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Abstract. Heterogeneous structures and diverse volcanic,
hydrothermal, and geomorphological processes hinder char-
acterisation of the mechanical properties of volcanic rock
masses. Laboratory experiments can provide accurate rock
property measurements, but are limited by sample scale
and labor-intensive procedures. In this contribution, we ex-
pand on previous research linking the hyperspectral finger-
prints of rocks to their physical and mechanical properties.
We acquired a unique dataset characterising the visible-near
(VNIR), shortwave (SWIR), midwave (MWIR), and long-
wave (LWIR) infrared reflectance of samples from eight
basaltic to andesitic volcanoes. Several machine learning
models were then trained to predict density, porosity, uniaxial
compressive strength (UCS), and Young’s modulus (E) from
these spectral data. Significantly, nonlinear techniques such
as multilayer perceptron (MLP) models were able to explain
up to 80 % of the variance in density and porosity, and 65 %—
70 % of the variance in UCS and E. Shapley value analy-
sis, a tool from explainable Al, highlights the dominant con-
tribution of VNIR-SWIR absorptions that can be attributed
to hydrothermal alteration, and MWIR-LWIR features sensi-
tive to volcanic glass content, fabric, and/or surface rough-
ness. These results demonstrate that hyperspectral imaging
can serve as a robust proxy for rock physical and mechanical
properties, potentially offering an efficient, scalable method

for characterising large areas of exposed volcanic rock. The
integration of these data with geomechanical models could
enhance hazard assessment, infrastructure development, and
resource utilisation in volcanic regions.

1 Introduction

Society is dependent on subsurface resources, including
groundwater (Foster et al., 2013), low-carbon energy (Lund
and Toth, 2021; Soltani et al., 2019) and critical raw materials
(Lewicka et al., 2021). Simultaneously, population growth
and increasingly extreme weather (Aubry et al., 2022; Far-
quharson et al., 2015) expose a growing number of people
to geological hazards, including rock falls, landslides, and
volcanic eruptions. Effective management of these resources
and hazards requires detailed characterisation of the subsur-
face geology, its physical properties (e.g., density and per-
meability), and its mechanical behaviour (e.g., strength and
deformability).

Volcanic regions commonly host mineral, water, and
geothermal resources, and are also extremely prone to ge-
ological hazards. However, the mechanical behavior of vol-
canic rock masses remains challenging to characterize, due
to the diverse volcanic, hydrothermal, sedimentological and
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geomorphological processes that shape and reshape them
(Heap and Violay, 2021). Although mechanical properties
can be accurately and routinely measured in the laboratory,
samples are typically limited to the centimeter- to decimeter-
scale, which is several orders of magnitude smaller than is
required to predict surface deformation or reservoir behavior.
Obtaining sufficient measurements to statistically character-
ize large-scale mechanical variability thus remains a chal-
lenge, given the laborious mechanical tests required to mea-
sure e.g., strength, stiffness, and hydraulic properties.

Several proxy measures have been developed to help miti-
gate sampling limitations, including field measurements of
porosity and permeability (Farquharson et al., 2015; Mor-
densky et al., 2018), Schmidt hardness (del Potro and Hiir-
limann, 2009; Dinger et al., 2004; Harnett et al., 2019; Mor-
densky et al., 2018), point-load strength (Poganj et al., 2025),
reflectance spectroscopy (Kamath et al., 2025; Bakun-Mazor
et al., 2024; Kereszturi et al., 2023; Schaefer et al., 2021),
and thermal inertia (Franzosi et al., 2023; Loche et al., 2021;
Mineo and Pappalardo, 2016). These proxies are easier to
obtain than many mechanical test results, and often corre-
late well with important laboratory-measured properties like
strength and stiffness after calibration for specific geological
contexts or settings.

Hyperspectral reflectance data could provide an espe-
cially useful proxy for mechanical properties, as they can
be collected rapidly and, potentially, acquired remotely us-
ing imaging sensors. This approach could make use of the
latent influence that lithological properties like mineralogy,
fabric, and porosity have on both the hyperspectral and me-
chanical response. For instance, Schaefer et al. (2021) used
visible-near (VNIR; 350-900nm) and shortwave (SWIR;
900-2500 nm) infrared reflectance spectroscopy to correlate
spectral features and mineralogy with porosity and strength,
and identified moderate Spearman rank correlation with 390,
2207, and 2325 nm features. Kereszturi et al. (2023) also
used VNIR and SWIR hyperspectral data to predict poros-
ity and unconfined compressive strength (UCS) in volcanic
rocks, explaining 40 %—50 % of the mechanical variance. Lee
et al. (2023) applied VNIR, SWIR, and midwave infrared
(MWIR; 3000-5200 nm) data to predict the dynamic elastic
moduli of finely laminated shales, with R? scores between
0.4 and 0.8, but across a small sample set. Most recently,
Bakun-Mazor et al. (2024) used VNIR-SWIR and longwave
infrared (LWIR; 7000—-12 000 nm) spectra to estimate several
mechanical properties, including UCS, in carbonate rocks,
with generally high (0.8 to 0.9) R? scores. However, further
research is needed to understand the relationships between
hyperspectral data and the mechanical properties of volcanic
rocks, due to their complex microstructures and mineralo-
gies, as well as the impact of hydrothermal alteration.

In this contribution we investigate the relationships be-
tween hyperspectral data and the mechanical properties of
volcanic rocks, specifically focusing on density, porosity,
UCS, and Young’s modulus (E). E is of particular interest,
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as it has not previously been linked to hyperspectral data and
is crucial to predict surface deformation occurring during
e.g. construction or tunnelling works, mining, and volcanic
unrest (Arens et al., 2022; Harnett and Heap, 2021; Heap et
al., 2020b, 2021b; Hickey et al., 2022; Hoek and Diederichs,
2006; Strehlow et al., 2015; Vrakas et al., 2018).

We therefore expanded the dataset presented by Keresz-
turi et al. (2023) to include samples from more volcanoes,
and cover an extended spectral range (VNIR-SWIR-MWIR-
LWIR). This dataset is then leveraged to:

1. Train machine learning models to predict density,
porosity, UCS, and E.

2. Identify hyperspectral indicators for hydrothermal alter-
ation, and explore how these are linked to the measured
and predicted mechanical properties.

3. Quantify the influence of different spectral ranges on
each predicted property, to explore the spectral features
that inform our model.

By advancing our understanding of the correlations between
hyperspectral and mechanical properties, we ultimately aim
to improve our ability to characterise complex and heteroge-
neous volcanic rock masses.

2 Theory
2.1 Light-matter interactions: reflection and scattering

Light-matter interactions are complex, and governed by mul-
tiple interacting optical phenomena. Reflectance is a dimen-
sionless expression of these interactions, defined by the ra-
tio between the excitation signal (illumination or irradiance,
W m~2) and signals emitted back towards a sensor (radiance,
W m~2sr~ ). Hyperspectral sensors measure this returned
radiance, and split it into many narrow but contiguous wave-
length ranges to derive a radiance spectra that, after correc-
tion to derive reflectance, contains information on the target
material.

Links between hyperspectral reflectance spectra and min-
eralogy are well established, as reviewed by Laukamp et
al. (2021) and Williams and Ramsey (2024). Specific spectral
ranges can be used to identify certain elements, due to the ab-
sorption of VNIR range light during electronic transitions in
metals like Fe, and covalent bonds that absorb energy at spe-
cific wavelengths by stretching and bending activity. Com-
pounds containing O-H, C-O and S-O bonds tend to have di-
agnostic absorption features in the SWIR and MWIR ranges,
while stretching and bending vibrations of Si-O bonds cause
absorption in the upper MWIR and LWIR ranges.

In volcanic contexts (Fig. 1a), electronic transition ab-
sorptions in the VNIR range can be used to detect common
Fe3t and Fe?* rich minerals, including hematite, goethite,
and jarosite. SWIR range data are sensitive to hydroxylated
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silicates, including clay minerals, sulphates, and carbonates.
The MWIR range (Fig 1b) is less widely used, but also in-
cludes diagnostic absorption features for hydroxylate silicate
and carbonate minerals (Fig 1b). Finally, the upper MWIR
and LWIR range is strongly influenced by absorptions from
the Si-O bonds in silicate minerals and glasses, and can be
used to characterise the extent of silica polymerization and to
identify most rock-forming silicates (e.g., quartz, feldspars,
pyroxene) (Fig Ic).

Regardless of the spectral range, features observed in re-
flectance spectra are determined by a combination of re-
fraction, absorption and scattering characteristics inherent to
each material, and abide by Snell’s law (Kirkland et al., 2003;
Rost et al., 2018). The expected positions of absorption fea-
tures are well-established, including subtle variations caused
by differences in crystal structure that often allow precise
identification of specific minerals (Laukamp et al., 2021).
However, spectral characteristics like overall albedo, broad
fluctuations in reflectance intensity, and the depth and asym-
metry of absorption modes (spectral contrast), can vary sig-
nificantly between rocks with the same mineralogy. These
wavelength-dependent variations derive from processes oc-
curring as light interacts with the surface of a rock and while
traveling through its solid constituents (and pore spaces), car-
rying information linked to surface and bulk physical proper-
ties. For consistency, we refer to changes in the direction and
intensity of light which are directly dependent on the surface
characteristics as “surface scattering”, and as “volume scat-
tering” when these changes are linked to processes occurring
below the surface. Accordingly, light-matter interactions in
natural minerals can be understood through the combination
of two optical scattering components: surface and volume
(Osterloo et al., 2012; Rost et al., 2018; Vincent and Hunt,
1968).

Surface scattering occurs when light interacts mostly with
the superficial layer of a mineral, which acts as a mirror-like
interface and reflects light without transmitting it to the in-
ternal constituents of a rock (hereafter referred to as grains,
although we use this term inclusively of crystals, clasts and
fragments) (Fig. 1d). This happens when the extinction co-
efficient of light in a medium (k) is larger than its refractive
index (n); as most of the incident radiation is absorbed at the
surface and not transmitted to higher depths (Hardgrove et
al., 2016). The magnitude of surface scattering can vary with
wavelength (as n and k are both wavelength dependent), and
is highly sensitive to the scale of surface topography relative
to the wavelength (Rayleigh’s criterion; Hapke, 2012, 1981).
A surface is considered perfectly smooth when its average
roughness is smaller than the wavelength of the incident
light, with the outcoming light being reflected at the same
angle as the incoming radiation. This phenomenon, known
as specular reflection, is particularly important in the LWIR
region (5000-50 000 nm) (Fig. 1d). As roughness increases,
surface irregularities serve as points for the incoming light
to scatter into several directions, spreading the total reflected
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energy in a Lambertian-like process known as diffuse scat-
tering (Fig. 1d). Diffuse scattering is particularly important
in the VNIR-SWIR analysis of rough surfaces in which as-
perities are oriented towards different directions. In extreme
cases, multiple diffuse patterns can occur within a small area,
leading to a multi-path scattering pattern (Fig. 1d).

In addition to impacting surface scattering, increased
roughness enhances the transmission of incoming light
through grains at the sample surface, even when k is larger
than n. This process, known as volume scattering, intro-
duces longer paths and changes in direction for light trav-
elling within the medium leading to partial energy loss and
reduced spectral contrast (Kirkland et al., 2003, 2001; Oster-
loo et al., 2012; Rost et al., 2018) due to light undergoing
absorption within the medium prior to being scattered back
to the surface (Fig. le). Increased volume scattering is also
linked to the grain size, and observed especially in the pres-
ence of smaller grains (Hunt and Vincent, 1968; Lyon, 1965;
Mustard and Hays, 1997; Salisbury and Wald, 1992). It is
important to note that although the impact of volume scatter-
ing on the reflectance spectrum is dependent on the inherent
optical properties of the mineral, roughness, and the wave-
length of the incoming light, these relationships are highly
non-linear and difficult to characterise for real multi-phase
materials (i.e. rocks). In the LWIR, both increased and de-
creased spectral contrast have been associated with volume
scattering, highlighting the complexity of these interactions
(Osterloo et al., 2012).

For most real materials and mineral mixtures, both sur-
face and volume scattering influence the reflectance spectra,
with different contributions depending (again) on the surface
roughness, grain size, and wavelength range. An exemplary
case of surface and volume processes acting simultaneously
is encountered for porous materials (Fig. 1f). Pore size, shape
and distribution are directly linked to surface roughness, im-
pacting the light-matter interaction dynamics by: (i) enhanc-
ing the volume scattering by transmitting light through re-
gions with different k and » (e.g. mineral/air/mineral inter-
faces), leading to longer travel paths; and (ii) by trapping
light at pores with high depth-to-width ratios, causing mul-
tiple surface reflection paths (cavity effect) and, in extreme
cases, leading to total absorption of light before it can be re-
flected out of the cavity (Hardgrove et al., 2016; Huang et al.,
2021; Kirkland et al., 2001). Ultimately, increased porosity
may lead to important changes in the reflectance spectrum,
particularly in the thermal region (5000-50 000 nm), and is
associated with reduced spectral contrast and inhibition of
diagnostic mineralogical absorption features (Osterloo et al.,
2012; Rost et al., 2018; Salisbury and Eastes, 1985).

2.2 Hapke’s model
Hyperspectral cameras operate as fixed-position external-

reflectance sensors, collecting the radiation scattered in a
specific direction from a material excited by a light source
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Figure 1. Mineralogical and physical controls on hyperspectral reflectance spectra. Examples of absorption features caused by minerals
commonly found in volcanic rocks are shown for the VNIR-SWIR (a), MWIR (b) and LWIR (c) ranges, as described in depth by Laukamp
et al. (2021). Typical surface (d) and volume scattering (e) interactions are shown, highlighting the effect of increasing surface roughness and
grain size. An example of how these processes operate simultaneously, and are both strongly influenced by porosity, is shown in (f). Note
that these are all wavelength dependent, especially where the wavelength of light approaches the scale of variation.

of known characteristics. Hence, material properties which
affect the amount of radiation scattered towards a detec-
tor influence the measured spectra. Several models (broadly
known as the Hapke model) have been proposed to in-
vestigate these light-mineral interaction dynamics, initially
in the context of extraterrestrial remote sensing (Hapke,
2012, 2008, 2002, 1984, 1981). Hapke’s models aim to es-
timate bidirectional reflectance signals collected by external-
reflectance sensors. They are based on radiative transfer the-
ory and on the works from Chandrasekhar (1960), and form
an important theoretical basis for hyperspectral imaging ap-
plications. The core premise of Hapke’s models is that re-
flectance spectra can be parameterised as a function of mate-
rial type and morphological properties (Hapke, 1993).

While a detailed examination of Hapke’s model(s) is be-
yond the scope of this contribution, we aim here to identify
several key elements that link reflectance signals with rough-
ness, grain size and porosity. These effects are highlighted
using the following formula,

r(i,e,o,A) = K#([l + B(x)]P ()

+M(i,e,a,A)—1), (1)

where 7 (i, e, @, A) is the scattering intensity (radiance); K is
the filling factor (linked to porosity; Hapke, 2008); @ ()
is the average single scattering albedo (SSA; linked to ab-
sorption and scattering at particle level and dependent on the
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wavelength A); B(«) is the opposition surge function (Hapke,
1993, 1986); P(w) is the average single scattering function
for the phase angle «; i and e are the angles of incidence and
emission; M (i, e, o, 1) represents the wavelength-dependent
multiple scattering effect (MSE). It is important to note that
Hapke’s refers to ‘scattering’ as an integration of all radiation
emitted by a surface following interactions with an excita-
tion source, with no distinction between surface and volume
processes. Instead, the models provide a holistic approach
in which multiple terms are influenced by both surface and
volume processes. In this context, radiance is thus the total
signal scattered by an object towards a detector. In hyper-
spectral remote sensing, the distinction between surface and
volume scattering contributions is important, as surface and
subsurface rock characteristics are linked to changes in the
reflectance spectra (cf., Sect. 2.1).

The single and multiple scattering terms (SSA and MSE)
are the primary contributors to the reflectance estimated by
the model. Whilst SSA represents the probability of light be-
ing scattered or absorbed by a single grain, MSE (derived
from Ambartsumian-Chandrasekhar H-function and depen-
dent on SSA) accounts for multiple scattering prior to its
emission towards a detector. Both parameters are material-
specific, and vary according to changes in roughness, grain
size, and wavelength of light. Another core term is the phase
function P(«), which estimates how much light is scattered
in a given direction relative to the direction of incoming light
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as a function of the angle between the illumination direc-
tion and the viewing direction (phase angle, «). The inten-
sity and direction of the phase function are not material-
specific, but « also depends on roughness, grain size and
wavelength. The opposition surge term B(«) is also linked to
o, and introduces a surface brightening effect as it decreases
(Hapke, 2002). Finally, the porosity parameter K accounts
for changes in scattered signals due to increasing porosity
and/or decreasing density (Hapke, 2008).

To summarise, Hapke’s models provide an important tool
to understand the link between hyperspectral reflectance
spectra and sample roughness, grain size, porosity and com-
position. It is based on radiative transfer theory and tradi-
tionally used to describe the scattering of light by planetary
surfaces. It estimates the bidirectional reflectance of a sur-
face, considering both single and multiple scattering of light.
The model can be tuned for specific applications, and gener-
ally incorporates parameters such as single-scattering albedo,
phase function, and surface roughness which have a di-
rect impact on the bidirectional reflectance signals. Hapke’s
model is therefore a strong basis for understanding the inter-
action of light with rock surfaces, aiding in the interpretation
of remote sensing data. While the complexity of real samples
typically limits the model’s practical application, it provides
a useful theoretical framework that will help us to understand
and interpret hyperspectral reflectance spectra.

3 Methods
3.1 Sample database

For this study, we compiled a new database of 332 well-
characterised core samples that have been subjected to lab-
oratory rock deformation experiments (Heap et al., 2021a,
2020a; Leiter et al., 2024; Schaefer et al., 2023; Tramontini
et al., 2024; Vairé et al., 2024). These samples were col-
lected in the scope of previous studies from eight basaltic
to rhyolitic composite volcanoes, including Cracked Moun-
tain (Canada; Leiter et al., 2024), Ruapehu (New Zealand;
Schaefer et al., 2023), La Soufriere de Guadeloupe (Eastern
Caribbean; Heap et al., 2021b, a), Ohakuri (New Zealand;
Heap et al., 2020a), Chaine des Puys (France; Vairé et al.,
2024), Copahue (Argentina/Chile; Tramontini et al., 2024),
Tongariro (New Zealand; Kidd et al., 2024), and Whakaari
(New Zealand; Kidd et al., 2024).

Most of the sampled rocks are basaltic to andesitic in com-
position, and cover a range of textures (breccias, pyroclastic,
and coherent lava rocks). A breadth of hydrothermal alter-
ation is also covered, ranging from dominantly fresh rocks
(e.g., from Chaine des Puys; Vairé et al., 2024) through to in-
tense hydrothermal alteration (e.g., some samples from Ru-
apehu and Whakaari; Schaefer et al., 2023). Altered samples
in our sample set were subject to acid-sulphate related miner-
alogical changes, including the formation of sulphates (e.g.,
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jarosite, alunite and anhydrite), phyllosilicates (e.g., kaolin-
ite and montmorillonite), and various polymorphs of quartz
(Heap et al., 2021a; Kereszturi et al., 2020). This diversity
of alteration is intended to help our machine learning models
to learn some of the alteration systematics and capture how
these can influence the physical and mechanical properties of
volcanic rocks.

3.2 Laboratory testing

Mechanical test cores were prepared with a diameter of
20mm and a length of ca. 40 mm. Measurements and ex-
periments were either performed at University of Strasbourg
(France) or University of Canterbury (New Zealand). Prior to
testing, the samples were dried in a vacuum oven at 40 °C for
a minimum of 48 h (Strasbourg) or oven-dried at 60 °C for
a minimum of 48 h (Canterbury). Dry bulk density was cal-
culated using the dry mass and bulk volume of each sample.
Connected porosity was calculated using the skeletal volume,
measured using an AccuPyc II 1340 pycnometer (Strasbourg
and Canterbury), and the bulk volume of each sample.

Uniaxial compressive strength (UCS) experiments were
performed using a uniaxial load frame supplied by Schenk
(Strasbourg) or a 3000 kN Technotest uniaxial load frame
(Canterbury). All experiments were performed on dry sam-
ples at ambient laboratory temperatures. Samples were de-
formed at a constant strain rate of 107> s~! until macro-
scopic sample failure (Fig. 2a). Axial displacement and axial
force were measured by a linear variable differential trans-
ducer and a load cell, respectively, and were converted to
axial strain and axial stress using the initial length and ra-
dius of the sample, respectively. More information, as well
as schematic diagrams of the devices, can be found in Heap
et al. (2014) and Mordensky et al. (2018).

The maximum stress of each loading curve was identified
as the UCS. The pre-failure loading curve was then smoothed
slightly using a Savitzky—Golay filter and resampled to reg-
ular stress increments using a linear interpolation. The slope
of the most linear part of the resampled loading curve was
then identified to calculate E, using the random sample and
consensus (RANSAC) algorithm. This regression technique
iteratively fits data with a function (in this case linear) us-
ing random minimal subsets (two points) and maximises the
number of inliers within a threshold distance. This approach
successfully identifies the linear part of each loading curve
while remaining robust to outliers caused by pre-failure in-
elastic deformation (Fig. 2c), allowing robust and objective
measurement of E.

3.3 Hyperspectral data acquisition
The core samples were arranged on non-reflective sample
trays (Fig. 2a), grouped by size to limit focal blur, leveled

and fixed in place using plasticine to reduce illumination arti-
facts. Each tray was then scanned using a Specim SiSuROCK
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Figure 2. Post-failure uniaxial compressive strength (UCS) test cores (a) prior to scanning in a SiSUROCK hyperspectral drillcore scanner (b).
UCS and Young’s modulus (E) were extracted from the corresponding stress-strain curves (c) using an automated RANSAC-based procedure,

for direct comparison with the (averaged) sample spectra.

drill core scanner, which contains Specim AisaFENIX, FX50
and AisaOWL hyperspectral sensors and a high spatial reso-
lution Specim RGB-Jai camera (Fig. 2b). The workflow de-
scribed by Thiele et al. (2024) was used to coregister data
from each of the sensors and to convert from measured radi-
ance to relative reflectance.

Each sample was then extracted from the coregistered
stack of hyperspectral (and RGB) imagery using napari-
hippo (Thiele et al., 2024), and stored as a separate set of
images. The spectra of each image was smoothed slightly
with a Savitzky—Golay filter (using a 1st order polynomial
and window size of 5 bands), and hull-corrected using hylite
(Thiele et al., 2021) to amplify spectral absorption features
and reduce illumination artifacts caused by non-planar sam-
ple geometries. VNIR to MWIR spectra were corrected using
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an upper hull correction, while a lower hull correction was
applied to the LWIR range data.

Median spectra from each mechanical test sample were
then compiled into a spectral library covering the VNIR-
SWIR-MWIR-LWIR range. These were combined with the
corresponding mechanical property measurements to derive
a training dataset.

Mineralogy was characterised with indices extracted from
the spectra of each sample using the minimum wavelength
mapping approach (van der Meer et al., 2018) implemented
in hylite (Thiele et al., 2021). These indices (Table 1) quan-
tify specific spectral absorptions resulting from vibrational
and bending vibrations associated with water, sulfate, hy-
droxylated phyllosilicates, and silicate minerals (Laukamp
et al., 2021; Schodlok et al., 2016). Two composite indices
were also calculated, to characterize bulk-composition and

https://doi.org/10.5194/se-16-1249-2025
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Table 1. Spectral indices used to spectrally characterize our samples. Absorption features are classified according to the notation of Laukamp
et al. (2021), denoting stretching-related absorptions with v and bending-related absorptions with 8, and were quantified by fitting an asym-
metric gaussian to the specified spectral range and recording its amplitude as a measure of absorption depth. This fitting was conducted using
hylite (Thiele et al., 2021), and included a hull correction step to remove spectral features broader than the target range.

Short name  Target Spectral range (nm)  Indicator for

H,O vOH+-6H,0 1800-2120  Molecular water in e.g., clay minerals.

OH vOH 1350-1600  Hydroxyl groups in clay minerals and hydroxylated sulfates (kaolinite,
alunite, illite, etc).

Al-OH v+ §(Al)-OH 2150-2240 Hydroxyl groups in Al-rich phyllosilicate minerals including illite,
smectite, kaolinite, etc.

Mg-OH v+ 6(Mg)OH 2280-2330 Hydroxyl groups in Mg-bearing phyllosilicate, like Mg-rich smectites
(e.g., hectorite).

SOy SO 1700-1800 Indicator for the presence of sulfate-bearing minerals, including
gypsum and alunite.

Silica vSiO 4400-4600 Indicator for quartz or amorphous silica via the second overtone SiO
absorption. This was used (rather than the LWIR feature) to avoid
interference with plagioclase.

Kaolinite v+ §M>OHo 2100-2200  Depth of the v + §(Al)-OH related doublet typical of kaolinite group

minerals. Note that the hull correction applied prior to fitting removes

the influence of the deeper absorption at 2200 nm.

the extent of hydrothermal alteration. The first is the Mafic-
Felsic Index of Schodlok et al. (2016), which distinguishes
samples with basaltic compositions from those that are more
evolved. This index, hereafter referred to as MFI, was com-
puted by applying a lower-hull correction to the LWIR spec-
tra between 7640 and 10620 nm and identifying the gen-
eral position (wavelength) of the reflection peak within this
range, using the polynomial fitting approach implemented in
hylite (Thiele et al., 2021). The results were then normalized
to range between 0 (maxima at 10 620 nm, indicating mafic
compositions) and 1 (maxima at 7640 nm, indicating felsic
compositions).

The second bulk index was derived by averaging the HO
and OH absorptions at ~ 1900 and 1400 nm (Table 1), to
track the total amount of water (as H,O, in e.g. quartz-hosted
fluid inclusions, and as -OH groups in e.g., clay minerals).
Because most of the measured volcanic rocks are initially
dry (with some exceptions, e.g., phreatomagmatic tuff), this
water often indicates hydrothermal alteration. We thus use
this index as a rough proxy for hydrothermal alteration (and
weathering) processes. The presence of hydrated (alteration)
minerals has been shown to correlate with mechanical re-
sponse (Heap et al., 2022).

3.4 Regression models

Each target variable (density, porosity, UCS, and E) required
transformation prior to model fitting, to reduce skew (Fig. 3)
and ensure the back-transformed predictions are correctly
scaled (non-negative and, in the case of porosity, between

https://doi.org/10.5194/se-16-1249-2025

0 and 1). A square root transform (Fig. 3e) was found to per-
form better than a log-transform (Fig. 3f), likely as it resulted
in more normally distributed data. Porosity was converted to
aratio of voids to solids (1 — porosity) prior to the square root
transform, mitigating challenges fitting regressions to closed
data.

We ensure a robust calibration/validation by defining five
folds using a stratified split with respect to porosity, to en-
sure that each fold contains diverse mechanical properties.
Several machine learning approaches (lasso regression, par-
tial least square regression, support vector regression, and
multilayer perceptron regression), known to be adapted to
this genre of tasks, were then evaluated using the R? metric
and 5-fold cross validation (to account for potential overfit-
ting). Model hyperparameters were optimised to maximise
the training R? score, as documented in the Jupyter note-
books included in the Supplement. Five models of each type
were trained, each setting aside a single fold (20 % of the
data) as a test set. Each trained model was then used to pre-
dict its unseen test-set, and the results compiled for a robust
assessment of model accuracy. Finally, the best performing
models (of different types) were combined into an ensem-
ble, allowing prediction variance to be used as a measure of
uncertainty.

3.5 SHAP analysis

Shapley values (Shapley, 1973) have recently been adapted
to help understand the predictions made by deep learning
models. Based on cooperative game theory, Shapley values

Solid Earth, 16, 1249-1267, 2025
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Figure 3. Distributions of the training data before (a—d) and after square root (e) and log (f) transformation. Note that transformed data was
normalised to have a median of 0 and 2nd to 98th percentile range of 1. The square root transform (e) resulted in approximately normal

distributions.

quantify the contribution of individual features to output pre-
dictions, providing a theoretically grounded measure of the
average marginal contribution of each input feature across
all possible feature subsets (Lundberg and Lee, 2017). This
allows a more detailed interpretation than other explanation
approaches, and in this case helps link model predictions to
specific hyperspectral bands.

We used the python package SHAP (Shapley Additive Ex-
planations; Lundberg and Lee, 2017) to compute Shapley
values for our ensemble models. Due to the various types of
models included in these ensembles, a stochastic estimation
approach (KernelSHAP) was used. KernelSHAP is a model-
agnostic algorithm that estimates Shapley values by system-
atically perturbing input variables and measuring the result-
ing changes. The perturbative nature of this algorithm makes
it computationally expensive, requiring us to compute Shap-
ley values only for a subset of our test dataset. This subset
was selected using k-means clustering, such that 16 repre-
sentative data points (cluster centroids) could be selected for
use by the Kernel Explainer.

4 Results
4.1 Spectral response of hydrothermal alteration

A comparison of MFI, a proxy for composition, and hydra-
tion index, a proxy for hydrothermal alteration, highlights the
spectral diversity of our dataset (Fig. 4). Two broad popula-
tions of basalt (lower) and andesite (upper) form clear hori-
zontal “bands”, each of which contains variable amounts of

Solid Earth, 16, 1249-1267, 2025

hydration. The MFI results broadly match the expected com-
position of each volcano, albeit with exceptions including
two altered samples from Whakaari with anomalously low
MFI (due to the confounding influence of non-silicate alter-
ation minerals like jarosite or sulphur, rather than a mafic
composition).

Diagnostic absorption features for kaolinite (v+§M>OHo)
and other clay minerals (v+8§(Al)-OH and v+§(Mg)-OH) are
prominent in many altered samples. Of these, the kaolinite-
rich samples (Fig. 4e) tended to be associated with deeper
2vSi-O absorptions in the MWIR range (at ~ 4500 nm) or
8S-0O absorptions in the SWIR range (at ~ 1750 nm), indi-
cating silicification and/or the presence of sulphate minerals
like jarosite and alunite. In combination, these spectral fea-
tures indicate advanced argillic alteration, and are mostly as-
sociated with higher (andesitic) values of MFI as our dataset
currently lacks basaltic examples of advanced argillic alter-
ation.

Many samples also contain well defined v 4 §(Al)-OH ab-
sorption features (Fig. 4a), but without the previously men-
tioned kaolinite, sulphate, or quartz-related absorption fea-
tures. These are indicative of illite and smectite group clay
minerals formed by lower-temperature (< 120°C) and/or
higher pH hydrothermal alteration or weathering. Many of
the basaltic samples (lower MFI) also contain distinctive
v + 8(Mg)OH absorption features at 2300 nm, while lacking
the v + §(Al)-OH feature (Fig. 4b). We interpret this as ei-
ther primary Al-poor clays (e.g., in palagonite tuffs), or as
the result of argillic alteration or weathering in Al-poor pri-
mary lithologies to form Fe- and Mg- rich clay minerals, like
nontronite and hectorite.

https://doi.org/10.5194/se-16-1249-2025



S. T. Thiele et al.: Hyperspectral mapping of physical and mechanical rock properties 1257
a. AIOH Index b. MgOH index
0.2 0.4 0.05 010 0.15
0.7 | | E
¢ 0 e ¢ ° e
' (] [ ]
0.6 ! ’ & : Advanced argillic ¢ COpahue & : Advanced argillic
9 ‘ 0. o8 V%o ot Ao Cracked Mountain o® % o e
o] e . o
2 05 = = La Soufriere oo
27 - @y e Ohakuri | con By @y
3 g #D.‘I’a O e@ & L IPY'Y
- 3 +A' ] Argillic + Ruapehu Argillic
o 0.4 c ! 4 Bg m g o T . -
€ |Sh et e o ) * Tongariro
= ' & &, v Volvic | e e aV e,
0.3 ¢ M éAA‘AA . AAA@AA
; A A % Alpoor argillic e Whakaari % Alpoor argillic
+
ol +0 LN ¢ L ¢
. i ee
d. Sulphate Index e. Kaolinite Index
0.05 010 0.15 0.1 0.2
0.7 [
¢ el ® N J o0 -
0.6 ‘ & ‘ Advanced argillic o Advanced argillic
5 g ¢
el
<
505
@
&
504
g
=
03 Al il
-poor argillic
U
0.2
i i ee
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07

Hydration Index

Hydration Index

Hydration Index

Figure 4. Measured hydration index (x axis) and Mafic-Felsic Index (MFI; y axis), coloured by hyperspectral indices for AI-OH bearing
phyllosilicates (a), Mg-OH bearing phyllosilicates such as hectorite (b), quartz (c), sulfate (d), and kaolinite (e). The two main clusters indi-
cate the broadly basaltic (lower) or andesitic (upper) composition of the samples, while hydrothermal alteration (and/or surface weathering)
results in significant scatter along the x axis. Distinctive Al-OH and Mg-OH (clay) rich zones indicate argillic alteration, while samples with
elevated sulfate and kaolinite indices were likely subject to advanced argillic alteration.

Notably, all samples with spectral absorptions indicative
of hydrothermal alteration also had prominent vOH and
vOH+8H,0 absorptions at ~ 1400 and 1900 nm. This sug-
gests that these combined features (our hydration index)
can be used to broadly quantify the intensity of hydrother-
mal alteration, because primary volcanic lithologies tend not
to contain hydrated or hydroxylated phases. Samples with
higher hydration indices tended to be less dense (Fig. 5a) and
have lower UCS and E (Fig. 5c—d) than counterparts with
lower hydration indices. Porosity showed a more complex re-
lationship to the hydration index (Fig. 5b), with a distinctive
set of highly porous but non-hydrated samples (vesiculated
lavas), and highly porous and hydrated samples.

4.2 Rock property prediction

The tested machine learning models gave a wide range
of prediction accuracies, with highly varied 5-fold cross-
validation R? scores (Table 2). Linear models (PLSR and
Lasso) performed poorly, suggesting a highly non-linear re-
lationship between spectral response and rock properties (Ta-
ble 2). Support Vector Regression (SVR) and Multilayer Per-
ceptron (MLP) models were able to learn the nonlinear rela-
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tions, yielding 5-fold cross validated R? scores between 0.5
and 0.85 for each of the rock properties. Deeper multilayer
perceptrons (with 8 to 16 fully connected layers) performed
best. The need for depth further emphasises the need to cap-
ture nonlinear links in the underlying data structure and mod-
elling.

Models fit to principal component (PCA) transformed in-
puts (retaining 25 independent features), including the MLP
models that theoretically work well with high-dimensionality
input, performed better than models fit directly to concate-
nated spectra.

No substantial difference in accuracy was observed be-
tween MLP models predicting a single output (i.e. univari-
ate MLP models that predict a single rock property) and
multivariate MLP models (that predict each of the four rock
properties together). Ensemble predictions computed by av-
eraging outputs from a set of nine manually selected (best-
performing) SVM and MLP models show similar or slightly
improved R? scores (relative to the individual models). How-
ever, these ensemble models allow an estimate of prediction
uncertainty (Fig. 6), based on the standard deviation (o) of
the individual model predictions. In most cases the measured
rock property was within 20 of the ensemble mean, though

Solid Earth, 16, 1249-1267, 2025
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Figure 5. Biplots of our hydration index and density (a), porosity (b), uniaxial compressive strength (UCS) (¢) and Young’s modulus (E) (d).
These indicate that increasing hydration due to hydrothermal alteration and/or weathering tends to decrease density, UCS and E and slightly
increase porosity. These trends are (unsurprisingly) quite weak, with Spearman rank correlation coefficients of 0.2-0.3. Colours indicate each
sample’s MFI, such that basalts are blue and andesites are red. Please refer to the legend of Fig. 3 for the symbols indicating each volcano.

Table 2. Five-fold cross validated R2 scores for the machine learning approaches trained and tested on: (1) basaltic (MFI < 0.4), (2) andesitic
(MFI > 0.4), and (3) combined subsets. The best R? scores for each property are indicated in bold. The ensemble models were constructed

by combin

ing the best-performing SVR and MLP models.

Lasso PLSR SVR MLP (uni) MLP (multi) Ensemble

Density 0.39 0.51 0.76 0.82 0.85 0.84
Density (basalt) 0.5 047 0.77 0.75 0.83 0.78
Density (andesite) 0.32 0.47 0.79 0.85 0.83 0.84
Porosity 0.33 048 0.74 0.79 0.81 0.81
Porosity (basalt) 0.39 0.49 0.77 0.73 0.81 0.76
Porosity (andesite) 0.31 049 0.74 0.80 0.77 0.80
ucs 0.21 0.18  0.59 0.69 0.66 0.67
UCS (basalt) 0.56 <0 0.76 0.76 0.75 0.75
UCS (andesite) 0.1 <0 057 0.67 0.67 0.66
E 0.30 0.36  0.65 0.67 0.67 0.70
E (basalt) 0.44 041 0.68 0.73 0.75 0.73
E (andesite) 0.31 041 0.64 0.62 0.62 0.65

Solid Earth, 16, 1249-1267, 2025
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Figure 6. Five-fold cross validation predictions (test-fold predictions for each of the five models) for density (a), porosity (b), uniaxial
compressive strength (UCS) (¢) and Young’s modulus (E) (d) derived using our ensemble of SVM and multilayer perceptron models. The
consistency of the ensemble predictions, quantified as the standard deviation of model predictions, are shown as 2o error bars. The majority
of the predictions are thus within error of the measured values, although there are also several notable outliers. Symbols denote the different
volcanoes included in the dataset, and colours reflect the hydration index (Fig. 3). Note that the x and y axes in (c) and (d) use a square-root
scale to better visualise data clustered around lower values of UCS and E.

several notable outliers can also be identified. These include
the prominently under-predicted UCS for one sample from
Ruapehu (156 rather than 380 MPa), and over-estimated E
for several samples from Ruapehu and Whakaari.

Interestingly, models trained and tested on the basaltic
samples achieved higher R? scores than equivalents trained
and tested on andesitic ones (Table 2). This implies that the
rock properties of basalts (in our dataset) were easier to pre-
dict than andesites, possibly due to the variability of the hy-
drothermally altered andesite relative to the basalts (which
were mostly fresh or palagonitized).

https://doi.org/10.5194/se-16-1249-2025

4.3 Important spectral ranges

Shapley values calculated for our ensemble predictions were
aggregated to explore the contribution of each spectral range.
This result exploits the additive nature of Shapley values:
values derived for bands in the VNIR, SWIR, MWIR and
LWIR ranges (respectively) can be summed to quantify the
aggregate effect of each spectral range on each model pre-
diction (Fig. 7). The results suggest the VNIR-SWIR range
contributes most to predictions of density, UCS, and E that
are below the expected (average) prediction, while the LWIR
range makes a substantial contribution for above-average
predictions. The opposite can be seen for porosity, where

Solid Earth, 16, 1249-1267, 2025
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Figure 7. Shapley values summed for each spectral range (VNIR-SWIR, MWIR, and LWIR) from the joint model (trained on both basalt and
andesite) ensemble, indicating the cumulative contribution of each spectral range to predicted density (a), porosity (b), uniaxial compressive
strength (UCS) (¢) and Young’s modulus (E) (d). Values for each property are sorted from high to low predicted value along the x axis.
Higher predictions relative to the mean prediction (dotted line) for density, UCS, and E appear largely driven by LWIR features, while lower
values are associated with strong negative contributions from the VNIR-SWIR range. These VNIR-SWIR bands push the predicted value
down, and likely indicate the influence of SWIR active hydrated alteration minerals.

VNIR-SWIR bands mostly drive above average predictions.
This pattern suggests the models learn to associate SWIR-
active alteration minerals with reduced UCS, E, and density
(and increased porosity).

The non-aggregated (per-band) Shapley values can also
constrain the specific spectral features that, in combination,
contribute to increase or decrease each prediction relative to
the mean. These values are shown in Fig. 8, though only
for models trained on the basaltic (Fig. 8a) and andesitic

Solid Earth, 16, 1249-1267, 2025

(Fig. 8c) subsets separately (to reduce the influence of litho-
logical effects). The results are difficult to interpret specif-
ically because the predictions result from a complex bal-
ance between positive contributions from some bands (red)
and negative contributions (blue) from others. Strongly neg-
ative Shapley values are often associated with 1800, 1900,
and 2200 nm bands, which contain absorptions characteris-
tic of hydrothermal alteration minerals (Table 1) for sam-
ples with low predicted E. Higher predictions also appear

https://doi.org/10.5194/se-16-1249-2025
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Figure 8. Shapley values for our predictions of Young’s modulus (E) in the basaltic (a, b) and andesitic (c, d) subsets. These were calculated
using the ensemble models trained specifically on each subset (to remove aspects of the joint model focused on lithological distinction).
Symbols in the left column indicate the measured property values from each volcano (cf. Fig. 3), while the black solid lines show the (207)
range of values predicted by the ensemble. Deviations of model predictions from the mean (black dashed line) are the sum of the Shapley
values along each row, such that blue values indicate bands that decreased the prediction, while red values indicate bands that increased it.
Mean absolute SHAP values (b, d), summarising the sensitivity of the model to specific bands are also shown, with spectra from samples
with high (solid) and low (dashed) property values for reference. These Shapley values highlight the correspondence of informative bands
and inflection points (“shoulders”) in the spectra. Shapley value plots for the other mechanical properties can be found in the Supplement.

driven by these same bands, possibly due to an absence of
absorption features in these wavelengths for these samples.
In the MWIR, features at ~ 3400 and between 4200 and
4900 nm appear important, with several “doublets” (spec-
trally adjacent high and low Shapley values) indicating a
sensitivity to absorption shape (asymmetry) or position. The

https://doi.org/10.5194/se-16-1249-2025

first of these bands (3400 nm) is likely related to v2ZHOH ab-
sorptions (though this absorption will have been heavily dis-
torted by the hull correction applied during pre-processing).
The latter bands (4200-4900 nm) are interpreted to relate to
2vSi-O absorptions from silicate minerals or 2vS-O absorp-
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tions from sulphates (Laukamp et al., 2021). The last of these
(4900) may also have been shifted by the hull correction.

The Shapley values are easier to interpret after averaging
their absolute value across all samples, to broadly highlight
important spectral ranges. As mentioned also above, these
ranges (Fig. 8b and d) match several expected mineralogi-
cal absorptions but, interestingly, also suggest that the model
tends to focus on absorption “shoulders” rather than their
centres, which we speculate could be due to a higher sen-
sitivity of absorption shoulders to complex scattering effects.

Notably, many more VNIR, SWIR, and MWIR bands ap-
pear important for predictions made by the andesitic model
than the basaltic one, presumably due to the more com-
plex mineralogy of these samples. Informative bands be-
tween 8500 and 11 000 nm likely relate to vSiO absorptions,
though the mixtures of silicate minerals and glassy matrix
make these difficult to interpret specifically (Laukamp et al.,
2021; Leight et al., 2024; Williams and Ramsey, 2024). In-
formative bands for the andesite model are lower wavelength
(8500-9200 nm) than those for the basaltic model (8800—
9800 nm), corroborating the change in silica polymerization
between these sample sets.

5 Discussion

Our five-fold cross validated ensemble predictions show that
hyperspectral data can be used to explain ~ 80 % of the vari-
ance in density and porosity and 65 %—70 % of the variance
in strength (UCS) and Young’s modulus (E), at least for the
investigated basaltic and andesitic volcanic lithologies. The
rapid acquisition and imaging abilities of hyperspectral sen-
sors could thus be leveraged to better characterise complex
volcanic rock masses, by extending laborious rock property
measurements across large datasets from point spectrome-
ters, hyperspectral core scanners and, potentially, outcrop hy-
perclouds (e.g., Thiele et al., 2024, 2022). The resulting thou-
sands to millions of (ideally spatially continuous) property
estimates would allow robust characterisation of the variabil-
ity in volcanic rock matrix properties and, if combined with
digitally mapped fracture information, provide some of the
information needed to numerically predict larger-scale rock-
mass properties (e.g., Cundall et al., 2008).

5.1 Predicting density and porosity

Our predictions of density and porosity were remarkably ac-
curate (5-fold CV R? score of 0.81 and 0.84 respectively),
especially given the complex volcanic processes that influ-
ence these properties (vesiculation, pyroclastic processes, al-
teration, and fracturing). Interestingly, linear methods such
as LASSO and PLSR predicted density and porosity poorly
(Table 2), while the non-linear methods (MLP and SVR)
achieved R? scores > 0.8. This suggests an inherently non-
linear relationship between reflectance, density, and porosity.
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The high accuracies of the non-linear models also indicate
that they are able to learn more than just the link between
the hyperspectral data and mineralogy, as composition alone
is expected to be a poor predictor of porosity (Pola et al.,
2012). We thus suggest that the hyperspectral data contain
information on porosity and density via the sensitivity of vol-
ume and surface scattering processes to pores at or near the
sample’s surface (Fig. 1). As described by the Hapke model,
such wavelength-dependent scattering effects are likely espe-
cially relevant for longer wavelengths, supporting the Shap-
ley values that show the LWIR data contributed significantly
to many predictions (Fig. 7). Larger vesicles could also in-
fluence the spectra via the cavity effect (Fig. 1), especially in
the LWIR infrared range (where they are expected to reduce
reflectivity and increase the emissivity).

Our Shapley values highlight the important role of MWIR
and LWIR bands, especially for high-density and low-
porosity samples (Fig. 7). It is also striking that the VNIR-
SWIR and LWIR ranges tend to be in opposition (cancelling
each other out) for less extreme predictions (Fig. 7), empha-
sising the importance of the broad spectral range (VNIR-
SWIR-MWIR-LWIR) covered by the dataset. The special
attention our machine learning models appear to be giving
to the shoulders of mineralogical absorption features (rather
than their minima, which are typically related to composi-
tion) is also noteworthy. We tentatively suggest that this high-
lights the sensitivity of our models to the shape and asymme-
try of absorption features, properties that are more signifi-
cantly influenced by surface reflection and volume scattering
processes that likely give information on surface roughness,
grain size, and porosity.

5.2 Predicting uniaxial compressive strength and
Young’s modulus

The lower, but still informative, predictive power of our mod-
els for UCS and E indicates a complex relationship be-
tween spectral response, porosity, density, and alteration-
related weakening (Heap et al., 2020a, or possibly strength-
ening in the case of silicification; Heap et al., 2021a). These
non-linear models can explain ~ 70 % of the total variance,
noting that the R? scores are likely substantially reduced by
a small number of outliers (Fig. 6). This result is consis-
tent with the combined models of Kereszturi et al. (2023),
in which externally measured porosity and VNIR-SWIR in-
formation (characterising alteration mineralogy) explained
80 % of the variance in UCS. We suggest that externally
measured porosity was needed by Kereszturi et al. (2023)
due the lack of LWIR information, which limited their abil-
ity to directly predict porosity from the hyperspectral data
(R* = 0.4). Our dataset clearly did not have this limitation
(Sect. 5.1), indirectly improving also our predictions of UCS.

Theoretical links between reflectance spectra and grain
size properties could further influence our machine learning
models, although we are unable to distinguish these effects
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from the previously discussed sensitivity to porosity. We also
speculate that it is likely the model is learning to distinguish
glass-rich (and hence stiff and brittle) samples from more
crystallised ones, based on their distinctive LWIR expression
(Williams and Ramsey, 2024). The sensitivity to glass could
explain the broad informative wavelength range indicated by
the Shapley values in the LWIR (Fig. 8).

The remaining (unpredicted) variance in UCS and E could
be attributed to micro-fractures, which will serve to reduce E
and UCS (Griffiths et al., 2017; Swanson et al., 2020; Take-
mura et al., 2003) with negligible spectral effect. Such frac-
tures could, for example, explain overpredicted outliers in
Figs. 6 and 8. Micro-fractures are less likely to explain cases
where our model makes under-predictions however, includ-
ing the notable outlier in Fig. 6¢ where the predicted UCS is
~ 250 MPa too low.

5.3 Hyperspectral quantification of hydrothermal
alteration

VNIR-SWIR hyperspectral data are particularly useful for
identifying hydrothermal alteration, discriminating between
different alteration types, and vectoring towards mineral de-
posits (e.g., Cudahy et al., 2008; Laukamp et al., 2021, 2011;
Portela et al., 2021). Argillic and advanced argillic alteration
can be characterised based on the distinctive spectral signa-
ture of sulphates, kaolinite, and other clay minerals (Fig. 4).
This could be further refined by detailed investigation of the
position of these respective absorption features, to distin-
guish between e.g., kaolinite and dickite or illite and smectite
(e.g., Kereszturi et al., 2020; Simpson and Rae, 2018).

Our results also show that the combined depth of v-OH
and v+38H-O-H absorptions can be used as a broad but use-
ful proxy for hydrothermal alteration in non-weathered crys-
tallised volcanic rocks, as these lithologies tend to be ini-
tially water poor. That said, this index likely cannot iden-
tify hydrothermal alteration in tuff units, which can be hy-
drated during or shortly after formation (e.g., palagonite).
Our hydration index shows a weak correlation with physi-
cal and mechanical properties (Fig. 5), with substantial un-
explained variance that emphasises the important additional
influence of microstructure (porosity, grain-size, glass con-
tent, and micro-fractures).

5.4 Applications and future directions

Unlike other commonly applied proxies for physical and me-
chanical rock properties (e.g., Schmidt hardness, field esti-
mates for porosity, etc.), hyperspectral data can be collected
remotely using imaging techniques. This imaging capability
unlocks several intriguing possibilities.

Firstly, our machine learning models could be applied to
hyperspectral imagery of hand-sample sized specimens ac-
quired during geotechnical fieldwork to create prior predic-
tions of their physical and mechanical property variability.

https://doi.org/10.5194/se-16-1249-2025

The locations of extracted mechanical test cores could then
be optimized to cover the range of expected variability, im-
proving the statistical representativity of the resulting data.
Such an approach would provide an opportunity to inde-
pendently validate our model predictions, and provide train-
ing data for future refinements, while helping ensure statis-
tically representative characterisation of heterogeneous rock
masses.

Secondly, imaging hyperspectral sensors can also be de-
ployed on tripod, crewed, and uncrewed aircraft to remotely
capture ~ 1 to 10 cm resolution data over large areas of ex-
posed rock. This resolution is comparable to the scale of lab-
oratory tests for physical and mechanical properties, but with
a large spatial extent that could enable detailed rock-mass
characterisation, through the integration of remotely esti-
mated physical and mechanical property estimates, remotely
mapped fracture information (e.g., Dewez et al., 2016; Thiele
etal., 2017), and numerical simulation techniques (e.g., Cun-
dall et al., 2008; Ivars et al., 2011).

Finally, we caution that further development and the acqui-
sition of a larger, more diverse training database is undoubt-
edly needed before this approach can be confidently applied
to industrial applications, especially for outcrop mapping.
The lower-quality of hyperspectral data acquired outside of
laboratory conditions and the variety of weathering processes
that can influence outcrop surfaces, require approaches that
are robust and carefully validated. However the required sen-
sors and acquisition techniques already exist, suggesting cm-
scale mapping of outcrop physical and mechanical properties
is achievable, with appropriate site-specific calibration and
validation.

6 Conclusions

Our machine learning models demonstrate that hyperspectral
data can be used as a proxy for the physical and mechani-
cal properties of the sampled andesitic and basaltic volcanic
rocks, with cross validated R? scores of 0.7 to 0.8. Physical
properties, mechanical behaviour, and reflection spectra are
influenced by a complex combination of primary and sec-
ondary (alteration or weathering) mineralogy, glass content,
porosity, grain size, and surface roughness. Disentangling the
influence of these properties on spectral reflectance (for com-
plex mixtures; i.e. rocks) remains challenging, but our find-
ings demonstrate that machine learning techniques can be
used to find informative relationships between spectral and
physical and mechanical properties. Further work is required
to assess how robust these predictions are, and if they can be
generalised or are best applied after site-specific training. We
are confident that our results (and other recent work by e.g.,
Bakun-Mazor et al., 2024; Kereszturi et al., 2023) show how
hyperspectral data can serve as an informative and easy-to-
acquire proxy for the physical and mechanical properties of
volcanic rocks.
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