIP
(right) shows uncertainties between 29 and 35 m W m−2, in-
cluding NGRIP (left) leads to lower uncertainties of 20 to
25 m W m−2, with higher uncertainties at northeast Green-
land. Within both maps, we get edge effects.

Figure D1. Uncertainty maps of the kriging interpolation (a) with and (b) without NGRIP.
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et al. (2019). The heat flow values around Greenland are available
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code used is available from Lösing et al. (2020). Last, the heat flow
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