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Abstract. Gassmann’s equations have long served as a cor-
nerstone of geophysics and rock physics, widely regarded
as exact within their domain of applicability. However, re-
cent studies have questioned their validity, arguing that
Gassmann’s derivation involves a logical error and that an
additional solid modulus is needed even for monomineralic
materials. In this work, we present a general derivation of the
extended Biot poroelasticity equations, grounded in conser-
vation laws and classical irreversible thermodynamics (CIT).
We show that the formulations of Gassmann (1951), Brown
and Korringa (1975), Detournay and Cheng (1993), and Rice
and Cleary (1976) emerge as special cases of this unified
framework. While previous studies have analyzed the ther-
modynamic admissibility of standard Biot and Gassmann
models, we extend this analysis to the more general the-
ory by explicitly incorporating the off-diagonal terms arising
from the second partial derivatives (Hessian) of internal en-
ergy. A key finding is that Gassmann’s self-similarity condi-
tion – that porosity remains unchanged under equal changes
in fluid and total pressure – is a sufficient but unnecessary
condition for the derivation of Gassmann-type relationship
between undrained and drained bulk moduli. It holds if and
only if the matrix of the second partial derivatives of internal
energy is diagonal. When the off-diagonal terms in this ma-
trix are retained, a generalized form of Gassmann’s equations
is required, which we derive. To promote transparency and
support further research, we provide symbolic Maple rou-
tines with thermodynamic consistency checks, ensuring full
reproducibility and accessibility.

1 Introduction

Gassmann’s equations (Gassmann, 1951), developed several
decades ago, are fundamental in geophysics for analyzing
the elastic properties of fluid-saturated porous media. These
equations provide a means to predict seismic velocities and
mechanical behavior in such materials. However, despite
their widespread use, recent studies have questioned the log-
ical consistency of Gassmann’s derivation, suggesting that it
contains a logical error (Thomsen, 2023a, b, 2024, 2025).
This has highlighted the need for an extended, transparent,
and thermodynamically consistent framework to ensure reli-
ability in geophysical modeling and interpretation.

This paper presents a structured, transparent, and fully re-
producible derivation of the extended Biot poroelastic equa-
tions, with the formulations of Gassmann (1951), Detournay
and Cheng (1993), Brown and Korringa (1975), and Rice and
Cleary (1976) emerging as special cases. Our approach is
rooted in fundamental conservation laws and classical irre-
versible thermodynamics (CIT) (Lebon et al., 2008). While
earlier works have demonstrated the thermodynamic admis-
sibility of the standard Biot and Gassmann models (Coussy
et al., 1998; Yarushina and Podladchikov, 2015), we extend
this analysis to a broader class of models by evaluating the
full Hessian matrix (i.e., matrix of second partial derivatives)
of internal energy.

We respond directly to the critiques presented in Thomsen
(2023a, b, 2024, 2025), adopting the CIT formalism as de-
scribed in Lebon et al. (2008) and extended to poromechan-
ics by Yarushina and Podladchikov (2015). We demonstrate
the thermodynamic admissibility of the extended Biot equa-
tions by incorporating entropy production constraints and the
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internal-variable formalism of CIT. Internal consistency is
verified through both theoretical analysis and numerical eval-
uation. In particular, we emphasize the interplay between
thermodynamic forces and fluxes, entropy production, and
the admissibility of constitutive laws.

The paper is structured as follows: we begin by reviewing
the foundational equations of classical irreversible thermo-
dynamics, highlighting the roles of thermodynamic forces
and fluxes. We then derive the evolution equations for the
extended Biot poroelastic system, followed by formulations
of the Detournay–Cheng (DC), Brown–Korringa (GK), and
Gassmann models. Afterwards, we revisit Gassmann’s as-
sumptions and delineate the specific conditions under which
they remain valid. We also directly address the critiques
raised in Thomsen (2023a, b, 2024, 2025) regarding the va-
lidity of Gassmann’s equations.

To ensure full reproducibility, we provide symbolic Maple
routines with detailed line-by-line commentary, enabling
transparent derivation and verification. This framework also
supports future extensions, including multiphase flow and
viscous deformation mechanisms. All Maple scripts are
available in a symbolic archive via a permanent DOI on
Zenodo: https://doi.org/10.5281/zenodo.15777522 (Alkhi-
menkov and Podladchikov, 2025).

2 Scope of the article

One can distinguish between two related but distinct tasks in
the formulation of coupled (poroelastic) theories: (i) identi-
fying the appropriate set of state variables that fully describe
the coupled mechanical behavior and (ii) deriving the ma-
terial parameters that link these variables. Task (i) is par-
ticularly challenging and has been addressed by numerous
researchers; a comprehensive review is beyond the scope of
this article. In this work, we build on those earlier studies and
assume from the outset that the correct variables have been
identified.

Task (ii), while relatively more straightforward, remains
essential: various modifications of poroelastic theory have
been proposed, often based on simplifying assumptions that
affect how material parameters are defined and interpreted.
The main novelty of this article is the consideration of the
full Hessian matrix of second derivatives of internal en-
ergy, including the off-diagonal terms (which are often ne-
glected in classical formulations), which enables us to derive
a generalized set of Gassmann-type relations. Furthermore,
we demonstrate that, under appropriate mappings between
poroelastic coefficients, several classical poroelastic theories
can be viewed as equivalent.

3 Derivation of the extended Biot’s poroelastic
equations

General pattern of the derivation

To derive the extended Biot poroelastic equations, one typi-
cally combines the following components:

– Conservation laws

– Conservation of linear momentum for the total
stress,

– Conservation of mass for the solid phase,

– Conservation of mass for the fluid phase.

– Fluid dynamics

– Darcy’s law for the Darcy flux qD (assuming low-
Reynolds-number flow).

– Isothermal constitutive relations

– A solid density–pressure constitutive law (equation
of state),

– A fluid density–pressure constitutive law (equation
of state),

– A porosity constitutive law (e.g., pore compress-
ibility),

– Stress–strain relation for the deviatoric components
of the stress and strain tensors.

By expressing the solid and fluid densities, along with the
medium’s porosity, in terms of pressures and fluxes via these
constitutive laws, one obtains the extended Biot poroelas-
tic equations. Under additional simplifying assumptions, the
formulation reduces to the classical Biot poroelastic equa-
tions (Biot, 1962), the Brown and Korringa equations (Brown
and Korringa, 1975), the Rice and Cleary (1976) equations,
and Gassmann’s equations (Gassmann, 1951) as limiting
cases. In the case of Biot poroviscoelasticity, viscous effects
are incorporated through the specific choice of the porosity
evolution law (Yarushina and Podladchikov, 2015), which
can include time-dependent or rate-sensitive terms. To ensure
thermodynamic consistency, these constitutive relations are
derived within the framework of classical irreversible ther-
modynamics, which we describe in the following section.

4 Thermodynamic admissibility of the extended Biot
poroelasticity framework

4.1 Local entropy production

In the context of classical irreversible thermodynamics (CIT)
(Lebon et al., 2008), the hypothesis of local thermodynamic
equilibrium (LTE) implies that energy is well defined as a
single-value function at each state of the system. Moreover,
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for a unit mass of a solid skeleton, in agreement with the
main assumption of CIT, the infinitesimal change in internal
energy Us follows its equilibrium relationship via the corre-
sponding changes in entropy Ss per unit mass, density ρs, and
the elastic part of porosity φe

s (Yarushina and Podladchikov,
2015):

dUs = T dSs−psd(1/ρs)+
τ s
φ

ρs φs
dφe

s , (1)

where T is the absolute temperature, ps is the solid pressure
conjugated to solid density change, τ s

φ is the thermodynamic
variable (pressure) conjugated to porosity change (to be de-
fined), φe

s = φs is the solid volume fraction, superscript “e”
represents reversible (elastic) change (φf = 1−φs, with φf
being the medium’s porosity), and τ s

φ can be viewed as anal-
ogy to pressure as conjugate variable to volume change. The
individual terms in this energy balance are interpreted as

– T dSs: heat stored in internal energy Us,

– psd(1/ρs): energy change due to compressibility of
solid grains (volumetric Hooke’s law),

–
τ s
φ

ρs φs
dφe

s : poroelastic effects (reversible part of the en-

ergy change due to the changes in porosity).

Note that τ s
φ is not defined yet.

4.2 Entropy production for poroelastic loading

In the context of poroelasticity, the most important outcome
from Appendix B is an expression for entropy production,
Q

poro
s , associated with elastic (reversible) porosity change:

TQ
poro
s =

[
(ps− τ

s
φ)−pf

] dφe
s

dt
, (2)

where ps is the solid pressure and pf is the fluid pressure.
Entropy production must be zero for reversible poroelastic
deformation; therefore (ps− τ

s
φ)−pf = 0 (!). This implies

that (Yarushina and Podladchikov, 2015)

τ s
φ = ps−pf. (3)

We also notice that τ s
φ = pe/(1−φf), where pe = p̄−pf rep-

resents the effective pressure (total pressure is defined as
p̄ = (1−φf)ps+φfpf). For an explanation of the Maple
script used in the derivation and analysis of entropy produc-
tion in a single-phase medium, see Appendix A. Appendix B
provides a similar explanation for the entropy production
derivation in a two-phase porous medium.

4.3 Internal energy of the solid frame

We begin with the internal energy of representative infinites-
imal solid skeleton (frame) linked to material points (grains)

of the solid skeleton in a Lagrangian fashion, Us(Vs,φs),
per unit mass. Here, Vs is the (Lagrangian) solid volume,
φs = Vs/Vt is the solid volume fraction, and Vt is the (La-
grangian) total volume (including both volumes occupied by
porous fluid and grains of solid matrix bounded by a bound-
ary moving with solid velocity of solid grains). A first-order
Taylor expansion about an equilibrium state (V 0

s ,φ
0
s ) yields

Us(Vs,φs)= Us(V
0
s ,φ

0
s )+

∂Us

∂Vs
(V 0

s ,φ
0
s )1Vs

+
∂Us

∂φs
(V 0

s ,φ
0
s )1φs+ o(ε), (4)

where1Vs = Vs−V
0
s and1φs = φs−φ

0
s . The energy incre-

ment 1Us is

1Us = Us(Vs,φs)−Us(V
0
s ,φ

0
s )

=
∂Us

∂Vs
(V 0

s ,φ
0
s )1Vs+

∂Us

∂φs
(V 0

s ,φ
0
s )1φs. (5)

The internal energy Us is a scalar potential defined on a
smooth, convex state space, where the Hessian matrix is sym-
metric:[
∂Us
∂Vs
(Vs,φs)

∂Us
∂φs
(Vs,φs)

]
=

[
∂Us
∂Vs
(V 0

s ,φ
0
s )

∂Us
∂φs
(V 0

s ,φ
0
s )

]
+H

[
1Vs

1φs

]
, (6)

where H is the Hessian matrix of second derivatives of the
internal energy with respect to Vs and φs:

H=

 ∂2Us
∂V 2

s
(V 0

s ,φ
0
s )

∂2Us
∂Vs∂φs

(V 0
s ,φ

0
s )

∂2Us
∂φs∂Vs

(V 0
s ,φ

0
s )

∂2Us
∂φ2

s
(V 0

s ,φ
0
s )

 . (7)

The increment of the first derivatives of 1Us is[
1 ∂Us
∂Vs
(V 0

s ,φ
0
s )

1 ∂Us
∂φs
(V 0

s ,φ
0
s )

]
=H

[
1Vs

1φs

]
. (8)

For isothermal processes and in agreement with CIT (Eq. 1),
1Us can be also expressed via mechanical variables only:

1Us(Vs,φs)=−ps1Vs+ τ
s
φ

Vs

φs
1φs

≡−ps1Vs+ (ps−pf)
Vs

φs
1φs. (9)

By comparing Eqs. (8) and (9), we identify

1
∂Us

∂Vs
(V 0

s ,φ
0
s )=−1ps,

1
∂Us

∂φs
(V 0

s ,φ
0
s )=−1(

Vs

φs
(pf−ps))

≈−
Vs

φs
1(pf−ps). (10)
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Therefore, the following linear system holds:[
−1ps

−
Vs
φs
1(pf−ps)

]
=H

[
1Vs

1φs

]
. (11)

We then use the following equation of state for the fluid for
isothermal processes:

1Vf

Vf
=−βf1pf, (12)

where βf is the fluid compressibility. Equations (11) and (12)
are used by Yarushina and Podladchikov (2015) (assuming
simplified diagonal Hessian matrix H) as constitutive closure
relationships (their Eqs. 6–8).

5 Derivation of the original Gassmann and Biot
equations

Here, we provide a derivation which is similar to the one pro-
posed by Yarushina and Podladchikov (2015) in terms of un-
derlying constitutive closer relationships. Unlike Yarushina
and Podladchikov (2015), we start from the Hessian matrix
H and provide a detailed derivation, without skipping any in-
termediate steps.

5.1 Derivation of the original Biot–Gassmann
equations

We consider a simplified diagonal version of the full compli-
ance matrix H (Eq. 11):[

−1ps

−
Vs
φs
1(pf−ps)

]
=

[
H11 0

0 H22

][
1Vs

1φs

]
. (13)

We further use the following relation between density incre-
ments and solid volume change:

1ρs

ρs
=−

1Vs

Vs
. (14)

In addition, we use the following identity:

1φs =−1φf. (15)

Equation (13) can be now rewritten as[
−1ps

−
Vs

(1−φf)
1(pf−ps)

]
=

[
H11 0

0 H22

][
Vs

1ρs
ρs

−1φf

]
. (16)

We solve Eq. (16) with respect to 1φf/φf and 1ρs/ρs. The
resulting expressions are cumbersome and can be directly ac-
cessed via the Maple scripts provided:

1φf

φf
= f (H11,1(pf−ps),φf,1φf,Vs), (17)

1ρs

ρs
= f (H22,1(pf−ps),φf,1φf,Vs). (18)

5.2 The incremental formulation

The next step is the substitution of the resulting equations for
1φf

φf
and

1ρs

ρs
into the mass conservation equations, which

is explored below. Now, we transition from differentials into
the incremental formulation and use the following identity:

1=
ds
·

dt
, (19)

where we adopt material (Lagrangian) time derivatives. We

use the following notation:
ds

dt
=
∂

∂t
+ vs

i∇i denotes the La-

grangian (material) derivative with respect to solid, and
df

dt
=

∂

∂t
+ vf

i∇i denotes the Lagrangian (material) derivative with

respect to fluid, where vf
i and vs

i are the fluid and solid ve-
locities, respectively. The Einstein summation convention is
used: summation is applied over repeated indices.

We rewrite Eq. (12) in a rate form:

dfpf

dt
=

dspf

dt
+

(
vf
i − v

s
i

)
∇ipf. (20)

We adopt the following approximate relations, which are
strictly valid under small strains:

dfpf

dt
≈

dspf

dt
, (21)

dfφf

dt
≈

dsφf

dt
. (22)

Approximations (21)–(22) are implicitly assumed in
Yarushina and Podladchikov (2015). For Eq. (21), this
approximation is valid when the relative velocity between
fluid and solid phases is small or when the fluid pressure
gradient is negligible.

5.3 Conservation of mass in a rate form

Conservation of mass for fluid phase in rate form is

∂(φfρf)

∂t
+∇j

(
φfρfv

f
j

)
= 0, (23)

and conservation of mass for the solid phase in rate form is

∂((1−φf)ρs)

∂t
+∇j

(
(1−φf)ρsv

s
j

)
= 0. (24)

Equations (23)–(24) can be reformulated for divergences
∇jv

s
j and ∇jqDj :

∇jv
s
j =−

1
ρs

dsρs

dt
+

1
1−φf

dsφf

dt
, (25)

∇jq
D
j =−

φf

ρf

dfρf

dt
−

dfφf

dt
−φf∇jv

s
j , (26)

where qD
i = φf(v

f
i − v

s
i ) is the Darcy flux.
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5.4 Relations between total, solid, and fluid pressures

Note that the material derivatives of the total pressure, p̄, and
the solid pressure, ps, are related via

dsp̄

dt
= (1−φ)

dsps

dt
+φ

dspf

dt
+

dsφ

dt
(pf−ps),

⇒
dsps

dt
=

1
1−φf

(
dsp̄

dt
−φf

dspf

dt
−

dsφf

dt
(pf−ps)

)
. (27)

Equation (27) for solid pressure ps can be simplified by ne-
glecting the porosity derivative term:

dsps

dt
≈

1
1−φf

(
dsp̄

dt
−φf

dspf

dt

)
. (28)

5.5 Resulting equations of Biot–Gassmann theory

We then adopt the relation (28) and replace ps in favor of p̄.
By simplifying Eqs. (25)–(26), we can write the following
relation:(
∇kv

s
k

∇kq
D
k

)
=

(
a11 a12
a21 a22

)( dsp̄
dt

dspf
dt

)
. (29)

We note that a12 = a21, which is explicitly derived rather
than imposed (this fact is explored in more detail for the case
of the full matrix H and is provided below). Let us define the
following compressibilities:

βd =−a11, (30)

which gives

H1,1 =−H2,2

·
(φ2

f − 2φf+ 1)

Vs
(
φ3

f H2,2βd− 3φ2
f H2,2βd+ 3φfH2,2βd−H2,2βd+Vs

) . (31)

Then, we introduce α as

α =
a12

βd
, (32)

which gives

H2,2 =
Vs(

αφ2
f +φ

3
f − 2αφf− 2φ2

f +α+φf
)
βd
. (33)

Finally, we introduce B as

B =−
αβd

a22
≡

βd−βs

φf(βf−βs)+βd−βs
. (34)

By using the definitions (30)–(34), we can rewrite Eq. (29)
in the following form:(
∇kv

s
k

∇kq
D
k

)
=−βd

(
1 −α

−α α
B

)( dsp̄
dt

dspf
dt

)
, (35)

which is the original Biot poroelastic equation (Biot,
1962) extended to an incremental large-strain formulation

(Yarushina and Podladchikov, 2015). Equation (35) reduces
exactly to the original Biot formulation (Biot, 1962) if we as-
sume small strains. We also note that the expression (32) for
α can be written as

α = 1−
βs

βd
. (36)

5.6 Key observations

To derive the original Biot–Gassmann poroelasticity rela-
tions, one should use the proposed rheological relation-
ship (13) and the two equalities (21) and (22). The relation-
ship (13) implies the following identity:

dsφe
f

dt
1
=−βφ(1−φf)

dsτ s
φ

dt
2
=−βφ

dspe

dt
, (37)

where the poroelastic constant (compressibility) βφ is de-
fined as the linear rheological relationship during reversible
poroelastic part of deformation.

Equality (1) in Eq. (37) is the primary assumption made
by Biot (1962) and by Gassmann (1951) (also used by
Yarushina and Podladchikov, 2015). It postulates that equal
changes in total and fluid pressure leave porosity unchanged.
This assumption is often referred to as the self-similarity hy-
pothesis and is equivalent to assuming that the matrix of
second-order derivatives of internal energy, H, is diagonal
(see Eq. 13). Equality (2) in Eq. (37) results from the ther-
modynamic admissibility condition of Yarushina and Pod-
ladchikov (2015), which leads to the relation τ s

φ = ps−pf =

pe/(1−φf), derived in Sect. 4.2.
We can infer the expression for βφ introduced in Eq. (37),

which directly follows from Eq. (13) once we substitute ex-
pressions for H1,1 and H2,2:

βφ = βd(1−φf)−βs. (38)

The proposed rheological relationship (13) and the
equalities (17) and (18) inserted into the mass conser-
vation Eqs. (25) and (26) fully define the original Biot–
Gassmann poroelasticity framework (Gassmann, 1951;
Biot, 1962). As a consequence, the theory contains three ex-
act constitutive laws: (i) the effective stress law (explored be-
low); (ii) Gassmann relation for the undrained bulk modulus
Ku = 1/βu (βu is the undrained compressibility); and (iii) the
relation between the effective compressibility βφ , the solid
grains’ compressibility βs, and the drained (or dry) frame
compressibility βd.

5.7 Effective stress law

Nur and Byerlee (1971) provided an exact expression for the
effective stress law, which is widely regarded as a fundamen-
tal result in poroelasticity. It is defined by the following rela-
tion:

dpeff = d p̄−α dpf ≡ d p̄−
(

1−
βs

βd

)
dpf, (39)
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where the drained compressibility, βd, can be measured ex-
perimentally as

1
βd
=−

1
∇kv

s
k

dpeff

dt

∣∣∣∣
undrained

. (40)

The exact effective stress law given by Eq. (39) follows
directly from the derived poroelastic expressions.

5.8 Resulting equations of Biot–Gassmann theory for
bulk moduli

To derive the original Biot poroelastic equations (Biot, 1962)
in stiffness form, we invert the coefficient matrix in Eq. (35):[

1
Kd

(
1 −α

−α α
B

)]−1

=
Kd

1−αB

(
1 B

B B
α

)
, (41)

where Kd = 1/βd is the drained bulk modulus (i.e., βd is the
drained compressibility). The resulting expression for stiff-
ness is(

dp̄
dt

dpf
dt

)
=−Ku

(
1 B

B B
α

)(
∇kv

s
k

∇kq
D
k

)
, (42)

where Ku =Kd(1−αB)−1. The poroelastic constants used
in Eq. (42) are

α = 1−
Kd

Ks
, (43)

B =
1/Kd− 1/Ks

1/Kd− 1/Ks+φ(1/Kf− 1/Ks)
, (44)

where the bulk moduli are defined as the reciprocals of the
corresponding compliance parameters: βs = 1/Ks and βf =

1/Kf.

5.8.1 Original Gassmann’s equations

The relation between the undrained bulk modulus Ku (see
Eq. 42 under the constraint ∇kqDk = 0) and the drained bulk
modulus Kd is known as Gassmann’s equation (Gassmann,
1951):

Ku =Kd(1−αB)−1. (45)

According to Gassmann’s theory, the shear modulus of a
fluid-saturated rock Gu is equal to the shear modulus of the
dry (drained) rock Gd:

Gu =Gd. (46)

The expression (45) is obtained by inverting the coefficient
matrix in Eq. (35), leading to the stiffness form given in
Eq. (42). An English translation of the original German-
language article by Gassmann (1951) is provided in Pelissier
et al. (2007). Gassmann’s relation (45) can also be rewritten
in terms of bulk modulus as

Ku =Kd+
(1−Kd/Ks)

2

φfK
−1
f + (1−φf)K

−1
s −Kd/K2

s
. (47)

5.8.2 Assumptions behind the derivation of original
Gassmann’s equations

The following assumptions are made throughout the deriva-
tion of Biot’s poroelastic equations and Gassmann’s equa-
tions to ensure the validity of the results:

– The material is assumed to be linearly elastic, and the
strains are small.

– The porous medium is considered homogeneous and
isotropic and a fully interconnected pore network.

– The interactions between the solid and fluid phases are
governed by linear constitutive laws, and the fluid flow
obeys Darcy’s law (or, equivalently, the fluid is gov-
erned by the quasi-static Navier–Stokes equations for
a compressible fluid).

– The self-similarity hypothesis: that equal changes in
pore (fluid) pressure and confining (total) pressure re-
sult in no change in porosity φf. This is equivalent to
assuming a diagonal compliance matrix H (see Eq. 6).

– The derivation assumes a quasi-static process, such that
inertial effects can be neglected.

These assumptions provide a simplified framework for the
derivation and are thermodynamically admissible. One of the
key assumptions in the original derivation of Gassmann’s
equations (Gassmann, 1951) is the self-similarity hypothe-
sis – equal changes in total and fluid pressure leave porosity
unchanged – explicitly stated in the original article.

6 Derivation of the extended Biot’s poroelasticity
formulation: general case

6.1 Goal

Recall the structure of the original Biot–Gassmann formula-
tion (35):

(
∇kv

s
k

∇kq
D
k

)
=−βd

(
1 −α

−α α
B

)( dsp̄
dt

dspf
dt

)
. (48)

This relationship was originally derived under the assump-
tion that the Hessian matrix H is diagonal. Here, we aim to
extend this result by retaining the full matrix H, including
its off-diagonal terms, and to derive an analogous relation-
ship that preserves the original structure and introduces gen-
eralized parameters. To this end, we follow the same steps as
outlined in Sect. 5, with the goal of obtaining Gassmann-type
relationships for the extended Biot poroelastic theory.
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6.2 Derivation

We now consider the full compliance matrix H (Eq. 6):[
−1ps

−
Vs
φs
1(pf−ps)

]
=

[
H11 H12

H21 H22

][
1Vs

−1φf

]
. (49)

Note that H12 =H21 due to the structure of the matrix H:
the off-diagonal component H12 corresponds to the second
mixed partial derivative of internal energy, firstly with re-
spect to Vs and then to φf, and must be equal to H21, which
is the derivative taken in the opposite order. This symme-
try holds because the internal energy is assumed to be a
smooth (twice continuously differentiable) scalar function of
its state variables (this is also known as the symmetry of sec-
ond derivatives). Then, we follow the same steps as in Sect. 5
by using identities (14)–(15) and arrive at the following equa-
tions:

1φf

φf
= f (H11,H12,1ps,1(pf−ps),φf,1φf,Vs), (50)

1ρs

ρs
= f (H22,H12,1ps,1(pf−ps),φf,1φf,Vs), (51)

which are cumbersome and can be found in the Maple script.
We then use identities (21)–(22). Following the steps pro-
vided in Sect. 5, we substitute the resulting equations for
1φf

φf
(Eq. 50) and

1ρs

ρs
(Eq. 51), rewritten in a rate form,

into the mass conservation Eqs. (25)–(26).

6.3 Resulting equations of the extended Biot
poroelastic theory

We again adopt the relation (28) and express ps in terms
of p̄. Substituting Eqs. (50)–(51) into the mass conservation
Eqs. (25)–(26) yields(
∇kv

s
k

∇kq
D
k

)
=

(
aEB

11 aEB
12

aEB
21 aEB

22

)(
dsp̄
dt

dspf
dt

)
. (52)

We note that aEB
12 = a

EB
21 , which is not imposed by symmetry

but emerges naturally from the substitution of Eq. (49) into
the mass conservation Eqs. (25)–(26). This symmetry is a
direct consequence of the algebra.

Following the approach of Sect. 5, we now define the com-
pressibilities. Firstly, we define

βEB
d =−a

EB
11 , (53)

which gives

βEB
d =−

(−1+φf)
2H2,2+Vs

(
VsH1,1− 2H1,2(−1+φf)

)
(−1+φf)3

(
H1,1H2,2−H

2
1,2

)
Vs

. (54)

Then, we introduce αEB as

αEB
=
aEB

12

βEB
d

≡
−Vsφ

2
f H1,2+φ

3
f H2,2+V

2
s H1,1− 2φ2

f H2,2+VsH1,2+φfH2,2

(−1+φf)2H2,2+
(
VsH1,1− 2H1,2(−1+φf)

)
Vs

, (55)

which gives

H2,2 =
Vs
(
αEBφfH1,2β

EB
d −α

EBH1,2β
EB
d −φfH1,2β

EB
d +H1,2β

EB
d + 1

)
βEB

d
(
αEBφ2

f −φ
3
f − 2αEBφf + 2φ2

f +α
EB −φf

) . (56)

Finally, we introduce BEB as

BEB
=−

αEBβEB
d

aEB
22

≡
(βEB

d −β
′EB
s )

(
1+H1,2(1−φf)

2βEB
d
)

(1−φf)
2 ((βEB

d )2+ (φfβf− 2β ′EB
s )βEB

d + (β
′EB
s )2

)
H1,2

+βEB
d + (βf−β

′EB
s )φf−β

′EB
s

, (57)

where β ′EB
s is defined by the following relation: αEB

= 1−
β ′EB

s

βEB
d

. By using the definitions (53)–(57), we can rewrite

Eq. (52) in the following form:(
∇kv

s
k

∇kq
D
k

)
=−βEB

d

(
1 −αEB

−αEB αEB

BEB

)(
dsp̄
dt

dspf
dt

)
, (58)

which is the incremental form of the large-strain extended
Biot poroelastic formulation. Note that we did not define a
particular expression for H1,2, which can be set arbitrarily
via the introduction of a new parameter β ′′EB

s .
To derive the extended Biot poroelasticity relations, we

used only the proposed rheological relationship (49) and the
two equalities (21) and (22). The relationship (49) denotes
the following identity:

dsφf

dt
=
(1−φf)

2 β ′EB
s H1,2

(
(1−φf)β

EB
d +β

′EB
s
)

1+H1,2(1−φf)2β
EB
d

·
dspf

dt
−
(
(1−φf)β

EB
d −β

′EB
s
) ds(p̄−pf)

dt
, (59)

where the poroelastic constant (compressibility) βEB
φ can be

defined as a coefficient in front of effective pressure dspe =

ds(p̄−pf):

βEB
φ = β

EB
d (1−φf)−β

′EB
s . (60)

Therefore, Eq. (59) can now be written as

dsφf

dt
=
(1−φf)

2 β ′EB
s H1,2

(
(1−φf)β

EB
d +β

′EB
s
)

1+H1,2(1−φf)2β
EB
d

·
dspf

dt
−βEB

φ

dspe

dt
. (61)

To further simplify the notation, we can introduce β ′′EB
s and

solve for H1,2 with the following equation:

(1−φf)
2 β ′EB

s H1,2
(
(1−φf)β

EB
d +β

′EB
s
)

1+H1,2(1−φf)2β
EB
d

= β ′EB
s −β ′′EB

s , (62)
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which gives

H1,2 =
β ′EB

s −β ′′EB
s

(1−φf)2
(
(β ′EB

s )2+βEB
d (φf− 2)β ′EB

s +βEB
d β ′′EB

s
) . (63)

Substituting Eq. (63) in the expression for B (Eq. 57) gives
the simplified relation:

BEB
=

βEB
d −β

′EB
s

(βf−β ′EB
s )φf+β

EB
d −β

′′EB
s

. (64)

We also note that the expression (55) for αEB can be written
as

αEB
= 1−

β ′EB
s

βEB
d
. (65)

Furthermore, Eq. (62) can now be rewritten as

dsφf

dt
= (β ′EB

s −β ′′EB
s )

dspf

dt
−βEB

φ

dspe

dt
. (66)

6.4 Relations between poroelastic parameters and H

We can write the relations between poroelastic parameters
and H as follows:

β ′EB
s =

(1−φf)H2,2−VsH1,2

Vs

(
H1,1H2,2−H

2
1,2

)
(1−φf)

(67)

and

β ′′EB
s =

Vs(φf− 2)H1,2+ (1−φf)H2,2

Vs(H1,1H2,2−H
2
1,2)(1−φf)

. (68)

The relations between poroelastic parameters βEB
d (Eq. 54),

β ′EB
s (Eq. 67), β ′′EB

s (Eq. 68), αEB (Eq. 55), and BEB (Eq. 57,
in which βEB

d and β ′EB
s are substituted) are fully expressed in

terms of the components of the Hessian matrix H.

6.5 Gassmann-type relation

The equations for the undrained compressibility in the frame-
work of the extended Biot poroelastic formulation is

βEB
u = β

EB
d
(
1−αEBBEB) , (69)

which has a structure similar to the original Gassmann
Eq. (45).

7 Comparison against previous poroelasticity models

In this section, we assume that small strains enable a direct
comparison with other classical poroelasticity models, which
are typically formulated within the infinitesimal deformation
framework.

7.1 Comparison against the poroelasticity model of
Detournay and Cheng (1993)

7.1.1 Rheology

Detournay and Cheng (1993) postulate linear rheological
relationships that connect the volumetric response of the
porous medium to increments in fluid and effective pressures: 1Vt

Vt
1Vp
Vp

=−(β ′DC
s βDC

d
β ′′DC

s β ′DC
p

)(
dpf
dpe

)
. (70)

These expressions describe how the total volume Vt and pore
volume Vp deform in response to changes in fluid pressure pf
and effective pressure pe = p̄−pf, where p̄ is the total pres-
sure. The mechanical interpretation of the four compress-
ibilities βDC

d , β ′p, β ′DC
s , and β ′′DC

s has been defined in De-
tournay and Cheng (1993). Note that, by invoking the Betti–
Maxwell reciprocal theorem, Detournay and Cheng (1993)

suggest that K ′p =
φf

αDCβDC
d

and β ′DC
p = 1/K ′DC

p .

7.1.2 Geometry and kinematics

Detournay and Cheng (1993) use exact relations that con-
nect the total, solid, and pore volumetric responses with
porosity changes. Assuming control volumes and using finite
changes, the following identities hold:

1Vt

Vt
=
1Vs

Vs
+

φf

1−φf

1φf

φf
, (71)

1Vp

Vp
=
1Vs

Vs
+

1
1−φf

1φf

φf
. (72)

7.1.3 Porosity evolution and solid volume change

Combining the rheological relations (70) with the geomet-
ric identities (71)–(72) yields compact expressions for the
porosity variation and the solid volume strain (Detournay and
Cheng, 1993):

1φf

φf
=−

(βDC
φ )

φf
dpe+ (β

′DC
s −β ′′DC

s )dpf, (73)

φs
1Vs

Vs
=−β ′DC

s dpe−
(
β ′DC

s −φf β
′′DC
s

)
dpf, (74)

where (βDC
φ )= βDC

d (1−φf)−β
′DC
s .

The resulting representation of Detournay and Cheng
(1993) is(
∇kv

s
k

∇kq
D
k

)
=−βDC

d

(
1 −αDC

−αDC αDC

BDC

)(
dp̄
dt

dpf
dt

)
. (75)

The inverse form, expressing the time evolution of pressure
fields in terms of mechanical and hydraulic divergence rates,
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reads as follows:(
dp̄
dt

dpf
dt

)
=−KDC

u

(
1 BDC

BDC BDC

αDC

)(
∇kv

s
k

∇kq
D
k

)
. (76)

The poroelastic constants used in Eqs. (75)–(76) are (K ′d =
1/βDC

d , K ′DC
s = 1/β ′DC

s , K ′′DC
s = 1/β ′′DC

s )

αDC
= 1−

β ′DC
s

βDC
d
, (77)

BDC
=

βDC
d −β

′DC
s

βDC
d −β

′DC
s +

(
βf−β ′′DC

s
)
φf
, (78)

βDC
u = β

DC
d

(
1−αDCBDC

)
, (79)

KDC
u =K

′

d

(
1−αDCBDC

)−1

≡Kd

+

(
1−K ′d/K

′DC
s )2

φ
(
K−1

f − (K
′′DC
s )−1

)
+ (K ′DC

s )−1−K ′d (K
′DC
s )−2

. (80)

This expression has a similar structure to the original
Gassmann Eq. (45). We emphasize that these expressions
arise naturally as a special case of the present extended Biot
poroelastic formulation, which is shown below. In particu-
lar, the Detournay–Cheng model assumes small strains and
constant poroelastic parameters, whereas, in our framework,
large-strain incremental formulation is adopted; thus, poros-
ity evolution is present, and the coupling coefficient BEB(φf)

varies with porosity.

7.2 Comparison against the poroelasticity models of
Brown and Korringa (1975) and Rice and Cleary
(1976)

The poroelasticity formulation of Brown and Korringa
(1975) can be rewritten using the notation introduced by
Thomsen (2025), in terms of the drained bulk modulus
KBK

d = 1/βBK
d , the “mean” grain modulus KBK

M = 1/βBK
M ,

and the overall modulus of the heterogeneous solid con-
stituent of the rock KBK

S = 1/βBK
S

.
1Vt

Vt
1Vp

Vp

=−
(
βBK
M βBK

d

βBK
φ β ′BK

)(
dpf

dpe

)
(81)

The drained compressibility is defined as (Brown and Kor-
ringa, 1975; Thomsen, 2025)

βBK
d =−

1
Vt

(
∂Vt

∂pe

)
pf

, (82)

where pe is the effective (or differential) pressure, pe =

p̄−pf. The compressibility with respect to pore pressure at

constant total stress is (Brown and Korringa, 1975; Thomsen,
2025)

βBK
M =−

1
Vt

(
∂Vt

∂pf

)
pe

. (83)

The undrained compressibility is (Brown and Korringa,
1975; Thomsen, 2025)

βBK
u =−

1
Vt

(
∂Vt

∂p̄

)
. (84)

Brown and Korringa (1975) and Thomsen (2025) introduce
the following compressibilities for the pore volume:

β ′BK
=−

1
Vt

(
∂Vp

∂pe

)
pf

, (85)

βBK
φ =−

1
Vp

(
∂Vp

∂pe

)
pf

, (86)

βf =−
1
Vp

(
∂Vp

∂pf

)
pe

. (87)

Thus, the variation in pore volume can be written as (Brown
and Korringa, 1975; Thomsen, 2025)

φfβfδpf = β
′BK1pe+β

BK
φ 1pf. (88)

Finally, the undrained compressibility can be written as

βBK
u = β

BK
d −

(βBK
d −β

BK
M )2

φf(βf−β
BK
φ )+ (βBK

d −β
BK
M )

. (89)

Thomsen (2025) used the following identity:

βBK
M = φfβ

BK
φ + (1−φf)β

BK
S
. (90)

Brown and Korringa (1975) also showed that β ′BK
= βBK

d −

βBK
M . Finally, the resulting expression of Brown and Korringa

(1975) for the undrained compressibility βBK
u in the notation

provided by Thomsen (2025) is

βBK
u = β

BK
d −

(βBK
d −β

BK
M )2

φf(βf−β
BK
S
)+ (βBK

d +β
BK
S
− 2βBK

M )
(91)

or, in terms of bulk moduli, which can be explicitly written
as (KBK

u = 1/βBK
u , KBK

d = 1/βBK
d , KBK

S = 1/βBK
S

, KBK
M =

1/βBK
M , Kf = 1/βf) (Thomsen, 2025),

KBK
u =K

′

d
(
1−αBKBBK)−1

≡KBK
d

+
(1−KBK

d /KBK
M )2

φf

(
K−1

f − (K
BK
S )−1

)
+ (KBK

S )−1−KBK
d /(KBK

M )2
, (92)

where

αBK
= 1−

βBK
M

βBK
d

(93)

and BBK can be calculated from the equality (92).
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7.3 Equivalence of the Brown–Korringa (BK) model
and Detournay–Cheng (DC) model

The Detournay–Cheng (DC) model is fully equivalent to the
Brown–Korringa model if a proper mapping between the
poroelastic parameters is established (i.e., K ′DC

s and K ′′DC
s

to KBK
M and KBK

S ). Using the assignments

KBK
M =K

′DC
s , KBK

S =
φsK

′DC
s K ′′DC

s

K ′DC
s −φfK ′DC

s
, (94)

we find that the two models (the DC model and the Brown–
Korringa model) are algebraically identical. When K ′DC

s =

K ′′DC
s , it immediately follows that KBK

M =K
BK
S , and the two

models reduce to the classical Biot–Gassmann formulation.
The algebraic equivalence between these formulations can

also be established by the following exact relation:

1
K ′DC

s
−φf

1
K ′′DC

s
=

φs

KBK
S

. (95)

This analysis shows that the Brown–Korringa model is dis-
tinct from the Detournay–Cheng formulation in terms of the
parameter definitions and the physical interpretation and ex-
perimental measurability of the poroelastic coefficients.

7.4 Equivalence of the present extended Biot
formulation and the Detournay–Cheng (DC) model

Here we show that the present extended Biot formulation
contains the Detournay–Cheng (DC) model as a special case.
Indeed, if we set β ′EB

s = β ′DC
s and choose

H1,2 =
φf
(
β ′EB

s −β ′′EB
s

)
φ3

f β
EB
d β ′′EB

s −φ2
f β

EB
d β ′EB

s − 2φ2
f β

EB
d β ′′EB

s
+φ2

f (β
′EB
s )2+ 2φfβ

EB
d β ′EB

s +φfβ
EB
d β ′′EB

s
−2φf(β

′EB
s )2−βEB

d β ′EB
s + (β ′EB

s )2

, (96)

the present extended Biot formulation will be exactly equiva-
lent to the Detournay–Cheng (DC) model in the small-strain
regime. We refer to the provided Maple script for more de-
tails.

7.5 Equivalence of the present extended Biot
formulation and the Brown–Korringa (BK) model

Here we show that the present extended Biot formulation
contains the Brown–Korringa (BK) model as a special case.
Indeed, if we set β ′EB

s = βBK
M , use identity (94), and choose

H1,2 =
βBK
M −β

BK
S

φ2
f β

EB
d βBK

S
− 2φfβ

EB
d βBK

S
+φf

(
βBK
M

)2
+βEB

d βBK
S
−
(
βBK
M

)2 , (97)

the present extended Biot formulation will be exactly equiv-
alent to the Brown–Korringa (BK) model in the small-strain
regime. We refer to the provided Maple script for more de-
tails.

8 A closed system of equations of the extended Biot
poroelastic framework

The conservation of linear momentum is given by

∇j (−p̄δij + τ̄ij )− gi ρ̄ = 0, (98)

where τ̄ij is the deviatoric stress tensor, δij is the Kro-
necker delta, and i,j = 1,2,3. The total density is given by
ρ̄ = φsρ

s
+φfρ

f, where ρs and ρf are the solid and fluid den-
sities, respectively. The vector gi denotes the components of
gravitational acceleration.

Viscous fluid flow through the porous medium is governed
by Darcy’s law:

qD
i =−

k

ηf
(∇ipf+ giρ

f), (99)

where k is the permeability of the medium and ηf is the fluid
shear viscosity.

The matrix of coefficients in Eq. (58) can be inverted,
yielding(

dsp̄
dt

dfpf
dt

)
=−

1
βEB

u (φf)

(
1 BEB(φf)

BEB(φf)
BEB(φf)
αEB

)(
∇kv

s
k

∇kq
D
k

)
, (100)

where the abbreviated definition βEB
u = β

EB
u (φf)=

βEB
d
(
1−αEBBEB) is used and the parameters are functions

of porosity φf, meaning that BEB
= BEB(φf).

Deviatoric stresses are related to solid velocity gradients
through the following relationship:

1
Gu

d∇ τ̄ij
dt
=

1
2
(∇jv

s
i +∇iv

s
j )−

1
3
(∇kv

s
k)δij , (101)

where Gu is the undrained shear modulus of the saturated
porous medium (it is assumed that the dry or drained shear
modulus is equivalent to Gu; i.e., Gd =Gu) and

d∇ τ̄ij
dt
=

dsτ̄ij

dt
− τ̄ikωkj − τ̄jkωki (102)

is the Jaumann objective stress rate. The tensor ωki =
1
2

(
∇kv

s
i −∇iv

s
k

)
denotes the antisymmetric part of the solid

velocity gradient.
The poroelastic constants in expression (100) can be de-

fined in terms of compliance parameters as

αEB
≡ αEB

= 1−
β ′EB

s

βEB
d
, (103)

BEB
≡ BEB(φf)=

βEB
d −β

′EB
s

(βf−β ′EB
s )φf+β

EB
d −β

′′EB
s

, (104)

βEB
u ≡ β

EB
u (φf)= βd

(
1−αEBBEB(φf)

)
, (105)

where βEB
d corresponds to the drained (or dry) compress-

ibility and βEB
u denotes the undrained compressibility. Note
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Table 1. Material properties used in all simulations.

Material parameter Solid grains Fluid

Bulk modulus K 36 GPa 4.3 GPa
Shear modulus µ 44 GPa −GPa
Shear viscosity η −Pa s 1.414 Pa s

Table 2. Geometrical properties of the model.

Geometrical parameter Value

Flat cylinder (crack) radius, b (m) 0.2
Flat cylinder (crack) thickness, h (m) 0.016
Crack aspect ratio, α = h/(2b) 0.04
Side of internal cubic pore (m) 0.25
Volume of the pore space (m3) 0.01854
Total porosity ≈ 0.2176465

that the porosity φf evolves according to the evolution
Eq. (66), which in turn affects the poroelastic parameter
BEB
= BEB(φf) at each loading increment. Finally, we can

use the Carman–Kozeny relationship to model permeability
evolution as a function of porosity (where φ0 is the reference
porosity of the medium and k0 is the reference permeability),
given by

k = k0

(
φf

φ0

)nk
, where nk = 3. (106)

Equations (98)–(106) fully represent the quasi-static
extended Biot poroelasticity formulation.

9 Numerical studies supporting Gassmann’s equations
for monomineralic frame

Alkhimenkov (2023) performed a numerical validation of
Gassmann’s equations considering a 3D numerical setup and
relatively complex pore geometry that included narrow re-
gions (cracks) and large pore space (Fig. 1a–b). The numeri-
cal model consisted of a solid phase representing the grain
matrix and a pore space. The model was cubic, with di-
mensions of 0.44×0.44×0.44m. The pore space comprised
cracks, modeled as flat cylinders, connected to an internal
cubic cavity, as illustrated in Fig. 1a–b. The material prop-
erties used in the simulations are listed in Table 1, while the
geometrical characteristics of the pore space are provided in
Table 2.

Alkhimenkov (2023) applied a 3D finite-element method
to resolve the conservation of linear momentum coupled
with the stress–strain relations for the solid phase and the
quasi-static linearized compressible Navier–Stokes momen-
tum equation for the fluid phase. The resulting system
of equations was solved using a direct PARDISO solver
(Schenk and Gärtner, 2004). Alkhimenkov (2023) conducted

a convergence study showing that, for finer resolution, the
result of the numerical solution converges towards the re-
sult obtained from the original Gassmann’s equation. Such
a convergence analysis validates the accuracy of Gassmann’s
equation for a particular (but arbitrary) pore geometry. Fur-
thermore, the pore geometry that was used did not contain
any special features (among all possible geometries) that
were tailored to make it consistent with Gassmann’s equa-
tions (Alkhimenkov, 2024). There are also other 3D numer-
ical studies that consider different geometries of the pore
space and that are consistent with Gassmann’s equations
(Alkhimenkov et al., 2020a, b; Alkhimenkov and Quintal,
2022a, b).

Here we extend the results of Alkhimenkov (2023) for a
denser finite-element mesh (achieving 2 025 916 elements))
and report the convergence study showing that, for finer reso-
lution, the result of the numerical solution converges towards
the result obtained from the original Gassmann’s equation
(Fig. 1c–d).

10 Discussion

10.1 Physical interpretation of the present extended
Biot’s poroelastic framework

The derived extended Biot’s poroelastic equations describe
the coupled mechanical and fluid flow behavior of a fluid-
saturated porous medium under general conditions. Specif-
ically, they account for the interaction between solid ma-
trix deformation and changes in pore fluid pressure. Classi-
cal Biot’s equations (Biot, 1962) and Gassmann’s equations
(Gassmann, 1951) are special cases of the presented theory.
Gassmann’s equations provide a relation between the bulk
moduli of the drained (or dry) and undrained fluid-saturated
rock, offering insight into how fluid properties and porosity
influence the mechanical response of the material.

10.2 Other derivations of Gassmann’s equations

Gassmann’s equations are directly related to the quasi-static
formulation of poroelasticity developed by Biot (1941) and
later extended to dynamic settings by Biot (1956, 1962).
While the conceptual foundation of elastodynamic poroe-
lasticity, such as the presence of the fast P-wave, slow P-
wave, and shear wave in fluid-saturated porous media, was
introduced by Frenkel (1944) (see also Pride and Garam-
bois, 2005), rigorous derivations of the poroelastic param-
eters were provided subsequently by Biot (1941), Biot and
Willis (1957), and Biot (1962).

Numerous researchers have re-derived Gassmann’s
equations using various approaches or examined specific
aspects of these equations within the poroelasticity frame-
work (Brown and Korringa, 1975; Rice and Cleary, 1976;
Korringa, 1981; Burridge and Keller, 1981; Bourbié et al.,
1987; Zimmerman, 1990; Berryman and Milton, 1991;
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Detournay and Cheng, 1993, Berryman, 1999;
Smith et al., 2003; Lopatnikov and Cheng, 2004; Gure-
vich, 2007; Fortin and Guéguen, 2021). Some modifications
of small-strain poroelasticity to include non-reciprocal
effects are given by Sahay (2013) and Müller and Sahay
(2019). While the full list of contributors to the field is ex-
tensive and beyond the scope of this paper, we acknowledge
their foundational work.

We refer the reader to Sevostianov (2020), which presents
a comprehensive overview of Gassmann’s equations. In ad-
dition, several books may be useful for readers interested in
poroelasticity and its applications, including Bourbié et al.
(1987), Zimmerman (1990), Wang (2000), Ulm and Coussy
(2003), Coussy (2004, 2011), Guéguen and Boutéca (2004),
Dormieux et al. (2006), Cheng (2016), and Mavko et al.
(2020).

10.2.1 Thermodynamically admissible conditions for
the diagonal structure of matrix H

The main assumptions behind the applicability of
Gassmann’s Eqs. (45)–(47) are (i) linear elasticity, (ii) small
strains, (iii) an isotropic homogeneous frame material and
isotropic homogeneous solid grains, (iv) an isotropic dry
response (although Gassmann’s original publication in-
cludes an extension to anisotropy), and (v) the self-similarity
hypothesis: the assumption that equal changes in pore (fluid)
pressure and confining (total) pressure leave the porosity
unchanged (Korringa, 1981; Alkhimenkov, 2024).

Assumption (v) may hold for isotropic homogeneous
frame materials (Korringa, 1981), but it must be derived rig-
orously. In the framework of the present study, this condition
is satisfied when the compliance matrix H is diagonal, and it
is required for the thermodynamic admissibility of the model
(see Appendix B). As stated there: “the constraint of zero
dissipation (entropy production) during reversible poroelas-
tic deformation provides an essential constraint on the poroe-
lastic constitutive equation for porosity evolution.”

10.2.2 When the solid compressibilities coincide
(β ′EB

s = β ′′EB
s = βs = β ′DC

s = β ′′DC
s = βBK

M =

βBK
S

)

Strictly speaking, the most general model should always
use the full matrix H (Eq. 6). However, in certain special
cases, such as isotropic and homogeneous rock frames, addi-
tional constraints may hold. Several researchers have pointed
out that, for monomineralic isotropic materials, the self-
similarity hypothesis is valid and that Gassmann’s equations
therefore apply and are exact (Brown and Korringa, 1975;
Korringa, 1981).

In general, various poroelastic constants can be computed
numerically (Alkhimenkov, 2023), derived analytically us-
ing effective medium theory (Yarushina and Podladchikov,

2015), or measured experimentally in laboratory settings
(Makhnenko and Podladchikov, 2018).

The distinction between the solid compressibilities lies in
the structure of the matrix H, which depends on the particular
choice of rheological relationships. The definitions (Detour-
nay and Cheng, 1993)

βs =
1
Ks
, β ′DC

s =
1

K ′DC
s

, β ′′DC
s =

1
K ′′DC

s
(107)

are only necessary when the rock microstructure allows the
bulk frame, solid grains, and pore space to deform differently
under unjacketed loading (Makhnenko and Podladchikov,
2018) (Ks is the bulk modulus of solid grains). Note that the
rheological assumptions in the Brown–Korringa (BK) model
differ from those in the Detournay–Cheng (DC) and the pre-
sented extended Biot formulations. As a result, the interpre-
tation and estimation of the parameters in Eq. (107) differ
between models.

– The poroelastic parameters (Eq. 107) can be computed
numerically with arbitrary precision. Numerical studies
conducted in 3D confirm that, for isotropic (or cubic)
monomineralic rock frames with isotropic grains and a
fully interconnected pore space, the three parameters in
Eq. (107) are equal (Alkhimenkov, 2023, 2024).

– These parameters can also be measured experimentally
in laboratory settings, enabling practical application. In
many practical situations, the differences between these
parameters (Eq. 107) are small, and one can safely adopt
a single solid modulus Ks. The condition βs = β

′DC
s =

β ′′DC
s typically holds when the rock has a monomin-

eralic, isotropic, and uniform skeleton and a fully in-
terconnected pore network and when it is subjected to
pressures below the onset of micro-fracturing or min-
eral phase transitions. Under such assumptions, the un-
jacketed compression test measures the intrinsic min-
eral bulk modulus, and both the whole-specimen (K ′DC

s )
and pore-volume (K ′′DC

s ) moduli may collapse (as sug-
gested by several studies) to Ks = 1/βs, reducing the
DC model to the original Biot–Gassmann formulation.
That is, under unjacketed conditions, the entire solid
surface is subjected to a uniform pressure increment
1p, and, if the rock is microscopically isotropic and
homogeneous, both the solid grains and bulk frame-
work undergo uniform volumetric strain, resulting in
no change in porosity (Tarokh and Makhnenko, 2019).
Typical examples include dense quartz sands, clean
limestones below micro-crack initiation stress, and syn-
thetic rock samples.

– Even for the multi-mineral skeleton, the differ-
ences between these parameters (Eq. 107) are
small, which is shown in the 3D numerical study
by Alkhimenkov (2025) and in laboratory settings
(Makhnenko and Podladchikov, 2018).
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Figure 1. Panels (a)–(b) show sketches illustrating the model geometry. Panel (c) shows the numerical solution ofKu, the analytical solution
via Gassmann’s Eq. (47), and the analytical solution via Eq. (92) as a function of the numerical resolution. Panel (d) shows the error
magnitudes between (i) the numerically evaluated bulk modulus Ku and the analytically evaluated bulk modulus via Gassmann’s Eq. (47)
and (ii) the numerically evaluated bulk modulus and the analytically evaluated bulk modulus via Eq. (92).

– Finally, these parameters can also be derived using ef-
fective medium theory. This is the most rigorous way to
establish under which conditions the three poroelastic
parameters are equivalent. The application of effective
medium theory is outside the scope of the present study
but remains an important direction for future work.

We note that, when a rock frame consists of two or more
minerals with different elastic properties (e.g., shales, poorly
consolidated sandstones, or cracked carbonates), the distinc-
tion βBK

M 6= β
BK
S

in the BK framework is present. In such
cases, the assumptions underlying the self-similarity hypoth-
esis break down, and Gassmann’s equations serve only as a
(very good) approximation within the framework of the ex-
tended Biot formulation (Alkhimenkov, 2025).

To further assess the magnitude of the off-diagonal com-
ponents of the matrix H, we perform a Taylor expansion of
βEB
δ = β

′EB
s −β ′′EB

s (without imposing any assumption on

mono- or multi-mineral composition of the frame):

H1,2 =

1
(1−φf)2

(
(β ′EB

s )2+βEB
d (φf− 2)β ′EB

s +βEB
d β ′EB

s
)

·βEB
δ +O

(
β2
δ

)
, (108)

which demonstrates that the off-diagonal terms of H are
small.

10.3 Comparison of Gassmann’s equations and
Thomsen’s alternative formulation

Thomsen (2023b) argued that the original derivation of
Gassmann’s equations contains a logical error, namely an in-
correct application of Love’s theorem to hydraulically open
and closed systems. In the present derivation, we rely on clas-
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sical irreversible thermodynamics and do not rely on any as-
sumptions regarding whether the porous material system is
open or closed.

Thomsen (2023b) provided an updated version of these re-
lations (see also Brown and Korringa, 1975):

Ku =Kd+

(
1−Kd (K

BK
M )−1)2

φfK
−1
f + (1−φf)K

−1
s −K

BK
d /(KBK

M )2
, (109)

whereKBK
M is a new parameter referred to as the “mean” bulk

modulus (Thomsen, 2023b). Note the similarity between ex-
pressions (47) and (109). Thomsen’s relation introduces one
additional parameter, KBK

M , beyond the original Gassmann
Eq. (47). Thomsen (2023b) also provided ways to evaluate
KBK
M , including

KBK
M =

[
1

KBK
d
−

1
BBK

(
1

KBK
d
−

1
KBK

u

)]−1

, (110)

where BBK (Skempton coefficient) is directly observable in
quasi-static experiments. Alternatively, expression (110) can
be rewritten as

KBK
M =


BBK

(
φfK

−1
f + (1−φf) (K

BK
s )−1

)
−(1−BBK) (KBK

d )−1

2BBK− 1


−1

. (111)

Importantly, Thomsen’s formulation reduces to Gassmann’s
when KBK

M =K
BK
S .

Thomsen (2023b) argued that this additional parameter
KBK
M must be independently measured, even for monomin-

eralic rocks, and that Eq. (109) should be used instead of the
original Gassmann relation (47). As follows from Eq. (111),
evaluating KBK

M requires an independent measurement of the
Skempton coefficient BBK. Thomsen (2023b) further noted
that the porosity φf is not constant under equal changes in
fluid pressure pf and total pressure p̄ and argued that, for
monomineralic rocks,KBK

M generally differs fromKBK
S . This

implies a sensitivity of porosity variation, either increasing or
decreasing, depending on the sign of KBK

M −K
BK
S .

We note the following:

– Gassmann explicitly stated the self-similarity hypothe-
sis in his original article (Gassmann, 1951). Therefore,
claims of a logical error (Thomsen, 2023b) in the deriva-
tion are unfounded.

– The claims made by Thomsen (2023b) are not supported
by rigorous theoretical developments (e.g., exact solu-
tions in effective medium theory) that explicitly demon-
strate that KBK

M 6=K
BK
S for monomineralic rocks.

– Several 3D numerical studies confirm that the self-
similarity hypothesis holds for homogeneous isotropic

(or cubic) dry responses and isotropic solid-grain mate-
rials. This has been verified numerically for both cubic
and transversely isotropic symmetries (Alkhimenkov
et al., 2020a, b; Alkhimenkov and Quintal, 2022a, b;
Alkhimenkov, 2023, 2024).

– A recent 3D numerical study of a heterogeneous frame
material composed of two solids with different bulk and
shear moduli (Alkhimenkov, 2025) showed that the dif-
ference KBK

M −K
BK
S is below 0.11 GPa, practically in-

significant.

– Laboratory experiments show that, even for the multi-
mineral skeleton, the differences between KBK

M and
KBK
S are small (Makhnenko and Podladchikov, 2018).

– This all suggests that, in relatively homogeneous rock
samples, the distinction between different solid-grain
moduli has negligible practical impact.

– The mechanics of rocks includes additional important
aspects such as nonlinearity in their mechanical re-
sponse, differences in mechanical properties under ex-
tension versus compression (which can differ by sev-
eral percent), intrinsic anisotropy of the solid grains, ef-
fective anisotropy of the rock sample, and irreversible
damage under applied loads. All of these factors con-
tribute to a much more complex mechanical behavior of
rocks. These additional constraints may have a signif-
icantly greater impact on rock response than potential
deviations from the self-similarity hypothesis.

Alkhimenkov (2023) conducted a numerical convergence
study demonstrating that KBK

M →Ks (where Ks is the solid
bulk modulus) for monomineralic rock as the resolution in-
creases. In this study, KBK

M was computed independently us-
ing Eq. (111), with the Skempton coefficient BBK also calcu-
lated. Consequently, the result of expression (109) converges
to the original Gassmann relation (47) in the monominer-
alic isotropic (or cubic symmetry) case where KBK

M ≡Ks
(within numerical precision), thereby validating the original
Gassmann formulation for a particular pore space and solid
material geometry.

10.4 Limitations

Often, natural rocks are composed of multiple minerals that
are anisotropic, and they typically exhibit some degree of in-
trinsic anisotropy. They may also contain a combination of
compliant cracks (e.g., grain contacts) and stiff pores, which
respond differently under mechanical loading. Additionally,
a rock’s heterogeneity can violate the assumptions of a rep-
resentative volume element. It is also well established that
elastic moduli can vary by several percent under compression
versus extension. These deviations from ideal small-strain
elasticity suggest the need for additional effective param-
eters, and thus more experimental (or numerical) measure-
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ments, to accurately characterize fully saturated and realistic
rock samples.

11 Conclusions

This study has presented a structured, transparent, and ther-
modynamically admissible derivation of the quasi-static ex-
tended Biot’s poroelasticity framework. The well-known
classical Gassmann equations and Biot poroelastic formu-
lation (fundamental tools for characterizing the poroelastic
mechanical behavior of fluid-saturated porous media) are de-
rived here as special cases of the general theory. While the
thermodynamic admissibility of the original Biot equations
has previously been demonstrated, the present work extends
this admissibility to a more general model using the frame-
work of classical irreversible thermodynamics. We empha-
size clarity, accessibility, and full reproducibility throughout
the derivation. The main novelty of this study is the develop-
ment of the extended Biot’s poroelasticity framework, which
incorporates off-diagonal components of the Hessian matrix.
The relations between the new set of poroelastic parameters
are fully expressed in terms of the components of the Hessian
matrix H.

By strictly adhering to conservation laws and thermody-
namic principles, we have also addressed recent claims by
Leon Thomsen regarding the validity of Gassmann’s for-
mulation. In particular, we have shown that the key self-
similarity assumption (that porosity remains unchanged un-
der equal changes in fluid and total pressure) is a sufficient
but unnecessary condition for the derivation of a Gassmann-
type relationship between undrained and drained bulk mod-
uli. Indeed the extended Gassmann poroelastic Eq. (69) is
derived in this contribution without relying on Gassmann’s
assumption of self-similarity.

To promote transparency and support future develop-
ments, we provide symbolic Maple routines. These materials
ensure full reproducibility of the derivations and offer a prac-
tical foundation for extending the framework to more com-
plex scenarios, such as multiphase fluid systems and related
phenomena.
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Appendix A: Explanation of the Maple script for a
single-phase medium

The following Maple script provides a step-by-step deriva-
tion of the entropy production for a one-dimensional system
using the principles of classical irreversible thermodynamics.
It uses the volume-specific formulation for mass conserva-
tion and the principles of local thermodynamic equilibrium
(LTE) to establish the relationship between different thermo-
dynamic fluxes and forces. The script calculates the entropy
production, Q[s], and demonstrates the impact of various
choices for flux definitions. Below is a detailed explanation
of each step in the script.

Listing A1. Maple script for entropy production.

Below, we provide a detailed explanation of each line in
the script.

Initialization and mass conservation

Listing A2. Here, V is defined as the specific volume, which is the inverse of density, ρ.

Listing A3. This line represents the mass conservation equation using the volume-specific formulation. It calculates the time derivative of
the specific volume as the negative divergence of the volume flux q[V](x) divided by the local density.
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Conservation of energy

Listing A4. This represents the conservation of energy, where dUdt is the time derivative of the specific internal energy and q[e](x) is
the energy flux. The equation states that the change in internal energy is equal to the negative divergence of the energy flux divided by the
density.

Entropy balance

Listing A5. This line represents the entropy balance. Here, dsdt is the time derivative of specific entropy, q[s](x) is the entropy flux,
and Q[s] is the entropy production rate per unit volume. This equation states that the change in entropy is equal to the negative divergence
of the entropy flux plus the entropy production term.

Local thermodynamic equilibrium (LTE)

Listing A6. This equation expresses the principle of local thermodynamic equilibrium (LTE). It relates the internal energy change dUdt to
the product of temperature T(x) and entropy change dsdt, plus the product of pressure P(x) and volume change dVdt.

Solving for entropy production

Listing A7. The script solves the LTE equation for the entropy production term Q[s].

Choice for energy flux

Listing A8. The energy flux q[e](x) is chosen as the product of temperature T(x) and entropy flux q[s](x). This is a common
assumption based on the linear coupling between the energy and entropy fluxes.
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Flux definitions

Listing A9. The volume flux q[V](x) is represented by velocity v following Galileo’s principle. The entropy flux q[s](x) is defined
according to Fourier’s law, where it is proportional to the temperature gradient diff(T(x), x) with thermal conductivity lambda.

Final expression for entropy production

The final expression for entropy production Q[s] is simpli-
fied to

Q[s] =
λ

T (x)

(
dT (x)

dx

)2

. (A1)

Listing A10. This result shows that the entropy production is non-negative and is proportional to the square of the temperature gradient,
divided by temperature, which is a classical result in non-equilibrium thermodynamics.

Appendix B: Explanation of the Maple script for
two-phase fluid-saturated media

B1 General representation of classical irreversible
thermodynamics

Porous materials can be modeled as two-phase systems
composed of a solid skeleton and a saturating fluid. These
phases exchange mass, momentum, and energy, leading to
complex coupled processes that are naturally described us-
ing the framework of classical irreversible thermodynamics
(CIT) (Gyarmati, 1970; Jou et al., 1996; Lebon et al., 2008;
Yarushina and Podladchikov, 2015). In this formulation, con-
servation equations for mass, momentum, entropy, and en-
ergy are expressed in the Eulerian frame as follows:

∂(ρφ)

∂t
+∇j

(
ρφvj + q

j
ρ

)
=Qp, (B1)

∂(ρφvi)

∂t
+∇j

(
ρφvivj + q

ij
v

)
=Qvi , (B2)

∂(ρφs)

∂t
+∇j

(
ρφsvj + q

j
s

)
=Qs, (B3)

∂(ρφe)

∂t
+∇j

(
ρφevj + q

j
e

)
=Qe, (B4)

where vj , s, and e denote the velocity, specific entropy,
and specific total energy per unit mass, respectively. The term
ρ denotes (phase-specific) density, and φ denotes the phase
volume fraction (e.g., porosity for the fluid). The term ∇j
represents

the partial derivative with respect to spatial coordinates,
while qjρ , qijv , qjs , and qje correspond to the fluxes of mass,
momentum, entropy, and energy, respectively. The termsQp,
Qvi , Qs, and Qe represent the corresponding production
rates due to irreversible processes (Yarushina and Podlad-
chikov, 2015).

Entropy production (TQs)

Solving the local entropy production equation for Qs and
multiplying both sides by the absolute temperature T , we ob-
tain

TQs = ηφ

(
dv
dx

)2

+
λφ

T

(
dT
dx

)2

+pv
dφ

dx
− vQv

−QρGGibbs+Qu+p
dφ
dt
− τφ

dφe

dt
. (B5)

This expression represents the entropy production, which
must be non-negative according to the second law of ther-
modynamics. Notably, this formulation assumes local ther-
modynamic equilibrium separately for the solid and fluid
phases. This is a weaker assumption than Biot’s original
model (Biot, 1962), which postulated a single internal en-
ergy potential for the entire two-phase system in the linear
poroelastic regime (Yarushina and Podladchikov, 2015).

Solid Earth, 16, 1227–1247, 2025 https://doi.org/10.5194/se-16-1227-2025



Y. Alkhimenkov and Y. Podladchikov: Derivation of Biot’s and Gassmann’s equations 1245

B2 Thermodynamic constraints on fluxes and
productions

CIT requires that the total entropy production of the sys-
tem remains non-negative. This condition applies both to
the intra-phase and inter-phase entropy production within a
porous medium. Mathematically, this is expressed as∑
phases

Qs =
∑

phases
Qintra

s +Qinter
s ≥ 0. (B6)

Here, Qintra
s represents the intra-phase entropy production

within each phase (e.g., due to viscosity, heat conduction, or
internal diffusion), while Qinter

s represents the entropy pro-
duction arising from inter-phase interactions (e.g., interac-
tions between the solid skeleton and the fluid phase). To sat-
isfy CIT, each contribution must be non-negative:

Qintra
s ≥ 0, Qinter

s ≥ 0. (B7)

B3 Extended thermodynamic admissibility

Building on the principles of classical irreversible thermo-
dynamics (CIT) (Lebon et al., 2008) and the nonlinear vis-
coelastoplastic framework of Yarushina and Podladchikov
(2015), the derivation of the extended Biot poroelastic equa-
tions must satisfy the conditions of thermodynamic admis-
sibility. Specifically, the entropy production Qs must remain
non-negative, and the constitutive relations must be formu-
lated such that they are consistent with the second law of
thermodynamics for all admissible thermodynamic paths.

From Eq. (37), and taking into account the requirement
that entropy production must be non-negative, the inelas-
tic porosity equation takes the form (Yarushina and Podlad-
chikov, 2015)

dsφf

dt
−

dsφe
f

dt
=−

pe

ηφ
, (B8)

where ηφ stands for the effective bulk viscosity. After sim-
plifying and collecting terms (see Appendix B), the total en-
tropy production becomes

TQs,total =
1
ηφ

(
pe

(1−φf)

)2

+ ηt
(
∇· vs)2

+
(qD)2ηdV

φf
+
λt

T

(
∂T

∂x

)2

. (B9)

–
1
ηφ

(
pe

(1−φf)

)2

: entropy production due to porovis-

cous deformation (effective viscosity ηφ and effective
pressure pe = p̄−pf).

– ηt(∇· v
s)2: entropy production due to viscous dissipa-

tion in the solid phase.

–
(qD)2ηdV

φf
: entropy production due to viscous dissipa-

tion in fluid flow (Darcy flow).

–
λt

T

(
∂T

∂x

)2

: entropy production due to heat conduction

(Fourier’s law).

The non-negative nature of each term ensures the overall
positivity of entropy production, thereby confirming the
thermodynamic validity of the system of extended Biot’s
poroviscoelastic equations.

A more detailed derivation is given below (see also the
discussions provided by Yarushina and Podladchikov, 2015).
Additionally, symbolic Maple routines used to reproduce and
validate the theoretical results presented in this article are
available in a permanent DOI repository (Zenodo) (Alkhi-
menkov and Podladchikov, 2024).

Code availability. The software developed and used in this study is
licensed under the MIT License. The latest version of the symbolic
Maple routines is available from a permanent DOI repository (Zen-
odo) at https://doi.org/10.5281/zenodo.15777522 (Alkhimenkov
and Podladchikov, 2025). The repository contains code examples
and can be readily used to reproduce the results presented in the arti-
cle. The codes are written in the Maple programming language. The
latest version of the symbolic Maple routines is available from Zen-
odo at https://doi.org/10.5281/zenodo.15777522 (Alkhimenkov and
Podladchikov, 2025) or https://doi.org/10.5281/zenodo.13942952
(Alkhimenkov and Podladchikov, 2024).
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