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Abstract. The scattered seismic waves of fractured porous
rock are strongly affected by the wave-induced fluid pres-
sure diffusion effects between the compliant fractures and the
stiffer embedding background. To include these poroelastic
effects in seismic modeling, we develop a numerical scheme
for discretely distributed large-scale fractures embedded in
fluid-saturated porous rock. Using Coates and Schoenberg’s
local-effective-medium theory and Barbosa’s dynamic linear
slip model characterized by complex-valued and frequency-
dependent fracture compliances, we derive the effective vis-
coelastic compliances in each spatial discretized cell by su-
perimposing the compliances of the background and the
fractures. The effective governing equations for fractured
porous rocks are viscoelastic anisotropic and numerically
solved by the mixed-grid-stencil frequency-domain finite-
difference method. The main advantage of our proposed
modeling scheme over poroelastic modeling schemes is that
the fractured domain can be modeled using a viscoelastic
solid, while the rest of the domain can be modeled using an
elastic solid. We have tested the modeling scheme in a sin-
gle fracture model, a fractured model, and a modified Mar-
mousi model. The good consistency between the scattered
waves off a single horizontal fracture calculated using our
proposed scheme and the poroelastic modeling validates that
our modeling scheme can properly capture the fluid pressure
diffusion (FPD) effects. In the case of a set of aligned frac-
tures, the scattered waves from the top and bottom of the

fractured reservoir are strongly influenced by the FPD ef-
fects, and the reflected waves from the underlying formation
can retain the relevant attenuation and dispersion informa-
tion. The proposed numerical modeling scheme can also be
used to improve migration quality and the estimation of frac-
ture mechanical characteristics in inversion.

1 Introduction

Fluid-saturated porous rocks in a reservoir, which are charac-
terized by a heterogeneous internal structure consisting of a
solid skeleton and interconnected fluid-filled voids, are often
permeated by much more compliant and permeable fractures.
Although the fractures typically occupy only a small volume,
they tend to dominate the overall mechanical and hydraulic
properties of the reservoir (Liu et al., 2000; Gale et al., 2014).
Thus, fracture detection, characterization, and imaging are
of great importance for hydrocarbon exploration and produc-
tion. Seismic waves are widely used for these purposes be-
cause their amplitude, phase, and anisotropy properties can
be strongly affected by the fractures (Chapman, 2003; Gure-
vich, 2003; Brajanovski et al., 2005; Rubino et al., 2014).
Therefore, appropriate numerical modeling methods are re-
quired for the interpretation, migration, and inversion of seis-
mic data from porous media containing discretely distributed
fractures.
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Biot’s poroelastic theory (Biot, 1956a, b) is the fundamen-
tal theory to describe elastic wave propagation in fluid porous
media, including the dynamic interactions between rock and
pore fluid. However, the original theory, assuming a macro-
scopically homogeneous porous media saturated by a single
fluid phase, fails to explain the measured velocity dispersion
and attenuation of seismic waves (Nakagawa and Schoen-
berg, 2007). In recent decades, many researchers have found
that if porous media contains mesoscale heterogeneity, a lo-
cal fluid pressure gradient will be induced at a scale com-
parable to the fluid pressure diffusion length at the seismic
frequency band, thus causing significant velocity dispersion
and attenuation (White et al., 1975; Dutta and Odé, 1979a, b;
Johnson, 2001; Müller et al., 2008; Norris, 1993; Gelinsky
and Shapiro, 1997; Kudarova et al., 2016). Fractures embed-
ded in homogeneous porous background are special hetero-
geneities, exhibiting strong mechanical contrasts with back-
ground. When seismic waves travel through fluid-saturated
fractured porous rocks, local fluid pressure gradients will
be induced between the fractures and the background in re-
sponse to the strong compressibility contrast. To return the
equilibrium state, fluid pressure diffusion (FPD) occurs be-
tween the fractures and the embedding background, which in
turn changes the fluid stiffening effect on the fractures and
thus their mechanical compliances depending on frequency
(Barbosa et al., 2016a, b).

When the fractures with spacing and length much smaller
than the wavelengths are uniformly and regularly distributed,
the properties of the fractured rocks are homogeneous at
macroscopic scale and can be described by a representa-
tive elementary volume (REV). Various effective medium
theories are available for estimating the fracture-induced
anisotropy, attenuation, and dispersion in a poroelastic con-
text (Hudson, 1981; Thomsen, 1995; Chapman, 2003; Bra-
janovski et al., 2005; Krzikalla and Müller, 2011; Galvin
and Gurevich, 2015; Guo et al., 2017a, b). However, large-
scale fractures with much larger spacing and length typically
have a more complex discrete distribution rather than a reg-
ular one; therefore, the properties of rocks containing such
fractures cannot be modeled by the effective medium the-
ory. In contrast, the linear slip model (LSM) (Schoenberg,
1980), which represents individual fractures as nonwelded
interfaces with discontinuous displacement tensors, is not
limited by the assumption of regular distribution and can
be used to model the discretely distributed fractures. Due
to the discrete distribution, the effects of large-scale frac-
tures are not uniform and vary spatially, which means that
their effects cannot be represented by a single REV. In the
framework of LSM, two numerical schemes are available to
assess the seismic response of discretely distributed large-
scale fractures: the local-effective-medium schemes (Coates
and Schoenberg, 1995; Oelke et al., 2013) and the explicit-
interface scheme (Zhang, 2005; Cui et al., 2018; Khokhlov
et al., 2021). The local-effective-medium scheme uses a very
coarse mesh to discretize background media and incorporates

the additional effects of fractures within each discretized cell
based on LSM; that is, it regards each discretized cell as a
REV. The advantage is that it requires no special treatment
of the displacement discontinuity conditions on the fractures,
which means no additional memory and computation costs.
The explicit-interface scheme uses a very fine mesh to dis-
cretize fractures and directly treats the displacement discon-
tinuity across each fracture without any equivalent treatment,
resulting expensive memory and computation costs.

The common aspect of the aforementioned numerical
modeling schemes is that they are all implemented in a purely
elastic LSM with real-valued compliance boundaries and
represent both the embedding background and fractures as
elastic solids; thus, the impact of FPD effects on seismic
scattering cannot be accounted for. A dynamic linear slip
model incorporating FPD effects should be considered when
implementing numerical modeling of seismic waves propa-
gating in fluid-saturated porous rocks containing discretely
distributed large-scale fractures. Nakagawa and Schoenberg
(2007) developed an extended poroelastic LSM (PLSM) for
a single fracture. The proposed model representing both the
background and the fracture as poroelastic media can ap-
propriately incorporate the frequency-related effects, but it
will also result in a higher computational consumption and
more memory requirements. Rubino et al. (2015) proposed
a frequency-dependent complex-valued normal compliance
for a set of aligned fractures with a separation much smaller
than the prevailing seismic wavelength. Despite the ability
of including the FPD across the fractures, the model is not
suitable for modeling discretely distributed fractures. In the
context of viscoelasticity, Barbosa et al. (2016a) developed a
viscoelastic linear slip model (VLSM) for an individual frac-
ture with explicit complex-valued and frequency-dependent
fracture compliances to account for the impact of FPD on the
fracture stiffness. That provides a viscoelasticity-based mod-
eling algorithm for discretely distributed large-scale fractures
with smaller computational costs and memory requirements
than the poroelasticity-based modeling.

In this paper, we develop a viscoelastic numerical model-
ing scheme to simulate seismic wave propagation in fluid-
saturated porous media containing discretely distributed
large-scale fractures. To capture the FPD effects between the
fractures and background, we use the local-effective-medium
theory based on Barbosa’s VLSM to derive the effective
anisotropic viscoelastic compliances in each numerical cell
by superimposing the compliances of the background and
the fractures. The effective anisotropic viscoelastic govern-
ing equations of the fractured porous rock are then numeri-
cally solved using the mixed-grid-stencil frequency-domain
finite-difference method (FDFD) (Hustedt et al., 2004; Op-
erto et al., 2009; Liu et al., 2018). Compared to poroelas-
tic modeling scheme, the main advantage of our modeling
scheme is that it uses VLSM-based viscoelastic modeling to
account for FPD effects in the domain permeated by frac-
tures, while in the rest fracture-free domain, it uses elastic
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modeling. To validate that the proposed viscoelastic model-
ing scheme can capture the impact of FPD effects on seismic
wave scattering, we compare the scattered waves of a sin-
gle horizontal fracture obtained using our proposed model-
ing scheme with the poroelastic modeling scheme and elastic
modeling scheme. Numerical examples of a fractured reser-
voir are presented to demonstrate that the proposed modeling
scheme can properly simulate the wave attenuation and dis-
persion due to the FPD effects between the fracture system
and background. A set of rock physics models were gener-
ated by the Marmousi model to test the proposed modeling
scheme and code. The scheme can be used not only to study
the impact of mechanical and hydraulic of fracture properties
on seismic scattering but can also to improve migration qual-
ity and the estimation of fracture mechanical characteristics
in inversion.

2 Review of the LSM

The LSM was originally proposed by Schoenberg (1980) to
represent a solid- or fluid-infilled fracture permeated in a
pure solid background, and then it was extended by other
researchers (e.g., Nakagawa, Barbosa) to represent a poroe-
lastic fracture to include the FPD effects. We briefly review
the original LSM and its poroelastic and viscoelastic exten-
sions.

2.1 The original LSM

Schoenberg (1980) presented the original LSM in the context
of elasticity, representing both the background and the frac-
ture as elastic solids. The original LSM assumes that across
a fracture surface the stresses are continuous while the dis-
placements are discontinuous. The discontinuous displace-
ment vector of a horizontal fracture is linearly related to the
stress tensor through the fracture compliance, which can be
written as

[ux] = ZTσxz,[
uy
]
= ZTσyz,[

uz
]
= ZNσzz, (1)

where [ui] represents the discontinuous displacement com-
ponents, σij represents the stress components, and ZN =

h/H and ZT = h/µ are the normal and tangential compli-
ance of the fracture, respectively. H and µ are the P-wave
and shear modulus of the fracture, and h is the thickness of
the fracture. Due to the simple expression, the original LSM
can be easily incorporated into the local-effective-medium
theory to model seismic wave scattering off large-scale frac-
tures. However, the original LSM was derived in a purely
elastic context, only suitable for fractures filled with pure
solids or fluids; thus, it is not competent to describe the FPD
effects.

2.2 Nakagawa’s PLSM

Nakagawa and Schoenberg (2007) presented a PLSM in the
framework of poroelasticity, representing the fracture as a
highly compliant and porous thin isotropic, homogeneous
layer embedded in a much stiffer and much less porous back-
ground (Nakagawa et al., 2007; Barbosa et al., 2016a). Sim-
ilar to the classic LSM, the PLSM assumes that across a
fracture surface the stresses are continuous while the dis-
placements are discontinuous. The discontinuous displace-
ment components for a horizontal fracture are (Nakagawa
and Schoenberg, 2007)

[ux]= ZTσxz,[
uy
]
= ZTσyz,[

uz
]
= ZND (σzz+αPf) ,[

wz
]
=−αZND

(
σzz+

1
B
Pf

)
, (2)

where ZND = h/HD and ZT = h/µ are the fracture’s drained
normal compliance and tangential compliance, respectively;
HD and HU are the fracture’s drained and undrained P-wave
modulus, respectively; α is Biot’s effective stress coefficient
of the fracture; and B = αM/HU is the fracture’s uniaxial
Skempton coefficient. Since the PLSM represents both the
background and the fracture as poroelasticity, it is capable
of describing the discontinuous displacement of the relative
fluid in addition to the solid, implying that it can properly
handle the FPD effects between the background and the frac-
ture. Although it is difficult to incorporate the PLSM into
the effective medium theory to obtain the effective moduli
of the fractured porous rock, these boundary conditions can
be easily incorporated into the poroelastic finite-difference
algorithm for modeling seismic wave scattering off large-
scale fractures parallel to the coordinate axis. An alterna-
tive wavenumber domain method for modeling the scattered
waves by poroelastic fractures is presented by Nakagawa and
Schoenberg (2007) based on the PLSM.

2.3 Barbosa’s VLSM

Barbosa et al. (2016a) derived a VLSM that accounts for
the FPD effects between a fracture and background and the
resulting stiffening effect impact on the fracture. The back-
ground is assumed to be not impacted by the FPD and can
be represented by an elastic solid, whose properties are com-
puted according to Gassmann’s equation (Gassmann, 1951).
By representing fractures as extremely thin viscoelastic lay-
ers, the poroelastic effects were incorporated into the classi-
cal LSM through complex-valued and frequency-dependent
compliances. These compliances characterize the mechani-
cal properties of the fluid-saturated fracture.
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The discontinuous displacement components of the
VLSM (Barbosa et al., 2016a) for a horizontal fracture are

[ux]= ZTσxz,[
uy
]
= ZTσyz,[

uz
]
= ZNσzz+ZXεxx, (3)

where ZN and ZT are generalized normal and tangential
compliances of the fracture, respectively, and ZX is a pa-
rameter that relates to the coupling between horizontal and
vertical deformation of the fracture. The normal compli-
ance ZN and additional parameter ZX are complex-valued
and frequency-dependent, while the tangential compliance
ZT = h/µ is the same as for elastic and poroelastic models.
The two frequency-dependent and complex-valued compli-
ances are

ZN = ZNU +ZND

G1 (1+ i)
√
ω+G2 (1+ i)

,

ZX =−
G3 (1+ i)

√
ω+G4 (1+ i)

, (4)

where ZNU = h/HU and ZND = h/HD are the fracture’s
undrained and drained normal compliance, respectively, and
ω is the angular frequency. The four real-valued parameters
G1, G2, G3, and G4 are defined as

G1 =
κb

ηZND

(
Bb
−Bf)2
√

Db
,G2 =

κb

ηZND

Bf

αf
√

Db
,

G3 =
2
√

2αbµb (Bf
−Bb)√Db

H b
D

,

G4 =

√
2κbDf

ZTµfκ f
√

Db
, (5)

where κ is the permeability, η is the viscosity of the fluid,
D = κ

η
HDM
HU

is the diffusivity, and the other parameters are
defined in the same way as in poroelasticity. The parame-
ters in Eq. (5) with superscripts b correspond to background
properties, and the parameters with superscripts f correspond
to fracture parameters.

In the low-frequency limit, the two frequency-dependent
and complex-valued parameters become

ZN = ZNU +ZND

G1

G2
,

ZX =−
G3

G4
. (6)

The frequency-independent and real-valued parameters in
Eq. (6) indicate the elastic behavior of the fracture, which
is expected, since the fluid pressure between the fracture and
background at low frequencies has enough time to equilibrate
within a half-wave period (i.e., the fracture is softest), result-
ing in no dispersion and attenuation of the seismic waves.

In the high-frequency limit, the two frequency-dependent
and complex-valued parameters become

ZN = ZNU ,

ZX = 0. (7)

Equation (7) indicates that the fracture model collapses to an
elastic thin layer model in the high-frequency limit, which
is consistent with the original LSM that computes the prop-
erties of both the fracture and background using Gassmann’s
equations. This because at high frequencies the fluid pressure
between the fracture and background has no time to equili-
brate within a half-wave period; i.e., the fracture is hardest
and behaves as being sealed. The VLSM considering FPD
effects can be incorporated into the local-effective-medium
theory to simulate the poroelastic seismic response of large-
scale fractures, while its low- and high-frequency limits can
be used to model the elastic seismic response.

According to Barbosa et al. (2016a), there are two distinct
frequency regimes due to the FPD effect, and the character-
istic frequency for the transition between the two regimes is

ωm = 2πfm =
(

2
h

)2
(

e2
b

e2
f + efeb

)
Df, (8)

where h is the thickness of the fracture, D is the diffusivity,
e = κ/η

√
D, and the subscripts b and f correspond to back-

ground fracture parameters, respectively.

3 Seismic modeling of fractured porous rock

In this section, we focus on the implementation of seismic
modeling of fluid-saturated porous media containing dis-
cretely distributed large-scale fractures in the 2-D case. We
develop a viscoelastic modeling scheme based on the VLSM
and local-effective-medium theory (Coates and Schoenberg,
1995) to incorporate the FPD effects between fractures and
background. To validate that the proposed viscoelastic mod-
eling scheme can capture the impact of FPD effects on seis-
mic wave scattering of fractures, we outline the implemen-
tation of the poroelastic modeling scheme using an explicit
application of the PLSM.

3.1 Viscoelastic modeling based on VLSM

To incorporate the VLSM into viscoelastic finite-difference
modeling algorithms, we adopt Coates and Schoenberg’s
local-effective-medium theory (1995) to account for the
property of each fracture. We first provide the specific deriva-
tion of the effective viscoelastic–anisotropic stiffness matrix
of the numerical cell by superimposing the compliances of
the background and the fractures. The porous background is
assumed to be unaffected by the FPD in the presence of frac-
tures because of the small amount of diffusing fluid and large
compliance contrast between background and fluid. Thus, the
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Figure 1. Complex-valued and frequency-dependent ZN and ZX . The dashed vertical line denotes the characteristic frequency computed
using Eq. (8).

rock background can be represented by an elastic homoge-
neous solid, and its strain tensor εb can be expressed as

εb
ij = s

b
ijklσkl, (i,j = x,y,z) , (9)

where the compliance tensor sb is computed according to
Gassmann’s equation (Rubino et al., 2015), and σ is the av-
erage stress tensor. The exceeded strain tensor εc induced by
a single fracture with surface S in a representative volume V
(e.g., the volume of numerical cell) is given by (Sayers and
Kachanov, 1995; Liu et al., 2000)

εcij = s
c
ijklσkl =

1
2V

∫ (
[ui]nj +

[
uj
]
ni
)

dS, (10)

where sc is the extra compliance tensor resulting from the
fractures, [ui] is the ith component of the displacement dis-
continuity on S, and ni is the ith component of the fracture
normal. Note that Eq. (10) is applicable to finite, nonplanar
fractures in the long wavelength limit; i.e., the applied stress
is assumed to be constant over the representative volume.

If we assume that the interface of the fracture is normal to
the z axis (fracture normal vector n is (0,0,1)), substituting
Eq. (3) into Eq. (10), we can obtain the nonzero element of
the exceeded fracture strain tensor:

εcxz =
S

V
ZTσxz,

εcyz =
S

V
ZTσyz,

εczz =
S

V

(
ZNσzz+ZXε

b
xx

)
. (11)

For simplicity, we use an abbreviated Voigt notation for the
stresses, strains, and stiffness and compliance tensors, and
rewrite the Eqs. (9) and (11) as

ε̂b
= Ŝbσ̂ , (12)

ε̂c =
S

V

(
ẐIσ̂ + ẐIIε̂

)
=
S

V

(
ẐI
+ ẐIIŜb

)
σ̂ , (13)

where ε̂ =
[
εxx,εyy,εzz,2εyz,2εxz,2εxy

]T is the strain ma-
trix, σ̂ =

[
σxx,σyy,σzz,σyz,σxz,σxy

]T is the stress matrix,
and Ŝb is the compliance matrix of background. Note that
in this paper the “∧” symbol is used to indicate matrices to
distinguish them from tensors, which is used to distinguish
a tensor. The 6× 6 fracture compliance matrix ẐI and addi-
tional dimensionless matrix ẐII according to the Voigt nota-
tion are defined as

ẐI
=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 ZN 0 0 0
0 0 0 ZT 0 0
0 0 0 0 ZT 0
0 0 0 0 0 0

 ,

ẐII
=


0 0 0 0 0 0
0 0 0 0 0 0
ZX 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (14)

The average strain in a homogeneous porous rock containing
single fracture can be expressed as the sum of the strains of
background and the fractures:

ε̂ = ε̂b
+ ε̂c. (15)
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Figure 2. Snapshots of the wavefield componentsUx andUz for a single horizontal fracture model at 280 ms: (a) the PLSM-based poroelastic
modeling, (b) the VLSM-based viscoelastic modeling, (c) the LVLSM-based elastic modeling, and (d) the HVLSM-based elastic modeling.
The blue asterisk and line represent the source and the fracture, respectively.

Substituting Eqs. (12) and (13) into Eq. (15), we can obtain
the average strain matrix:

ε̂ =

[
Ŝb
+
S

V

(
ẐI
+ ẐIIŜb

)]
σ̂ . (16)

Thus, the effective stiffness matrix C can be expressed as

C=
[

Ŝb
+
S

V

(
ẐI
+ ẐIIŜb

)]−1

. (17)

The effective stiffness matrix of case of an inclined fracture
can be obtained by rotating the coordinate axis to keep z axis
perpendicular to fracture interface. We define the inclined
fracture as having an angle ϕ and an azimuth angle θ , and
then the rotation matrix can be obtained as

R̂=

 cosθ cosϕ −sinθ cosθ sinϕ
sinθ cosϕ cosθ sinθ sinϕ
−sinϕ 0 cosϕ

 , (18)

as well as the corresponding stress bond matrix Âσ
(

R̂
)

and

strain bond matrix Âε
(

R̂
)

. The new stress matrix ε̂′ and

strain matrix σ̂ ′ can be expressed as

ε̂′ = Âεε′, σ̂ ′
= Âσσ ′. (19)

By substituting Eq. (19) into Eq. (13), the new exceed frac-
ture strain matrix can be obtained:

ε̂c =
S

V
Âε
(

ẐI
+ ẐIIŜb

)
ÂT
ε σ̂ . (20)

Finally, substituting Eqs. (12) and (20) into Eq. (15), the aver-
age strain matrix of each numerical cell containing discretely
distributed fractures with the same arbitrary direction can be
expressed as

ε̂ =

[
Ŝb
+
S

V
Âε
(

ẐI
+ ẐIIŜb

)
ÂT
ε

]
σ̂ , (21)

and the corresponding effective stiffness matrix C is

C=
[

Ŝb
+
S

V
Âε
(

ẐI
+ ẐIIŜb

)
ÂT
ε

]−1

. (22)

If the background media is isotropic, the C can be simplified
as

C= Ciso
[
I +

S

V
Âε
(

ẐICiso
+ ẐII

)
ÂT
ε

]−1

. (23)

If we ignore the interaction between different fractures and
the FPD along the fracture interfaces, the result can be easily
extended to the case of multiple sets of discretely distributed
large-scale fractures with arbitrary orientation:

C= Ciso

[
I +

Nc∑
r=1

Sr

V
Âεr

(
ẐI
rC

iso
+ ẐII

r

)
ÂT
εr

]−1

, (24)

where Nc is total number of the fracture directions and the
subscript r denotes the rth direction. The derived effective
stiffness matrix is to be employed in the viscoelastic finite-
difference modeling of discretely distributed large-scale frac-
tures in porous rock.
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Figure 3. Comparison of 1-D seismograms components Ux and Uz at (1200 m, 0 m) for a single horizontal fracture model.

Since the local-effective-medium theory assumes that the
real structure of the fractured porous rock is substituted
by ideal continua, the balance equations of classical con-
tinuum mechanics can be applied without considering the
discontinuity at the fracture interfaces, and the constitutive
equations can be characterized by the effective viscoelastic
stiffness. Combined with the effective complex-valued and
frequency-dependent tilted transversely isotropic (TTI) vis-
coelastic stiffness, the 2-D frequency-domain second-order
heterogeneous governing equations with a perfectly matched
layer (PML) of fractured porous rock can be expressed as

ω2ρux +
1
ξx
∂x

(
c11

ξx
∂xux +

c13

ξz
∂zuz+

c15

ξz
∂zux +

c15

ξx
∂xuz

)
+

1
ξz
∂z

(
c15

ξx
∂xux +

c35

ξz
∂zuz+

c55

ξz
∂zux +

c55

ξx
∂xuz

)
= 0,

ω2ρuz+
1
ξx
∂x

(
c15

ξx
∂xux +

c35

ξz
∂zuz+

c55

ξz
∂zux +

c55

ξx
∂xuz

)
+

1
ξz
∂z

(
c13

ξx
∂xux +

c33

ξz
∂zuz+

c35

ξz
∂zux +

c35

ξx
∂xuz

)
= 0, (25)

where ux and uz are the horizontal and vertical compo-
nents of particle displacement vector, ρ is the effective den-
sity, cij represents the components of complex-valued and
frequency-dependent effective stiffness matrix, and ξx and ξz
are the frequency-domain PML damping functions.

In time domain, the governing equations are integral dif-
ferential equations, which require special processing for
the convolution operations, resulting in high computational
costs. Although the problem can be relieved by memory
functions, it still requires high memory requirements. In-
stead, the governing equations can be straightforwardly
solved using FDFD. To efficiently and accurately model seis-
mic wave propagation in fluid-saturated fractured porous
rock, we solve the second-order heterogeneous governing
equations with the mixed-grid-stencil FDFD method (Jo et
al., 1996; Hustedt et al., 2004). The mixed system of govern-
ing equations is formulated by combining the classical Carte-

sian coordinate system (CS) and the 45° rotated coordinate
system (RS):

ω2ρux +w1 (Acux +Bcuz)

+ (1−w1)(Arux +Bruz)= 0,

ω2ρuz+w1 (Ccux +Dcuz)

+ (1−w1)(Crux +Druz)= 0, (26)

where the optimal averaging coefficient w1 = 0.5461 (Jo et
al., 1996). The coefficients Ac, Bc, Cc, Dc and Ar , Br , Cr ,
Dr are functions of the damping functions, effective stiffness
coefficients, and spatial derivative operators, and the detailed
expressions are given in Appendix A. We follow Hustedt et
al. (2004) and Liu et al. (2018) to discretize the derivative
operation on the mixed systems using the mixed-grid stencil.
After discretization and arrangement, the mixed system of
governing equations can be written in matrix from as[

M+w1Ac + (1−w1)Ar w1Bc + (1−w1)Br
w1Cc + (1−w1)Cr M+w1Dc + (1−w1)Dr

]
[
ux
uz

]
=

[
0
0

]
, (27)

where M denotes the diagonal mass matrix of coefficients
ω2ρ, and blocks Ac, Bc, Cc, Dc and Ar , Br , Cr , Dr form the
stiffness matrices for the CS and RS stencils, respectively,
and the corresponding coefficients of submatrices are given
in Appendix B.

To improve the modeling accuracy of the mixed-grid
stencil, the acceleration term ω2ρ is approximated using a
weighted average over the mixed operator stencil nodes:[
ω2ρ

]
i,j
≈ ω2 [wm1ρi,j

+wm2
(
ρi+1,j + ρi−1,j + ρi,j+1+ ρi,j−1

)
+wm3

(
ρi+1,j+1+ ρi−1,j−1+ ρi−1,j+1

+ρi+1j−1
)]
, (28)

where the optimal coefficients wm1 = 0.6248, wm2 =

0.09381, and wm3 = (1−wm1− 4wm2)/4 are computed by
Jo et al. (1996).
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Figure 4. Snapshots of the wavefields components Ux and Uz for a single inclined fracture model at 280 ms: (a) the PLSM-based poroelastic
modeling, (b) the VLSM-based viscoelastic modeling, (c) the LVLSM-based elastic modeling, and (d) the HVLSM-based elastic modeling.
The blue asterisk and line represent the source and the fracture, respectively.

Figure 5. Comparison of 1-D seismograms components Ux and Uz at (1000, 0 m) for a single inclined fracture model.

In order to assess the FPD effects on the seismic response,
a similar procedure can be adopted in the implementation of
elastic modeling by replacing the frequency-dependent frac-
ture compliances with its low- or high-frequency limit com-
pliances. The main advantage of our VLSM-based model-
ing scheme over poroelastic modeling schemes is that the
fractured domain can be modeled using a viscoelastic solid,
while the rest of the domain can be modeled using an elastic
solid.

3.2 Poroelastic modeling based on PLSM

The poroelastic modeling means that we numerically solve
Biot’s equations and adopt an explicit implementation of the
PLSM across each fracture instead of using the effective me-
dia theory. Hence, the poroelastic modeling can naturally

deal with the FPD between fracture and background and ac-
count for its impact on wave scattering. To verify the effec-
tiveness of the viscoelastic modeling based on VLSM, we
compared the results obtained from the viscoelastic scheme
with those obtained from the poroelastic scheme. Although
it is difficult to implement an explicit application of PLSM
for an arbitrarily orientated fracture, it is relatively straight-
forward for a horizontal or vertical fracture. In the following,
we outline the poroelastic modeling for a single horizontal
fracture embedded in an isotropic homogeneous background
with an explicit implementation of the PLSM. In frequency
the domain, the governing equations for an isotropic poroe-
lastic media in the absence of fractures can be written as
(Biot, 1962)
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Figure 6. Schematic diagram of the fractured reservoir model with a set of aligned horizontal fractures: (a) regular distribution and (b) random
distribution. The black segments present the fracture system. The extension of each fracture is 500 m.

Figure 7. Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned horizontal fractures
calculated using (a) the LVLSM, (b) the VLSM, and (c) the HVLSM. A and B are the scattered P wave from top and bottom, respectively; C
and D are the scattered converted shear S wave from top and bottom, respectively; and F and G are the reflected P wave and shear converted
S wave, respectively.

−ω2ρui −ω
2ρfwi = ∂iσij ,

−ω2ρfui −ω
2ρwwi + iω

η

κ
wi =−∂iPf,

σij = (HU− 2µ)∂iui +αM∂iwi +µ
(
∂jui + ∂iuj

)
,

−Pf = αM∂iui +M∂iwi . (29)

In the presence of fractures, the spatial derivative of stress re-
mains unchanged. However, due to the discontinuity of par-
ticle displacements across the fracture interface, its spatial
derivative consists of two parts, i.e., the background and the
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Figure 8. Time–frequency distributions of the middle trace for (b) the LVLSM, (c) the PLSM, and (d) the HVLSM cases in Fig. 7.

Figure 9. Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned horizontal fractures
calculated using (a) the LVLSM, (b) the VLSM, and (c) the HVLSM. A and B are the scattered P wave from top and bottom, respectively; C
and D are the scattered converted shear S wave from top and bottom, respectively; and F and G are the reflected P wave and shear converted
S wave, respectively.
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fracture:

∂ux

∂z
=

(
∂ux

∂z

)
BG
+

(
∂ux

∂z

)
FR
,

∂uz

∂z
=

(
∂uz

∂z

)
BG
+

(
∂uz

∂z

)
FR
,

∂wz

∂z
=

(
∂wz

∂z

)
BG
+

(
∂wz

∂z

)
FR
. (30)

The spatial derivative of the background is described by the
Eq. (29):(
∂ux

∂x

)
BG
=

HD

4µ(HD−µ)
σxx −

HD− 2µ
4µ(HD−µ)

σzz

+
2αµ

4µ(HD−µ)
Pf,(

∂uz

∂z

)
BG
=−

HD− 2µ
4µ(HD−µ)

σxx +
HD

4µ(HD−µ)
σzz

+
2αµ

4µ(HD−µ)
Pf,(

∂wx

∂x
+
∂wz

∂z

)
BG
=−

2αµ
4µ(HD−µ)

σxx

−
2αµ

4µ(HD−µ)
σzz−

HU−µ

M (HD−µ)
Pf. (31)

The fracture-induced spatial derivative can be obtained based
on the PLSM:(
∂ux

∂z

)
FR
=
1ux

1z
=
ZT

1z
σxz,(

∂uz

∂z

)
FR
=
1uz

1z
=
ZND

1z
(σzz+αPf) ,(

∂wz

∂z

)
FR
=
1wz

1z
=−

ZND

1z

(
ασzz+

HU

M
Pf

)
. (32)

By substituting Eqs. (31)–(32) into Eq. (30) and the rewritten
Eq. (29), we obtain the governing equations for numerical
simulation of elastic wave in fractured poroelastic media in
matrix form:

−ω2R̂û=∇Ŝ−1
∇

Tû, (33)

where û= (ux,uz,wx,wz)T is the displacement vector and
R̂, Ŝ, and ∇ are the density, compliance, and spatial deriva-
tive matrix, respectively. The three matrices in Eq. (33) are
defined as

R̂=


ρ 0 ρf 0
0 ρ 0 ρf
ρf 0 ρm 0
0 ρf 0 ρm

 , (ρm = ρw − iη

ωκ

)
, (34)

∇ =


∂x 0 ∂z 0
0 ∂z ∂x 0
0 0 0 ∂x
0 0 0 ∂z

 , (35)

Ŝ=


HD

4µ(HD−µ)
−

HD−2µ
4µ(HD−µ)

0 −
2αµ

4µ(HD−µ)

−
HD−2µ

4µ(HD−µ)
HD

4µ(HD−µ)
+

ZND
1z

0 −
2αµ

4µ(HD−µ)
−

αZND
1z

0 0 1
µ
+

ZT
1z

0

−
2αµ

4µ(HD−µ)
−

2αµ
4µ(HD−µ)

−
αZND
1z

0 −
HU−µ

M(HD−µ)
−

HUZND
M1z

 . (36)

A compact discretized wave equation system that contains
only displacement field can be obtained by using second-
order difference operators to discretize the new governing
equations:

G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44



vecux
vecuz
vecwx
vecwz

=


0
0
0
0

 , (37)

where blocks Gi,j (i,j = 1. . .4) form the stiffness matrices
of the discretized system of the poroelastic wave equations.
The poroelastic modeling based on PLSM will be used to
validate the other modeling schemes.

4 Numerical examples

In this section, we apply different numerical modeling
schemes on three fractured models to examine the FPD ef-
fects on seismic wave scattering. We mainly focus on the
amplitudes and phases of the scattered and reflected waves.

4.1 Single fracture model

Here, we numerically simulate the scattering of seismic
waves from a single fracture embedded in a homogeneous
background. The model measures 2000 m× 1500 m with a
grid interval of 5 m (namely, the numerical grids size is
401×301) surrounded by a 200 m thick PML boundary. The
fracture is parallel to the x axis (a horizontal fracture) and
located 750 m directly below the source (1000,30m), with
a 500 m horizontal extension. A Ricker wavelet with a cen-
tral frequency of 35 Hz is used as the temporal source ex-
citation. The material properties of the fracture and back-
ground are given in Table 1, modified from Nakagawa and
Schoenberg (2007) and Barbosa et al. (2016a). For compar-
ison, we present the seismic wavefields obtained using the
poroelastic modeling based on PLSM, the viscoelastic mod-
eling based on VLSM, and the elastic modeling based on the
low-frequency limit of VLSM (LVLSM) and high-frequency
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limit of VLSM (HVLSM). For the convenience of observa-
tion of the impact of the FPD on the scattered P and S wave of
the fracture, we apply the pressure source in all four schemes.

Figure 1 shows the complex-valued and frequency-
dependent fracture normal compliance ZN and dimension-
less parameter ZX computed from Eq. (6). The mechanical
compliance of the fracture is strongly controlled by FPD ef-
fects. It can be observed that the real part of the fracture nor-
mal compliance decreases with the increment of frequency,
while the imaginary part has a peak at the characteristic fre-
quency, corresponding to the maximal dispersion. The cen-
tral frequency (35 Hz) of the Ricker wavelet used for nu-
merical simulation is close to the characteristic frequency
(46 Hz), which ensures that the impact of the FPD effects
on seismic scattering is significant in the seismic frequency
band.

Figure 2 shows the 280 ms snapshots of the displace-
ment fields for the single horizontal fracture model models.
The displacement fields are calculated by the PLSM-based
poroelastic modeling, the VLSM-based viscoelastic model-
ing, the LVLSM-based elastic modeling, and the HVLSM-
based elastic modeling, respectively. The asterisk represents
the source and the blue line represents the fracture. To
make the small scattered wave visible, the large amplitude
is clipped; thus, the transmitted compressional waves (TPP),
scattered compressional waves (SPP), and scattered converted
waves (SPS) can be seen clearly. It should be noted that the
slow P waves are invisible in the poroelastic modeling, due
to the high diffusion and attenuation of slow P waves in the
background media. Figure 3 present the comparison of 1-D
seismograms at (1200, 0 m).

We consider the poroelastic modeling as a reference sce-
nario because it can naturally incorporate the FPD effects.
Figures 2 and 3 suggest very good agreement between the
SPP amplitude calculated using the PLSM-based and VLSM-
based modeling, while the HVLSM-based modeling obvi-
ously underestimates the SPP amplitude, and the LVLSM-
based modeling overestimates the SPP amplitude. This is to
be expected, since the scattering behavior of a fracture is
mainly controlled by the stiffness contrast with respect to
the background. The HVLSM assumes there is insufficient
time for fluid exchange at the fracture interface; the frac-
ture behaves as being sealed and the stiffness of the saturated
fracture is maximal, resulting in an underestimated stiffness
contrast between fracture and background. The LVLSM as-
sumes there is enough time for fluid flow between the frac-
ture and background, and the deformation of the fracture
is maximal, resulting in an overestimated stiffness contrast
with background. The VLSM derived from poroelastic the-
ory, however, can properly incorporate the FPD effects, lead-
ing to a frequency-dependent stiffness contrast equivalent
to the PLSM. It can be noted that the SPP amplitudes ob-
tained using the LVLSM-based modeling are comparable
to that of the PLSM-based modeling, because the FPD ef-
fects mainly occur at seismic frequencies closer to the low-

frequency limit. The SPP travel time obtained using the four
modeling schemes shows good consistency. Figures 2 and 3
also show that the discrepancy of the SPS amplitudes is al-
most negligible, because the S wave scattering behavior is
mainly controlled by the drained stiffness contrast between
the fracture and the background. The comparison of differ-
ent modeling schemes demonstrates that the VLSM-based
viscoelastic modeling can appropriately capture the FPD ef-
fects on wave scattering of a fluid-saturated fracture, while
the two elastic modeling schemes cannot correctly estimate
the scattered waves.

The proposed modeling scheme is also applicable to the
inclined fracture. Figure 4 shows the 280 ms snapshots of the
displacement fields for the single inclined fracture model.
Figure 5 is the comparison of 1-D seismograms at (1200,
0 m). Figures 4 and 5 show that both the scattered P and
S waves of a single inclined fracture are strongly affected
by the FPD effects.

4.2 Fractured reservoir model

In addition to a single fracture, we are more interested in
the scattering behavior of discretely distributed fracture sys-
tem. To this end, we designed two fractured reservoir models
containing a set of regularly distributed aligned horizontal
fractures and a set of randomly distributed aligned horizontal
fractures, respectively, as illustrated in Fig. 6. There are 200
horizontal fractures spread over a space of 200 m, each ex-
tending 500 m. The material properties of the fracture, back-
ground (yellow region), and underlying (green region) for-
mation are given in Table 1. The model size, grid interval,
and source location are the same as those in the previous nu-
merical examples. Though a set of aligned horizontal fracture
structures is not practical in the actual subsurface, it helps
to illustrate the impact of FPD effects on the amplitude and
phase of scattered waves of fractures.

Figure 7 presents the seismograms of the fractured reser-
voir model with a set of regularly distributed aligned hor-
izontal fractures. The scattered compressional wave (SPP)
and scattered converted wave (SPS) from the top and bottom
of the fractured reservoir, the reflected compressional wave
(RPP), and the converted wave (RPS) from the underlying for-
mation can be clearly identified. Due to the regular distribu-
tion of aligned fractures, the fractured reservoir is equiva-
lent to an anisotropic homogeneous media, and therefore the
diffracted wave is generated only at the edges of the frac-
tured reservoir. Similar to the single fracture case, the am-
plitude of the SPP from the top and bottom of the fractured
reservoir obtained by the HVLSM-based modeling is weak-
est (underestimated), that obtained by LVLSM-based mod-
eling is strongest (overestimated), and that obtained by the
VLSM-based modeling is intermediate. We notice that the
SPP amplitudes from the bottom of the fractured reservoir
obtained by the LVLSM-based and HVLSM-based model-
ing are slightly smaller than those from the top, while the
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Table 1. Physical properties of the materials employed in the numerical modeling.

Parameters Background Fracture Underlying

Porosity, φ 0.15 0.8 0.05
Permeability, κ 0.1 D 100 D 0.01 D
Solid bulk modulus, Ks 36 GPa 36 GPa 36 GPa
Frame bulk modulus, Km 20.3 GPa 0.055 GPa 30.6 GPa
Frame shear modulus, µm 18.6 GPa 0.033 GPa 32.2 GPa
Solid density, ρs 2700 kg m−3 2700 kg m−3 2700 kg m−3

Fluid density, ρf 1000 kg m−3 1000 kg m−3 1000 kg m−3

Fluid shear viscosity, ηf 0.01 Poise 0.01 Poise 0.01 Poise
Fluid bulk modulus, Kf 2.25 GPa 2.25 GPa 2.25 GPa
Thickness, h 1 mm

Figure 10. Time–frequency distributions of the middle trace for (b) the LVLSM, (c) the PLSM, and (d) the HVLSM cases in Fig. 9.

SPP amplitude from the bottom obtained by the VLSM-based
modeling is much smaller than that from the top. This is ex-
pected, since the VLSM-based modeling scheme can cap-
ture the wave attenuation and dispersion due to the FPD
effects between the fracture system and background, while
the LVLSM and HVLSM represent non-attenuated and non-
dispersive elastic processes. Further evidence for attenua-
tion is that the RPP amplitudes of the underlying formation
calculated by the HVLSM-based and LVLSM-based model-
ing are almost equal, while the RPP amplitude calculated by
the VLSM-based modeling is much smaller. Figure 7 also
shows that the arrival times of SPP from the bottom and RPP
from underlying formation obtained by the three modeling
schemes are different.

To show the trend of frequency-dependent attenuation and
dispersion, time–frequency distribution of the middle trace
was computed for three modeling schemes. Figure 8 clearly
shows that the frequency content and energy of the scattered
and reflected waves calculated by VLSM tend to decrease
strongly, while the frequency content and energy calculated
by HVLSM and LVLSM remain steady. The impact of FPD

effects on the SPS and RPS is similar to that of the SPP and
RPP but to a much weaker extent.

In addition to regularly distributed fractures, our proposed
modeling scheme can also simulate the wave scattering of
randomly distributed fractures. Figure 9 presents the seismo-
grams of the fractured reservoir model with a set of ran-
domly distributed aligned horizontal fractures. Figure 10
presents the time–frequency distributions of the middle trace
for three modeling scheme cases in Fig. 9. Due to the random
distribution of aligned fractures, the fractured reservoir ex-
hibits a stronger heterogeneity, resulting in a more prevalent
diffracted wave (coda wave) in Fig. 9 than in Fig. 7. Except
for the diffracted wave, the scattered and reflected waves in
the random distribution case are similar to those in the reg-
ular distribution case due to the FPD effect. The two frac-
tured reservoir models suggest that the scattered waves from
the bottom of the fractured reservoir are attenuated and dis-
persed by the FPD effects, and the reflected waves can retain
the relevant attenuation and dispersion information.

To validate the effectiveness of our proposed modeling
scheme in a more practical underground fractured reservoir,
we replace a set of aligned horizontal fractures in the orig-
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Figure 11. Schematic diagram of the fractured reservoir model with a set of aligned inclined fractures: (a) regular distribution and (b) random
distribution. The black segments present the fracture system. The extension of each fracture is 282.8 m.

Figure 12. Seismogram components Ux and Uz of the fractured reservoir model with a set of regularly distributed aligned inclined fractures
calculated using (a) the LVLSM, (b) the VLSM, and (c) the HVLSM. A and B are the scattered P wave from top and bottom, respectively; C
and D are the scattered converted shear S wave from top and bottom, respectively; and F and G are the reflected P wave and shear converted
S wave, respectively.

inal model with a set of aligned inclined fractures, as il-
lustrated in Fig. 11. Figure 12 presents the seismograms of
the fractured reservoir model with a set of regularly dis-
tributed aligned inclined fractures, and Fig. 13 shows the
time–frequency distributions of the middle trace for three
modeling schemes. Figures 14 and 15 present the seismo-
grams of the fractured reservoir model with a set of randomly
distributed aligned inclined fractures and the time–frequency
distributions of the middle trace for three modeling schemes,
respectively. All results of PLSM-based modeling capture
the influence of FPD effects on the amplitude and phase of
scattered waves, validating the effectiveness of our proposed

modeling scheme. Figures 12 and 14 also show the different
scattering characteristics of the randomly and regularly dis-
tributed incline fractures: many coda waves are generated by
the randomly distributed fractures due to a stronger hetero-
geneity.

4.3 Modified Marmousi model

We test the proposed VLSM-based modeling scheme on a
more complex modified Marmousi model. To modify the
Marmousi model, we generate a porosity model, permeabil-
ity model, and discrete large-scale fracture system; trans-
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Figure 13. Time–frequency distributions of the middle trace for (b) the LVLSM, (c) the PLSM, and (d) the HVLSM cases in Fig. 12.

Figure 14. Seismogram components Ux and Uz of the fractured reservoir model with a set of randomly distributed aligned inclined fractures
calculated using (a) the LVLSM, (b) the VLSM, and (c) the HVLSM. A and B are the scattered P wave from top and bottom, respectively; C
and D are the scattered converted shear S wave from top and bottom, respectively; and F and G are the reflected P wave and shear converted
S wave, respectively.

form the original P-wave velocity and density into the fluid-
saturated bulk and shear modulus of the background by a
constant Poisson ratio of 0.5; and finally obtain the grain
bulk modulus, the frame bulk, and shear modulus of the
background through the Gassmann equation and empirical

formula (Km = (1−φ)
3

(1−φ)Ks). The input physical proper-
ties and elastic modulus models of the modified Marmousi
model are present in Fig. 11. The fluid density, bulk modu-
lus, and viscosity are the same as in Table 1. The model size

is 4250 m× 1750 m with a grid interval of 5 m and a 100 m
thick PML boundary. The source is located at the surface
(2125, 0 m). A Ricker wavelet with a central frequency of
25 Hz is used as the temporal source excitation.

Figure 17 shows the snapshots of displacement fields
at 1000 ms. The figure clearly shows the scattered P and
S waves by the discretely distributed large-scale fractures.
The results with such a complex model clearly verify the nu-
merical implementation and the code. We also calculate the
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Figure 15. Time–frequency distributions of the middle trace for (b) the LVLSM, (c) the PLSM, and (d) the HVLSM cases in Fig. 14.

Figure 16. The physical properties and elastic modulus models of the modified Marmousi model.

seismograms of the displacement shown in Fig. 18. The seis-
mograms obtained by our proposed modeling scheme present
the scattered seismic waves by the discrete fractures.

5 Conclusions

In this work, we have developed a numerical modeling
scheme including FPD effects for discretely distributed
large-scale fractures embedded in fluid-saturated porous
rock. To capture the FPD effects between the fractures
and background, the fractures are represented as Barbosa’s
VLSM with complex-valued and frequency-dependent frac-
ture compliances. Using Coates and Schoenberg’s local-
effective-medium theory and Barbosa’s VLSM, we derive

the effective anisotropic viscoelastic compliances in each
spatial discretized cell by superimposing the compliances
of the background and the fractures. The effective govern-
ing equations of each numerical cell are expressed by the
derived effective compliances and discretized by the mixed-
grid-stencil FDFD method. The proposed modeling scheme
can be used to study the impact of mechanical and hydraulic
fracture properties on seismic scattering. The main advantage
of our proposed modeling scheme over poroelastic modeling
schemes is that the fractured domain can be modeled using a
viscoelastic solid, while the rest of the domain can be mod-
eled using an elastic solid.

The scattered P wave of a fluid-saturated horizontal frac-
ture calculated by VLSM-based modeling is strongly af-
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Figure 17. Snapshots of the wavefields components Ux and Uz at 1000 ms: (a) the original Marmousi model without fractures, (b) the
modified Marmousi model with fractures, and (c) the differences.

Figure 18. Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model without
fractures, and (c) the differences.

fected by the FPD effects, while the scattered S wave is less
sensitive, which is consistent with the result of PLSM-based
modeling. However, the LVLSM-based modeling overesti-
mates the scattered P wave and the HVLSM-based modeling
underestimates the scattered P wave. The numerical results
show that the proposed VLSM-based modeling can include
the FPD effects and thus accurately estimate the scattered
wave of the horizontal fracture. The results of the fractured
reservoir models show that the amplitudes of the scattered

waves from the top of the fractured reservoir are affected
by the fluid stiffening effects due to the FPD effects. The
scattered waves from the bottom of the fractured reservoir
are also attenuated and dispersed by the FPD effects in ad-
dition to the fluid stiffening effects, and the reflected waves
can retain the relevant attenuation and dispersion informa-
tion. Randomly distributed fractures can also result in a dif-
ferent scattering characteristic than regularly distributed frac-
tures; i.e., a large number of coda waves are generated due to
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increased inhomogeneity. The results of the modified Mar-
mousi model clearly show the scattered waves by the dis-
cretely distributed large-scale fractures and verify the pro-
posed numerical modeling scheme. The proposed numerical
modeling scheme is expected not only to improve the estima-
tions of seismic wave scattering from discretely distributed
large-scale fractures but can also to improve migration qual-
ity and the estimation of fracture mechanical characteristics
in inversion.

Appendix A: The coefficients related to spatial
derivative operators

We define coefficient vectors T k (k = 1,2,3,4) and the
derivative operate vector D (c) as

T 1 =
1
ξxξx

[1 0 0 0] ,T 2 =
1
ξxξz

[0 1 0 0] ,

T 3 =
1
ξxξz

[0 0 1 0] ,T 4 =
1
ξzξz

[0 0 0 1] , (A1)

D (c)=
[
∂x (c∂x)∂x (c∂z)∂z (c∂x)∂z (c∂z)

]
, (A2)

where ξx and ξz are the PML damping function and c repre-
sents effective stiffness. Then, the expression of Ac, Bc, Cc,
Dc is written in matrix form: Ac

Bc
Cc
Dc

=
 D (c11) D (c15) D (c15) D (c55)
D (c15) D (c55) D (c13) D (c35)
D (c15) D (c13) D (c55) D (c35)
D (c55) D (c35) D (c35) D (c33)


 T 1
T 2
T 3
T 4

 . (A3)

We formulate Ar , Br , Cr , Dr in a similar way by defining
the coefficient vectors T ′k (k = 1,2,3,4) and D′ (c) as

T ′1 =
1

2ξxξx
[1 1 1 1] ,T ′2 =

1
2ξxξz

[−1 1 − 1 1] ,

T ′3 =
1

2ξxξz
[−1 − 1 1 1] ,T ′4 =

1
2ξzξz

[1 − 1 − 1 1] , (A4)

D′ (c)=
[
∂x′ (c∂x′)∂x′

(
c∂z′

)
∂z′ (c∂x′)∂z′

(
c∂z′

)]
. (A5)

The expression of Ar , Br , Cr , Dr is written as
 Ar

Br
Cr
Dr

=
 D′ (c11) D′ (c15) D′ (c15) D′ (c55)

D′ (c15) D′ (c55) D′ (c13) D′ (c35)
D′ (c15) D′ (c13) D′ (c55) D′ (c35)
D′ (c55) D′ (c35) D′ (c35) D′ (c33)


 T ′1

T ′2
T ′3
T ′4

 . (A6)

Appendix B: Parsimonious staggered-grid stencil

The nine coefficients of the CS stencil for the submatrix Ac
of Eq. (27) are

Aci+1,j =
c11i+0.5,j

12ξxiξxi+0.5
,Aci−1,j =

c11i−0.5,j

12ξxiξxi−0.5
,

Aci,j+1 =
c55 i,j+0.5

12ξz jξzj+0.5
,Aci,j−1 =

c55 i,j−0.5

12ξz jξzj−0.5
,

Aci,j =−
c11i+0.5,j

12ξxiξxi+0.5
−

c11i−0.5,j

12ξxiξxi−0.5

−
c55 i,j+0.5

12ξzj ξzj+0.5
−

c55 i,j−0.5

12ξzj ξzj−0.5
,

Aci+1,j+1 =
c15i+1,j + c15i,j+1

412ξxiξzj
,

Aci+1,j−1 =−
c15 i+1,j + c15 i,j−1

412ξxiξzj
,

Aci−1,j+1 =−
c15 i−1,j + c15 i,j+1

412ξxiξzj
,

Aci−1,j−1 =
c15 i−1,j + c15 i,j−1

412ξxiξzj
. (B1)
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The nine coefficients of the RS stencil for the submatrix
Ar of Eq. (27) are

Ari+1,j =
c11i+0.5,j−0.5− c55i+0.5,j−0.5

412ξxiξzj−0.5

+
c11i+0.5,j+0.5− c55i+0.5,j+0.5

412ξzj ξxi+0.5
,

Ari−1,j =
c11i−0.5,j+0.5− c55i−0.5,j+0.5

412ξxiξzj+0.5

+
c11i−0.5,j−0.5− c55i−0.5,j−0.5

412ξzj ξxi−0.5
,

Ari,j+1 =
c55 i−0.5,j+0.5− c11 i−0.5,j+0.5

412ξxiξzj+0.5

+
c55i+0.5,j+0.5− c11i+0.5,j+0.5

412ξzj ξxi+0.5
,

Ari,j−1 =
c55 i+0.5,j−0.5− c11 i+0.5,j−0.5

412ξxiξzj−0.5

+
c55 i−0.5,j−0.5− c11 i−0.5,j−0.5

412ξzj ξxi−0.5
,

Ari,j =−
c11i+0.5,j−0.5− 2c15i+0.5,j−0.5+ c55i+0.5,j−0.5

412ξxiξxi+0.5

−
c11i−0.5,j+0.5− 2c15i−0.5,j+0.5+ c55i−0.5,j+0.5

412ξxiξxi−0.5

−
c11i+0.5,j+0.5+ 2c15i+0.5,j+0.5+ c55i+0.5,j+0.5

412ξzj ξzj+0.5

−
c11i−0.5,j−0.5+ 2c15i−0.5,j−0.5+ c55i−0.5,j−0.5

412ξzj ξzj−0.5

Ari+1,j+1 =
c11i+0.5,j+0.5+ 2c15i+0.5,j+0.5+ c55i+0.5,j+0.5

412ξzj ξzj+0.5
,

Ari+1,j−1 =
c11i+0.5,j−0.5− 2c15i+0.5,j−0.5+ c55i+0.5,j−0.5

412ξxiξxi+0.5
,

Ari−1,j+1 =
c11i−0.5,j+0.5− 2c15i−0.5,j+0.5+ c55i−0.5,j+0.5

412ξxiξxi−0.5
,

Ari−1,j−1 =
c11i−0.5,j−0.5+ 2c15i−0.5,j−0.5+ c55i−0.5,j−0.5

412ξzj ξzj−0.5
. (B2)

The coefficients of the submatrices Bc, Cc, Dc and Br , Cr ,
Dr can be inferred easily from those of submatrixAc andAr ,
respectively.
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paper were generated by solving the mixed system of governing
Eq. (27). These data can be obtained by contacting the correspond-
ing author.

Author contributions. YQ, XC, and XL planned the campaign; YQ
and QZ wrote the numerical simulation programs; YQ, XC, and
CF analyzed the numerical cases; YQ and XC wrote the manuscript
draft; YQ, XC, QZ, XL, and CF reviewed and edited the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors gratefully acknowledge com-
ments and suggestions from editor Florian Fusseis, referee Nicolas
Barbosa, and an anonymous referee.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant nos. 42374163
and 41874143) and the Key Program of Natural Science Founda-
tion of Sichuan Province (grant no. 2023NSFSC0019).

Review statement. This paper was edited by Florian Fusseis and re-
viewed by Nicolas Barbosa and one anonymous referee.

References

Barbosa, N. D., Rubino, J. G., Caspari, E., and Holliger, K.: Exten-
sion of the classical linear slipmodel for fluid-saturated fractures:
Accounting for fluid pressure diffusion effects, J. Geophys. Res.,
122, 1302–1323, https://doi.org/10.1002/2016JB013636, 2016a.

Barbosa, N. D., Rubino, J. G., Caspari, E., Milani, M., and Hol-
liger, K.: Fluid pressure diffusion effects on the seismic reflec-
tivity of a single fracture, J. Acoust. Soc. Am., 140, 2554–2570,
https://doi.org/10.1121/1.4964339, 2016b.

Biot, M. A.: Mechanics of deformation and acoustic prop-
agation in porous media, J. Appl. Phys., 33, 1482–1498,
https://doi.org/10.1063/1.1728759, 1962.

Biot, M. A.: Theory of elastic waves in a fluid-saturated porous
solid. I. Low frequency range, J. Acoust. Soc. Am., 28, 168–178,
https://doi.org/10.1121/1.1908239, 1956a.

Biot, M. A.: Theory of elastic waves in a fluid-saturated porous
solid. II. High frequency range, J. Acoust. Soc. Am., 28, 179–
191, https://doi.org/10.1121/1.1908241, 1956b.

Brajanovski, M., Gurevich, B., and Schoenberg, M.: A model for
P-wave attenuation and dispersion in a porous medium per-
meated by aligned fractures, Geophys. J. Int., 163, 372–384,
https://doi.org/10.1111/j.1365-246X.2005.02722.x, 2005.

Chapman, M.: Frequency dependent anisotropy due to mesoscale
fractures in the presence of equant porosity, Geophys. Prospect.,
51, 369–379, https://doi.org/10.1046/j.1365-2478.2003.00384.x,
2003.

Coates, R. T. and Schoenberg, M.: Finite-difference model-
ing of faults and fractures, Geophysics, 60, 1514–1526,
https://doi.org/10.1190/1.1443884, 1995.

Cui, X. Q., Lines, L. R., and Krebes, E. S.: Seismic modelling
for geological fractures, Geophys. Prospect., 2018, 157–168,
https://doi.org/10.1111/1365-2478.12536, 2018.

Dutta, N. C. and Odé, H.: Attenuation and dispersion of compres-
sional waves in fluid-filled porous rocks with partial gas satura-

https://doi.org/10.5194/se-15-535-2024 Solid Earth, 15, 535–554, 2024

https://doi.org/10.1002/2016JB013636
https://doi.org/10.1121/1.4964339
https://doi.org/10.1063/1.1728759
https://doi.org/10.1121/1.1908239
https://doi.org/10.1121/1.1908241
https://doi.org/10.1111/j.1365-246X.2005.02722.x
https://doi.org/10.1046/j.1365-2478.2003.00384.x
https://doi.org/10.1190/1.1443884
https://doi.org/10.1111/1365-2478.12536


554 Y. Qi et al.: Seismic wave modeling of fluid-saturated fractured porous rock

tion (White Model)-Part I: Biot theory, Geophysics, 44, 1777–
1788, https://doi.org/10.1190/1.1440938, 1979a.

Dutta, N. C. and Odé, H.: Attenuation and dispersion of compres-
sional waves in fluid-filled porous rocks with partial gas satura-
tion (White Model)-Part II: Results, Geophysics, 44, 1806–1812,
https://doi.org/10.1190/1.1440939, 1979b.

Gale, J. F. W., Laubach, S. E., Olson, J. E., Eichhubl,
P., and Fall, A.: Natural fractures in shale: A review
and new observations, AAPG Bull., 98, 2165–2216,
https://doi.org/10.1306/08121413151, 2014.

Galvin, R. J. and Gurevich, B.: Frequency-dependent anisotropy
of porous rocks with aligned fractures, Geophys. Prospect., 63,
141–150, https://doi.org/10.1071/ASEG2003ab016, 2015.

Gassmann, F.: Elastic waves through a packing of spheres, Geo-
physics, 16, 673–685, https://doi.org/10.1190/1.1437718, 1951.

Gelinsky, S. and Shapiro, S. A.: Dynamic-equivalent medium
approach for thinly layered saturated sediments, Geo-
phys. J. Int., 128, F1–F4, https://doi.org/10.1111/j.1365-
246X.1997.tb04086.x, 1997.

Guo, J. X., Rubino, J. G., Barbosa, N. D., Glubokovskikh, S.
G., and Gurevich, B.: Seismic dispersion and attenuation in
saturated porous rocks with aligned fractures of finite thick-
ness: Theory and numerical simulations – Part I: P-wave
perpendicular to the fracture plane, Geophysics, 83, 49–62,
https://doi.org/10.1190/geo2017-0065.1, 2017a.

Guo, J. X., Rubino, J. G., Barbosa, N. D., Glubokovskikh,
S. G., and Gurevich, B.: Seismic dispersion and attenua-
tion in saturated porous rocks with aligned fractures of fi-
nite thickness: Theory and numerical simulations – Part
II: Frequency-dependent anisotropy, Geophysics, 83, 63–71,
https://doi.org/10.1190/geo2017-0066.1, 2017b.

Gurevich, B., Zyrianov, V. B., and Lopatnikov, S. L.: Seis-
mic attenuation in finely layered porous rocks: Effects
of fluid flow and scattering, Geophysics, 62, 319–324,
https://doi.org/10.1190/1.1444133, 1997.

Hudson, J. A.: Wave speeds and attenuation of elastic waves
in material containing cracks, Geophys. J. Int., 64, 133–150,
https://doi.org/10.1111/j.1365-246X.1981.tb02662.x, 1981.

Hustedt, B., Operto S., and Virieux J.: Mixed-grid and staggered-
grid finite difference methods for frequency domain acous-
tic wave modelling, Geophys. J. Int., 157, 1269–1296,
https://doi.org/10.1111/j.1365-246X.2004.02289.x, 2004.

Johnson, D. L.: Theory of frequency dependent acoustics in patchy-
saturated porous media, J. Acoust. Soc. Am., 110, 682–694,
https://doi.org/10.1121/1.1381021, 2001.

Jo, C. H., Shin, C. S., and Suh, J. H.: An optimal 9-point, finite-
difference, frequency-space, 2-D scalar wave extrapolator, Geo-
physics, 61, 529–537, https://doi.org/10.1190/1.1443979, 1996.

Khokhlov, N., Favorskaya, A., Stetsyuk, V., and Mitskovets,
I.: Grid-characteristic method using Chimera meshes
for simulation of elastic waves scattering on geolog-
ical fractured zones, J. Comput. Phys., 446, 110637,
https://doi.org/10.1016/j.jcp.2021.110637, 2021.

Krzikalla, F. and Müller, T. M.: Anisotropic P-SV-wave dis-
persion and attenuation due to inter-layer flow in thinly
layered porous rocks, Geophysics, 76, WA135–WA145,
https://doi.org/10.1190/1.3555077, 2011.

Kudarova, A. M., Karel, V. D., and Guy D.: An effec-
tive anisotropic poroelastic model for elastic wave propa-
gation in finely layered media, Geophysics, 81, 175–188,
https://doi.org/10.1190/geo2015-0362.1, 2016.

Liu, E. R., Hudson, J. A., and Pointer, T.: Equivalent medium rep-
resentation of fractured rock, J. Geophys. Res., 105, 2981–3000,
https://doi.org/10.1029/1999JB900306, 2000.

Liu, X., Greenhalgh, S., Zhou, B., and Greenhalgh, M.: Frequency-
domain seismic wave modelling in heterogeneous porous media
using the mixed-grid finite-difference method, Geophys. J. Int.,
216, 34–54, https://doi.org/10.1093/gji/ggy410, 2018.

Müller, T. M., Stewart, J. T., and Wenzlau, F.: Velocity-
saturation relation for partially saturated rocks with frac-
tal pore fluid distribution, Geophys. Res. Lett., 35, L09306,
https://doi.org/10.1029/2007GL033074, 2008.

Nakagawa, S. and Schoenberg M. A.: Poroelastic modeling of seis-
mic boundary conditions across a fracture, J. Acoust. Soc. Am.,
122, 831–847, https://doi.org/10.1121/1.2747206, 2007.

Norris, A. N.: Low-frequency dispersion and attenuation in par-
tially saturated rocks, J. Acoust. Soc. Am., 94, 359–370,
https://doi.org/10.1121/1.407101, 1993.

Oelke, A., Alexandrov, D., Abakumov, I., Glubokovskikh, S.,
Shigapov, R., Krüger, O. S., Kashtan, B., Troyan, V., and
Shapiro, S. A.: Seismic reflectivity of hydraulic fractures
approximated by thin fluid layers, Geophysics, 78, 79–87,
https://doi.org/10.1190/geo2012-0269.1, 2013.

Operto, S., Virieux, J., Ribodetti, A., and Anderson J. E.: Finite-
difference frequency-domain modeling of viscoacoustic wave
propagation in 2D tilted transversely isotropic (TTI) media, Geo-
physics, 74, 75–95, https://doi.org/10.1190/1.3157243, 2009.

Rubino, J. G., Müller, T. M., Guarracino, L., Milani, M.,
and Holliger, K.: Seismoacoustic signatures of fracture
connectivity, J. Geophys. Res.-Sol. Ea., 119, 2252–2271,
https://doi.org/10.1002/2013JB010567, 2014.

Rubino, J. G., Castromán, G. A., Müller, T. M., Monachesi, L.
B., Zyserman, F. I., and Holliger, K.: Including poroelastic
effects in the linear slip theory, Geophysics, 80, A51–A56,
https://doi.org/10.1190/geo2014-0409.1, 2015.

Sayers, C. M. and Kachanov M.: Microcrack-induced elastic wave
anisotropy of brittle rocks, J. Geophys. Res., 100, 4149–4156,
https://doi.org/10.1029/94JB03134, 1995.

Schoenberg, M. A.: Elastic wave behavior across linear
slip interfaces, J. Acoust. Soc. Am., 68, 1516–1521,
https://doi.org/10.1121/1.385077, 1980.

Thomsen, L.: Elastic anisotropy due to aligned cracks
in porous rock, Geophys. Prospect., 43, 805–829,
https://doi.org/10.1111/j.1365-2478.1995.tb00282.x, 1995

White, J. E., Mikhahaylova, N. G., and Lyakhovistsky, F. M.:
Low-frequency seismic waves in fluid-saturated layered rocks,
Izv., Acad. Sci., USSR, Phys. Solid Earth, 11, 654–659,
https://doi.org/10.1121/1.1995164, 1975.

Zhang, J. F.: Elastic wave modeling in fractured me-
dia with an explicit approach, Geophysics, 70, 75–85,
https://doi.org/10.1190/1.2073886, 2005.

Solid Earth, 15, 535–554, 2024 https://doi.org/10.5194/se-15-535-2024

https://doi.org/10.1190/1.1440938
https://doi.org/10.1190/1.1440939
https://doi.org/10.1306/08121413151
https://doi.org/10.1071/ASEG2003ab016
https://doi.org/10.1190/1.1437718
https://doi.org/10.1111/j.1365-246X.1997.tb04086.x
https://doi.org/10.1111/j.1365-246X.1997.tb04086.x
https://doi.org/10.1190/geo2017-0065.1
https://doi.org/10.1190/geo2017-0066.1
https://doi.org/10.1190/1.1444133
https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
https://doi.org/10.1111/j.1365-246X.2004.02289.x
https://doi.org/10.1121/1.1381021
https://doi.org/10.1190/1.1443979
https://doi.org/10.1016/j.jcp.2021.110637
https://doi.org/10.1190/1.3555077
https://doi.org/10.1190/geo2015-0362.1
https://doi.org/10.1029/1999JB900306
https://doi.org/10.1093/gji/ggy410
https://doi.org/10.1029/2007GL033074
https://doi.org/10.1121/1.2747206
https://doi.org/10.1121/1.407101
https://doi.org/10.1190/geo2012-0269.1
https://doi.org/10.1190/1.3157243
https://doi.org/10.1002/2013JB010567
https://doi.org/10.1190/geo2014-0409.1
https://doi.org/10.1029/94JB03134
https://doi.org/10.1121/1.385077
https://doi.org/10.1111/j.1365-2478.1995.tb00282.x
https://doi.org/10.1121/1.1995164
https://doi.org/10.1190/1.2073886

	Abstract
	Introduction
	Review of the LSM
	The original LSM
	Nakagawa's PLSM
	Barbosa's VLSM

	Seismic modeling of fractured porous rock
	Viscoelastic modeling based on VLSM
	Poroelastic modeling based on PLSM

	Numerical examples
	Single fracture model
	Fractured reservoir model
	Modified Marmousi model

	Conclusions
	Appendix A: The coefficients related to spatial derivative operators
	Appendix B: Parsimonious staggered-grid stencil
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

