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Abstract. Geochemical mapping is a fundamental tool for
elucidating the distribution and behaviour of economically
significant elements and providing valuable insights into ge-
ological processes. Nevertheless, the quantification of un-
certainty associated with geochemical mapping has only re-
cently become a subject of widespread concern. This study
presents a procedure that primarily consists of the determi-
nation of homogeneous clusters, the recognition of elemen-
tal associations for each cluster, and the identification of geo-
chemical anomalies, with the aim of accounting for the un-
certainty of elemental association in geochemical mapping.
To illustrate and validate the procedure, a case study was con-
ducted wherein geochemical stream-sediment samples from
the northwestern region of the province of Sichuan, China,
were processed to map anomalies associated with dissemi-
nated gold mineralization. The results indicate that (1) the
representativeness of elemental association for the underly-
ing geological process is an important source of uncertainty
for geochemical mapping; (2) the procedure presented here
is effective in addressing the uncertainty of elemental asso-
ciations in geochemical mapping; and (3) the study area can
be classified into two clusters, each characterized by unique
elemental associations that align well with the distribution of
Paleozoic and Triassic lithological units, respectively. Fur-
thermore, the region still holds great potential for the discov-
ery of gold deposits, particularly in areas proximal to known
mineralization sites.

1 Introduction

Geochemical mapping plays a vital role in understanding ge-
ological processes, discerning the distribution and behaviour
of economically significant elements, and facilitating the as-
sessment of the environmental impact of human activities
(Bölviken et al., 1990; Cocker, 1999; Pearce et al., 2005; De
Vivo et al., 2008; Grunsky et al., 2009; Hou et al., 2015;
Wang et al., 2016; Talebi et al., 2019a; Zuo et al., 2019;
Sammon et al., 2022). For example, the mapping of Sr and
Pb isotopic variations in ocean floor basalts or that of Nd
and Hf isotopic variations in continental felsic igneous rocks
enables the identification of geographically distinct compo-
sitional reservoirs within the deep Earth (Hart, 1984; Mole
et al., 2014; Wang et al., 2023). In particular, the signifi-
cance of geochemical maps in mineral exploration, which
assists in making informed decisions regarding exploration
priorities by identifying concentrations of valuable elements,
has been widely recognized (e.g. Rose et al., 1979; Cheng,
2007; Reimann et al., 2007; Carranza, 2008; Xie et al., 2008;
Reimann et al., 2016).

Geochemical mapping entails the systematic collection of
geochemical samples and the processing of geochemical data
through multiple steps, with the purpose of mapping spatial
variations in geochemical elements and identifying anomaly
patterns that may reflect critical geological processes beneath
the Earth’s surface (Smith and Reimann, 2008; Zuo et al.,
2016, 2021a; Grunsky and de Caritat, 2020). Geochemical
mapping typically involves four sequential steps: (1) identi-
fying the indicative element or elemental association that is
characteristic of the targeted geological process (e.g. miner-
alization), (2) predicting or simulating the spatial distribu-
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tion of the indicator being studied, (3) optionally enhancing
and delineating the geochemical signatures of interest, and
(4) evaluating the geological significance of the geochemical
signatures and their potential to indicate noteworthy geolog-
ical events (Carranza, 2008; Grunsky and de Caritat, 2020;
Wang and Zuo, 2022). It is important to note that the distinc-
tive geochemical signatures of geological bodies (a.k.a. geo-
chemical anomalies), which are produced by specific geolog-
ical processes, can be frequently obscured by subsequent ge-
ological or non-geological processes prevailing at the Earth’s
surface (Carranza, 2008; Cheng, 2012; Talebi et al., 2019b;
Yousefi et al., 2019). In addition, geological processes that
occur across different spatial and temporal scales tend to
interact with each other in a multiplicative way. This can
result in non-linearity, heterogeneity, and a mixing of pat-
terns in the resulting geochemical signatures (Cheng, 2012).
The scale-dependent nature and potential involvement of var-
ious heterogeneous geological processes present consider-
able challenges for geochemical mapping, thereby imposing
limitations and uncertainties onto its effectiveness in identi-
fying relevant patterns. Properly addressing the uncertainty
is hence crucial for leveraging geochemical mapping to un-
derstand geological processes and make informed decisions
with regard to mineral resource prediction (Wang and Zuo,
2018, 2024; Sadeghi, 2021; Zuo et al., 2021a). Previous stud-
ies have explored certain aspects of uncertainty that arise
from the aforementioned steps involved in geochemical map-
ping for mineral deposit discovery (Costa and Koppe, 1999;
Wang and Zuo, 2018, 2022; Ersoy and Yunsel, 2019; Chen et
al., 2021; Sadeghi, 2021; Liu and Carranza, 2022; H. Wang et
al., 2022; Sadeghi and Cohen, 2023; Fan et al., 2024). How-
ever, there has been limited research focusing on the uncer-
tainty associated with determining the elemental association
as a proxy for the targeted geological process.

Elements tend to be associated due to their similar rel-
ative mobility in certain geological processes occurring in
unique chemical and physical conditions (White, 2020). For
example, copper and gold frequently occur together due to
their similar geochemical behaviour and affinity for certain
geological processes, such as porphyry-copper–gold min-
eral systems (Sillitoe, 2010). Other notable instances can
be found in the elemental associations of copper–nickel–
platinum group elements within magmatic sulfide min-
eral systems, uranium–thorium in sandstone-hosted or vein-
type uranium deposits, and gold–silver–arsenic–antimony–
mercury associations observed in epithermal gold mineral
systems (Pirajno, 2008; Robb, 2020). Note that certain ele-
ments may maintain consistent associations across a broad
range of geological conditions, whereas others may coexist
during most processes in deep-seated environments but be-
come separated in surficial environments (Rose et al., 1979).
Grunsky and de Caritat (2020) emphasized that stoichiom-
etry governs the interrelationships among elements in geo-
chemical data, thereby giving rise to distinct structural pat-
terns within the data. Therefore, geological processes can

be recognized by a continuum of variable responses. In this
context, a linear model of elements is commonly accepted
as a suitable approach to capture the stoichiometry of rock-
forming minerals and the subsequent processes (e.g. hy-
drothermal fluids and weathering) that bring about modifi-
cations in mineral structures (Grunsky and de Caritat, 2020;
Grunsky et al., 2023). Multivariate statistical methods, such
as principal-component analysis (PCA), are usually applied
to multielement geochemical data to identify the dominant
components that generally reflect features related to mineral-
ogy and depict geological processes. For instance, Grunsky
and Kjarsgaard (2016) demonstrated the usefulness of PCA
in statistically identifying the distinct geochemical kimber-
lite phases, which lead to efficiencies in the economic eval-
uation of kimberlite for diamonds in Saskatchewan, Canada.
Mueller and Grunsky (2016) utilized min/max autocorrela-
tion factor analysis on till-based geochemical-survey data
collected across the Melville Peninsula in Nunavut, Canada,
and effectively predicted the underlying bedrock lithologies
and recognized the associated glacial-transport processes.
Given its remarkable capability to capture nuanced and non-
linear interrelationships among model variables, machine
learning has also been employed to identify significant el-
emental associations that can serve as representations of un-
derlying geological processes (Zuo, 2018; Grunsky et al.,
2023). For example, C. Wang et al. (2022) utilized a ma-
chine learning technique called recursive feature elimination
to identify the elemental-association patterns that serve as in-
dicators for distinct types of tin mineralization.

However, during a geochemical survey conducted within a
designated area, various geological processes often manifest
in distinct local regions due to differences in geological con-
ditions, and, even within the same area, multiple processes
can overlap and intertwine with each other. In a magmatic-
and hydrothermal-gold mineral system (e.g. the Masara gold
district in Mindanao, Philippines), for example, different
types of gold mineralization can take place at different stages
and locations as magmatic fluids evolve and interact with the
wall rocks and outer fluids (Robb, 2020). The early high-
temperature stage is characterized by porphyry-style miner-
alization, located in the core of the system directly above
the underlying magma chamber, which primarily yields dis-
seminated gold–copper sulfides, such as chalcopyrite, bor-
nite, and molybdenite. In the intermediate stage, epither-
mal quartz–adularia–gold vein mineralization is prominent,
forming a ring-shaped zone surrounding the porphyry core,
which produces native gold and sulfides, e.g. pyrite, galena,
and sphalerite. The late stage is typically associated with
low-sulfidation epithermal mineralization, which occurs fur-
ther outwards from the core and is characterized by quartz–
carbonate veins with high Au /Ag ratios as well as gold oc-
curring as electrum with minerals like pyrite, marcasite, stib-
nite, and realgar (Pirajno, 2008). Hot-spring gold mineral-
ization can also occur when the remaining magmatic fluids
mix with meteoric water at the surface and cool further. It is
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important to note that the heterogeneous zonation observed
in the mineral system can even be likely disrupted by struc-
tures like faults, which serve as pathways for mineralizing
fluids. In such a complicated context, relying solely on a sin-
gle group of elements as a proxy for underlying geological
processes can inevitably lead to uncertainties in the result-
ing geochemical patterns. Consequently, the means of ad-
dressing the uncertainty arising from the representativeness
of elemental associations in geological processes becomes a
significant concern when utilizing geochemical mapping to
comprehend the processes and aid in mineral resource pre-
diction.

To mitigate the uncertainty inherent in defining elemental
associations, this study introduces a workflow that utilizes
fuzzy clustering to delineate homogeneous zones and fur-
ther determines their respective elemental associations; this
is complemented by PCA and techniques in geochemical-
anomaly detection for refined geochemical mapping. To il-
lustrate and validate the procedure, a case study was con-
ducted using geochemical stream-sediment samples from the
northwestern region of the province of Sichuan, China, with
the aim of delineating anomalies associated with sediment-
hosted disseminated gold mineralization.

2 Study area and data

2.1 Geological setting

The study area is situated in the northwestern region of the
province of Sichuan, China, covering a longitude range of
103°4′ to 104°36′30′′ E and a latitude range of 32°40′ to
34° N (Fig. 1).

Located at the intersection of the Yangtze Plate, North
China Plate, and Songpan–Ganzi terrane, this area has been
distinguished by active tectonic and magmatic processes
throughout geological histories. These long-lived crustal
dynamics exert significant controls on the formation and
widespread distribution of gold mineralization observed
across the region. Previous studies have revealed a strong
correlation between the emplacement of large gold deposits
and the presence of NW–SE-extending major tectonic faults
and have also noted the intersection of multiple faults and
ring-shaped fault systems (e.g. Zhao, 1995; Li, 1996; Wang
et al., 2003; Liu et al., 2010). In this area, one can find strati-
graphic units ranging from the Proterozoic to the Cenozoic.
The distribution of these units is evidently controlled by re-
gional faults, and they are also prone to undergoing metamor-
phism. The Triassic strata, which cover approximately 73 %
of the study area, predominate in the western and northern
parts. They mainly consist of metamorphosed sandstones and
slates that are interbedded with occasional volcanic rocks and
limestones. These strata primarily represent sedimentary tur-
bidite environments in shallow-sea slopes and play a signifi-
cant role as the main sources of materials for gold mineraliza-

tion, as demonstrated by isotopic and rare-earth-element geo-
chemistry (Zheng et al., 1990; Chen, 1998; Wang et al., 2004;
Zhang, 2014). Igneous rocks, including granites, granodior-
ites, and monzogranites, appear infrequently at the surface
and are primarily confined to the southeastern portion of the
study area. Previous studies have indicated that hypabyssal
calc-alkaline igneous rocks from the late Indonesian period
to the Yanshanian period play a crucial role in the generation
of hydrothermal fluids and the creation of geodynamic con-
ditions that facilitate the remobilization and concentration of
gold in this region (e.g. Li, 1996; Liu et al., 2010).

The predominant type of gold deposits discovered in this
area are sediment-hosted disseminated gold deposits, ex-
emplified by the Dongbeizhai and Manaoke gold deposits.
These deposits are primarily found within Triassic marine
sequences. They are characterized by the presence of mi-
croscopic and/or dissolved gold as well as mineral associ-
ations for epithermal mineralization that include arsenopy-
rite, pyrite, and stibnite. Furthermore, studies imply that there
are variations in the geological and geochemical characteris-
tics of different gold deposits due to individual differences
in tectonic settings and geological conditions. Consequently,
these heterogeneities pose challenges for the processing of
geochemical data (Li, 1996; Chen, 1998; Chen et al., 2004;
Deng et al., 2023).

2.2 Geochemical-survey data

The geochemical data utilized in this research are derived
from China’s national geochemical-mapping project, which
was initiated in 1979 and has played a critical role in mineral
exploration in China (Xie et al., 1997). It comprises 3461
composite stream-sediment samples collected at a density of
one composite sample per 4 km2. Each sample was analysed
for 39 major, minor, and trace elements/oxides – i.e. Ag, As,
Au, B, Ba, Be, Bi, Cd, Co, Cr, Cu, F, Hg, La, Li, Mn, Mo, Nb,
Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, V, W, Y, Zn, Zr, SiO2, Al2O3,
Fe2O3, K2O, Na2O, CaO and MgO. For comprehensive in-
formation regarding sample preparation, analytical method-
ologies, detection limits, and quality control, please refer to
the works of Xie et al. (1997) and Wang et al. (2011).

3 Methods

3.1 The general workflow

To effectively address the uncertainty in defining elemental
associations for geochemical mapping, our workflow starts
by employing clustering analysis to pinpoint homogeneous
regions, each presumed to be characterized by a distinct el-
emental association. Subsequently, it ascertains the pertinent
elemental associations for each identified cluster, with the
ensemble of these associations representing the uncertainty.
The workflow proceeds by performing mapping of multivari-
ate geochemical anomalies for each potential elemental asso-
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Figure 1. Simplified geological map of the study area in the northwestern region of the province of Sichuan, China (after Wang and Zuo,
2022).

ciation, ultimately synthesizing a comprehensive geochemi-
cal map through a linear weighting scheme based on the al-
ternative maps. The workflow (Fig. 2) primarily consists of
four consecutive parts.

1. Identifying homogeneous regions through fuzzy cluster-
ing.

Prior to cluster analysis, individual elements in a se-
lected multivariate geochemical-survey dataset are spa-
tially interpolated. The interpolated maps are sub-
sequently utilized as input for the fuzzy-clustering
method, commonly known as fuzzy c-means clustering,
to obtain membership value maps. The number of mem-
bership value maps is equal to the number of clusters de-
termined by optimization metrics, such as the Silhouette
index (Rousseeuw, 1987), gap statistics (Tibshirani et
al., 2001), and the cluster validity index (Xie and Beni,
1991). The homogeneous local regions can then be de-
termined by the largest membership value for each grid
cell.

2. Determining elemental associations for each region that
serve as indicators of the underlying targeted process.

The geochemical-survey data are initially partitioned
into distinct subsets based on the criteria of sample as-
signment to specific clusters. Subsequently, each sub-
set of data undergoes PCA, enabling the examination
of elemental associations through a biplot analysis. By

identifying a distinctive set of elements for each sub-
set, which is representative of the geological processes
of interest, a comprehensive understanding of targeted
geological phenomena with uncertain elemental associ-
ations can be achieved.

3. Recognizing multivariate anomalies based on each ele-
mental association.

An algorithm for identifying geochemical anomalies,
e.g. local singularity analysis by Cheng (2007) and
the deep autoencoder network by Xiong and Zuo
(2016), was firstly applied to the interpolated map of
each element to enhance univariate-anomaly patterns.
Multivariate-anomaly patterns were derived by integrat-
ing relevant univariate anomalies through PCA. For
each potential elemental association linked to the un-
derlying geological process, PCA was applied solely
to the subset of elements within that assemblage. The
first-principal-component score map, which captures
the highest amount of variation, was retained to rep-
resent the multivariate-anomaly patterns for given ele-
mental association (e.g. Cheng, 2007). Note that the set
of multivariate-anomaly maps, in which each map cor-
responds to an alternative elemental association, repre-
sents the propagation of uncertainty stemming from us-
ing elemental associations as proxies for underlying ge-
ological processes.
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4. Integrating alternative anomaly patterns to generate a
comprehensive map of anomalies.

To mitigate the uncertainty inherent in defining el-
emental association for geochemical mapping, the
multivariate-anomaly maps were further integrated into
a comprehensive anomaly map using a linear weighting
model. In this study, the weights assigned to each map
correspond to the membership values obtained from
fuzzy clustering – that is, they correspond to the cluster
from which the map was derived. Since fuzzy clustering
inherently normalizes memberships, these values intrin-
sically account for each domain’s spatial representation
and influence.

3.2 Fuzzy c-means clustering

The aim of clustering is to divide a set of N data points
into C clusters such that data points within a cluster ex-
hibit similarity and data points within different clusters are
dissimilar. Clustering serves the purpose of extracting a set
of cluster prototypes, enabling a compact representation of
the dataset with several homogeneous subsets (Kaufman and
Rousseeuw, 2009). Fuzzy set theory assumes that data points
may not belong exclusively to a single set but may instead
exhibit a degree of membership uncertainty that can be ad-
dressed through the utilization of a membership function
(Zadeh, 1965). Integration of fuzzy logic with data mining
techniques has emerged as a fundamental aspect of soft mod-
elling to address such uncertainty (Bezdek, 2013). Fuzzy c-
means (FCM) clustering, first developed by Dunn (1973),
is an unsupervised soft-clustering technique that allows data
points to be classified into multiple clusters with varying de-
grees of membership (Bezdek et al., 1984). FCM is an itera-
tive algorithm that computes cluster centres and membership
values to minimize the following objective function:

Lm =

C∑
i=1

N∑
j=1

µmijD
2
ij , (1)

where C denotes the number of clusters; N the is number of
data points; m is a hyperparameter that controls the degree
of fuzzy overlap, which refers to how fuzzy the boundaries
between clusters are (m< 1); µij is a continuous value be-
tween 0 and 1 and represents the degree of membership of
the j th data point in the ith cluster (0≤ µij ≤ 1); and Dij is
the distance between the j th data point xj and the ith clus-
ter centre ci , for which the Euclidean distance is commonly
used, expressed as Dij =

∥∥xj − ci∥∥2. Note that for a given
data point, the sum of its membership values for all clusters
is constantly 1 and is expressed as

C∑
i=1

µij = 1, j = 1,2, · · ·,N. (2)

The classical FCM computes the distance Dij between data
points and cluster centres using a Euclidean distance metric.
However, other dissimilarity metrics can also be employed
to establish alternative clustering algorithms. For instance,
Gustafson and William (1978) presented a fuzzy-clustering
algorithm that computes distances using a Mahalanobis dis-
tance metric, which enables us to account for correlations
and variations in multiple dimensions or variables. The im-
plementation of FCM closely resembles that of k-means, and
for specific algorithmic details, one can refer to the work of
Suganya and Shanthi (2012).

A key advantage of FCM lies in its flexibility in assign-
ing gradual memberships to account for uncertainty. Hence,
FCM has been one of the most widely used fuzzy-clustering
algorithms in data science and machine learning applications
(e.g. Fatehi and Asadi, 2017; Benjumea et al., 2021; Zhang
et al., 2021).

In this study, we employed the Xie–Beni validity index
(Xie and Beni, 1991) to determine the optimal cluster num-
ber, which is defined as

S =

∑C
i=1
∑N
j=1µ

2
ijDij

N
(

mini,j=1,···C,i 6=j
∥∥ci − cj∥∥2

) . (3)

This index evaluates the dataset’s geometric structure and
membership degrees, offering a measure of cluster compact-
ness and separation. A lower index value signifies elevated
cluster density and distinction.

3.3 Derivation of the comprehensive anomaly map

Assuming that C elemental associations are
EAi (i = 1,2, · · ·,C) and that the multivariate-anomaly
map for elemental association EAi is Ai , the comprehensive
anomaly map can be derived using the following formula:

Atotal =

C∑
i=1

µi �Ai, (4)

where µi represents the membership value map for the ith
cluster and the operator � denotes the “Hadamard product”,
(i.e. the element-wise product). When considering two ma-
trices, designated as A and B, both of which have identical
dimensions (m by n), one can compute the Hadamard prod-
uct A�B. This results in a matrix with matching dimensions,
where each element (A�B)ij is the product of the corre-
sponding elements fromA and B, i.e. (A�B)ij = Aij×Bij .
Note that the membership values, ranging from 0 to 1, serve
as a quantitative representation of each cell sample’s affil-
iation with the identified clusters (and their corresponding
elemental associations), thereby facilitating the integration
of multiple anomaly maps through the Hadamard product.
Moreover, while our anomaly scores, derived from the singu-
larity exponent, require no scaling due to their dimensionless
nature, we acknowledge that the Hadamard product can also
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Figure 2. The general workflow for mapping geochemical anomalies by accounting for the uncertainty of elemental association.

be applied to scaled anomaly scores, provided they are nor-
malized to ensure comparability across different measures.

4 Results and discussions

4.1 The uncertainty of elemental associations related to
gold mineralization

Zuo et al. (2021b) explored the lower-order statistics of the
ore-forming element Au in this dataset using exploratory sta-
tistical graphs, including boxplots, histograms, and quantile–
quantile plots. The results suggested that the original con-
centrations of Au exhibit an evidently positively skewed
and heavy-tailed distribution, implying that the geochemical
data might originate from more than one geological process,
with gold mineralization imposing an important influence on
shaping the distribution. A global elemental association con-
sisting of Au, As, Sb, and Cu has also been identified in this
area by applying PCA for compositional data to 15 trace ele-
ments (i.e. Ag, As, Au, Cd, Ba, Bi, Cu, Hg, Mn, Mo, Pb, Sb,
Sn, W, and Zn). Furthermore, the spatial patterns of this ele-
mental association confirm its correlation with gold mineral-
ization and its relationship with the distribution of fault sys-
tems that controlled the mineralization (Zuo et al., 2021b).
However, relying solely on a single elemental association
might not adequately represent the potential mineralization
in this area. This limitation arises from the inherent hetero-
geneity and multistage nature of gold mineralization, as indi-
cated by previous geological studies (e.g. Chen, 1998; Chen
et al., 2004; Deng et al., 2023). According to Li (1996), this
study area exhibits at least two distinct types of gold miner-
alization. The first type is predominantly controlled by struc-

tures and is typically characterized by hydrothermal miner-
als, such as arsenopyrite, stibnite, realgar, orpiment, and mi-
croscopic natural gold. The common elemental association
observed in this type is Au–As–Sb–Hg. The second type of
gold mineralization is primarily controlled by igneous veins.
The typical hydrothermal minerals associated with this type
include pyrite, arsenopyrite, stibnite, barite, and microscopic
natural gold, which are also accompanied, for example, by
contact-metasomatism-derived chalcopyrite and galena. This
type of mineralization exhibits an elemental association of
Au–As–Sb–Ba–Cu–Pb. Other studies, such as Chen (1998),
Zhao (1999), Wang et al. (2004), and Deng et al. (2023), also
suggest that high-temperature hydrothermal fluids play a cru-
cial role in remobilizing and concentrating ore-forming ele-
ments. Therefore, elements like W and Sn can also serve as
indicators for gold mineralization in this area. Consequently,
while the elemental association Au–As–Sb is commonly ob-
served across the gold deposits in this region, individual de-
posits exhibit enrichment in certain pathfinder elements that
are characteristic of the local mineralization.

Based on the procedure outlined in Sect. 2.1, we initially
applied inverse-distance weighting (IDW) to the same 15
trace elements investigated by Zuo et al. (2021b). The cell
size was set to 1 km, and the local interpolation utilized a
default value of 12 neighbours in ArcGIS. Subsequently,
FCM was performed on the interpolated maps. Various clus-
ter numbers were explored, and the optimal value of 2 was
determined based on the cluster validity index (Fig. 3). The
FCM analysis assigned each grid cell a membership value in-
dicating its degree of belongingness to each of the two clus-
ters (Fig. 4a and b). The cluster label for each cell could
be determined by identifying the largest membership value
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Figure 3. Optimal cluster number determined according to the clus-
ter validity index (Xie and Beni, 1991). Note that a total of 100
experiments were conducted to achieve a robust result.

and assigning the corresponding cluster number to that cell.
The clustering results reveal that Cluster 2 is primarily dis-
tributed in the southeast of the study area, while Cluster 1
is distributed pervasively throughout the rest of the study
area. Cluster 1 mainly reflects the distribution of Triassic se-
quences, while Cluster 2 mainly reflects the distribution of
Paleozoic sequences (Fig. 1). The marginal plot in Fig. 4c
indicates that Cluster 2 is characterized by evidently higher
concentrations of Au and As. This observation is consis-
tent with the geological knowledge that the Paleozoic car-
bonaceous silty-shale formation exhibits a high geochemical
background in elements related to gold mineralization and
serves as one of the most important sources of materials for
gold mineralization in this area (e.g. Li, 1996; Zhang, 2014).

To identify potential elemental associations that indicate
gold mineralization in this area, we performed PCA sepa-
rately on the data from each of the two clusters. The result-
ing biplot, which depicted the first two principal components,
was utilized for visual exploration of the elemental associa-
tions. The biplot analysis indicates that the first two princi-
pal components account for a total of 55 % of the variation
within the elements in Cluster 1, while in Cluster 2, the ex-
plained variation is 61 % (Fig. 5a and b). In a biplot, the an-
gle between two vectors that represent geochemical elements
can provide an approximation of their correlation (Gabriel,
1971; Reimann et al., 2011). By applying this principle, we
can identify potential elemental associations indicative of
gold mineralization by examining the relationship between
each element and the ore-forming element Au. In addition,
we also incorporated geological knowledge regarding ex-
pected elemental associations and the distribution of known
gold deposits depicted in the biplot to determine an elemental
association that closely aligns with the known deposits. For
Cluster 1, the elemental association identified, in descend-
ing order of correlation (starting with the ore-forming ele-
ment Au), is Au–W–As–Sb–Ba–Hg. Similarly, for Cluster 2,
the sequence is Au–As–W–Sn–Sb–Hg–Pb–Bi, as evidenced
by the biplots in Fig. 5a and b. These elemental associations
demonstrate strong consistency with the aforementioned ge-

ological knowledge and can effectively predict the majority
of known gold deposits.

4.2 Mapping patterns of single-element and
multielement anomalies

The interpolated maps of the elements that show correlations
with the ore-forming element Au for both clusters (i.e. Au,
As, W, Sb, Sn, Hg, Ba, Pb, and Bi) were used further for map-
ping local singularities, which can help quantify whether the
local geochemical pattern is enriched or depleted. The effec-
tiveness of local singularity exponents in enhancing anomaly
patterns by mitigating the mask effect of heterogeneous local
backgrounds has been well established (e.g. Cheng, 2007;
Chen and Cheng, 2016; Li et al., 2017; Gonçalves et al.,
2018; Wang et al., 2018; Xiao et al., 2018; Behera and Pan-
igrahi, 2021). For detailed theoretical and algorithmic infor-
mation on local singularity analysis (LSA), please refer to
Cheng (2007). Figure 6 illustrates the distributions of singu-
larity exponents estimated using the sliding-window-based
technique developed by Cheng (2007). It can be observed
that the local patterns indicated by singularity exponents are
clear and remain scarcely unaffected by the heterogeneous
geological background. The singularities for the primary in-
dicative elements, such as Au, As, W, and Sb, exhibit strong
spatial correlations with the distribution of known gold de-
posits. In addition, the distribution of singularities for ele-
ments Au, As, Sb, and Bi, which are often associated with
hydrothermal systems and can exhibit significant mobility,
aligns well with the distribution of geological structures in
this area. It is noteworthy that all the elements studied here
exhibit evident anomaly patterns (i.e. positive singularity),
regardless of their strength, in the vicinity of the giant Dong-
beizhai gold deposit (highlighted by the solid white rectan-
gles in Fig. 6). In contrast, certain gold deposits may not dis-
play anomaly patterns in the singularity maps generated for
specific elements. However, in the maps of other elements,
discernible anomaly patterns can be identified for these gold
deposits, as indicated by the dotted white rectangles in Fig. 6.
This observation highlights the inherent uncertainty associ-
ated with indicative elements in relation to localized gold
mineralization.

To delineate the comprehensive anomaly patterns with the
combined elements for both Cluster 1 and Cluster 2, we ap-
plied PCA to the singularity exponents for elements in the
identified elemental associations (Fig. 5). The first principal
components account for 46 % and 53 % of the total variance
for Cluster 1 and Cluster 2, respectively. The multielement-
anomaly patterns for the two clusters generally exhibit sim-
ilarities in that they align well with the geological structures
and can effectively predict known gold mineralization. How-
ever, there are variations in the local details of the anomaly
patterns across different clusters. Furthermore, the overall
anomaly intensity for Cluster 1 (Fig. 7a) is slightly higher
compared to that for Cluster 2 (Fig. 7b). Notably, the re-
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Figure 4. Fuzzy c-means clustering of the interpolated maps. (a) The distribution of the fuzzy-membership values for Cluster 1, (b) the
distribution of the fuzzy-membership values for Cluster 2, and (c) a marginal plot showing the distribution of data points for Au concentrations
versus As concentrations. Note that the concentration values were logarithmically transformed and standardized for improved visualization.

Figure 5. Biplots of the first two principal components obtained from PCA of (a) Cluster 1 and (b) Cluster 2. Note that the red points
represent the projections of the known gold deposits. The light-orange rectangle encompasses the elements that show good correlations with
the ore-forming element Au. PC: principal component.

sulting map for Cluster 1 exhibits distinct multilevel pat-
terns in certain local areas, which are very weak or even
absent for Cluster 2. The multielement anomalies for the
two clusters were further integrated into a comprehensive
anomaly map using a linear weighting scheme that utilized
the fuzzy-membership values as weights. The resulting map
preserves the common patterns that display good correlation
with known gold mineralization (Fig. 7c). More importantly,
the integrated singularity map also underscores the impor-
tance of detecting underlying geological structures and min-
eralization patterns in the western portion of the study area.

4.3 Model evaluation

To evaluate the performance of the result presented in Fig. 7c,
we additionally identified multielement-anomaly patterns
while disregarding the uncertainty of elemental associations.

This was then used as the benchmark for performance com-
parison, referred to hereafter as the “global reference case”.
The elemental association adopted for the global reference
case was Au–As–Sb–Cu, with the purpose of aligning with
the study of Zuo et al. (2021b). The multielement-anomaly
patterns were derived consistently with those for each el-
emental association in the case where uncertainty consid-
ered. This was achieved by applying PCA to the univariate-
anomaly maps of Au, As, Sb, and Cu and retaining the first
principal component to represent the multivariate-anomaly
map (Fig. 8a). This map exhibits strong spatial correlation
with geological structures and known gold mineral deposits.
However, differences can also be easily observed when com-
paring it to the results obtained from the procedure that ac-
counts for the uncertainty of elemental associations, referred
to hereafter as the “case with uncertainty”. For example,

Solid Earth, 15, 731–746, 2024 https://doi.org/10.5194/se-15-731-2024



J. Wang et al.: Mapping geochemical anomalies 739

Figure 6. The distribution of local singularity exponents for single elements within the set of elements showing correlation with Au for both
Cluster 1 and Cluster 2. (a) Au. (b) As. (c) W. (d) Sb. (e) Sn. (f) Hg. (g) Ba. (h) Pb. (i) Bi. Note that a series of square windows, with
half-window sizes ranging from 1 to 13 km at 2 km intervals, were utilized for the sliding-window-based singularity mapping technique.

Figure 7. The first-principal-component scores showing the distribution of combined singularities obtained by applying PCA to singularities
of (a) Au–W–As–Sb–Ba–Hg for Cluster 1, and (b) Au–As–W–Sn–Sb–Hg–Pb–Bi for Cluster 2. The comprehensive map of anomaly patterns
integrated from the maps illustrating combined singularities based on fuzzy-membership values is shown in panel (c). Note that local patterns
enclosed by dotted white rectangles in panels (a) and (b) indicate the differences between the multielement-anomaly maps for Cluster 1 and
Cluster 2.
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there is no anomaly present in the vicinity of the eastern-
most known gold mineralization, as indicated by the dotted
white rectangle in Fig. 8a. In contrast, clear anomaly patterns
associated with this deposit can be observed in the resulting
map for the case that considers uncertainty (Fig. 7c).

In the present study, the multielement-anomaly patterns
for the two cases were verified using success rate curves
that indicate the patterns’ capability in predicting known
mineralization. These curves were obtained by plotting the
cumulative percentage of known gold deposits against the
cumulative percentage of anomaly pattern areas after over-
laying the deposits onto the anomaly map and ranking the
anomaly scores in descending order (e.g. Carranza, 2008).
In general, the results from the case with uncertainty outper-
form the global reference case (Fig. 8b). The success rate
curves also suggest that approximately the top 6 % of the
total area can predict around 54 % of known mineralization
(point A), regardless of whether we consider the global ref-
erence case or the case that accounts for the uncertainty of
elemental associations. However, when a larger area is de-
lineated to predict gold mineralization from 54 % (point A)
to 83 % (point B), the success rate curve exhibits distinct be-
haviours between the two scenarios. The case that considers
uncertainty can consistently predict the same proportion of
known gold mineralization with a relatively lower percent-
age of study area than the global reference case (runcertainty

p <

r
global
p in Fig. 8b). By examining the incremental areas delin-

eated by the cutoff values corresponding to points A and B
for the two scenarios, we were able to visually discern the
disparities in the spatial distribution of geochemical patterns
that contribute to the different performances observed be-
tween these two points. This is achieved by subtracting the
cumulative area corresponding to the threshold defined by
point A from that defined by point B for each scenario, thus
isolating the specific regions responsible for the discrepancy
in performance (Fig. 8c). The global reference case placed
a greater emphasis on the southeastern region, as indicated
by the dotted rectangle in Fig. 8c, which is distinguished by
elevated geochemical backgrounds for most indicative ele-
ments due to the prevalence of Paleozoic gold-enrichment
lithologic units. This observation suggests that the procedure
proposed in this study might have the potential to mitigate
the impact of heterogeneous geochemical backgrounds on
the mapping of geochemical anomalies.

To derive a quantitative metric for accuracy assessment,
this study also utilized the “receiver operating characteris-
tic” (ROC) curve and the “area under curve” (AUC) method-
ology, as described by Fawcett (2006). When constructing
a ROC curve, negative examples that represent the absence
or non-occurrence of mineralization event are required to be
used along with positive examples (i.e. known gold miner-
alization) to evaluate the performance of a binary classifica-
tion model. In addition, studies also suggested that the num-
ber of negative examples should be comparable to that of

positive examples to ensure a balanced evaluation. We ran-
domly generated a set of negative examples under the con-
straint that they were located outside the local 3 km neigh-
bourhood of known deposits (Fig. 8a). Moreover, the num-
ber of negative examples was set to match that of known
mineral deposits. The ROC curves in Fig. 9a depict the true-
positive rate (TPR) and false-positive rate (FPR) at various
classification thresholds for both the case considering the un-
certainty of elemental associations and the global reference
case. The AUC value was determined to be 0.8 for the global
reference case and 0.85 for the case with uncertainty. There-
fore, when compared to the global reference case, the case
with uncertainty demonstrates superior overall performance
in terms of accurately identifying known gold mineralization
while minimizing false positives. Considering the potential
uncertainties involved in calculating the AUC value, we pro-
ceeded to randomly generate multiple sets of negative exam-
ples. Specifically, a total of 300 sets were created to miti-
gate potential biases or peculiarities that may exist in a sin-
gle negative example set. The results (Fig. 9b) suggest that
the case accounting for uncertainty in elemental associations,
on average, outperforms the global reference case in predict-
ing known mineralization. The non-overlapping notches of
the boxes signify a statistically significant median difference
between the two cases. Also, it should be noted that the case
with uncertainty exhibits higher sensitivity to the selection of
negative examples. Given that the elemental association for
the global reference case involves a total of four elements,
we additionally investigated a scenario where only the top
four relevant elements were retained for the two clusters. It
is evident from the results (Fig. 9b) that this particular case
even exhibits superior performance on average compared to
the previous two cases. This observation indicates that the
incorporation of certain elements that exhibit weak correla-
tion with the ore-forming element Au may offer limited or
even detrimental contributions to the accurate mapping of
geochemical anomalies.

4.4 Delineation of significant geochemical anomalies

To further delineate significant geochemical anomalies for
guiding subsequent mineral exploration, the “weight of ev-
idence” method was used to derive the statistical t values,
which allow for defining significant anomalies (Bonham-
Carter, 1994). A t value serves as a measure of the signifi-
cance of spatial correlation between point features and poly-
gons, with higher t values indicating stronger spatial correla-
tion. Typically, a t value of 1.96 can be taken to be a threshold
above which the spatial correlation can be regarded statisti-
cally significant at a significance level of 0.05.

The t values for the resulting anomaly score map (Fig. 7c),
as depicted in Fig. 10a, demonstrate an increasing trend as
the threshold rises from 0 to 0.42. It is important to note
that the portion of the study area with an anomaly score
≥ 0.42 occupies only 7 % of the total area, yet it contains
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Figure 8. A comparison of the performance of the mapped results in predicting known gold mineralization in two scenarios: (a) the global
reference case, which does not consider the uncertainty, and the case presented in this study that accounts for the uncertainty of elemental
associations (Fig. 7c). The success rate curves for these two scenarios are shown in panel (b), and the incremental areas delineated by the
cutoff values corresponding to points A and B in panel (b) for the two scenarios are displayed in panel (c). Note that colours in panel (c)
are rendered with 30 % transparency. As a result, areas where two colour patterns overlap exhibit a blended colour that is distinct from the
colour of regions with only a single-colour pattern (e.g. the southeastern region outlined by the dotted rectangle).

Figure 9. (a) The ROC curves and AUC values for the global reference case and the case considering the uncertainty of elemental associa-
tions. (b) The notched boxplot showing the AUCs from 300 experiments that sample different negative examples for the two scenarios. Here,
an additional combination of elemental associations for the two clusters, both of which consist of the top four most relevant elements, was
also examined. The elemental associations denoted by A1, A2, B1, and B2 are as follows: A1 (Au, W, As, Sb), A2 (Au, W, As, Sb, Ba, Hg),
B1 (Au, As, W, Sn), and B2 (Au, As, W, Sn, Sb, Hg, Bi, Pb). Note that the notched boxplot applies a “notch” around the median, which
serves as a visual representation of the median’s confidence interval.

60 % of the total number of mineral deposits. In addition,
the t value reaches 1.96 at an anomaly score of 0.03. The
two values 0.03 and 0.42, along with an arbitrarily deter-
mined anomaly score of 0.21 that is nearly at their midpoint,
were utilized as thresholds to define the weak anomaly (0.03–
0.21), moderate anomaly (0.21–0.42), and strong anomaly
(≥ 0.42) (Fig. 10b). The result shows that the delineated pat-
terns are directly associated with the known gold deposits.
Notably, most of the known deposits are spatially linked to
multilevel anomaly patterns. We also preliminarily delimited
some significant anomalies based on the following criteria:
(a) the presence of multilevel anomaly patterns, (b) the prox-
imity to known deposits, and (c) the proximity to geological
structures. The delimited anomalies (Fig. 10b) should be fur-
ther investigated and validated with other evidence pertaining
to undiscovered gold deposits.

4.5 The implications and limitations of the procedure
for mapping geochemical anomalies under
uncertainty

Geochemical patterns result from dynamic geological sys-
tems that are open, non-linear, complex, and subject to spatial
and temporal variations. The intrinsic heterogeneity of these
patterns poses challenges in identifying and understanding
the underlying constituent geological processes based on
geochemical data, thus leading to inherent uncertainties. Spe-
cific geological processes are commonly considered to have
the potential to be reliably represented by certain elemen-
tal associations. Therefore, in order to address the uncertain-
ties and hence improve our comprehension of geological pro-
cesses and the performance of mineral resource prediction, it
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Figure 10. The student’s t values (a) and the delineated geochemical anomalies (b) based on the multielement-anomaly scores derived from
the case considering the uncertainty of elemental association (Fig. 7c). Note that different levels of anomalies were overlaid on the hillshade
map of the study area.

is crucial to identify and analyse the diverse range of possible
elemental associations present in a study area.

The procedure presented here identified two distinct clus-
ters within the study area, and they are characterized by
different elemental associations related to gold mineraliza-
tion. Cluster 1 covers a significantly larger area and predom-
inantly encompasses Triassic formations, whereas the other
cluster is primarily composed of Paleozoic lithologic units.
These two clusters can be approximately differentiated by
the regional Heye fault belt, trending NW–SE, and the Min-
jiang fault belt, trending S–N, which serve as the bound-
aries between the above geological units. Studies have also
demonstrated the significant influence of regional fault belts
in constraining and delineating areas where various geolog-
ical processes have occurred throughout geological history.
These processes encompass sedimentation, magmatic activ-
ities, metamorphism, and mineralization events (Wang and
Liang, 2004). The presence of regional structures in the area
highlights the evident spatial heterogeneity in the geological
composition across various regions and throughout different
geological time periods. The study area was a passive con-
tinental margin during the late Proterozoic to Paleozoic era,
characterized by the development of sedimentary-cover lay-
ers primarily consisting of terrigenous clastics with minor
occurrences of carbonate and siliceous rocks. However, dur-
ing the Mesozoic era, the area experienced tectonic move-
ments associated with the ancient Tethys Ocean, resulting in
extensive folding within regions where Paleozoic sequences
are distributed. In other areas, intense faulting occurred, ac-
companied by the deposition of extensive thick-flysch se-
quences during the Triassic period. These flysch sequences
have proven to be crucial sources of ore-forming materi-
als (Wang et al., 2003). Regional geochemical analysis sug-
gests that Paleozoic lithological units are characterized by
a higher geochemical-background level of Au compared to
Triassic formations (Zhao, 1995). In addition, according to
previous studies (e.g. Zhao, 1995), there is a discernible pat-

tern where the temperature of mineralization-related fluids
increases from north to south. This geological knowledge is
further supported by the elemental association observed in
Cluster 2 in this study, which includes high-temperature hy-
drothermal elements, e.g. Sn, W, and Bi.

Note that the current procedure only accounts for the dis-
similarity of elemental concentrations during fuzzy cluster-
ing and disregards the tectonic settings and geological condi-
tions of the data points. Consequently, it is evident that Clus-
ter 2 includes irregular and disconnected areas in addition to
the major southeastern area that exhibits a high geochem-
ical background (Fig. 4), although the membership values
of these scattered areas are relatively lower. Note that these
small areas are characterized by high concentration values
for the selected geochemical elements. However, the geolog-
ical sequence in these areas is Triassic, which differs from
that in the southeastern area. Therefore, future studies should
focus on extending classical fuzzy-clustering algorithms to
account for geological constraints or take spatial connectiv-
ity into consideration as an additional constraint. We also
acknowledge that relying solely on the biplots to determine
elemental associations can introduce additional uncertainty.
This is because only part of the variation is explained by the
biplot itself, and there is a lack of widely accepted criteria
for determining an optimal subset of elements that exhibit a
strong correlation with the ore-forming element of interest.
Nevertheless, the case study presented here indicates that the
procedure that considers the uncertainty of elemental asso-
ciations provides a promising approach to achieve superior
performance in the mapping of geochemical anomalies com-
pared to the global case, where such uncertainty is not taken
into account.
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5 Conclusions

In this study, we developed a procedure that accounts for the
uncertainty of elemental associations as an indicator of the
underlying geological process of interest, aiming to improve
geochemical mapping. A case study processing geochemi-
cal stream-sediment samples to map geochemical anomalies
linked to disseminated gold mineralization in the northwest-
ern region of the province of Sichuan, China, was presented
to illustrate and validate the procedure. Three main conclu-
sions could be drawn:

1. The determination of elemental association as an indica-
tor of the underlying geological process is an important
source of uncertainty for geochemical mapping.

2. The procedure outlined in this study, which mainly
comprises fuzzy clustering, principal-component anal-
ysis, and geochemical-anomaly identification, provides
an effective framework for addressing the uncertainty
associated with elemental associations in geochemical
mapping. Also, note that the procedure allows for the
incorporation of alternative methods for fuzzy cluster-
ing, the determination of elemental associations, and the
identification of geochemical anomalies, rather than be-
ing limited to the methods employed in this particular
study. This provides greater flexibility and adaptability
to suit different research contexts.

3. Two distinct clusters can be identified within the study
area, closely aligning with the distribution of litholog-
ical units impacted by predominant regional geologi-
cal processes. Moreover, the procedure presented here
demonstrates, on average, superior performance com-
pared to the global reference case in accurately predict-
ing gold mineralization. The delineated-anomaly pat-
terns show potential for the discovery of more gold de-
posits in this region. It is worth noting that attention
should also be paid to the western areas, where mini-
mal gold deposits have been uncovered thus far. How-
ever, weak anomalies persist in these regions, which is
possibly indicative of deeply buried mineralization and
underlying structures.

Code and data availability. The core code can be obtained by
emailing the first author, Jian Wang (jwang@cdut.edu.cn). The au-
thors do not have permission to share data.

Author contributions. JW contributed to the conceptualization,
data curation, formal analysis, funding acquisition, investigation,
methodology, validation, visualization, and writing of the original
draft. RZ contributed to the conceptualization of the study and re-
viewed and supervised the work. QL contributed to the visualization
and writing of the original draft. All the authors read and approved
the final paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Xueqiu Wang at the Institute of Geo-
physical and Geochemical Exploration, China, for providing the
geochemical data.

Financial support. This research benefited from financial support
from the National Natural Science Foundation of China (grant
no. 42002295); the National Science Foundation of Hubei
Province, China (grant no. 2023AFA001); and the MOST Spe-
cial Fund from the State Key Laboratory of Geological Processes
and Mineral Resources, China University of Geosciences (grant
nos. GPMR202444, MSFGPMR2024-701, and MSFGPMR2024-
401).

Review statement. This paper was edited by Johan Lissenberg and
reviewed by Satyabrata Behera and Mohammad Parsa.

References

Behera, S. and Panigrahi, M. K.: Mineral prospectivity mod-
elling using singularity mapping and multifractal analysis of
stream sediment geochemical data from the auriferous Hutti-
Maski schist belt, S. India, Ore Geol. Rev., 131, 104029,
https://doi.org/10.1016/j.oregeorev.2021.104029, 2021.

Benjumea, B., Gabàs, A., Macau, A., Ledo, J., Bellmunt,
F., Figueras, S., and Piña, J.: Undercover karst imag-
ing using a Fuzzy c-means data clustering approach
(Costa Brava, NE Spain), Eng. Geol., 293, 106327,
https://doi.org/10.1016/j.enggeo.2021.106327, 2021.

Bezdek, J. C.: Pattern recognition with fuzzy objective func-
tion algorithms, Springer Science & Business Media,
https://doi.org/10.1007/978-1-4757-0450-1, 2013.

Bezdek, J. C., Ehrlich, R., and Full, W.: FCM: The fuzzy c-means
clustering algorithm, Comput. Geosci., 10, 191–203, 1984.

Bölviken, B., Kullerud, G., and Loucks, R. R.: Geochemical
and metallogenic provinces: a discussion initiated by results
from geochemical mapping across northern Fennoscandia, J.
Geochem. Explor., 39, 49–90, 1990.

Bonham-Carter, G. F.: Geographic Information System for Geo-
sciences: Modelling with GIS, Pergamon Press, Oxford, ISBN
978-0-08-041867-4, 1994.

Carranza, E. J. M.: Geochemical anomaly and mineral prospectivity
mapping in GIS, Elsevier, ISBN 9780444513250, 2008.

https://doi.org/10.5194/se-15-731-2024 Solid Earth, 15, 731–746, 2024

https://doi.org/10.1016/j.oregeorev.2021.104029
https://doi.org/10.1016/j.enggeo.2021.106327
https://doi.org/10.1007/978-1-4757-0450-1


744 J. Wang et al.: Mapping geochemical anomalies

Chen, D.: A regional geochemical prospecting model for main types
of gold deposit in west Sichuan, Acta Geologica Sichuan, 18,
131–140, 1998 (in Chinese with English abstract).

Chen, G. and Cheng, Q.: Singularity analysis based on wavelet
transform of fractal measures for identifying geochemical
anomaly in mineral exploration, Comput. Geosci., 87, 56–66,
2016.

Chen, Y., Zhang, J., Zhang, F., Franco, P., and Li, C.: Carlin and
Carlin-like golf deposits in Western Qinling mountains and their
metallogenic time, tectonic setting and model, Geol. Rev., 50,
134–152, 2004 (in Chinese with English abstract).

Chen, Y., Zhao, Q., and Lu, L.: Combining the outputs
of various k-nearest neighbor anomaly detectors to form
a robust ensemble model for high-dimensional geochemi-
cal anomaly detection, J. Geochem. Explor., 231, 106875,
https://doi.org/10.1016/j.gexplo.2021.106875, 2021.

Cheng, Q.: Mapping singularities with stream sediment geochemi-
cal data for prediction of undiscovered mineral deposits in Gejiu,
Yunnan Province, China, Ore Geol. Rev., 32, 314–324, 2007.

Cheng, Q.: Singularity theory and methods for mapping geochemi-
cal anomalies caused by buried sources and for predicting undis-
covered mineral deposits in covered areas, J. Geochem. Explor.,
122, 55–70, 2012.

Cocker, M. D.: Geochemical mapping in Georgia, USA: a tool
for environmental studies, geologic mapping and mineral explo-
ration, J. Geochem. Explor., 67, 345–360, 1999.

Costa, J. F. and Koppe, J. C.: Assessing uncertainty associated with
the delineation of geochemical anomalies, Nat. Resour. Res., 8,
59–67, 1999.

Deng, H., Li, N., Song, Y., Wang, G., Wei, H., Chen, S., Luo, S.,
and Zhou, X.: Metallogenic geological characteristics and ex-
ploration significance of typical rock-gold deposits in western
Sichuan Province, Mineral Exploration, 14, 701–717, 2023 (in
Chinese with English abstract).

De Vivo, B., Lima, A., Bove, M. A., Albanese, S., Cicchella, D.,
Sabatini, G., Di Lella, L. A., Protano, G., Riccobono, F., Frizzo,
P., and Raccagni, L.: Environmental geochemical maps of Italy
from the FOREGS database, Geochemistry: Exploration, Envi-
ronment, Analysis, 8, 267–277, 2008.

Dunn, J. C.: A fuzzy relative of the ISODATA process and its use
in detecting compact well-separated clusters, J. Cybernetics, 3,
32–57, 1973.

Ersoy, A. and Yunsel, T. Y.: Geochemical modelling and mapping
of Cu and Fe anomalies in soil using combining sequential Gaus-
sian co-simulation and local singularity analysis: a case study
from Dedeyazı (Malatya) region, SE Turkey, Geochemistry: Ex-
ploration, Environment, Analysis, 19, 331–342, 2019.

Fan, W., Liu, G., Chen, Q., Lu, L., Cui, Z., Zuo, B., and Wu, X.:
Extraction of weak geochemical anomalies based on multiple-
point statistics and local singularity analysis, Comput. Geosci.,
28, 157–173, 2024.

Fatehi, M. and Asadi, H. H.: Application of semi-supervised fuzzy
c-means method in clustering multivariate geochemical data, a
case study from the Dalli Cu-Au porphyry deposit in central Iran,
Ore Geol. Rev., 81, 245–255, 2017.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett.,
27, 861–874, 2006.

Gabriel, K. R.: The biplot graphic display of matrices with applica-
tion to principal component analysis, Biometrika, 58, 453–467,
1971.

Gonçalves, M. A., Mateus, A., Pinto, F., and Vieira, R.: Using mul-
tifractal modelling, singularity mapping, and geochemical in-
dexes for targeting buried mineralization: Application to the W-
Sn Panasqueira ore-system, Portugal, J. Geochem. Explor., 189,
42–53, 2018.

Grunsky, E., Greenacre, M., and Kjarsgaard, B.: GeoCoDA:
Recognizing and validating structural processes in geo-
chemical data. A workflow on compositional data analy-
sis in lithogeochemistr, Appl. Comput. Geosci., 22, 100149,
https://doi.org/10.1016/j.acags.2023.100149, 2023.

Grunsky, E. C., Drew, L. J., and Sutphin, D. M.: Process recogni-
tion in multi-element soil and stream-sediment geochemical data,
Appl. Geochem., 24, 1602–1616, 2009.

Grunsky, E. C. and de Caritat, P.: State-of-the-art analysis of geo-
chemical data for mineral exploration, Geochemistry: Explo-
ration, Environment, Analysis, 20, 217–232, 2020.

Grunsky, E. C. and Kjarsgaard, B. A.: Recognizing and validat-
ing structural processes in geochemical data: examples from a
diamondiferous kimberlite and a regional lake sediment geo-
chemical survey, in: Compositional Data Analysis: CoDaWork,
L’Escala, Spain, 6 June 2015, Springer International Publishing,
85–115, https://doi.org/10.1007/978-3-319-44811-4_7, 2016.

Gustafson, D. and William, K.: Fuzzy Clustering with a
Fuzzy Covariance Matrix, in: 1978 IEEE Conference
on Decision and Control Including the 17th Symposium
on Adaptive Processes, San Diego, CA, USA, 761–66,
https://doi.org/10.1109/CDC.1978.268028, 1978.

Hart, S. R.: A large-scale isotope anomaly in the Southern Hemi-
sphere mantle, Nature, 309, 753–757, 1984.

Hou, Z., Duan, L., Lu, Y., Zheng, Y., Zhu, D., Yang, Z., Yang, Z.,
Wang, B., Pei, Y., Zhao, Z., and McCuaig, T. C.: Lithospheric
architecture of the Lhasa terrane and its control on ore deposits
in the Himalayan-Tibetan orogen, Econ. Geol., 110, 1541–1575,
2015.

Kaufman, L. and Rousseeuw, P. J.: Finding groups in data:
an introduction to cluster analysis, John Wiley & Sons,
https://doi.org/10.2307/2532178, 2009.

Li, X., Yuan, F., Jowitt, S.M., Zhou, K., Wang, J., Zhou, T., Hu,
X., Zhou, J., and Li, Y.: Singularity mapping of fracture fills
and its relationship to deep concealed orebodies–a case study of
the Shaxi porphyry Cu-Au deposit, China, Geochemistry: Explo-
ration, Environment, Analysis, 17, 252–260, 2017.

Li, X.: Types and distribution of epithermal gold deposit in north-
west Sichuan, Acta Geologica Sichuan, 16, 135–141, 1996 (in
Chinese with English abstract).

Liu, G., Wang, E., Chen, Y., Chang, C., Cong, R., Zhang, H., Li,
Y., and Chao, Y.: Metollogenic conditions for gold deposits in
the northwest Sichuan Province, Contributions to Geology and
Mineral Resources Research, 25, 5–11, 2010 (in Chinese with
English abstract).

Liu, Y. and Carranza, E. J. M.: Uncertainty analysis of geochem-
ical anomaly by combining sequential indicator co-simulation
and local singularity analysis, Natural Resources Research, 31,
1889–1908, 2022.

Mole, D. R., Fiorentini, M. L., Thebaud, N., Cassidy, K. F., Mc-
Cuaig, T. C., Kirkland, C. L., Romano, S. S., Doublier, M. P.,

Solid Earth, 15, 731–746, 2024 https://doi.org/10.5194/se-15-731-2024

https://doi.org/10.1016/j.gexplo.2021.106875
https://doi.org/10.1016/j.acags.2023.100149
https://doi.org/10.1007/978-3-319-44811-4_7
https://doi.org/10.1109/CDC.1978.268028
https://doi.org/10.2307/2532178


J. Wang et al.: Mapping geochemical anomalies 745

Belousova, E. A., Barnes, S. J., and Miller, J.: Archean komati-
ite volcanism controlled by the evolution of early continents, P.
Natl. Acad. Sci USA. 111, 10083–10088, 2014.

Mueller, U. A. and Grunsky, E. C.: Multivariate spatial analysis of
lake sediment geochemical data; Melville Peninsula, Nunavut,
Canada, Appl. Geochem., 75, 247–262, 2016.

Pearce, J. A., Stern, R. J., Bloomer, S. H., and Fryer,
P.: Geochemical mapping of the Mariana arc-basin sys-
tem: Implications for the nature and distribution of sub-
duction components, Geochem. Geophy. Geosy. 6, Q07006,
https://doi.org/10.1029/2004GC000895, 2005.

Pirajno, F.: Hydrothermal processes and mineral systems, Springer
Science & Business Media, https://doi.org/10.1007/978-1-4020-
8613-7, 2008.

Reimann, C., Melezhik, V., and Niskavaara, H.: Low-density re-
gional geochemical mapping of gold and palladium highlighting
the exploration potential of northernmost Europe, Econ. Geol.,
102, 327–334, 2007.

Reimann, C., Filzmoser, P., Garrett, R., and Dutter, R.: Statisti-
cal data analysis explained: applied environmental statistics with
R, John Wiley & Sons, https://doi.org/10.1002/9780470987605,
2011.

Reimann, C., Ladenberger, A., Birke, M., and Caritat, P. D.: Low
density geochemical mapping and mineral exploration: applica-
tion of the mineral system concept, Geochemistry: Exploration,
Environment, Analysis, 16, 48–61, 2016.

Robb, L.: Introduction to ore-forming processes, John Wiley &
Sons, ISBN 0125962525, 2020.

Rose, A. W., Hawkes, H. E., and Webb, J. S.: Geochem-
istry in mineral exploration, 2nd Edition, Academic Press,
https://doi.org/10.1016/j.oregeorev.2021.104511, 1979.

Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis, J. Computat. Appl. Math., 20,
53–65, 1987.

Sadeghi, B.: Simulated-multifractal models: a futuris-
tic review of multifractal modeling in geochemical
anomaly classification, Ore Geol. Rev., 139, 104511,
https://doi.org/10.1016/j.oregeorev.2021.104511, 2021.

Sadeghi, B. and Cohen, D. R.: Decision-making within geochem-
ical exploration data based on spatial uncertainty–A new in-
sight and a futuristic review, Ore Geol. Rev., 161, 105660,
https://doi.org/10.1016/j.oregeorev.2023.105660, 2023.

Sammon, L. G., McDonough, W. F., and Mooney, W. D.: Composi-
tional attributes of the deep continental crust inferred from geo-
chemical and geophysical data, J. Geophys. Res.-Sol. Ea., 127,
e2022JB024041, https://doi.org/10.1029/2022JB024041, 2022.

Sillitoe, R. H.: Porphyry copper systems, Econ. Geol., 105, 3–41,
2010.

Smith, D. B. and Reimann, C.: Low-density geochemical mapping
and the robustness of geochemical patterns, Geochemistry: Ex-
ploration, Environment, Analysis, 8, 219–227, 2008.

Suganya, R. and Shanthi, R.: Fuzzy c-means algorithm-a review,
International Journal of Scientific and Research Publications, 2,
440–442, 2012.

Talebi, H., Mueller, U., Tolosana-Delgado, R., Grunsky, E. C.,
McKinley, J. M., and Caritat, P. D.: Surficial and deep earth ma-
terial prediction from geochemical compositions, Nat. Resour.
Res., 28, 869–891, 2019a.

Talebi, H., Mueller, U., Tolosana-Delgado, R., and van den
Boogaart, K.G.: Geostatistical simulation of geochemical com-
positions in the presence of multiple geological units: applica-
tion to mineral resource evaluation, Math. Geosci., 51, 129-153,
2019b.

Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number
of clusters in a data set via the gap statistic, J. R. Stat. Soc. B, 63,
411–423, 2001.

Wang, C., Bagas, L., Lu, Y., Santosh, M., Du, B., and McCuaig,
T.C.: Terrane boundary and spatio-temporal distribution of ore
deposits in the Sanjiang Tethyan Orogen: Insights from zircon
Hf-isotopic mapping, Earth-Sci. Rev., 156, 39–65, 2016.

Wang, C., Zhao, K. D., Chen, J., and Ma, X.: Examining fin-
gerprint trace elements in cassiterite: Implications for pri-
mary tin deposit exploration, Ore Geol. Rev., 149, 105082,
https://doi.org/10.1016/j.oregeorev.2022.105082, 2022.

Wang, H., Zuo, R., Carranza, E. J. M., and Madani, N.:
Modelling spatial uncertainty of geochemical anomalies us-
ing fractal and sequential indicator simulation methods,
Geochemistry: Exploration, Environment, Analysis, 22, 4,
https://doi.org/10.1144/geochem2022-029, 2022.

Wang, J. and Zuo, R.: Identification of geochemical anomalies
through combined sequential Gaussian simulation and grid-
based local singularity analysis, Comput. Geosci., 118, 52–64,
2018.

Wang, J. and Zuo, R.: Model averaging for identification of geo-
chemical anomalies linked to mineralization, Ore Geol. Rev.,
146, 104955, https://doi.org/10.1016/j.oregeorev.2022.104955,
2022.

Wang, J. and Zuo, R.: Uncertainty quantification in
geochemical mapping: A review and recommenda-
tions. Geochem. Geophy. Geosy., 25, e2023GC011301,
https://doi.org/10.1029/2023GC011301, 2024.

Wang, K., Yao, S., Yang, Y., and Dai, J.: Geological characteristics
and origin of Manaoke fine-grained disseminated gold deposit in
northwestern Sichuan Province, Mineral Deposits, 23, 494–501,
2004 (in Chinese with English abstract).

Wang, Q., Yao, S., and Liang, B.: Discussion of ore-forming tec-
tonic dynamics of gold deposits in northwest Sichuan Province,
Geological Science and Technology Information, 22, 80–84,
2003 (in Chinese with English abstract).

Wang, Q. and Liang, B.: Control of structure over the dissemination
gold deposits in northwest Sichuan Province, Journal of Miner-
alogy and Petrology, 24, 49–52, 2004 (in Chinese with English
abstract).

Wang, T., Huang, H., Zhang, J., Wang, C., Cao, G., Xiao, W., Yang,
Q., and Bao, X.: Voluminous continental growth of the Altaids
and its control on metallogeny, Natl. Sci. Rev., 10, p.nwac283,
https://doi.org/10.1093/nsr/nwac283, 2023.

Wang, W., Cheng, Q., Zhang, S., and Zhao, J.: Anisotropic singular-
ity: A novel way to characterize controlling effects of geological
processes on mineralization, J. Geochem. Explor., 189, 32–41,
2018.

Wang, X., Xie, X., Zhang, B., and Hou, Q.: Geochemical probe into
China’s continental crust, Acta Geoscientica Sinica, 32, 65–83,
2011.

White, W. M.: Geochemistry, John Wiley & Sons, ISBN
0470656689, 2020.

https://doi.org/10.5194/se-15-731-2024 Solid Earth, 15, 731–746, 2024

https://doi.org/10.1029/2004GC000895
https://doi.org/10.1007/978-1-4020-8613-7
https://doi.org/10.1007/978-1-4020-8613-7
https://doi.org/10.1002/9780470987605
https://doi.org/10.1016/j.oregeorev.2021.104511
https://doi.org/10.1016/j.oregeorev.2021.104511
https://doi.org/10.1016/j.oregeorev.2023.105660
https://doi.org/10.1029/2022JB024041
https://doi.org/10.1016/j.oregeorev.2022.105082
https://doi.org/10.1144/geochem2022-029
https://doi.org/10.1016/j.oregeorev.2022.104955
https://doi.org/10.1029/2023GC011301
https://doi.org/10.1093/nsr/nwac283


746 J. Wang et al.: Mapping geochemical anomalies

Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., and Erten, O.: A
spatially weighted singularity mapping method applied to iden-
tify epithermal Ag and Pb-Zn polymetallic mineralization asso-
ciated geochemical anomaly in Northwest Zhejiang, China, J.
Geochem. Explor., 189, 122–137, 2018.

Xie, X. and Beni, G.: A validity measure for fuzzy clustering, IEEE
T. Pattern Anal., 13, 841–847, 1991.

Xie, X., Mu, X., and Ren, T.: Geochemical mapping in China, J.
Geochem. Explor., 60, 99–113, 1997.

Xie, X., Wang, X., Zhang, Q., Zhou, G., Cheng, H., Liu, D., Cheng,
Z., and Xu, S.: Multi-scale geochemical mapping in China, Geo-
chemistry, 8, 333–341, 2008.

Xiong, Y. and Zuo, R.: Recognition of geochemical anomalies using
a deep autoencoder network, Comput. Geosci., 86, 75-82, 2016.

Yousefi, M., Kreuzer, O. P., Nykänen, V., and Hronsky, J. M.: Explo-
ration information systems – A proposal for the future use of GIS
in mineral exploration targeting, Ore Geol. Rev., 111, 103005,
https://doi.org//10.1016/j.oregeorev.2019.103005, 2019.

Zadeh, L. A.: Fuzzy sets, Inform. Control, 8, 338–353, 1965.
Zhang, G.: Metallogenic regularities and ore-prospecting direction

of Manaoke gold deposit in Sichuan Province, Chengdu Univer-
sity of Technology, PhD thesis, 2014 (in Chinese with English
abstract).

Zhang, S., Carranza, E. J. M., Xiao, K., Chen, Z., Li, N., Wei,
H., Xiang, J., Sun, L., and Xu, Y.: Geochemically constrained
prospectivity mapping aided by unsupervised cluster analysis,
Nat. Resour. Res., 30, 1955–1975, 2021.

Zhao, Q.: Regional geology, geophysics and geochemistry of fine
disseminated type of gold deposits in northwest Sichuan, Acta
Geologica Sichaun, 15, 31–40, 1995 (in Chinese with English
abstract).

Zhao, Q.: Supergene geochemical characteristics of ore-forming el-
ements in gold deposits of west Sichuan plateau-prairie area,
Geophysical & Geochemical Exploration, 23, 381–387, 1999 (in
Chinese with English abstract).

Zheng, M., Gu, X., and Zhou, Y.: An analysis of metallo-
genic physicochemical conditions and metallogenic processes
of the Dongbeizhai micro-disseminated gold deposit in Sichuan
Province, Mineral Deposits, 9, 129–140, 1990 (in Chinese with
English abstract).

Zuo, R., Carranza, E. J. M., and Wang, J.: Spatial analysis and visu-
alization of exploration geochemical data, Earth-Sci. Rev., 158,
9–18, 2016.

Zuo, R.: Selection of an elemental association related to mineraliza-
tion using spatial analysis, J. Geochem. Explor., 184, 150–157,
2018.

Zuo, R., Xiong, Y., Wang, J., and Carranza, E. J. M.: Deep learning
and its application in geochemical mapping, Earth-Sci. Rev., 192,
1–14, 2019.

Zuo, R., Wang, J., Xiong, Y., and Wang, Z.: The pro-
cessing methods of geochemical exploration data: past,
present, and future, Appl. Geochem., 132, 105072,
https://doi.org/10.1016/j.apgeochem.2021.105072, 2021a.

Zuo, R., Wang, J., and Yin, B.: Visualization and inter-
pretation of geochemical exploration data using GIS and
machine learning methods, Appl. Geochem., 134, 105111,
https://doi.org/10.1016/j.apgeochem.2021.105111, 2021b.

Solid Earth, 15, 731–746, 2024 https://doi.org/10.5194/se-15-731-2024

https://doi.org//10.1016/j.oregeorev.2019.103005
https://doi.org/10.1016/j.apgeochem.2021.105072
https://doi.org/10.1016/j.apgeochem.2021.105111

	Abstract
	Introduction
	Study area and data
	Geological setting
	Geochemical-survey data

	Methods
	The general workflow
	Fuzzy c-means clustering
	Derivation of the comprehensive anomaly map

	Results and discussions
	The uncertainty of elemental associations related to gold mineralization
	Mapping patterns of single-element and multielement anomalies
	Model evaluation
	Delineation of significant geochemical anomalies
	The implications and limitations of the procedure for mapping geochemical anomalies under uncertainty

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

