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Abstract. This study analyzes geometrical properties of ge-
ological faults using triangulations to model displaced hori-
zons. We investigate two scenarios: one without elevation
uncertainties and one with such uncertainties. Through for-
mal mathematical reasoning and computational experiments,
we explore how triangular surface data can reveal geometric
characteristics of dip-slip faults. Our formal analysis intro-
duces four propositions of increasing generality, demonstrat-
ing that, in the absence of elevation errors, duplicate eleva-
tion values lead to identical dip directions. For the scenario
with elevation uncertainties, we find that the expected dip
direction remains consistent with the error-free case. These
findings are further supported by computational experiments
using a combinatorial algorithm that generates all possible
three-element subsets from a given set of points. The re-
sults offer insights into predicting fault geometry in data-
sparse environments and provide a framework for analyzing
directional data in topographic grids with imprecise elevation
data.

1 Introduction

Faults influence numerous practical aspects of subsurface ge-
ology, including groundwater flow (Bense et al., 2013), hy-
drocarbon entrapments (Aydin, 2000), geothermal applica-
tions (Medici et al., 2023; Fadel et al., 2022), CO2 storage
(Jing et al., 2019), and localized mineralization (Person et

al., 2008). In areas with sparse geological data, such as sub-
surface regions between boreholes, inferring the geometric
properties of faults presents significant challenges (Lark et
al., 2013; Godefroy et al., 2019). Sparse environments often
contain large epistemic uncertainty (uncertainty arising from
a lack of knowledge), which can complicate the interpreta-
tion of geological structures (Bowden, 2004). While collect-
ing more data can reduce uncertainty (Bond, 2015; Dowd,
2018), practical constraints often make this infeasible.

Recent studies have attempted to reduce epistemic uncer-
tainty in structural geology using triangulations and combi-
natorial algorithms to analyze fault geometry (Michalak et
al., 2021). For example, Michalak et al. (2021) demonstrated
that triangles sampled from the walls (see terminology in
Fig. 1) of a fault can exhibit counterintuitive behaviors, such
as counterintuitive dip directions (towards the upper wall; see
Fig. 4b) and identical dip directions from different triangles.
This raises intriguing questions about the geometric behavior
of triangulated models under sparse data conditions.

This paper builds on this work by providing formal mathe-
matical reasoning that a combinatorial algorithm can reduce
epistemic uncertainty in sparse environments. Specifically,
here we introduce and analyze the effect of elevation uncer-
tainty on the statistical behavior of the method and present a
formal analysis of two scenarios:

1. one with perfect (or rounded) elevation data (Proposi-
tion 1, Proposition 2) and
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2. one accounting for elevation uncertainties (Proposi-
tion 3, Proposition 4).

Then, we explore the statistical implications of our find-
ings using directional data. Following the formal analysis,
the work further extends from Michalak et al. (2021) by
discussing its relevance to real-world geoscientific datasets.
Here, we demonstrate the consequences of these theoretical
results in the analysis of 2D and 3D (Fig. 2) directional data
derived from topographic grids, which typically consist of
points with approximate elevations, commonly observed in
bathymetric datasets (Gridded Bathymetry Data, 2024).

2 Background

Uncertainty in geological modeling is a widespread issue af-
fecting various aspects of subsurface analysis. These uncer-
tainties stem from incomplete data, particularly in sparse en-
vironments with limited borehole data or surface observa-
tions. A key challenge in such cases is accurately relating
parts of the study area to lithological units or other geolog-
ical structures (Wellmann and Regenauer-Lieb, 2012). For
example, uncertainty can arise from errors in borehole paths
(Pakyuz-Charrier et al., 2018) or in the resulting geologi-
cal models themselves (Pakyuz-Charrier et al., 2019; Liang
et al., 2021). To manage these uncertainties, several meth-
ods have been developed, including uncertainty propagation
techniques, such as the Markov Chain Monte Carlo (MCMC)
method, which estimates uncertainty by feeding model gen-
erators with probabilistic input data (de la Varga and Well-
mann, 2016; Pakyuz-Charrier et al., 2019).

In sparse geological settings, combinatorial algorithms
have emerged as a valuable tool for interpreting fault-related
data. One notable example is Godefroy et al. (2019), who de-
veloped a method to partition sparse fault evidence into fault
clusters using combinatorial techniques. The authors demon-
strated that this approach could handle sparse data, but the
computational cost increases rapidly as data size grows, gov-
erned by Stirling numbers (Allenby and Slomson, 2010).

Orientation measurements, such as dip and dip direction,
are critical in subsurface geological modeling and are tra-
ditionally collected through fieldwork or outcrop analogs
(La Fontaine et al., 2021). These measurements serve as
input for co-kriging methods, which combine point data
with orientation information to model subsurface structures
(de la Varga et al., 2019; Lajaunie et al., 1997; Calcagno et
al., 2008). More recently, triangulated data have been widely
used in geological modeling to represent 3D surfaces (Mer-
land et al., 2014; Collon et al., 2015; Aydin and Caers, 2017).
Triangulations, created by connecting points sampled from
geological surfaces, allow the analysis of orientation data by
calculating the normal vectors of triangles. This approach is
valuable in detecting geological features like faults by clus-
tering these vectors (Michalak et al., 2022).

Despite its utility, triangulation-based analysis faces limi-
tations, particularly when dealing with sparse data environ-
ments where the number of triangles available for analy-
sis is reduced. The use of combinatorial algorithms offers a
promising alternative by generating all possible triangle con-
figurations from a given dataset (Michalak et al., 2021).

3 Methodology

3.1 Details of the combinatorial approach

We applied the combinatorial algorithm described by Lipski
to reduce epistemic uncertainty in determining fault orien-
tations. This algorithm generates all possible three-element
subsets (triangles) from a given set of boreholes (Lipski,
2004). This approach systematically creates every possible
triangle configuration, enabling a comprehensive geometric
analysis. We generated all k-element subsets (k = 3) from
an n-element set (where n is the total number of borehole
locations) to estimate the fault orientation. The algorithm’s
efficiency allowed us to handle large datasets while ensuring
that all potential fault-related triangles were analyzed. The
full description of the combinatorial algorithm can be found
in Appendix A.

3.2 Singular geometric effects

We begin by recalling and updating the definition of triangles
genetically related to faults, originally introduced by Micha-
lak et al. (2021).

Definition 1. A triangle is considered genetically related
to a fault (a fault-related triangle) if there exists a pair of its
vertices that lie on opposite sides of the fault.

In Michalak et al. (2021), this concept was tied to the no-
tion of non-horizontal triangles. Specifically, a triangle was
considered non-horizontal if not all three of its vertices lay
on the same side of the fault.

Modification. In this study, due to the introduction of el-
evation uncertainties, this distinction is no longer sufficient.
It is now possible for a triangle to be non-horizontal (in 3D)
while all of its vertices still lie on the same side of the fault.
Therefore, the definition of a fault-related triangle has been
revised accordingly.

Building on the results from Michalak et al. (2021), we
extended the analysis of fault-related triangles to account for
the observed phenomenon where approximately 8 % of tri-
angles exhibited counterintuitive dip directions (Fig. 4b). We
hypothesize that this behavior is controlled by two main fac-
tors: the orientation of the edge lying on the horizontal part
of the fault (hanging wall or footwall) and the position of
the third point relative to this edge (Proposition 1, Fig. 3a).
Through formal proofs (see Appendix B), we validated this
hypothesis and demonstrated that the dip direction depends
on whether the third point lies to the left or right of the fault’s
edge.

Solid Earth, 16, 1025–1040, 2025 https://doi.org/10.5194/se-16-1025-2025



M. P. Michalak et al.: Validation of singular geometric effects in fault data 1027

Figure 1. Presentation of the terminology used in the study: (I) the surface of the horizontal footwall, (II) the fault plane, (III) the surface of
the horizontal hanging wall, (IV) a horizontal triangle that is genetically unrelated to the fault, (V) a triangle which is genetically related to
the fault (a fault-related triangle), (VI) a vertex of the triangle (a point corresponding to a geological interface identified by a borehole). We
note that, if elevation uncertainties are introduced, there may be non-horizontal triangles that are genetically unrelated to fault (see Fig. 3d).

3.3 Statistical analysis

Treating the normal vectors as 3D directional data makes it
possible to calculate the mean of a group of these 3D vectors.
It can be achieved by averaging the Cartesian coordinates of
the normal vectors. Then, the resultant vector can be con-
verted to dip direction and dip angle pairs (Allmendinger et
al., 2011 – Chap. 2.4). We note that, in this approach, the di-
rectional components (X and Y coordinates) are not guaran-
teed to result in a vector of unit length. Therefore, every vec-
tor can contribute differently to the resultant vector (Fig. 2).
For example, 3D vectors corresponding to sub-horizontal tri-
angles have smaller values than more inclined triangles at
directional components. Therefore, the directional (X and Y )
contribution of sub-horizontal triangles to the resultant vector
will be relatively small compared to more inclined triangles
(Fig. 2).

A different approach would be to conduct a statistical anal-
ysis of 2D unit vectors d1, . . .,dn corresponding to the ini-
tially collected 3D unit normal vectors of triangles t1, . . ., tn,
where n denotes the number of observations. The mean di-
rection θ of 2D unit vectors d1, . . .,dn and their correspond-
ing angles θ1, . . .,θn is defined as the direction of the resul-
tant vector d1+ . . .+dn (Mardia and Jupp, 2008). Firstly, the
Cartesian coordinates of the center of the mass (Mardia and
Jupp, 2008) are calculated as follows:
C = 1

n

∑n
j=1 cosθj , S = 1

n

∑n
j=1 sinθj . We note that, in

our case, the X and Y axes are aligned with the north and
east directions, respectively. Therefore, the C and S values
correspond to the north and east directions, respectively (a
different convention is adopted in the textbook of Mardia and

Jupp, 2008). To calculate the mean direction θ , we use the
following formula (modified from Fisher, 1993):

θ =


atan

(
S

C

)
, S > 0, C > 0

atan
(
S

C

)
+π, C < 0

atan
(
S

C

)
+ 2π, S < 0, C > 0.

(1)

The resultant length is the length of the resultant vector sum
d1+ . . .+dn, and the mean resultant length is defined as the

length of the center of the mass vector R =
√
C

2
+ S

2
. We

also calculated the median direction using the circular pack-
age (Lund et al., 2017), and it is any angle φ such that (Mar-
dia and Jupp, 2008)

1. half of the data points lie in the arc [φ,φ+π ]

2. the majority of the data points are nearer to φ than to
φ+π .

The sample circular standard deviation is defined as√
−2log(1−V )=

√
−2logR, where V = 1−R denotes the

sample circular variance (Mardia and Jupp, 2008). Using
1− cos(θ − ξ) as a measure of the distance between angles
θ and ξ , it can be shown that V can be used as a measure
of dispersion around the mean dip direction and that it is
equal to V =D

(
θ
)
=

1
n

∑n
j=1{1−cos

(
θi − θ

)
}. We also cal-

culate the sample circular dispersion (Fisher, 1993) defined
as δ = 1−m2(

2R2
) , where m2 denotes the second central trigono-

metric moment and is equal to m2 =
1
n

∑n
j=1 cos2

(
θi − θ

)
.

We also use the circular standard error defined as the square
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Figure 2. Illustration of the difference between calculating the mean
direction using x and y components of the 3D and 2D unit vectors.
In the first approach, the vectors impact the resulting dip directions
differently. Triangles with greater dip angles have a more significant
impact, and more horizontally oriented triangles have minor x and
y components, making their contribution less important. In the 2D
analysis, all vectors are equally important because they all have unit
length.

root of the sample circular dispersion divided by the num-
ber of samples σ 2 = δ

n
. Using the above quantities, non-

parametric methods can be used to estimate 100(1−α)%
confidence intervals for θ :

(θ − arcsin
(
z 1

2α
σ
)

, θ + arcsin
(
z 1

2α
σ
)
), where z 1

2α
is the

upper 100
(

1
2α
)

% point of the N (0,1) distribution.

4 Propositions

4.1 A guide to propositions

This section summarizes the main theoretical findings from
the four key propositions, focusing on their implications for
fault-related triangles (the workflow of the theoretical part is
presented in Fig. 3).

Proposition 1 shows that the dip direction of fault-related
triangles is controlled by the orientation of the fixed edge on
the footwall and the position of the third point on the hanging
wall given constant elevation difference between the hanging
wall and the footwall. The dip direction can only be one of
two values, differing by 180°, and is orthogonal to the fixed
edge. The third point’s position (left or right of the edge)
determines which direction is observed (Fig. 4).

Proposition 2 extends this by proving that adding horizon-
tal triangles from the footwall does not alter the mean dip
direction of the fault-related triangles. Since the normal vec-
tors of footwall triangles are [0,0,1], they do not influence
the dip direction.

Proposition 3 considers a fixed edge on the footwall and
a third point on the hanging wall. It investigates the effect
of elevation errors and concludes that the expected dip direc-
tion remains unchanged, even when elevation uncertainties
are introduced. This demonstrates that fault analysis remains
robust despite moderate elevation inaccuracies.

Proposition 4 generalizes Proposition 2 for cases with el-
evation uncertainties. Adding triangles with uncertain eleva-
tions does not affect the mean dip direction because their X
and Y components average to zero.

Together, these propositions show that fault-related trian-
gles reliably indicate dip direction, even in the presence of
elevation uncertainties.

4.2 Propositions

In the following analysis, we assume that the considered tri-
angles are non-vertical and non-horizontal. The reason is that
horizontal triangles give no information about the dip direc-
tion, and, in the case of vertical triangles, there is no possi-
bility of deciding which of the two directions corresponds to
the direction of the dip.

Proposition 1.
Let T be a set of non-vertical and non-horizontal trian-

gles genetically related to the fault, and let e := {p1p2} be
the fixed edge lying on the footwall. When the difference be-
tween the hanging wall and the footwall is constant, then the
following facts hold:

(A) There are only two possible dip directions for triangles
in T , d1 and d2, which have a dip direction difference
of 180°.

(B) The two different dip directions d1 and d2 are orthogo-
nal to e.

(C) Moreover, the specific value of the direction d1 or d2
depends on whether the third point p3 located at the
hanging wall lies to the left or right of the line contain-
ing e.

Proof. See Appendix B and the corresponding illustration
(Fig. 4).

Observation 1. For a fixed horizontal edge on the foot-
wall and a vertical fault dipping to the west (azimuth 270°),
the probability that a triangle will dip precisely to the east
(azimuth 90°) is zero.

Proof. For a triangle to dip exactly to the east, one should
have an edge aligned with the N–S direction. However, the
third point must be to the right of such an edge. However,
the hanging wall is to the left of this edge, so no appropriate
points can be sampled from the surface of the hanging wall
or the footwall.

Proposition 2. Extending Proposition 1, we demonstrate
that adding horizontal triangles from the footwall does not
alter the mean dip direction of fault-related triangles.

Proof. The set of triangles on the right side of the edge can
be divided into those with the third point on the hanging wall
(indices from 1 to k) and those on the footwall (vertices from
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Figure 3. Workflow in the theoretical part of the study. Panel (a) relates to Proposition 1. In this proposition, an edge e is fixed on the surface
of the footwall. Then, the dip directions of triangles depend on whether the third point sampled from the hanging wall lies either to the left
or to the right of e. The points on the surfaces of the hanging wall and footwall have constant elevation. Panel (b) relates to Proposition 2,
and it shows a more general scenario than presented in panel (a). Here, for a fixed edge e, dip directions of triangles depend on whether the
third point lies either to the left or right of e. We do not require that the points lie on the hanging wall because the [0, 0, 1] vectors from the
footwall will not affect the average dip direction of triangles. (c) Here, we add uncertainty to the elevation of points (Proposition 3). Then,
for a fixed edge e, we investigate the average dip direction of triangles with the third point from the hanging wall. (d) The last scenario is the
most general scenario (Proposition 4), in which points have uncertain elevations and are no longer required to be sampled from the surface
of the hanging wall. In other words, for a fixed edge e, the dip directions of triangles depend on whether the third point lies either to the left
or to the right of e. We no longer require that points lie only on the hanging wall. This is because the expected values of X and Y coordinates
associated with triangles on the footwall are zero.

k+ 1 to n).

v1 =
[
x1,y1,z1

]
v2 =

[
x2,y2,z2

]
...

vk =
[
xk,yk,zk

]
vk+1 =

[
xk+1,yk+1,zk+1

]
= [0,0,1]

...

vn =
[
xn,yn,zn

]
= [0,0,1]

(2)

However, we know that all vectors from the footwall starting
from vk+1 to vn have the form [0,0,1] and that they con-
tribute nothing to the dip direction.

Next, we can try to adapt and rewrite Proposition 1 (the
third point on the surface of the hanging wall) for uncertain
elevation data. It means that we add normally distributed er-
rors (with an expected value equal to zero) to the elevations.
Using this assumption, Proposition 1 can be rewritten in the
following way.
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Figure 4. Illustration of Proposition 1. There are three triangles that share the same edge on the footwall. Two of the triangles (yellow and
orange) have the same dip direction (302°). In other words, the projections of the yellow and orange vectors onto the horizontal plane are
parallel. We note that l (e) denotes the line containing e. Then, the remaining points forming the yellow and orange triangles lie to the left to
l (e). The third triangle (cyan) has the opposite direction (122°), and the third point lies to the right of l (e). In panel (c), we present the three
orientation measurements from panels (a) and (b) on the spherical projection. The spherical projection was performed using the Stereonet
software (Allmendinger et al., 2011; Cardozo and Allmendinger, 2013).

Proposition 3.
When introducing elevation uncertainties, we find that the

expected dip direction remains consistent with the error-free
case. The third point is required to be from the surface of the
hanging wall.

Proof. See Appendix C.
Proposition 4.
This proposition generalizes Proposition 3, showing that

adding footwall triangles with uncertain elevations still does
not affect the mean dip direction. The X and Y components
of the footwall triangles’ normal vectors average to zero, fur-
ther confirming the robustness of the method under elevation
uncertainties.

Proof. As in the deterministic example (Proposition 2), the
set of triangles on the right side of the edge can be divided
into those with the third point on the hanging wall (indices

from 1 to k) and those with the third point on the footwall
(vertices from k+ 1 to n). To complete the proof, we need
to show that the expected values of the X and Y coordinates
of the normal vectors representing triangles with third points
lying on the surface of the footwall (from vk+1 to vn) are
zero. We present the desired proofs in Appendix D.

v1 =
[
x1,y1,z1

]
v2 =

[
x2,y2,z2

]
...

vk =
[
xk,yk,zk

]
vk+1 =

[
xk+1,yk+1,zk+1

]
...

vn =
[
xn,yn,zn

]
(3)
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This implies that the sums of theX and Y coordinates from
vk+1 to vn are zero:

∑n
k+1xi =

∑n
k+1yi = 0. Therefore, as

in the deterministic case, adding these sums will not change
the first two coordinates of the expected normal vector. Ap-
pendix D provides further discussion on when the mean vec-
tor from vk+1 to vn is parallel to [0,0,1].

4.3 Experimental results

Our first case study involves irregularly scattered points,
commonly observed in borehole datasets, with a fault dip-
ping to the west (Fig. 5). To better understand the impact of
preferred edge orientation and the imbalance between points
on the hanging wall and footwall, we also examined regularly
scattered data with a fault trending obliquely to the main grid
axes (Fig. 6). In these case studies, the true (ground truth)
orientations of the faults were 270 and 340.43°, respectively,
which can be compared against the calculated statistics (Ta-
ble 1).

Standard statistical methods, including the estimation of
confidence intervals, demonstrated promising utility in infer-
ring the true dip direction. For example, the minor deviations
of 1–2° between error-free and with-error scenarios suggest
that the model is robust in the presence of elevation errors,
reinforcing the conclusions from Proposition 4. These minor
deviations indicate that the method provides reliable dip di-
rection estimates even under uncertain elevation conditions.

However, limitations remain. The confidence intervals did
not contain the true dip direction, with a mismatch ranging
from 2 to 5°. It is unclear whether this mismatch is due to the
dataset limitations or the elevation errors’ specific character-
istics. Although both the directional dispersion and circular
standard error increased slightly in the case studies with un-
certain elevations (Table 1), the increase was not significant,
and the circular standard error remained low, resulting in very
narrow confidence intervals.

5 Discussion

5.1 New insights from geometric and data analysis

In planar structures such as triangles, the strike is defined by
the intersection of the triangle and a horizontal plane (Fos-
sen, 2006). Therefore, a triangle with a flat-lying edge can be
interpreted as having a strike parallel to this edge. The deter-
mination of the dip direction for such triangles requires solv-
ing a computational geometry problem: determining whether
the third point lies to the left or right of this flat-lying edge
(De Berg et al., 2008).

Our study shows that flat-lying edges parallel to the fault
strike are privileged due to the greater number of points ly-
ing on one side of the edge. As a result, these directions carry
more weight in statistical calculations and are more likely to
represent the true dip direction. Identifying these privileged
dip directions is essential for accurate fault orientation pre-

dictions, as the concentration of observations around the true
dip direction indicates a reliable methodology. Previous work
identified an issue of the spatial distribution of points in re-
lation to the boundary of the study area and the fault strike
(Michalak et al., 2021). However, the work here addressed
this problem (Fig. 6a, b). The formal reasoning and exper-
imental results suggests that, even if the fault strike trends
obliquely to the boundary of the study area and the align-
ment of the regular grid of points, the algorithm still gives a
preference for the edges which are parallel to the fault strike.

At this stage, it may be beneficial to complement standard
statistical approaches with qualitative observations based on
the distribution of dip directions. For example, in Figs. 5c, d
and 6c, d, the directions opposite to the true dip direction (90
and 160.43°) are sparsely represented, which may help con-
strain the interpretation by highlighting directions that are
unlikely to represent the true dip. This pattern aligns with the
formal results from Proposition 1, which indicate that, for a
fixed edge parallel to the fault strike on the upper wall (hang-
ing wall), no dip directions will point precisely toward the
upper wall (Observation 1). This observation provides addi-
tional confidence in the reliability of the predicted dip direc-
tions.

5.2 Comparison with similar approaches

In most studies related to geological model uncertainty, mul-
tiple faults are considered to estimate the uncertainty of the
fault network or geometry (Cherpeau and Caumon, 2015;
Lecour et al., 2001). The variability of faults is typically ex-
pressed through their parametrization, which often includes
the strike and dip of the fault (Cherpeau et al., 2012; Aydin
and Caers, 2017; Goodwin et al., 2022). In contrast, in this
study, we set the orientation of the fault constant to provide
ground truth data, enabling us to investigate the mathematical
relationships between points and dip directions of triangles
genetically related to the fault.

By keeping the fault orientation constant, we could isolate
the effects of data uncertainties and mathematically investi-
gate the relationship between points and dip directions. This
controlled environment provides a more precise assessment
of how data uncertainties, specifically elevation errors, influ-
ence dip direction calculations without the added complexity
of variable fault parameters. One important limitation of the
study is that the proposed method does not differentiate be-
tween normal and reverse dip-slip faults (see a broader dis-
cussion in Michalak et al., 2021).

To investigate the impact of data uncertainties on the cal-
culated fault orientation, we added errors to the elevation
values (Z coordinate), following a normal probability dis-
tribution with a mean equal to the measured elevation. The
assumption of a constant Z coordinate is conceptually sim-
ilar to the simple kriging approach, in which the expected
value of the random variable is assumed to be the same at
every point x in the domain (Wackernagel, 1995). Since our
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Figure 5. A geological horizon displaced by a vertical fault; its normal vector points to the west (azimuth 270°). (a) A case study with
elevation data without errors. (b) A case study with points having elevation data with errors (mean= 0, standard deviation= 0.05). (c) A
spherical projection for the orientation measurements as three-element subsets (n= 122304) of the points corresponding to panel (a). (d) A
spherical projection for the orientation measurements as three-element subsets (n= 161700) of the points corresponding to panel (b). The
small cloud at the center of the plot (pink polygon) corresponds to almost-flat triangles lying entirely on the same side of the fault. The
spherical projection was conducted using Dips software (Rocscience, 2017). We used pole vectors, upper-hemisphere projection, and equal-
angle projection.

Table 1. Statistical results for the case studies presented in Figs. 5 and 6. The ground truth values are 270 and 340.43° for Figs. 5 and 6,
respectively.

Without error With error Without error With error
(Fig. 5a, c) (Fig. 5b, d) (Fig. 6a, c) (Fig. 6b, d)

Number of observations 122 304 161 698 109 111 157 175
Mean direction (3D) 276.35° 275.02° 343.16° 343.39°
Mean direction (2D) 275.91° 273.28° 343.84° 345.08°
Median direction (2D) 276.16° 274.04° 345.96° 345.81°
Resultant length (2D) 84 808.32 77 634.55 76 177.25 78 671.65
Mean resultant length (2D) 0.69 0.48 0.70 0.50
Sample circular variance (2D) 0.31 0.52 0.30 0.50
Circular standard deviation (2D) 0.86 1.21 0.85 1.18
Sample circular dispersion (2D) 0.71 1.53 0.70 1.40
Circular standard error (2D) 0.00240 0.00307 0.00254 0.00298
95 % confidence intervals (2D) [275.64°, 276.18°] [272.94°, 273.63°] [343.55°, 344.12°] [344.75°, 345.42°]
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Figure 6. Orientation measurements using a combinatorial algorithm for a regular grid of points and a vertical fault trending obliquely to
the main axes of the grid. The vertical fault has a normal vector with azimuth 340.43°. (a) Input points without elevation errors. (b) Input
points with elevation errors (mean= 0, standard deviation= 0.05). (c) A spherical projection for the orientation measurements as three-
element subsets (n= 109111) of the points without elevation errors corresponding to panel (a). (d) A spherical projection for the orientation
measurements as three-element subsets (n= 157252) of the points with elevation errors corresponding to panel (b). The small cloud at the
center of the plot (pink polygon) corresponds to almost-flat triangles lying entirely on the same side of the fault. The spherical projection
was conducted using Dips software (Rocscience, 2017). We used pole vectors, upper-hemisphere projection, and equal-angle projection.

model assumes independence of errors across boreholes, a
possible direction for future development would be to ex-
plore the effects of spatially correlated errors. In our case,
the geographical coordinates (X and Y ) are assumed to be
known. Introducing uncertainties in the geographical coordi-
nates, where locations follow a normal probability distribu-

tion (Allmendinger et al., 2011), would present a significant
challenge; when coordinates are uncertain, it becomes diffi-
cult to define whether a point lies to the left or right of a line,
as the vertices of that line are also uncertain.
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Figure 7. Triangulated network of example bathymetric GEBCO data stored in a quasi-regular grid. (a) A repeating valley–ridge pattern with
a marked rectangle analyzed in panel (b); it is located at a curved axis of a negative landform as testified by opposing dip directions near the
axis. (b) A zoom-in of the rectangle marked in panel (a); here we can see that triangles with the same elevations of nodes yield a flat triangle,
that triangles with a flat-lying edge but a third vertex with a different elevation than the other two points have dip direction orthogonal to the
flat edge, and that the interiors of triangles are filled with the color corresponding to the value of the azimuth from panel (a). (c) A histogram
of circular data related to the TIN model. The histogram shows narrow azimuthal groups with approximately 4° spacing corresponding to
the edges of a regular grid. The length and color of each segment represent the number of triangles in the corresponding group.

5.3 Importance of the results in modeling spatial data

The results of this study can be applied in GIS-based di-
rectional and statistical analyses of topographic vector data,
such as Triangulated Irregular Network (TIN) objects fre-
quently used in GIS software. In particular, our findings
support the explanation of singular statistical effects in az-
imuthal analyses of regular topographic data. To support this
claim, we note the following:

1. TIN models are used in the analysis of bathymet-
ric GEBCO (Gridded Bathymetry Data, 2024) data
(Fig. 7a) (Włodarczyk-Sielicka et al., 2022; Idzikowska
et al., 2024).

2. GEBCO data points are often stored in quasi-regular
point grids. Although these points are regularly spaced

in geographic coordinates, when projected into a Carte-
sian system, the individual points are no longer reg-
ularly aligned. This leads to the formation of quasi-
parallel edges in the TIN model (Fig. 7b). This quasi-
regular alignment of points often results in triangles
with nearly parallel edges, creating preferred directions
for dip calculations.

3. Limited precision of the elevation measurements can
lead to the rounding of elevation values to integers. If
points within a specified neighborhood are recorded as
having only two distinct integer values, then this results
in a constant elevation difference between two sets of
points. This rounding can lead to flat edges (edges with
two identical elevation values) or flat triangles (trian-
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gles with three identical elevation values), as marked in
Fig. 7b.

For the specific combination of models, spatial distribution of
points, and limited precision described above, the conditions
from Proposition 1 may apply, explaining the concentration
of dip direction values in azimuthal histograms (Fig. 7c).
Only eight narrow groups of azimuth values are present in
the entire dataset due to the eight preferred triangle edge di-
rections in the TIN. Two groups (130 and 313°) are signifi-
cantly underrepresented, likely due to the lack of flat edges
striking NE–SW. This feature is purely based on the data rep-
resentation. Users must take this into account during analysis
to avoid skewed interpretations of fault orientations.

6 Conclusion

This study aimed to bridge computational geometry and
structural geology to explore the behavior of triangles re-
lated to a horizon displaced by a vertical fault. We conducted
analyses under both idealized (two elevations) and uncer-
tain (added elevation error) conditions. A key challenge was
adapting concepts from computational geometry, such as de-
termining whether a point lies to the left or right of a line,
to a geological context. The main conclusion is particularly
useful for researchers working with triangulated surfaces –
either explicitly or implicitly – for directional surface analy-
sis (e.g., azimuth, dip direction maps), especially when those
surfaces are affected by sampling uncertainty.

Key findings from the study include the following:

– This study shows that, for directional analyses of trian-
gulated surfaces, determining the dip direction of a tri-
angle with a flat-lying edge requires us to solve a com-
putational geometry problem, determining whether the
third point lies to the left or right of the edge.

– The problem of assessing fault orientation can be ap-
proached as an optimization task, where the fault ori-
entation is estimated by identifying the edge with the
maximum number of points on one side, leading to the
maximum number of triangles with the same dip direc-
tion.

– Our formal analysis shows that introducing measure-
ment errors does not affect the expected dip direction of
samples, which remains identical to the error-free case.
Moreover, the statistical results and orientation distribu-
tions remain robust across different fault and study area
orientations, suggesting practical applications.

– The importance of these findings is particularly relevant
for directional analyses of imprecise topographic data,
such as azimuth maps of bathymetric point datasets dis-
tributed in regular grids. The concentration of azimuths
around the N–S, W–E, NE–SE, and NE–SW directions

corresponds directly to the edges of the triangulation in
the regular grid.

Appendix A

To generate all possible triangles from a given set of bore-
holes, we used an algorithm to generate an all k-element
(k = 3) subsets from an n-element set X (k < n) in a lex-
icographic order (Lipski, 2004). To explain how the algo-
rithm works, we first note that every k-element subset can be
uniquely represented by an increasing sequence of length k
of elements from X. For example, the subset {3,5,1} can be
represented as a sequence (1, 3, 5). The first step in the algo-
rithm involves writing the first k digits from X. For example,
if k = 4, the first sequence would be (1, 2, 3, 4). Then, the
sequence succeeding (a1, . . .,ak) is

(b1, . . .,bk)=
(
a1, . . .,ap−1,ap + 1,ap + 2,

. . .,ap + k−p+ 1
)
, (A1)

where

p =max{i : ai < n− k+ i}. (A2)

Likewise, the sequence which succeeds (b1, . . .,bk) is

(c1, . . .,ck)=
(
b1, . . .,bp′−1,bp′ + 1,bp′ + 2, . . .,bp′

+k−p′+ 1
)
, (A3)

where

p′ = p− 1 when bk = n and

p′ = k when bk < n. (A4)

During the procedure, we assume that the se-
quences (a1, . . .,ak) and (b1, . . .,bk) are different from
(n− k+ 1, . . .,n), the last sequence in our order. Here, p
and p′ can be conceptualized as indices where updates of
digits starting from the largest (k) index terminate. If p or p′

are determined, then ap or bp′ can easily be found, allowing
their use in the update procedure (Eqs. A1 and A3). We note
that the number of k-element subsets from an n-element
set can be determined using the binomial coefficient. For
example, if n= 6 and k = 4, then(
n

k

)
=

n!

k!(n− k) !
=

4! · 5 · 6
4! · 2!

=
30
2
= 15. (A5)

Appendix B: A formal proof of Proposition 1

Proposition 1.
Proof. We note that, intuitively, the result from parts A and

B is in line with the standard concept of a strike of a geolog-
ical planar feature defined as the intersection of this planar
feature and a horizontal plane (Fossen, 2006; see also Fig. 4
as an illustration of the proposition).
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To formally prove the proposition, particularly part C, we
will firstly refer to the following orientation test (De Berg et
al., 2008).

Fact 1 (orientation test) (De Berg et al., 2008).
Given three vertices, s = (s1, s2) , t = (t1, t2), and u=

(u1,u2), the sign of the determinant

|D| = det

 1 t1 t2
1 u1 u2
1 s1 s2

 (B1)

determines whether s lies left or right of the oriented vector
tu.

Proof of Proposition 1.
Part A of Proposition 1.
Let p1 = (x1,y1,z1) and p2 = (x2,y2,z2) be points form-

ing an edge. For simplicity, let us assume that p1 and p2
are located on the surface of the footwall. The third point
p3 = (x3,y3,z3) can be anywhere on the surface of the hang-
ing wall. Therefore, we will consider a set of many trian-
gles. Because the walls are horizontal and the difference be-
tween walls is constant, we can write p1 = (x1,y1,a), p2 =

(x2,y2,a), and p3 = (x3,y3,b), where a 6= b. Let k := a−b
be the positive constant, the elevation difference between
walls.

The two vectors spanning the triangle’s plane are as fol-
lows:

v1 =
[
x2− x1,y2− y1,0

]
, (B2)

v2 =
[
x3− x1,y3− y1,−k

]
. (B3)

Using the cross-product, the coordinates of the normal vector
of the triangle defined by the above vectors can be calculated
via the mnemonic rule:

det

[
x2− x1 x3− x1 n1 [1]
y2− y1 y3− y1 n1 [2]
0 −k n1 [3]

]
=

(x2− x1) · (y3− y1)
·n1 [3]+ (y2− y1)
· − k · n1 [1]+ 0
·(x3− x1) · n1 [2]
−n1 [1] · (y3− y1)
·0− n1 [2] · −k
·(x2− x1)− n1 [3]
·(x3− x1) · (y2− y1) .

(B4)

In summary,

n1 [1]= (y2− y1) · −k− (y3− y1) · 0

= (y2− y1) · −k

=−k · (y2− y1) (B5)
n1 [2]= 0 · (x3− x1)− (−k) · (x2− x1)= k · (x2− x1) (B6)
n1 [3]= (x2− x1) · (y3− y1)− (x3− x1)(y2− y1)

= x2y3− x2y1− x1y3+ x1y1− x3y2+ x3y1+ x1y2

= x2y3+ x3y1+ x1y2− x2y1− x1y3− x3y2. (B7)

As of now, we have two notes:

– Every non-vertical triangle has two normal vectors: one
is directed downwards, and the other is directed up-
wards. We are only interested in normal vectors directed
upwards to avoid duplicate representations and ensure
consistent representation of observations.

– Note that only the edge on the footwall is fixed and not
the third point, whose coordinates affect the sign of the
third coordinate of the normal vector (Eq. B7). There-
fore, it can be concluded that we do not investigate a
particular normal vector but a set of many normal vec-
tors. Moreover, given only the position of the fixed edge,
the normal vector’s third coordinate is unknown, and
three cases must be considered: when it is positive, neg-
ative, or zero. We will now consider these three cases.

I. If n1 [3]> 0, then the coordinates of the normal vector
look as above, which means that the vector is directed
upwards.

II. If n1 [3]< 0, then it means that the normal vector is di-
rected downwards, and the coordinates must be multi-
plied by minus 1 to adhere to the above rule that there is
only one representation of normal vectors.

III. If n1 [3]= 0, then the normal vector is directed horizon-
tally (orthogonal to the vectors v1 =

[
x2− x1,y2− y1

]
and v2 =

[
x3− x1,y3− y1

]
), and the corresponding tri-

angle is vertical, contrary to the initial assumption of
considering only non-vertical triangles. Therefore, we
no longer consider this scenario.

Now, according to (II), we multiply coordinates from
Eqs. (B5)–(B7) by minus 1.

n2 [1]= k · (y2− y1) (B8)
n2 [2]=−k · (x2− x1) (B9)
n2 [3]=−(x2y3+ x3y1+ x1y2− x2y1− x1y3− x3y2) (B10)

We observe that the coordinates of normal vectors (Eqs. B5–
B7 and B8–B10) are not the same, which means that we ob-
tained two distinct normal vectors directed upwards, n1 and
n2, and which have a dip direction difference of 180°. The
vectors are directed upwards because the third coordinate is
positive. So, part A of Proposition 1 is proven.

Part B of Proposition 1.
As we already know from (A), there are only two pos-

sible dip directions of the infinite set of triangles. These
dip directions have a directional difference of 180°. There-
fore, to prove that they are orthogonal to the edge p1p2 =[
x2− x1,y2− y1

]
, it is enough to prove this for one vector:

n1 or n2 projected on the horizontal plane (the projection of
the normal vector onto the horizontal plane does not change
its direction). Using the dot product (·), we can show it for
n̆1, where n̆1 denotes the projection (a 2D variant) of the first
normal vector onto the horizontal plane:

p1p2 · n̆1 = (x2− x1) · −k · (y2− y1)+ (y2− y1) · k · (x2− x1)

=−k (x2− x1)(y2− y1)+ k (x2− x1)(y2− y1)= 0. (B11)

Part C of Proposition 1.
We have a fixed edge on the footwall, and we can consider

two cases: when the point lies to the left or to the right of the
line containing the edge.
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Using Fact 1 (orientation test), we can determine whether
p3 = (x3,y3) lies to the left, to the right, or on the edge p1p2 :

|D| = det

[
1 x1 y1
1 x2 y2
1 x3 y3

]
=

x2y3+ x3y1+ x1y2
−y1x2− y2x3− y3x1.

(B12)

We note that the value can be positive, negative, or
zero depending on whether the point p3 lies left,
right, or on the edge p1p2. Recall that, in part A,
this value was also the third coordinate of the first
non-horizontal normal vector n1 [3], and the additive
inverse −(x2y3+ x3y1+ x1y2− x2y1− x1y3− x3y2)

was the third coordinate of the second normal
vector. Therefore, the signs of the expressions
sgn(x2y3+ x3y1+ x1y2− y1x2− y2x3− y3x1) 6=

sgn(−(x2y3+ x3y1+ x1y2− y1x2− y2x3− y3x1)) si-
multaneously determine the position of the point p3 relative
to the edge p1p2 and the choice of one of two possible
normal vectors. In the case of |D| = 0, the points p1,p2
(footwall) and p3 (hanging wall) are collinear in 2D space
but not in 3D space, and the corresponding triangle is
vertical, which is beyond the scope of our study.

Appendix C

Proposition 3. Analysis with elevation uncertainties re-
stricted to the hanging wall regarding the free vertices.

Similar calculations can be conducted for data with fixed
geographical position but uncertain elevations. To achieve
this, the uncertain elevations can be represented as sums of
the measured constant elevations and a random variable ε
with the normal distribution N

(
0,σ 2).

Therefore, the uncertain elevations of n points are inde-
pendent random variables ε1, . . .,εn, and their expected val-
ues are equal to zero; i.e., E [ε1]= . . .= E [εn]= 0. Here we
consider x1,y1,z1,x2,y2,z2 to be fixed constants.

From a practical viewpoint, we firstly create the set of
points from the uniform distribution displaced by a vertical
fault and then add error to elevation data.

From then on, we have points p1 = (x1,y1,z1+ ε1) and
p2 = (x2,y2,z1+ ε2) forming an edge on the footwall. The
third point p3 = (x3,y3,z2+ ε3) can lie anywhere on the
hanging wall. For now, we consider the point p3 to be fixed,
but, ultimately, it will traverse the points on the hanging wall
to compute their average.

The random vectors spanning the plane of a random trian-
gle are calculated as follows:

v1 =
[
x2− x1,y2− y1,ε2− ε1

]
, and let

α := ε2− ε1. Then
v1 =

[
x2− x1,y2− y1,α

]
, (C1)

v2 =
[
x3− x1,y3− y1,z2+ ε3− z1− ε1

]
, and let

k := −(z2− z1) with β := ε3− ε1.

Then v2 =
[
x3− x1,y3− y1,−k+β

]
. (C2)

The normal vector can be calculated using the mnemonic rule
for cross-product:

det

[
x2− x1 x3− x1 n1 [1]
y2− y1 y3− y1 n1 [2]
α −k+β n1 [3]

]
=

(x2− x1) · (y3− y1)
·n1 [3]+ (y2− y1)
·(−k+β) · n1 [1]
+α · (x3− x1) · n1 [2]
−n1 [1] · (y3− y1) ·α
−(x2− x1) · (−k+β)
·n1 [2]− (y2− y1)
·(x3− x1) · n1 [3] .

(C3)

In summary,

n1 [1]= (−k+β) · (y2− y1)−α · (y3− y1) (C4)
n1 [2]= (k−β) · (x2− x1)+α · (x3− x1) (C5)
n1 [3]= (x2− x1) · (y3− y1)− (x3− x1)(y2− y1) . (C6)

As in the deterministic case, we note that the third coordinate
can be positive or negative. If it is positive, then the coor-
dinates stay as they are. Otherwise, all coordinates must be
multiplied by minus 1. Then, the coordinates are as follows:

n2 [1]= (k−β) · (y2− y1)+α · (y3− y1) (C7)
n2 [2]= (−k+β) · (x2− x1)−α · (x3− x1) (C8)
n2 [3]=−(x2− x1) · (y3− y1)+ (x3− x1)(y2− y1) . (C9)

For both cases, we can now calculate the expectations of the
first two coordinates, given that the above expressions con-
tain random variables.

For the first case (positive Z value),

E[n1 [1]] =
E
[
(−k+β) · (y2− y1)−α · (y3− y1)

]
=

(−k+E
[
β]) · (y2− y1)−E[α

]
· (y3− y1)=

(−k+ (E [ε3] −E[ε1])) · (y2− y1)

−(E [ε2] −E[ε1]) · (y3− y1)=

−k · (y2− y1) .

(C10)

Since E[n1 [1]] does not depend on y3, averaging over all
hanging wall points does not change the expected value,
which will remain equal to −k · (y2− y1):

E[n1 [2]] =
E [(k−β) · (x2− x1)+α · (x3− x1)]=
(k− (E [ε3] −E[ε1])) · (x2− x1)

+(E [ε2] −E[ε1]) · (x3− x1)=

k · (x2− x1) .

(C11)

Since E[n1 [2]] does not depend on x3, averaging over all
hanging wall points does not change the expected value,
which will remain equal to k · (x2− x1).

For the second case (negative Z value),

E[n2 [1]] =
E
[
(k−β) · (y2− y1)+α · (y3− y1)

]
=

k · (y2− y1) .

(C12)

As previously, sinceE[n2 [1]] does not depend on y3, averag-
ing over all hanging wall points does not change the expected
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value, which will remain equal to k · (y2− y1).

E[n2 [2]] =
E [(−k+β) · (x2− x1)−α · (x3− x1)]=
−k · (x2− x1)

(C13)

Again, as E[n2 [2]] does not depend on x3, averaging over
all hanging wall points does not change the expected value,
which will remain equal to −k · (x2− x1).

Appendix D

Proposition 4. Analysis with elevation uncertainties with
free points on the surfaces of the hanging wall or footwall.

Here, we continue the analysis from the Sect. 4.2 by con-
sidering only triangles with third points lying on the surface
of the footwall (from vk+1 to vn). As we have n− k trian-
gles, we need n− k+2 points on the footwall. Denote them
by pi = (xi,yi,zi + εi), where i = 1,2, . . .,n− k+ 2.

We fix the edge e on the surface of the footwall defined by
two points: p1 = (x1,y1,z1+ ε1) and p2 = (x2,y2,z1+ ε2).
Because the edge e is fixed, the associated coordinates
x1,y1,z1,x2,y2,z2 are considered fixed constants. The third
point p3 is sampled from the surface of the footwall. As pre-
viously, we fix the point p3 for a moment, but, ultimately, it
will traverse the points on the hanging wall to compute their
average.

The third point p3 = (x3,y3,z1+ ε3) is sampled from the
surface of the footwall. We calculate the spanning vectors

v1 =
[
x2− x1,y2− y1,α

]
and

v2 =
[
x3− x1,y3− y1,β

]
,

with

α := ε2− ε1

and

β := ε3− ε1.

The normal vector can be calculated using the mnemonic rule
for cross-product:

det

[
x2− x1 x3− x1 n1 [1]
y2− y1 y3− y1 n1 [2]
α β n1 [3]

]
=

(x2− x1) · (y3− y1)
·n1 [3]+ (y2− y1)
·(β) · n1 [1]+α
·(x3− x1) · n1 [2]
−n1 [1] · (y3− y1)
·α− (x2− x1) · (β)
·n1 [2]− (y2− y1)
·(x3− x1) · n1 [3] .

(D1)

In summary,

n1 [1]= β · (y2− y1)−α · (y3− y1) (D2)
n1 [2]=−β · (x2− x1)+α · (x3− x1) (D3)

n1 [3]= (x2− x1) · (y3− y1)− (x3− x1) · (y2− y1) . (D4)

As previously, we start the calculations of expected values of
E[n1 [1]], E[n1 [2]], E[n1 [3]] and then the averages over all
footwall points.

E[n1 [1]] =
E
[
β · (y2− y1)−α · (y3− y1)

]
=

E [β](y2− y1)−E [α](y3− y1)= 0
(D5)

Since E[n1[1]] = 0, the average over all footwall points does
not change and will remain equal to 0.

E[n1 [2]] =
E [−β · (x2− x1)+α · (x3− x1)]=
−E [β](x2− x1)+E [α](E [x3− x1])= 0

(D6)

Since E[n1[2]] = 0, the average over all footwall points does
not change and will remain equal to 0.

E[n1 [3]] =
(x2− x1) · (y3− y1)− (x3− x1) · (y2− y1) .

(D7)

Now, taking the average over all footwall points, we get

(x2− x1) ·
(y3− y1)+ . . .+ (yn−k+2− y1)

n− k

−
(x3− x1)+ . . .+ (xn−k+2− x1)

n− k

· (y2− y1). (D8)

Observe that E[n1 [3]] = 0 if and only if

(x2− x1) · [(y3− y1)+ . . .+ (yn−k+2− y1)]

= [(x3− x1)+ . . .+ (xn−k+2− x1)]

· (y2− y1) , (D9)

i.e., if and only if either w= [(x3−x1)+ . . .+(xn−k+2−x1),
(y3−y1)+ . . .+(yn−k+2−y1)] is the zero vector or it is non-
zero and parallel to the vector

[
x2− x1, y2− y1

]
, which hap-

pens very seldom.
One of the trivial cases for which E[n1 [3]] 6= 0 is when

(x3− x1)+ . . .+ (xn−k+2− x1)

x2− x1

6=
(y3− y1)+ . . .+ (yn−k+2− y1)

y2− y1
, (D10)

assuming x2 6= x1 and y2 6= y1.
Another trivial case for which E[n1 [3]] 6= 0 is when x2 =

x1 and (x3−x1)+. . .+(xn−k+2−x1) 6= or when y2 = y1 and
(y3− y1)+ . . .+ (yn−k+2− y1) 6= 0.
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Idzikowska, M., Pająk, K., and Kowalczyk, K.: Possibility and qual-
ity assessment in seafloor modeling relative to the sea surface us-
ing hybrid data, Trans. GIS, https://doi.org/10.1111/tgis.13178,
2024.

Jing, J., Tang, Z., Yang, Y., and Ma, L.: Impact of forma-
tion slope and fault on CO2 storage efficiency and contain-
ment at the Shenhua CO2 geological storage site in the Or-
dos Basin, China, Int. J. Greenh. Gas Control, 88, 209–225,
https://doi.org/10.1016/j.ijggc.2019.06.013, 2019.

La Fontaine, N. M., Le, T., Hoffman, T., and Hofmann, M.
H.: Integrated outcrop and subsurface geomodeling of the
Turonian Wall Creek Member of the Frontier Formation,
Powder River Basin, Wyoming, USA, Mar. Pet. Geol., 125,
https://doi.org/10.1016/j.marpetgeo.2020.104795, 2021.

Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields
and 3D cartography in geology: Principles of a method
based on potential interpolation, Math. Geol., 29, 571–584,
https://doi.org/10.1007/bf02775087, 1997.

Lark, R. M., Mathers, S. J., Thorpe, S., Arkley, S. L.
B., Morgan, D. J., and Lawrence, D. J. D.: A sta-
tistical assessment of the uncertainty in a 3-D geologi-
cal framework model, Proc. Geol. Assoc., 124, 946–958,
https://doi.org/10.1016/j.pgeola.2013.01.005, 2013.

Lecour, M., Cognot, R., Duvinage, I., Thore, P., and Du-
lac, J. C.: Modelling of stochastic faults and fault net-
works in a structural uncertainty study, Pet. Geosci., 7,
https://doi.org/10.1144/petgeo.7.s.s31, 2001.

Liang, D., Hua, W. H., Liu, X., Zhao, Y., and Liu, Z.: Uncertainty
assessment of a 3D geological model by integrating data errors,
spatial variations and cognition bias, Earth Sci. Inf., 14, 161–178,
https://doi.org/10.1007/S12145-020-00548-4, 2021.

Lipski, W.: Kombinatoryka dla programistów [Combinatorics for
programmers], Wydawnictwa Naukowo-Techniczne, Warszawa,
39–40, 2004.

Lund, U., Agostinelli, C., Arai, H., Gagliardi, A., Garcia Portuges,
E., Giunchi, D., Irisson, J.-O., Pocermnich, M., and Rotolo, F.:
Package “circular”: Circular Statistics, Repos. CRAN, 1–142,
2017.

Mardia, K. V. and Jupp, P. E.: Directional Statistics, Wiley, 350 pp.,
https://doi.org/10.1002/9780470316979, 2008.

Medici, G., Ling, F., and Shang, J.: Review of discrete fracture net-
work characterization for geothermal energy extraction, Front.
Earth Sci., 11, https://doi.org/10.3389/feart.2023.1328397, 2023.

Merland, R., Caumon, G., Lévy, B., and Collon-Drouaillet, P.:
Voronoi grids conforming to 3D structural features, Comput.
Geosci., 18, 373–383, https://doi.org/10.1007/s10596-014-9408-
0, 2014.

Michalak, M.: Computational modeling and analytical validation
of singular geometric effects in fault data using a combinato-
rial approach – Input and processed data, Zenodo [data set],
https://doi.org/10.5281/zenodo.13986509, 2024a.

Michalak, M.: michalmichalak997/3GeoCombine2:
v. 1.0 – Initial release (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.13974878, 2024b.

Michalak, M. P., Kuzak, R., Gładki, P., Kulawik, A., and
Ge, Y.: Constraining uncertainty of fault orientation using
a combinatorial algorithm, Comput. Geosci., 154, 104777,
https://doi.org/10.1016/j.cageo.2021.104777, 2021.

Michalak, M. P., Teper, L., Wellmann, F., Żaba, J., Gaidzik, K., Kos-
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