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Abstract. On 20 April 2013, Lushan experienced an earth-
quake with a magnitude of 7.0. In seismic assessments,
borehole strainmeters, recognized for their remarkable sen-
sitivity and inherent reliability in tracking crustal deforma-
tion, are extensively employed. However, traditional data-
processing methods encounter challenges when handling
massive dataset-s. This study proposes using a Graph
WaveNet graph neural network to analyze borehole strain
data from multiple stations near the earthquake epicen-
ter and establishes a node graph structure using data from
four stations near the Lushan epicenter, covering the years
2010–2013. After excluding the potential effects of pressure,
temperature, and rainfall, we statistically analyzed the pre-
earthquake anomalies. Focusing on the Guza, Xiaomiao, and
Luzhou stations, which are the closest to the epicenter, the
fitting results revealed two acceleration events of anomalous
accumulation that occurred before the earthquake. Occurring
approximately 4 months before the earthquake event, the first
acceleration event indicated the pre-release of energy from
a weak fault section. Conversely, the acceleration event ob-
served a few days before the earthquake indicated a strong
fault section that reached an unstable state with accumulating
strain. We tentatively infer that these two anomalous cumu-
lative accelerations may be related to the preparation phase
for a large earthquake. This study highlights the considerable
potential of graph neural networks in conducting multistation
studies of pre-earthquake anomalies.

1 Introduction

Earthquakes result from the accumulation of stress in the
Earth’s crust during plate movement and collisions. Once the
stress surpasses a critical threshold, the crust ruptures, un-
leashing seismic waves that reverberate through the ground,
causing substantial damage (Campbell et al., 2020; Fan et
al., 2021). Extensive research on earthquakes has generated
a wealth of information worldwide, establishing a robust
database for studying pre-earthquake anomalies.

On 20 April 2013, at 08:02 UTC, an earthquake with a
magnitude of 7.0 struck Lushan County, Ya’an, Sichuan,
China, within the Longmenshan fault zone. The epicenter
was located at approximately 30.30° N and 103° E within
the Longmenshan fault zone at a depth of 13 km. The earth-
quake mechanism solution revealed a retrograde rupture of
the earthquake-induced rupture. By 24 April 2013, the earth-
quake had triggered over 4000 aftershocks, affecting more
than 300 000 people across an expansive area exceeding
12 000 km2. The aftermath brought about a significant loss
of life and property. Additionally, the seismic event triggered
various geological hazards, such as earth fissures, landslides,
and surface deformation (Hong et al., 2013).

Researchers around the world have examined various phe-
nomena preceding and following earthquakes, delving into
subterranean, surface, and spatial changes. Chen et al. (2014)
studied the coseismic ionospheric anomalies of the Lushan
earthquake. Guo and Zheng (2022) calculated and analyzed
the anomalies of background noise near the pre-earthquake
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epicenter of the Lushan earthquake. Q. Liu et al. (2014) an-
alyzed the aerosol optical depth (AOD) and concluded that
the AOD could be a potential earthquake precursor in the
Sichuan Basin. C. Liu et al. (2014) examined groundwater
anomalies and identified medium-term dynamics and short-
term or impending anomalies in solid tidal aberrations of the
water level. Ma et al. (2015) analyzed pre-earthquake tidal
cycles and concluded that celestial tidal forces trigger earth-
quakes under critical rock fragmentation and sliding condi-
tions. Zhang et al. (2016) explored thermal anomalies as a
precursor to earthquakes using a time series of surface tem-
peratures obtained prior to the Lushan earthquake. Zhu et
al. (2013) analyzed the tectonic deformation and energy ac-
cumulation in the southern section of the Longmenshan frac-
ture zone through mobile gravity observation data. Jiang et
al. (2013) found severe negative anomalies before and on the
day of the earthquake by analyzing anomalies in the vertical
total electron content (VTEC) in the ionosphere.

Based on findings from the Plate Boundary Observation
(PBO) project proposal from the United States, borehole
strain observations have emerged as superior to GPS and
laser strainmeters in capturing short- to medium-term strain
variations and pre-earthquake strain variations (Zhang, 2004;
Zheng and Zhang, 2004). China has deployed multiple four-
component YRY-4 borehole strainmeters, offering not only
four-component data but also auxiliary observations of air
pressure, groundwater level, and temperature (Chi et al.,
2007; Qiu, 2014; Qiu et al., 2020). Numerous studies on the
Lushan earthquake have employed borehole strain data. Qiu
et al. (2013) correlated borehole strain data from the Guza
station with other influencing factors before theMs 7.0 earth-
quake in Lushan, establishing a connection to the earthquake.
Zhu et al. (2018) identified the precursors of the Lushan
earthquake by analyzing the eigenvalues and eigenvectors
from borehole data. Yu et al. (2021) employed a state-space
model to decompose the strain into component responses and
discovered the synchronous acceleration of negative-entropy
anomalies at multiple stations 4 to 6 months before an earth-
quake. Liu et al. (2019) used the S-transform method to an-
alyze the time–frequency characteristics of borehole strain
data, revealing reliable anomalies that reflect the entire pro-
cess of pre-earthquake, mid-earthquake, and post-earthquake
strain changes. Chi (2013) uncovered a phenomenon of “tidal
aberration”, persisting over 3 months before the earthquake,
with significant strain changes occurring 15 to 19 d prior to
the earthquake. Tang and Jing (2013) conducted an anal-
ysis of surface strain coseismic orders, noting differences
between the Wenchuan and Lushan earthquakes related to
earthquake magnitude. Despite the valuable insights gained,
these studies mostly focused on single-station data, overlook-
ing the potential correlations between multiple stations. The
study of seismic-monitoring data from multiple stations has
been applied to many scenarios. Liu et al. (2019) analyzed
the abnormal fluctuations in aerosol optical depth (AOD)
that occurred before and after the 2008 Wenchuan earthquake

and the 2013 Lushan earthquake and found that abnormally
high AOD values appeared 11 d before the Wenchuan earth-
quake and 4 d before the Lushan earthquake. It has been
considered that the AOD index may be suitable as a pre-
cursor to earthquakes in the Sichuan Basin. Using borehole
strain data from six stations in the Sichuan–Yunnan region,
Yu et al. (2020) established a graph network and analyzed
13 earthquake cases with Es > 107 in the study area, where
the Es index represents the daily total of local earthquake
energy associated with the strain network. It was found that
strain anomalies preceding the earthquake generally occurred
within the first 30 d of the earthquake event. To study the
abnormal strain changes that preceded the Wenchuan earth-
quake, Zhu et al. (2019) applied negative-entropy analysis to
borehole data from three stations. The results show that the
Guza and Xiaomiao stations exhibit similar trends and may
have recorded abnormal changes related to the Wenchuan
earthquake. The Renhe station failed to detect the anomalies
that occurred before the earthquake due to the distance. An
example of the multistation analysis is given to show that it
is feasible to analyze seismic data using multiple stations.

As earthquake-monitoring data accumulate, traditional
processing methods face challenges in managing vast quan-
tities of data. The emergence of deep learning, particularly
graph neural networks (GNNs), has markedly enhanced the
accuracy of prediction and classification, especially regard-
ing non-Euclidean spatial-data characterization (Kipf and
Welling, 2017; Niepert et al., 2016; Scarselli et al., 2009;
Wu et al., 2019; Zhou et al., 2020). Recent developments
in spatiotemporal GNN frameworks have integrated GNNs
with various event-learning methods to extract complex de-
pendencies (Oord et al., 2016; Rathore et al., 2021; Yu et
al., 2017). Kim et al. (2022) utilized raw waveform data
from multiple stations to classify earthquake events, demon-
strating the effectiveness of GNNs in aggregating features
from individual stations. Bilal et al. (2022) refined earth-
quake magnitude, depth, and location predictions by ex-
tracting features from waveform data from multiple stations
and integrating earthquake catalog information into a GNN.
Huang et al. (2023) applied an Isomorphic Graph Atten-
tion Network (IsoGAT) to analyze earthquake catalogs and
geomagnetic signals, successfully detecting pre-earthquake
anomalies. These studies highlight the significant potential
of GNNs in earthquake research.

In this study, we propose an innovative method for extract-
ing pre-earthquake anomalies from borehole strain data using
Graph WaveNet. The remainder of this article is structured
as follows. The next section delves into the specifics of the
Lushan earthquake, providing an introductory exploration of
the observation data pivotal to our analysis. In the third sec-
tion, we introduce the segmented variational modal method
(SVMD) and delve into the theoretical underpinnings of the
Graph WaveNet network, laying the groundwork for a com-
prehensive understanding of our analytical approach. A de-
tailed case study of the Lushan earthquake follows, providing
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a tangible illustration that guides readers through the intrica-
cies of our data-processing methodology. Section 5 includes
the analysis of prediction results, the detailed analysis of ran-
domly selected abnormal days, and the analysis of abnor-
mal accumulation results. The sixth part comprises the dis-
cussion, which mainly includes the comparison and analysis
of the abnormal accumulation results from different stations
and the exclusion of the influence of meteorological factors.
The final section presents the conclusions of the study and
summarizes the key insights drawn from our analysis.

2 Observation data

Dobrovolsky’s estimate of the radius of influence of pre-
cursors for earthquakes of different magnitudes is shown in
Eq. (1) (Dobrovolsky et al., 1979):

ρ = 100.43M km, (1)

where M denotes the magnitude and ρ denotes the radius
of influence of M . The radius of influence of the Ms 7.0
Lushan earthquake extends approximately 1023 km. Among
the selected monitoring stations, the Guza station is situated
73 km from the epicenter, while the Xiaomiao, Luzhou, and
Zhaotong stations are positioned at distances of 268, 286,
and 337 km from the epicenter, respectively. This position-
ing confirms that the chosen stations possess the capability
to monitor earthquake-related anomalies. Detailed informa-
tion about the Guza, Xiaomiao, Luzhou, and Zhaotong sta-
tions, including latitude and longitude coordinates, distance
from the Lushan earthquake’s epicenter, rock type at the drill
borehole locations, and borehole depth, is provided in Ta-
ble 1. Figure 1 visually depicts the geographical locations of
the four observation stations relative to the epicenter of the
Lushan earthquake.

The four-component borehole strainmeter measures the
temporal inverse of displacement at a specific point, offer-
ing insights that are not attainable through GPS and seis-
mometers. Operating with a continuous recording frequency
of one sample per minute, it significantly enhances the tem-
poral resolution by at least 1 order of magnitude. Addition-
ally, its observation bandwidth surpasses that of seismome-
ters, particularly at the long-period end of the spectrum. This
specialized YRY-4 strainmeter comprises four horizontally
positioned sensors designed to measure changes in borehole
diameters. These sensors are strategically spaced at a 45°
angle, and the relationship between the four measurements
from the strainmeter can be expressed as follows (Qiu et al.,
2009; Su, 2019):

S1+ S3 = k(S2+ S4). (2)

Eq. (2) provides the self-consistent formulation for a four-
component borehole strainmeter. The self-consistent coeffi-
cient k ideally has a value of 1, and data are deemed reliable

Figure 1. Locations of the four observation stations relative to the
epicenter of the Lushan earthquake. The blue triangles represent the
locations of the borehole strain observation stations. The yellow star
represents the epicenter of the Lushan earthquake, while the white
curve depicts the Longmenshan fault zone. This map was generated
using Generic Mapping Tools (GMT) software (version 6.0.0rc5;
https://gmt-china.org/, last access: 16 June 2024).

when k is greater than or equal to 0.95. Strain conversion
is achieved using Eq. (3), which employs the four measure-
ments: S13 = S1− S3
S24 = S2− S4
Sa = (S1+ S2+ S3+ S4)/2.

(3)

In Eq. (3), S13 and S24 represent two independent shear
strains. Shear strain pertains to alterations in the total area
or volume of an object while maintaining a deformed shape.
Additionally, Sa denotes surface strain, signifying changes in
area without a concurrent shift in the object’s morphology.
This characteristic is observed in the presence of hydrostatic
enclosure pressure (Su, 2019). For the analysis in this paper,
Sa data from four stations – Guza, Xiaomiao, Luzhou, and
Zhaotong – were specifically selected for examination.

Despite its advantages, such as high sensitivity and a
wide frequency band during observation, the four-component
borehole strainmeter remains susceptible to interference
from surrounding sources. We used the improved variational-
mode-decomposition (VMD) algorithm to analyze the Sa
data and found that the first two components in the decom-
position results correspond to the annual trend term and the
solid tide, respectively, and that the remaining components
contain a large number of strain signals. We retained the re-
maining components as research data. Because we cannot
extract meteorological factors like air pressure, temperature,
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Table 1. Information on borehole strain stations was used in this study.

Station name Locations Rock Borehole Epicenter
type depth (m) distance (km)

Guza 30.12° N, 102.18° E Granite 40.69 73
Xiaomiao 28.00° N, 102.00° E Siltstone 41.78 268
Luzhou 28.87° N, 105.42° E Quartz sandstone 40 286
Zhaotong 27.32° N, 103.73° E Basalt 45 337

and rainfall from the remaining components, we analyzed the
measured data of these meteorological factors to determine
whether the meteorological data affect the results of the bore-
hole strain observations.

3 Methods

To analyze borehole strain data from multiple stations with
regard to the Lushan earthquake, our study employed the
flowchart shown in Fig. 2.

As shown in Fig. 2, the process begins with the conver-
sion of data from the four-component borehole into strain
dataj. Subsequently, the borehole data are decomposed us-
ing the segmented variational modal method (SVMD), and
the resulting decomposed outcomes are fused. By calculat-
ing the distances between stations using latitudinal and lon-
gitudinal coordinates, a distance matrix is constructed and
then normalized to form an adjacency matrix. The fused data
and adjacency matrix serve as inputs for training, validation,
and prediction using the Graph WaveNet GNN. During the
prediction phase, upper- and lower-bound prediction inter-
vals are established based on the model’s output. Anomalies
are identified by comparing the prediction intervals with the
original data. The cumulative values of the pre-earthquake
anomalies in the borehole strain data from various stations
are subsequently subjected to statistical analyses.

3.1 Segmented variational modal decomposition

A borehole strain signal, characterized as a typical nonsta-
tionary signal, can be effectively analyzed by decompos-
ing it into a set of intrinsic mode functions (IMFs) us-
ing empirical mode decomposition (EMD). However, EMD
encounters challenges, such as mode aliasing. To address
this issue, an adaptive time–frequency analysis algorithm,
variational mode decomposition (VMD), was introduced by
Dragomiretskiy and Zosso (2014). VMD exhibits superior
noise immunity in signal processing, providing an effective
solution to these challenges. This approach has been suc-
cessfully applied by Huang et al. (2022) and Zhang and He
(2023) to process raw earthquake waveforms, yielding im-
proved decomposition results.

VMD is a nonrecursive signal-processing method de-
signed to decompose a time series into a sequence of IMFs

characterized by a limited bandwidth. The decomposition
process essentially involves solving variational problems,
and the variational model can be expressed as follows:

min
{uk} , {ωk}

K∑
k=1

∥∥∥∥∂t {[(δ (t)+ j

πt

)
• uk (t)

]
e−jωk t

}∥∥∥∥ 2
2

st
∑K

k=1
uk(t)= f (t),

(4)

where {uk} = {u1u2, . . .,uK} and {ωk} = {ω1ω2, . . .,ωK} are
the k modal functions and the corresponding center frequen-
cies of the signal decomposition, respectively; ∂t is the bias
computation for time t ; δ (t) is the unit impulse function; j is
the imaginary unit; and • is the convolution computation.

To solve the variational model, a quadratic penalty term α

and the Lagrange multiplier operator λ(t) are introduced to
make the variational model unconstrained. The constructed
generalized Lagrangian function is expressed as

L({uk} , {ωk} ,λ)= α
∑K

k=1

∥∥∥∥∂t {[(δ(t)+ j

πt
)∗uk(t)]e

−jωk t }‖

2

2

+

∥∥∥f (t)−∑K

k=1
uk (t)‖

2

2
+

〈
λ(t) ,f (t)−

∑K

k=1
uk (t)

〉
,

(5)

where L denotes the Lagrangian generalization operator, α
denotes the data fidelity constraint function, and λ denotes
the Lagrange multiplier.

The alternating direction method of multipliers (ADMM)
is used to solve Eq. (5) and the iterative optimization of uk ,
ωk , and λ. The iterative formulas for the mode uk , the corre-
sponding center frequency ωk , and the Lagrange multiplier λ
can be updated using

ûn+1
k (ω)=

f̂ (ω)−
∑
i 6=kûi (ω)+

λ̂(ω)
2

1+ 2α(ω−ωk)2
,

ωn+1
k =

∫
∞

0 ω
∣∣ûk(ω )|2dw∫

∞

0

∣∣ûk(ω )|2dw
,

λ̂n+1(ω)= λ̂n(ω)+ τ(f̂ (ω)−
∑

k
ûn+1
k (ω)), (6)

where ûn+1
k is the kth IMF component in the (n+ 1)th iter-

ation, ωn+1
k is the center frequency corresponding to ûn+1

k ,
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Figure 2. The framework for borehole strain data processing and the detection of pre-earthquake anomalies. GZ: Guza. XM: Xiaomiao.
LZ: Luzhou. ZT: Zhaotong. EQ: earthquake. TCN: temporal convolutional network. GCN: graph convolutional network.

λ̂n+1(ω) is the value of the Lagrangian operator in the
(n+ 1)th iteration, and τ is the noise tolerance of the sig-
nal. The termination condition of the algorithm is then set as
follows:

∑K

k=1

∥∥∥ûn+1
k − ûnk

∥∥∥2

2∥∥ûnk∥∥2
2

< ε, (7)

where ε denotes the discrimination accuracy.
In this study, we employ a method of applying variational

mode decomposition (VMD) to data segments through the
incorporation of sliding windows (SVMD). This approach
effectively addresses the challenge of limited memory when
conducting VMD on the entire dataset while retaining the
correlation between the data points (Chi et al., 2023). The
fundamental principle of the SVMD method is illustrated in
Fig. 3.

As depicted in Fig. 3, we opt for a consistent sliding-
window approach with a size of 7 and a sliding step of 1.
The initial sliding window encompasses all the data from the
first 7 d. From the second sliding window onwards, only the
data from the last day of the current window are preserved
and appended to the results obtained from the previous win-
dow.

3.2 Graph WaveNet neural network architecture

3.2.1 Gated temporal convolutional network for
extracting temporal features

During the processing of the time-series data, causal con-
volution maintains the causal relationships inherent within
the data. This technique facilitates the extraction of time-
series features through convolution. However, as the se-
quence length increases, capturing temporal dependence re-
quires more convolution layers, thereby substantially in-
creasing computational demands. To address this challenge,
an expansion factor was introduced for causal convolution.
The inclusion of this expansion factor can enlarge the re-
ceptive field of causal convolution, enabling the capture of
longer time-series features with a reduced number of convo-
lutional layers. The relationship between the input sequence
length Lin after causal dilation convolution and the output
sequence length Lout can be expressed as

Lout = Lin+ padding− (d × (k− 1)), (8)

where Lout is the length of the output sequence; Lin is the
length of the input sequence; padding is the number of ze-
ros added to the end of the input sequence (and added to
the beginning of the sequence to preserve causality); k is the
size of the convolution kernel, which is a small, learnable
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Figure 3. Schematic diagram illustrating the principle of the segmented variational modal method (SVMD).

weight matrix; and d is the dilation factor, which indicates
the span of the convolution kernel across the input sequence,
with larger dilation factors capturing long-term time depen-
dencies. The dilation causal convolution with a convolution
kernel size of 2 and a sliding step of 1 is shown in Fig. 4a.

Although convolutional neural networks (CNNs) are com-
monly employed in image processing, 1D CNNs can also be
effectively used in time-series analysis. Gated temporal con-
volutional networks (TCNs) leverage 1D CNNs to extract
features from time-series data. This architecture comprises
two key modules: one for convolving the input data to extract
features by employing tanh as the activation function and the
other for controlling the amount of information passed from
the current layer to the next layer by utilizing the sigmoid
activation function. The gated TCN module is defined as

T = g(W1 · x+ b1) • σ (W2 · x+ b2), (9)

whereW1 andW2 represent the weight parameters, b1 and b2
represent the corresponding bias parameters, • denotes the
convolution, g is the activation function of the output, and σ

is the activation function that determines the ratio of infor-
mation passed to the next layer.

3.2.2 Graph convolutional networks (GCNs) for
extracting spatial features

The fundamental concept of a graph network is to represent
interactions among real features based on spatial dependence
dictated by the graph structure. The distance–adjacency ma-
trix is symmetrically normalized to function as an adjacency

matrix for graph convolution. This approach effectively cap-
tures the node information and preserves the graph structure.
By constructing a complete undirected graph for each sta-
tion, where all nodes are directly connected, each node inter-
acts solely with its neighboring nodes to exchange informa-
tion. To ensure that the input features captured all informa-
tion from the current node and its first-order nearest-neighbor
nodes, a first-order symmetric normalized adjacency matrix
was selected during the graph convolution process. The con-
volution layer of the graph is defined as

H (l+1)
= σ(D̃−

1
2 · Ã · D̃−

1
2 ·H (l)

·W (l)), (10)

where H (l) denotes the embedding vector of layer l, H (l+1)

denotes the embedding vector of layer (l+1), D̃−
1
2 ·Ã ·D̃−

1
2

denotes the symmetric normalized adjacency matrix of the
current layer, D denotes the degree matrix, Ã denotes the
distance–adjacency matrix, W (l) denotes the weight of the
neural network in the current convolutional layer, and σ de-
notes the nonlinear activation function of the neural network.
Introducing a dropout rate to the output of each training batch
in the graph convolution process involves randomly ignoring
half of the hidden-layer nodes.

This dropout strategy was applied across different neural
networks, and “opposite” fits were averaged. This aids in mit-
igating overfitting because conflicting tendencies can cancel
each other out during the training process.
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Figure 4. (a) Schematic of the dilated causal convolutional layers. (b) Architecture of the spatiotemporal layers.

3.2.3 Spatiotemporal layers

Figure 4b illustrates the structure of the spatiotemporal layer.
Each layer within the spatiotemporal layer captures tempo-
ral dependencies using gated TCNs. This involves utilizing
node features produced by the TCN module and the graph’s
adjacency matrix as inputs for the GCN module. The GCN
layer is responsible for capturing spatiotemporal features,
and the spatiotemporal features of the current layer are resid-
ual and linked to the input, serving as inputs for the sub-
sequent spatiotemporal layer. The output of the gated TCN
module serves as the output of the current spatiotemporal
layer, and the outputs of all spatiotemporal layers are inter-
connected using skip connections. This design facilitates the
capture of short-term and spatial dependencies.

3.2.4 Graph WaveNet neural network framework

Figure 5 illustrates the framework of Graph WaveNet. The
initial step involves pre-processing the multistation borehole
data and converting the latitude and longitude data of each
station into an adjacency matrix. Subsequently, the data un-
dergo an increase in dimensionality in the linear layer, fol-
lowed by processing in the gated TCN module, to obtain the
current information. The output of the gated TCN module
is then employed to extract spatial information through the
GCN layer. The extracted spatial and temporal information
is connected to the input of the current layer, which serves
as the input for the subsequent spatial and temporal layers;
this input can capture both current and historical information
using different dilation factor sizes. Finally, the information
extracted from each gated TCN layer is aggregated into an
output layer. The output sequence is downscaled using the
rectified-linear-unit (ReLU) activation function and a linear
layer. The upper and lower bounds of the output sequence are
calculated using the normal-distribution method. The predic-
tion intervals of the network are constructed from the upper
and lower bounds. The upper and lower bounds of the predic-

tion intervals are determined using the following formulas:

Lower= Prediction+Z× rmse,

Upper= Prediction−Z× rmse, (11)

where Prediction is the predicted value; Z is the Z score of
the normal distribution, which is about 1.96 for a 95 % con-
fidence level; and RMSE is the root mean square error.

For the Graph WaveNet neural network model, the mean
absolute error (MAE) was employed as the loss function for
backpropagation during training. A dropout of 0.3 was ap-
plied during graph convolution to enhance the model’s gen-
eralization. The Adam optimizer was utilized to update the
weights, with a learning rate of 0.001 and a weight decay rate
of 0.0001. This configuration allowed the model to decay,
effectively preventing overfitting by reducing the parameter
magnitudes. The number of training rounds for the model
was set to 100.

4 Data processing

We analyzed the four-component borehole strain data col-
lected from the Guza, Xiaomiao, Luzhou, and Zhaotong sta-
tions from 1 January 2010 to 31 December 2013. Initially, the
data from each station were validated using self-consistent
equations. Subsequently, the four-component borehole strain
data from each station were transformed into two shear
strains, S13 and S24, and one surface strain, Sa, using a strain
conversion equation. Figure 6a shows the data series for sur-
face strain Sa data after converting the borehole strain data
from each of the four stations.

Subsequently, the Sa data from each of the four stations
were decomposed using the segmented variational modal
method (SVMD). The decomposition parameters were set
to a bandwidth of 2000, five modes were selected for de-
composition, and the convergence accuracy was set to 10−7.
The results of the SVMD decomposition were compared with
data related to the influencing factors to effectively eliminate
the effects of seasonal trends and solid tides. The extracted
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Figure 5. Framework of Graph WaveNet.

modes are specifically related to crustal activity, showcas-
ing short-period, high-frequency oscillatory signals associ-
ated with variations in earthquake strain within crustal mo-
tions (Chi et al., 2019). The time-series data obtained after
the SVMD decomposition of Sa data from each station are
illustrated in Fig. 6b.

The next step involved data fusion, in which the SVMD
was applied to the Sa component data from different stations
to extract data related to crustal activities. The construction
of the GNN required information from each node; hence,
data from multiple stations were fused as inputs to the GNN.
The data matrix Ra of the constructed Ra component is given
by

Ra =

 GZa(t1) GZa(t2) . . . GZa(t2103840)
LZa(t1) LZa(t2) . . . LZa(t2103840)
XMa(t1) XMa(t2) . . . XMa(t2103840)
ZTa(t1) ZTa(t2) . . . ZTa(t2103840)


T

, (12)

where GZ, LZ, XM, and ZT represent the Guza, Luzhou, Xi-
aomiao, and Zhaotong stations, respectively; a denotes the
selection of the Sa component data; t denotes the length of
the time series; and T denotes the transpose; and the fused-
data matrix R serves as the input for the node information
in the Graph WaveNet GNN. The constructed data matrix
has a minute-level sampling interval with 1440 data sampling
points per day. The data matrix undergoes processing using
a sliding window with a length of 60, corresponding to 1 h.
This sliding window was implemented to predict data for the
next hour based on data from the current hour. The sampled
data are considered the features of the sample, and the data
shape is constructed as a tensor of [64, 60, 4, 1], where 64
denotes the sample length and [60, 4, 1] represents the in-
put or output of a single data point. In this context, 60 signi-
fies the sequence length, 4 represents the number of nodes,
and 1 represents the number of node features. The selected

data spanned the years from 2010 to 2013 and were divided
chronologically into a ratio of 3 : 1 : 4. Specifically, the 2010
and 2011 datasets were used as the training and validation
sets, respectively, whereas the 2012 and 2013 datasets were
used as the test sets.

The subsequent step involved constructing the adjacency
matrix of the graph. A node graph of the four stations is
shown in Fig. 7. The graph is defined as G= (V ,E), where
V corresponds to the set of nodes and E corresponds to the
set of edges in the graph. The relationship between the edges
and nodes is expressed as Eij = (ViVj ), Vi , Vj ∈ V . Graphs
are commonly represented using an adjacency matrix, where
the adjacency matrix A is an N ×N square and N denotes
the number of nodes. The graph is expressed as Aij = 1 if
vertices i and j are connected by an edge and expressed as
Aij = 0 otherwise. The number of neighboring nodes for
node V is referred to as the degree of said node, and the
degree matrix D is an N ×N diagonal array, with diago-
nal elements representing the degrees of individual vertices
– i.e., D(Vi)=N(i).

The true distance between the stations was calculated us-
ing the corresponding latitude and longitude data of any two
stations. Assuming that the Earth is a standard sphere, the
principle for calculating the distance using latitude and longi-
tude coordinates involves determining the distance between
two points on the sphere, which is equivalent to the arc
length of a cross-sectional circle. For any two given points
with corresponding latitudes and longitudes, A(N1,E1) and
B(N2,E2), where R represents the average radius of the
Earth and the center of the Earth is assumed to be the mid-
point of the right-angle coordinates, A and B represent two
points corresponding to the following right-angle coordi-
nates:

A(R cos(N1)cos(E1)),R cos(N1)sin(E1),R sin(N1)), A(x1y1z1),

B(R cos(N2)cos(E2)),R cos(N2)sin(E2),R sin(N2)), B(x2y2z2). (13)
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Figure 6. (a) Sa of the borehole strain data from 2010 to 2013 for the Guza, Xiaomiao, Luzhou, and Zhaotong stations. (b) SVMD results
for the Sa components at the Guza, Xiaomiao, Luzhou, and Zhaotong stations.

Figure 7. Node diagram illustrating the four borehole strain obser-
vation stations. The blue triangles indicate the locations of the four
borehole strain stations, the green lines indicates the distances be-
tween the pairs of stations, and the red square indicates the epicenter
of the Lushan earthquake.

We calculated the angle between two points based on the co-
ordinates of points A and B. When the angle between A and
B is α, the cosine of the angle cosα is calculated as follows:

cosα =
x1 · x2+ y1∗y2+ z1 · z2√

(x2
1 + y

2
1 + z

2
1) ·

√
(x2

2 + y
2
2 + z

2
2)

. (14)

Thus, the distance d between two points can be expressed as

d = R · arccos(cosα). (15)

The distance between two stations was determined by cal-
culating the latitude and longitude coordinates of any two
stations. Subsequently, a distance–adjacency matrix for the
node graph was constructed based on these distances. To op-
timize the adjacency matrix for use in the Graph WaveNet
GNN, the distances between the nodes were normalized to
represent the weights between them. This normalized adja-
cency matrix was then utilized in the Graph WaveNet model.

5 Results

In this study, we employed a Graph WaveNet GNN to an-
alyze borehole data from multiple stations collected prior
to the Lushan earthquake. The analysis focused on extract-
ing pre-earthquake anomalies based on the results obtained.
Anomalies were identified when the raw data surpassed the
corresponding upper or lower prediction intervals established
by the network. The prediction results for each station are
shown in Fig. 8.

As shown in Fig. 8, our raw data closely align with the
predicted intervals, demonstrating that the Graph WaveNet
GNN accurately predicted the borehole data at each station.
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Figure 8. Prediction results from the Graph WaveNet GNN. The red lines indicate real data, and the gray areas indicate prediction intervals.
(a) Results of the Lushan earthquake prediction from the Guza station. (b) Results of the Lushan earthquake prediction from the Luzhou
station. (c) Results of the Lushan earthquake prediction from the Xiaomiao station. (d) Results of the Lushan earthquake prediction from the
Zhaotong station.

To identify point anomalies in the borehole strain data predic-
tions, we employed the following criteria: (a) detecting more
than 15 points outside the intervals within a 30 min window
and (b) identifying differences between the center of the pre-
dicted intervals and the actual values exceeding 1.5 times the
bandwidth of the intervals (with more than three such points
occurring in the same 30 min period). Days meeting these
conditions were considered anomalous (Chi et al., 2023).
To validate whether the extracted anomalous days were re-
lated to earthquakes, we randomly selected raw data for four
anomalous days from each station, as shown in Fig. 9.

In Fig. 9, it is evident that the abnormal days we defined
exhibit short-period, high-frequency oscillation signals in the
original waveform, suggesting that these days are associated
with crustal activity. De Santis et al. (2017) studied the 2015
Nepal event using magnetic satellite data from the Swarm

mission. For the first time, an S-shaped fitting function was
proposed for the analysis of the abnormal accumulation, and
some abnormal differences were found in the area around
the earthquake epicenter based on the abnormal accumula-
tion results. By comparing the S-shaped fitting function with
the linear fitting, it was found that the S-shaped fitting func-
tion was significantly better. In this paper, the S-shaped fit-
ting function is used to fit the abnormal accumulation results.
The cumulative values of the anomalous days over time are
depicted in Fig. 10.

As depicted in Fig. 10a, the cumulative results from the
anomalous days at the Guza station exhibit a two-part con-
cavity. One part displays a rapid increase in the number of
anomalous days from October 2012 to 3 months before the
earthquake (January 2013), after the trend levels off. Our
findings align with those of Chi et al. (2013) and Zhu et
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Figure 9. Plots illustrating raw data from four randomly selected anomalous days at each station.

al. (2018), indicating that strain anomalies occurred during
the 4–8 months preceding the earthquake, with the accumu-
lation of anomalous days exhibiting an accelerating trend.
In the other part, there is a rapid increase in the number of
anomalous days from March 2013 until June after the earth-
quake, after which the increasing trend in anomalous days
gradually levels off. Relevant researchers have studied the
short-term anomalies that occurred before the Lushan earth-
quake and believe that these anomalies occurred within a
few days to a month before the earthquake (An et al., 2013;
Jiang et al., 2013; Yu et al., 2020; Qiu et al., 2013; Zhu et
al., 2018). Our study yielded similar results, indicating that
anomalies were present in the 1-month period prior to the
Lushan earthquake. Therefore, we posit that these anomalies
might be related to the Lushan earthquake. The findings of
Yu et al. (2021), who observed a brief increase in anomalies
followed by a return to a steady state in the 2-month period
after the earthquake, align closely with the outcomes of our
study. Li et al. (2017) analyzed the pre-earthquake anoma-
lies of the Lushan earthquake using seismic-rate data. The
synthesized results show an anomaly of rising earthquake
frequency over time that lasts for 3–5 months from Septem-
ber 2010, which is highly consistent with our observed rapid
increase in anomalous days about 6 months before the earth-
quake. It indicates that we effectively extracted short-term

strain precursor anomalies associated with the Lushan earth-
quake.

The findings of this study align with the concept of the
synergism process of a fault. Ma and Guo (2014) conducted
a laboratory modeling study on the instability of a planar
strike-slip fault, suggesting that the occurrence of an earth-
quake is linked to a fault’s synergistic process, which encom-
passes three stages. In the initial stage, there is a deviation of
the stress curve from linearity. The second stage is marked by
the steady increase and expansion of isolated areas of strain
release. In the final stage, the sections of strain release on
the fault accelerate and expand, accompanied by a rapid in-
crease in strain levels in areas of strain accumulation. The
period from September to December 2012 corresponds to the
first and the second stages, where the stress curve deviates
from linearity and isolated areas of strain release grow and
extend steadily. The period from early 2013 until the earth-
quake aligns with the third stage, characterized by the accel-
erated expansion of strain release sections on the fault and
a swift rise in strain levels in areas of strain accumulation.
The multitude of anomalies observed after the earthquake,
including those caused by crustal fractures and aftershocks,
were also evident. Similar phenomena were recorded at the
XM and LZ stations, correlating with Ma’s theory. Thus, we
believe that the anomalous phenomena observed prior to the
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Figure 10. Accumulation results for anomalous days in the borehole data from each station. The dashed line indicates the date of the
earthquake, while the red and blue curves indicate the results of the S-shaped fitting function before and after the earthquake, respectively.
(a) Accumulation results for anomalous days at the Guza station; (b) Accumulation results for anonymous days at the Xiaomiao, Luzhou,
and Zhaotong stations.

Lushan earthquake are related to the earthquake’s gestation
process.

Xu et al. (2019) used observation network data from the
Global Navigation Satellite System (GNSS) to study the de-
formation that occurred before the Lushan earthquake and
found a locking state that lasted from 5 months before the
earthquake to 2 months after the earthquake. They also noted
that under the locking state, strain energy continued to ac-
cumulate until the fault ruptured. When stress accumula-
tion in the pregnant seismic zone transitions from a linear
to a nonlinear accumulation stage, the resulting stress per-
turbations lead to changes in the additional stress and strain
states at nearby strain measurement points as the degree of
stress and strain accumulation increases. Rock rupture ex-
periments and theoretical studies have shown that pre-slip
occurs before fault strike-slip displacement, and the resulting
stresses can lead to obvious anomalous responses at nearby
stations (Li, 2002; Ma et al., 1998; Zhao et al., 1997). Zhang
et al. (2020) conducted an analysis of cross-fault deforma-
tion preceding the Ms 7.0 earthquake in Lushan. Their find-
ings revealed a considerable shift in the cross-fault deforma-
tion dynamics of the study area, which transitioned from a
state of “inheritance”, conducive to stress accumulation, to
a state of “reverse inheritance” more than 6 months prior
to the earthquake. This shift exhibits characteristics of co-
ordinated and accelerated fault activities, aligning with the
metastable and sub-unstable states observed in the structural
mechanics tests. We believe that even in a locked state, en-
ergy pre-release still occurs in the locked part of the fracture.
As the strength of the rock rupture moves into the destabi-
lization stage, the stress on the adjacent rocks before rupture
shows obvious tension and compression regions. This gen-

eration of stress is related to local extension and weakening,
with most of the anomalies appearing in the form of sudden
jumps. In summary, our analysis suggests that 4–8 months
prior to the Ms 7.0 earthquake in Lushan, the southern sec-
tion of the Longmenshan rupture zone exhibited character-
istics of a sub-stabilized state. This state led to the forma-
tion of relatively weak segments on the fault, contributing to
an increase in the number of anomalous days potentially as-
sociated with the pre-release of energy. Simultaneously, the
relatively strong fault segments experienced strain accumula-
tion. In the days immediately preceding the earthquake, these
strong segments reached a destabilized state due to the accu-
mulated strain, ultimately facilitating the occurrence of an
earthquake (Ma and Guo, 2014).

6 Discussion

In Fig. 10b, we analyzed the accumulation of anomalous
days at other stations within the Graph WaveNet network.
Remarkably, the accumulation patterns of anomalous days
at the Xiaomiao and Luzhou stations closely mirrored those
observed at the Guza station, featuring concave trends in two
distinct phases. However, the fitting results for the Zhaotong
station deviated from the observed pattern. Analyzing these
fitting results, we observed that the Xiaomiao and Luzhou
stations exhibited a similar trend that resembled the pat-
terns identified at the Guza station. In the initial phase, there
was a sharp increase in January 2013, which plateaued until
March 2013, indicating an accelerated accumulation of ab-
normal days in the 4 months leading up to the earthquake. In
the second phase, from 5 April 2013 to 28 April 2013, there
was a notable surge 15 d prior to the earthquake, followed by
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Figure 11. Regional daily mean variations in pressure, temperature, and rainfall in the Lushan area from 2010 to 2013.

a gradual decline 8 d after the earthquake. This pattern echoes
the impending and post-earthquake anomalies observed at
the Guza station during the Lushan earthquake. A detailed
analysis indicates that the Xiaomiao and Luzhou stations also
detected anomalous signals during the gestation process of
the Lushan earthquake, affirming that the anomalies at these
three stations were not random but were indeed linked to the
Lushan earthquake. Further scrutiny of the distances between
the stations and the epicenter revealed a noteworthy pattern.
The Guza station, closest to the epicenter, recorded the high-
est number of anomalous days, whereas the Xiaomiao and
Luzhou stations, also close to the epicenter, registered fewer
anomalous days than the Guza station. In contrast, the Zhao-
tong station, situated farther from the epicenter, reported the
fewest anomalous days. This lends credence to the belief that
the anomalous signals received by a station are associated
with the distance between the station and epicenter.

Despite its advantages, such as high sensitivity and a
wide frequency band during observation, the four-component
borehole strainmeter remains susceptible to interference
from surrounding sources. Figure 11 illustrates the impact of
external factors by examining the regional daily mean vari-
ations in pressure, temperature, and rainfall in the Lushan
region (27 to 31° N, 102 to 106° E), downloaded from 1 Jan-
uary 2010 to 31 December 2013 via NASA’s Giovanni-
4 platform (https://giovanni.gsfc.nasa.gov/giovanni, last ac-

cess: 10 December 2023). The analysis of these data revealed
distinct annual trends in pressure, temperature, and rainfall.
Both pressure and temperature exhibited fluctuations within
a certain range, displaying opposite trends, whereas rainfall
underwent a consistent increase followed by a decrease each
year, reflecting seasonal changes. To mitigate the impact of
external factors on borehole strain data, we conducted a dif-
ferencing process for the daily regional averages of pres-
sure, temperature, and rainfall in the Lushan area. Periodic
changes can be removed using differential processing, which
highlights the anomalies in the data. The results are shown in
Fig. 12.

Figure 12 indicates that the regional daily mean variations
in pressure, temperature, and rainfall in the Lushan area did
not exhibit any anomalous changes. Therefore, we can ex-
clude the influence of pressure, temperature, and rainfall on
the anomalies observed in the pre-earthquake borehole data
from Lushan. We have reason to believe that the anomalies
we extracted before the Lushan earthquake are related to the
seismogenic process.

7 Conclusion

In this study, we proposed a novel method for extracting
pre-earthquake anomalies based on a Graph WaveNet net-
work structure. This method enables the integration of bore-
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Figure 12. Differing results with regard to regional daily mean variations in pressure, temperature, and rainfall in the Lushan area from 2010
to 2013.

hole strain data from multiple stations and makes predic-
tions based on both temporal and spatial correlations. The
statistical analysis of pre-earthquake anomalies in borehole
strain data from four stations – Guza, Xiaomiao, Luzhou,
and Zhaotong – revealed two S-shaped upward trends in the
pre-earthquake period at the Guza, Xiaomiao, and Luzhou
stations. This indicates that these three stations experienced
notable strain anomalies during the gestation process of the
Lushan earthquake. A comparison of anomaly accumulation
rates across different stations indicated that the anomaly rate
at the Guza station was substantially higher than that at the
Xiaomiao and Luzhou stations, indicating a potential correla-
tion with the distance from the epicenter. Raw-data analysis
of randomly selected anomalous days from each station con-
firmed the correlation between the extracted anomalous days
and the pre-earthquake anomalies. Additionally, we analyzed
the regional daily averages of meteorological factors, prelim-
inarily excluding their influence on the anomaly accumula-
tion results. Therefore, we conclude that the Graph WaveNet
network effectively extracted pre-earthquake anomalies from
borehole strain data, highlighting its potential as a robust ap-
proach for studying pre-earthquake anomalies across multi-
ple stations.
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