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Abstract. While thermochronological studies have con-
strained the landscape evolution of several of the crustal
blocks of West and East Antarctica, the tectono-thermal evo-
lution of the Ellsworth Mountains remains relatively poorly
constrained. These mountains are among the crustal blocks
that comprise West Antarctica and exhibit an exceptionally
well-preserved Palaeozoic sedimentary sequence. Despite
the seminal contribution of Fitzgerald and Stump (1991),
who suggested an Early Cretaceous uplift event for the
Ellsworth Mountains, further thermochronological studies
are required to improve the current understanding of the land-
scape evolution of this mountain chain. We present new zir-
con (U–Th) /He (ZHe) ages, which provide insights into
the landscape evolution of the Ellsworth Mountains. The
ZHe ages collected from near the base and the top of the
sequence suggest that these rocks underwent burial reheat-
ing after deposition. A cooling event is recorded during the
Jurassic–Early Cretaceous, which we interpret as represent-
ing exhumation in response to rock uplift of the Ellsworth
Mountains. Moreover, our results show that while ZHe ages
at the base of the sequence are fully reset, towards the top
ZHe ages are partially reset. Uplift and exhumation of the
Ellsworth Mountains during the Jurassic–Early Cretaceous

was contemporaneous with the rotation and translation of
this crustal block with respect to East Antarctica and possi-
bly the Antarctic Peninsula. Furthermore, this period is char-
acterized by widespread extension associated with the disas-
sembly and breakup of Gondwana, with the Ellsworth Moun-
tains playing a key role in the opening of the far southern
Atlantic. Based on these results, we suggest that uplift of the
Ellsworth Mountains during the disassembly of Gondwana
provides additional evidence for major rearrangement of the
crustal blocks between the South American, African, Aus-
tralian and Antarctic plates. Finally, uplift of the Ellsworth
Mountains commenced during the Jurassic, which predates
the Early Cretaceous uplift of the Transantarctic Mountains.
We suggest that the rift-related exhumation of the Ellsworth
Mountains occurred throughout two events: (i) a Jurassic up-
lift associated with the disassembly of southwestern Gond-
wana and (ii) an Early Cretaceous uplift related with the
separation between Antarctica and Australia, which is also
recorded in the Transantarctic Mountains.
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1 Introduction

The Ellsworth Mountains extend for ∼ 350 km between the
Transantarctic Mountains and the Antarctic Peninsula and
are ∼ 50 km wide (Fig. 1). They are located within West
Antarctica, which is composed of crustal blocks that amal-
gamated along the Pacific margin of Gondwana during the
latest Precambrian to middle Phanerozoic (e.g. Dalziel and
Elliot, 1982; Dalziel and Lawver, 2001; Jordan et al., 2020;
Riley et al., 2023). Furthermore, the Ellsworth Mountains
form part of the most isolated and enigmatic crustal block
(the Ellsworth–Whitmore Mountains block) in West Antarc-
tica (Schopf, 1969; Dalziel and Elliot, 1982). Their expo-
sures are comprised of a series of nunataks and mountains,
which are dominated by the Heritage and Sentinel ranges
(Fig. 1). Although the Antarctic ice cap is intensively de-
veloped at these latitudes, the Ellsworth Mountains yield
an extensive sedimentary record that extends from the Neo-
proterozoic to the Permian (Fig. 2; Craddock, 1969; We-
bers et al., 1992a; Castillo et al., 2017). Several studies have
assessed the geological evolution of the Ellsworth Moun-
tains along with its paleogeographic significance (Curtis et
al., 1999; Curtis, 2001; Flowerdew et al., 2007; Dalziel,
2007, 2014; Castillo et al., 2017; Craddock et al., 2017).
However, its tectonothermal evolution is relatively poorly
constrained, with the exception of the study of Fitzgerald
and Stump (1991), who reported an Early Cretaceous up-
lift event based on apatite fission-track analyses. Most stud-
ies concerning the tectonothermal history of West Antarc-
tica have instead been conducted on the Antarctic Peninsula
(e.g. Guenthner et al., 2010; Twinn et al., 2022; Bastias et
al., 2022) and Thurston Island (e.g. Zundel et al., 2019).
Further efforts to constrain the regional landscape evolution
have been undertaken in the Transantarctic Mountains (e.g.
Fitzgerald, 1994; Fitzgerald and Stump, 1997), which ex-
tend for∼ 3000 km and divide East and West Antarctica (e.g.
Goodge, 2020). To better understand the thermal evolution
of the Ellsworth Mountains, we present herein new zircon
(U–Th) /He (ZHe) data to constrain its thermal history and
hence the formation of its present-day landscape. Further-
more, the (U–Th) /He is a thermochronometric system that
is sensitive to low temperatures (Wolf et al., 1996) and has
the potential to provide robust constraints on the thermal evo-
lution of basins along with their subsequent exhumation his-
tories (e.g. Ault et al., 2019; Dai et al., 2020).

2 Ellsworth Mountains

The Ellsworth Mountains hosts a stratigraphic sequence that
spans the Palaeozoic era and is up to ∼ 13 km thick (Fig. 2;
e.g. Webers et al., 1992a; Castillo et al., 2017). At the base
of the sequence is the lower Palaeozoic Heritage Group (We-
bers et al., 1992b), which consist of ∼ 7.5 km of strata that
are almost exclusively present in the Heritage Range (Fig. 2).

Figure 1. Antarctica and crustal blocks of West Antarctica:
AP stands for Antarctic Peninsula, EWM stands for Ellsworth–
Whitmore Mountains block, MBL stands for Marie Byrd Land, TI
stands for Thurston Island, and Haag N stands for Haag Nunatak.
Dark grey indicates areas likely to expose outcrops during the sum-
mer. Light grey indicates areas covered on permanent ice.

They consist of sedimentary and volcanic rocks that were de-
posited in a rapidly subsiding basin (e.g. Curtis and Lomas,
1999). The group is composed, from base to top, of the Union
Glacier, Hyde Glacier, Drake Icefall, Conglomerate Ridge,
Liberty Hills, Springer Peak, Frazier Ridge and Minaret for-
mations (Fig. 2). The Union Glacier Formation includes con-
tinental volcanic and volcaniclastic rocks (∼ 3 km thick), and
its age is constrained by a U–Pb zircon age from a Cam-
brian hyaloclastite (512± 14 Ma; W. R. van Schmus, per-
sonal communication, 1997; Rees et al., 1998). However,
two metavolcaniclastic rocks from this formation yield U–
Pb zircon ages of ∼ 675 Ma, raising questions as to the de-
positional age of this unit (Castillo et al., 2017). The Hyde
Glacier Formation locally overlies the Union Glacier Forma-
tion and is composed of fluvial to shallow-marine deltaic de-
posits (Webers et al., 1992b). Overlying these formations is
the Drake Icefall Formation, comprised of black shales in-
terbedded with limestones deposited in a shallow marine en-
vironment (Jago and Webers, 1992). Conglomeratic quartzite
and polymictic conglomerates of the Conglomerate Ridge
Formation (Webers et al., 1992b) structurally overlie the
Drake Icefall Formation, with their contact defined by a
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reverse fault. Three laterally equivalent formations overlie
the Conglomerate Ridge Formation. These are termed the
Springer Peak, Liberty Hills and Frazier Ridge formations.
They are mostly clastic in composition and are comprised
of argillite, greywacke and quartzite (Webers et al., 1992b).
Locally overlying these deposits is the Minaret Formation
(Curtis and Lomas, 1999), which is dominated by marble
and carbonate rocks deposited during the late Cambrian (e.g.
Buggisch and Webers, 1992; Jago and Webers, 1992). The
Transitions Beds represent the uppermost unit of the Her-
itage Group and are comprised of by a thin succession of
sandstone interbedded with argillite (Spörli, 1992).

Overlying the Heritage Group is the Crashsite Group, a
∼ 3 km thick sequence dominated by quartzite, argillite con-
glomerate, limestone and basic volcanic rocks (Fig. 2; Gold-
strand et al., 1994; Spörli, 1992). This sequence is comprised
from bottom to top by the Howard Nunataks, Mount Liptak
and Mount Wyatt Earp formations, which were deposited in
a shallow marine to fluviatile environment (Curtis and Lo-
mas, 1999; Spörli, 1992). The age of the Crashsite Group has
been constrained to the late Cambrian–Devonian by trilobite
fauna, sedimentation rates and detrital zircon ages (Shergold
and Webers, 1992; Spörli, 1992; Webers et al., 1992b; Flow-
erdew et al., 2007).

The Crashsite Group is conformably overlain by the
Whiteout Conglomerate (Fig. 2). These rocks are 1 km thick
and dominated by late Carboniferous to early Permian grey
to black diamictites, which are associated with the Permo–
Carboniferous Gondwanan glaciation (Matsch and Ojakan-
gas, 1992). Overlying the Whiteout Conglomerate is a 1 km
thick sequence of argillites, siltstone, sandstone and coal of
the Polarstar Formation (Fig. 2; Collinson et al., 1992). De-
trital zircon geochronology implies this unit was deposited
during the Permian (Elliot et al., 2016).

3 Methods

3.1 (U–Th) / He zircon thermochronology

Low-temperature thermochronometry is a robust method to
constrain the time–temperature histories of rocks (Bargnesi
et al., 2016). The zircon (U–Th) /He system has a clo-
sure temperature to He diffusion of ∼ 195–175 °C (Dodson,
1973), which provides cooling ages that can be associated
with shallow processes in the crust. Additionally, the robust-
ness of zircon to weathering and alteration during transport
and diagenesis is particularly useful in clastic systems, such
as the rocks exposed in the Ellsworth Mountains. Therefore,
zircon (U–Th) /He dating is a powerful tool to constrain the
thermal evolution of a given rock.

Zircon separates were previously prepared for the U–
Pb geochronology and Hf isotope studies presented in
Castillo et al. (2017), which applied standard separation
procedures. Two to three single-grain aliquots from each

sample were selected for (U–Th) /He analysis (Table 1).
Zircon (U-Th) /He analytical methods followed those de-
scribed in Guenthner et al. (2016). Further information is
available at https://github.com/wrguenthner/HAL_data/blob/
main/He_date_calc.ipynb (last access: March 2024).

Helium extraction and analysis consisted of in vacuo diode
laser heating, cryogenic purification and quadrupole mass-
spectrometry on a Pfeiffer Prisma Plus at the University of
Illinois. Zircon dissolution was followed by U and Th anal-
ysis via isotope dilution inductively coupled plasma mass
spectrometry on a Thermo Element 2 at the University of
Arizona. Dimension measurements for zircon were collected
both to retrieve the alpha ejection correction and to calculate
eU concentrations.

The alpha ejection correction employed the equations of
Hourigan et al. (2005) and Farley (2002), with U- and Th-
specific ejection values as listed in Farley (2002, Table 1).
Depending on the degree of abrasion, one of two equations
was used: a tetragonal prism with pyramidal terminations
(when terminations are present and measurable) or a prolate
spheroid (when terminations are absent). Further details of
the results of the samples and standards analysed are pre-
sented in the Table 1.

4 Results

4.1 Heritage Group

We selected three samples from the Heritage Group (Fig. 2).
The samples (13EG01, 13EG05 and EHD0801A) are located
in the Heritage Range in the southern sector of the Ellsworth
Mountains, with an altitude that ranges from∼ 1450 to 990 m
(Table 1). Sample 13EG01 is a sandstone collected from the
base of the early to middle Cambrian Union Glacier For-
mation and yielded ZHe ages of ca. 179, 156 and 140 Ma
(Fig. 3a). The middle to late Cambrian Springer Peak For-
mation (Jago and Webers, 1992; Shergold and Webers, 1992;
Randall et al., 2000) is part of the upper section of the Her-
itage Group, from which we analysed the sandstone sam-
ple 13EG05, which yielded ZHe ages of ca. 184, 170 and
158 Ma (Fig. 3a). The Springer Peak Formation is in lateral
contact with the middle to late Cambrian Liberty Hill Forma-
tion. ZHe ages from a sandstone (sample EHD0801A) from
the Liberty Hill Formation yield ages of ca. 150, 149 and
103 Ma (Fig. 3a). While most of the ZHe ages from the Her-
itage Group are Jurassic (from ca. 184 to 149 Ma), two zircon
grains yielded Early Cretaceous ages (ca. 140 and 103 Ma).
The two younger ages are found in both the base and the up-
per parts of the Heritage Group, i.e. in the Union Glacier and
Liberty Hills formations, respectively (Fig. 3a).

4.2 Whiteout Conglomerate

Two samples of matrix from conglomeratic sandstones were
analysed for ZHe ages from the Whiteout Conglomerate,
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Figure 2. (a) Simplified geological map of the Ellsworth Mountains from Craddock (1969) with the sample locations (circled numbers):
1 represents 13EG01, 2 represents 13EG05, 3 represents EHD0801A, 4 represents 13EG10, and 5 represents 13EG15. (b) Stratigraphic
column of the Ellsworth Mountains succession after Curtis (2001). Sample locations are placed within the column according to their strati-
graphic position.

samples 13EG10 and 13EG15, which are located in the up-
per part and base of this sequence, respectively. This unit
was deposited during the Permian–Carboniferous (Collison
et al., 1992; Matsch and Ojakangas, 1992) and is part of the
upper section of the stratigraphic succession exposed in the
Ellsworth Mountains. Sample 13EG10 was collected from
the Whiteout Nunatak in the Sentinel Range in the northern
section of the Ellsworth Mountains (Fig. 2) and yielded a
ZHe age of ca. 182 Ma (Fig. 3a). A second rock was anal-
ysed (13EG15) from this unit to the south in the Heritage
Range and to the east of the samples analysed from the
Heritage Group (Fig. 2). ZHe ages from sample 13EG15
are ca. 791, 468 and 159 Ma (Table 1). While two grains
yielded ages older than the depositional age of this unit
(ca. 360 to 300 Ma), they agree with the provenance studies
collected from the same sample and presented by Castillo et
al. (2017), who showed the presence of Palaeozoic, Neopro-
terozoic and Mesoproterozoic sources in the Whiteout Con-
glomerate. Therefore, these results suggest that the ZHe sys-

tem in the Whiteout Conglomerate is partially reset. There is
a significant distance (∼ 250 km) between the two samples
of the Whiteout Conglomerate (Fig. 2). Their altitude is 1520
and 580 m for 13EG10 and 13EG15, respectively (Table 1).

5 Discussion

5.1 Landscape evolution

Our results predominantly indicate Jurassic–Early Creta-
ceous ZHe ages from the Ellsworth Mountains (Fig. 3b).
These results help to constrain the landscape evolution of
the Ellsworth Mountains, which is thought to have experi-
enced an uplift event during the Early Cretaceous (Fitzger-
ald and Stump, 1991) based on apatite fission-track anal-
yses. The Jurassic–Early Cretaceous ZHe ages are signifi-
cantly younger than the age of the host sedimentary rocks,
indicating the ZHe ages have been reset. While this indi-
cates a post-depositional thermal event, the heat source and

https://doi.org/10.5194/se-15-555-2024 Solid Earth, 15, 555–566, 2024
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Figure 3. (a) Depositional ages compared with ZHe ages of the grains analysed in this study. The major uplift events that formed the
Transantarctic Mountains are indicated: (i) the separation between Antarctica and Australia during the Early Cretaceous, (ii) the Late Creta-
ceous extension (main phase) between West and East Antarctica, and (iii) the Cenozoic southward seafloor propagation of the Adare Trough
into the Ross Sea (e.g. Fitzgerald and Gleadow, 1988; Fitzgerald, 1992, 1994, 2002; Balestrieri et al., 1997; Miller et al., 2010; Goodge,
2020) along with the timing of the Weddell Sea opening (Ghidella et al., 2002; König and Jokat, 2006). (b) Age–elevation plot of ZHe ages.

the causative mechanism is not clear. The Palaeozoic sedi-
mentary sequence of the Ellsworth Mountains, albeit faulted
and deformed (e.g. Curtis, 2001), has not experienced sig-
nificant regional metamorphism. Furthermore, sedimentary
analysis shows that significant stratigraphic repetition related
to tight folding or thrust faults is not likely (e.g. Collinson et
al., 1992; Matsch and Ojakangas, 1992; Spörli, 1992; We-
bers et al., 1992a). The sedimentary sequence exposed in the
Ellsworth Mountains has a thickness of ∼ 13 km, which can
account for the resetting of the ZHe ages by burial alone, as-
suming a geothermal gradient of 30 °C km−1 and a ZHe par-
tial retention zone in the range of ∼ 200–130 °C (Wolfe and

Stockli, 2010). Therefore, burial heating associated with de-
position of the sequence exposed in the Ellsworth Mountains
may account for the resetting of the ZHe ages. It is note-
worthy that the heat flux distribution in West Antarctica is
relatively complex (e.g. Martos et al., 2017). The samples
are distributed along ∼ 300 km (Fig. 2), which is insufficient
to consider a significant change between the values of the
geothermal gradient for each sample. We nevertheless ac-
knowledge that the chosen value may vary as there is a better
understanding of the paleo-geothermal gradient.

While all the ZHe ages in the Heritage Group range from
the Jurassic to the Early Cretaceous, only two of the four

Solid Earth, 15, 555–566, 2024 https://doi.org/10.5194/se-15-555-2024
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grains from the Whiteout Conglomerate are within that age
range. Furthermore, the two older grains from the White-
out Conglomerate yield ZHe dates that are concordant with
their detrital U–Pb ages, which were presented in Castillo
et al. (2017), who dated the same samples (13EG10 and
13EG15). This suggests only partial ZHe resetting occurred
in the Whiteout Conglomerate and that burial heating did
not reset all ZHe ages. A lesser degree of burial heating in
the Whiteout Conglomerate compared to the Heritage Group
is in agreement with their respective positions in the strati-
graphic sequence, in which they are towards the top and the
base of the section, respectively (Fig. 2). Zircon grains may
not be fully reset in a given rock if they experience reheating
below the range of temperatures of the ZHe partial retention
zone (e.g. Schneider and Issler, 2019; Malusà and Fitzger-
ald, 2019) as in the Whiteout Conglomerate. Conversely, zir-
con grains of the Heritage Group were fully reset because
they experienced temperatures above the ZHe partial reten-
tion zone. Taking into the account that (i) the partial retention
zone for low to moderately damaged zircon grains for the
(U–Th) /He system is in the range of ∼ 200–130 °C (Wolfe
and Stockli, 2010), while (ii) assuming a geothermal gradient
of 30 °C km−1, the Whiteout Conglomerate may have expe-
rienced between 7–4 km of burial. The Heritage Group expe-
rienced temperatures above ∼ 200 °C and burial by at least
7–6 km.

5.2 Gondwana fragmentation

Several tectono-magmatic events preceded the formation of
oceanic lithosphere that led to the fragmentation of Gond-
wana, and one key tectono-magmatic event is recorded in
the Ellsworth–Whitmore Mountains. Nevertheless, during
the Palaeozoic, the Ellsworth–Whitmore Mountains were lo-
cated in the boundary between East and West Gondwana
(e.g. Castillo et al., 2024; Fig. 4a). Dalziel et al. (2013
and references therein) argued that the key to understanding
Gondwana’s initial fragmentation in the southern Atlantic–
Weddell Sea region is the opposed sense of rotations of the
Falklands (Malvinas) Plateau and the Ellsworth–Whitmore
Mountains block. These rotations were termed by Martin
(2007) as “double-saloon-door” tectonics and ascribed by
them to seafloor spreading above a curved and retreating sub-
duction zone. This event has been interpreted as an exten-
sional episode that followed the emplacement of the Karoo
and Ferrar Large Igneous Provinces (LIPs) at ∼ 184–182 Ma
(e.g. Svensen et al., 2012; Burgess et al., 2015; Greber et al.,
2020) and coincides with the early development of the sili-
cic magmatism of the Chon Aike province in the Antarctic
Peninsula and Patagonia (Pankhurst et al., 2000; Bastias et
al., 2021).

Grunow et al. (1987) presented a thorough revision of
the paleogeographic evolution of the Ellsworth–Whitmore
Mountains block based on paleomagnetic constraints. They
suggested that the Ellsworth–Whitmore Mountains block and

Figure 4. Paleogeographic reconstruction of the Palaeozoic and
Mesozoic of southwestern Gondwana, showing the position of the
Ellsworth–Whitmore Mountains relative to the surrounding crustal
blocks. The boundaries of the crustal blocks are schematic. (a) Re-
construction during the Cambrian (extracted from Castillo et al.,
2017; Africa held fixed in present-day coordinates), where the
Ellsworth–Whitmore Mountains are located between East and West
Gondwana without experiencing relevant deformation. (b) Recon-
struction during the Middle Jurassic (extracted from Grunow et al.,
1987), where the Ellsworth–Whitmore Mountains experience little
relative motion with respect to East Antarctica. We associate this
with the initiation of the uplift of the Ellsworth–Whitmore Moun-
tains. (c) Reconstruction during the Early Cretaceous (extracted
from Grunow et al., 1987), where the Ellsworth–Whitmore Moun-
tains experienced a notable relative movement with respect to East
Antarctica. We suggest that deformation continued and intensified
in the Ellsworth–Whitmore Mountains throughout this displace-
ment, which finished the uplift of this mountain chain. The dashed
line corresponds to the Transantarctic Mountains. AP+TI repre-
sents the Antarctic Peninsula and Thurston Island. EWM stands for
the Ellsworth–Whitmore Mountains. MBL stands for Marie Byrd
Land. TAM stands for Transantarctic Mountains.

the Antarctic Peninsula have undergone little relative move-
ment since the Middle Jurassic (Fig. 4b). Furthermore, they
suggested that along with Thurston Island, the Ellsworth–
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Whitmore Mountains block and the Antarctic Peninsula de-
fine a single entity termed “Weddellia”. Between the Mid-
dle Jurassic and Early Cretaceous, these crustal blocks re-
mained attached to West Gondwana, while East Antarctica
moved southward (dextrally) relative to Weddellia (Fig. 4c).
The present-day position of the Ellsworth–Whitmore Moun-
tains block was attained during the Early Cretaceous and
mid-Cretaceous by clockwise rotation of Weddellia along
with a sinistral movement relative to East Antarctica. Randall
and MacNiocaill (2004) investigated the paleopositions of
the Ellsworth–Whitmore Mountains block prior to the break-
up of Gondwana, again based on paleomagnetic studies.
Their findings suggest that the Ellsworth–Whitmore Moun-
tains block was located near the junction of East Antarctica
and Africa. However, Castillo et al. (2017), employing prove-
nance studies, suggested a closer affinity of the Ellsworth–
Whitmore Mountains block to the Australo-Antarctic plate
and located this crustal block further east than that proposed
by Randall and MacNiocaill (2004). Nevertheless, prior to
the disassembly of Gondwana, all these studies place the
Ellsworth–Whitmore Mountains block in the vicinity of the
margin of the junction between East and West Gondwana, as
proposed by Schopf (1969).

The sequence exposed in the Ellsworth Mountains ex-
perienced burial reheating after Palaeozoic deposition. The
ZHe ages presented here yield predominantly Jurassic and
Early Cretaceous dates. This suggests that these rocks cooled
through the ∼ 200–130 °C ZHe partial retention zone dur-
ing the Jurassic and Early Cretaceous, which we interpret
as exhumation related to a specific rock uplift event. Al-
though our dataset does not contradict the seminal work of
Fitzgerald and Stump (1991), who reported apatite fission-
track ages ranging from ∼ 141–117 Ma, with the exception
of two zircons yielding Early Cretaceous ages, most of the
ZHe presented herein predates 141 Ma (Fig. 3a,b). This sug-
gests that our results provide an older age (Jurassic–Early
Cretaceous) for the uplift of the Ellsworth Mountains than
what was previously reported (Early Cretaceous; Fitzger-
ald and Stump, 1991). While this may be simply explained
by the relatively higher thermal sensitivity of ZHe (∼ 200–
130 °C; Wolfe and Stockli, 2010) compared to that of apatite
fission tracks (∼ 120–60 °C; Fleischer et al., 1965; Green
et al., 1985), and therefore ZHe ages may potentially yield
older ages than those of apatite fission tracks, it also sug-
gests that the Ellsworth Mountains may have uplifted ear-
lier than previously considered, during the Jurassic. Never-
theless, this Jurassic–Early Cretaceous episode is recorded
in both the Sentinel and Heritage ranges (Fig. 2), implying
the presence of a regional event that affected the Ellsworth
Mountains. Although the structures that uplifted these rocks
are poorly constrained, the Jurassic and Early Cretaceous is
dominated by widespread extension and magmatism asso-
ciated with the disassembly of Gondwana (e.g. Dalziel et
al., 2013; Jordan et al., 2017; Pankhurst et al., 2000; Bas-
tias et al., 2021). We suggest that the uplift event respon-

sible for the exhumation of the Ellsworth Mountains se-
quences is also part of the major plate reconfiguration as-
sociated with the break-up of Gondwana (Fig. 4b, c). An ex-
tensional setting prevailed in this sector of Gondwana during
the Jurassic and Cretaceous (e.g. Dalziel et al., 2013), and
therefore we suggest that the Ellsworth Mountains were up-
lifted through this deformative event. However, we acknowl-
edge that likely the Ellsworth Mountains were still being ac-
commodated along West Antarctica during the Jurassic–Late
Cretaceous (Grunow et al., 1987; Fig. 4b, c), and the uplift
may have been also caused by the transtensional movement.
Nevertheless, the widespread evidence of extensional tecton-
ics in this sector of Gondwana during the Jurassic–Late Cre-
taceous favours an extensional mechanism.

5.3 Connection with the Transantarctic Mountains

The Transantarctic Mountains extend for ∼ 3200 km from
northern Victoria Land area in the Australian–New Zealand
sector in Antarctica to the Pensacola Mountains near the
Ronne Ice Shelf (Fig. 1). They rise to elevations of> 4500 m
directly from sea level along the Ross Sea coastline (e.g.
Goodge, 2020). This mountain chain is a major feature of
the Earth’s landscape, as it is the longest intraplate moun-
tain belt on the planet. It defines the limit between East
and West Antarctica, a thick stable craton and a large ac-
cretionary province, respectively (e.g. Goodge, 2020; Jor-
dan et al., 2020). Furthermore, the Transantarctic Mountains
are the world’s largest rift mountain system (e.g. Goodge,
2020). Although the Ellsworth Mountains are geographi-
cally separated from the Transantarctic Mountains, both con-
tain Precambrian and Palaeozoic rocks of similar prove-
nance affinity (e.g. Schopf, 1969; Bradshaw, 2013), and thus
they have often been correlated (e.g. Goodge, 2020). The
dataset presented herein suggests that while the Transantarc-
tic Mountains and the Ellsworth Mountains have similar
rocks, their uplift may be associated with a different tec-
tonic event. Furthermore, the thermal tectonic history of
the Transantarctic Mountains shows three major exhumation
events, which occurred during the Early Cretaceous, Late
Cretaceous and Cenozoic (Fitzgerald et al., 2002). These
events have been associated with regional tectonic events,
which are (i) the initial separation between Antarctica and
Australia during the Early Cretaceous, (ii) Late Cretaceous
extension (main phase) between West and East Antarctica,
and (iii) the Cenozoic southward seafloor propagation of
the Adare Trough into the Ross Sea (e.g. Fitzgerald and
Gleadow, 1988; Fitzgerald, 1992, 1994, 2002; Balestrieri
et al., 1997; Miller et al., 2010; Goodge, 2020). The ZHe
results presented herein consistently yield Jurassic ages (9
out of 11; Fig. 3a), which predates the initial uplift of the
Transantarctic Mountains during the Early Cretaceous (e.g.
Goodge, 2020). Hence, although there is some overlap in the
timing of exhumation between these two mountain chains,
it also suggests that the uplift of the Ellsworth Mountains
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may be older. Therefore, the historical correlation between
the Ellsworth and Transantarctic Mountains may not be cor-
rect, at least on their uplift histories. While the uplift of the
Ellsworth Mountains and the Transantarctic Mountains may
be part of a diachronous exhumation event whereby uplift
commenced in the Ellsworth Mountains during the Jurassic
and advanced progressively towards the south, propagating
into the Transantarctic Mountains during the Early Creta-
ceous, such a tectonic event remains unlikely considering
the Gondwana breakup clockwise rotations during this pe-
riod in Africa, India, Australia and New Zealand (e.g. Jokat
et al., 2003). Alternatively, the Jurassic–Early Cretaceous
uplift of the Ellsworth Mountains may be associated with
two different tectonic episodes. First, a Jurassic uplift event
occurred associated with the disassembly of southwestern
Gondwana (Fig. 4b), which is exclusively recorded in the
Ellsworth Mountains. A second uplift event occurred during
the Early Cretaceous in both the Ellsworth Mountains and
the Transantarctic Mountains (Fig. 4c). This event coincides
with the first uplift of the Transantarctic Mountains, which
is associated with the separation of Antarctica and Australia
(e.g. Goodge, 2020).

6 Conclusions

The Palaeozoic stratigraphic sequence exposed in the
Ellsworth Mountains consistently yields Jurassic and Early
Cretaceous ZHe ages, which we interpret as exhumation of
the Ellsworth Mountains as a direct response to rock uplift.
The stratigraphic succession reached temperatures within or
above the ZHe partial retention zone (∼ 200–130 °C; Wolfe
and Stockli, 2010) by burial reheating associated with the
∼ 13 km thick stratigraphic column, assuming a geothermal
gradient of 30 °C km−1. However, while all zircon grains
from the Heritage Group yield reset ZHe ages, the White-
out Conglomerate also yielded non-reset ZHe ages. Addi-
tionally, these non-reset ZHe ages are broadly contempora-
neous with the ages of the detrital material of this unit pre-
sented by Castillo et al. (2017) on the same samples. This
suggests that the temperature associated with burial reheat
was, as would be expected, progressively higher towards the
base of the sequence exposed in the Ellsworth Mountains.

The Jurassic–Early Cretaceous uplift of the Ellsworth
Mountains is older than the Early Cretaceous exhuma-
tion of the Transantarctic Mountains. We suggest that the
widespread extension that dominated this sector of Gond-
wana and related to its fragmentation during the Juras-
sic and Cretaceous is also responsible of the uplift of the
Ellsworth Mountains. While the first uplift event recorded
in the Transantarctic Mountains, which occurred during the
Early Cretaceous, is also present in the Ellsworth Mountains,
the latter also yields evidence of an older and independent
Jurassic uplift episode, which we tentatively associate with
the disassembly of Gondwana during this period.
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