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Abstract. Percolation analysis is an efficient way of evalu-
ating the connectivity of discrete fracture networks. Except
for very simple cases, it is not feasible to use analytical ap-
proaches to find the percolation threshold of a discrete frac-
ture network. The most commonly used percolation thresh-
old corresponds to the occurrence of percolation on aver-
age for the set of parameters (p50), which is not adequate
for applications in which a high confidence in the perco-
lation threshold is required. This study investigates the di-
rect relationships between the percolation threshold at low
probability (pO0, referred to as zero-percolation threshold)
and the properties of fracture networks with one set of frac-
tures (fractures with similar orientations) in two-dimensional
domains. A generalized non-linear multivariate relationship
between p0 and fracture network parameters is established
based on connectivity assessments of a significant number of
numerical simulations of fracture networks. A feature of this
relationship is the invariant shape of marginal relationships.
A comparison study with an analytical solution and applica-
tions in both synthetic and real fracture networks shows that
the derived relationship performs well in fracture networks of
different sizes and orientations. A significant benefit of this
relationship is that, when an analytical solution is not avail-
able, it can provide fast and reliable connectivity statistics of
fracture networks based only on fracture parameters.

1 Introduction

Discrete fracture networks (DFN) are widely used to model
fracture systems in rock masses and reservoirs for flow
analysis (Dogan, 2023; Kolyukhin, 2022; Liu et al., 2019).
In three-dimensional DFNs, fractures are represented using
simplified geometric shapes such as polygons, rectangles,
disks, and others. In two-dimensional DFNSs, fractures are
simplified as line segments (Dong et al., 2020). DFN mod-
els are generally considered to be more realistic representa-
tions of the fracture systems and they are more amenable to
integrating geological data into the flow model (Dong et al.,
2018a). Fracture connectivity analysis is a significant com-
ponent in the DFN approach to assessing flow behaviour
(Alghalandis et al., 2015; Einstein and Locsin, 2012) as the
conductivities of fractures are generally orders of magnitude
greater than those of the surrounding porous matrix (Thovert
et al., 2017). A good understanding of the connectivity of
fracture networks is essential for many applications such as
oil and gas recovery, geothermal energy exploitation, hydrol-
ogy and groundwater engineering, and geological storage of
radioactive wastes.

Percolation theory (Jafari and Babadagli, 2013; Kham-
foroush and Shams, 2007; Or et al., 2023; Sun et al., 2023)
provides a basis for describing and quantifying the connec-
tivity of geometrically complex systems (Xu et al., 2007)
such as fracture networks and this is reflected in many stud-
ies reported in the literature that use percolation theory in the
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connectivity analysis of fracture systems (Barker, 2018; de
Dreuzy et al., 2000; Dong et al., 2022; Khamforoush and
Shams, 2007; Manzocchi, 2002; Masihi and King, 2007,
Mourzenko et al., 2012). Percolation describes the phe-
nomenon in which there is at least one domain-spanning
pathway in a physical system (Tang et al., 2022; Yao et al.,
2020; Yi and Tawerghi, 2009). Percolation in a DFN involves
at least one cluster of connected fractures that spans the
reservoir (McKenna et al., 2020) or rock mass (one cluster
refers to a series of fractures that intersect each other). In this
context, one of the most important characteristics of a frac-
ture network is whether or not it percolates (Bour and Davy,
1998; Bour and Davy, 1997) and the percolation threshold is
commonly used to quantify the critical value of connectivity
at which the network percolates (Khamforoush and Shams,
2007; Manzocchi et al., 2023; Walsh and Manzocchi, 2021).
Using this definition, the permeability of a fracture network
is zero if the connectivity value is less than the percolation
threshold (Mourzenko et al., 2005).

The percolation threshold of a DFN is a property that de-
pends on the parameters of the fracture system (Mourzenko
et al., 2005). Features previously used to characterise per-
colation in DFNs include the dimensionless density derived
from the excluded volume (Barker, 2018; de Dreuzy et al.,
2000; Khamforoush et al., 2008; Mourzenko et al., 2012),
fractal dimensions (Jafari and Babadagli, 2013; Jafari and
Babadagli, 2009; Zhao et al., 2016), topological connectiv-
ity measures (Manzocchi, 2002), fracture clustering (Man-
zocchi, 2002), and the average number of intersections per
fracture (Manzocchi, 2002). These indirect characteristics of
DFN models are derived from direct fracture network pa-
rameters, such as the number of fractures, fracture locations,
sizes, and orientations, which have a joint effect on the occur-
rence of a percolating network (Jafari and Babadagli, 2009).
For example, if the fracture size is kept constant, an increase
in the number of fractures will result in a higher fracture den-
sity, which in turn will increase the probability of a connected
domain (Shokri et al., 2016).

There are many published studies on the percolation of
DFN models, with different focuses on different aspects of
the problem. For fracture locations, DFN models in these
studies cover both the Poisson (homogeneous) distribution
(Barker, 2018; Bour and Davy, 1997; de Dreuzy et al., 2000;
Huseby and Thovert, 1997; Jafari and Babadagli, 2013;
Khamforoush and Shams, 2007; Mourzenko et al., 2005;
Robinson, 1983; Thovert et al., 2017; Zhao et al., 2009;
Zhao et al., 2016) and non-homogeneous (i.e., spatially cor-
related) distributions (Manzocchi, 2002; Mourzenko et al.,
2012). For fracture sizes, some DFNs use the monodisperse
model, which means that the shape and size of every frac-
ture are identical (Jafari and Babadagli, 2013; Khamforoush
and Shams, 2007; Khamforoush et al., 2008; Manzocchi,
2002; Mourzenko et al., 2012; Robinson, 1983). This makes
the percolation study relatively simple using numerical sim-
ulation. Others use the polydisperse model in which the
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sizes (Bour and Davy, 1997; Huseby and Thovert, 1997;
Mourzenko et al., 2004; Mourzenko et al., 2005; Thovert
et al., 2017; Zhao et al., 2016) and shapes (Barker, 2018;
Thovert et al., 2017) of fractures are different. Commonly
used fracture size distributions include the power law func-
tion (Mourzenko et al., 2004; Mourzenko et al., 2005; Zhao
et al., 2016), exponential distribution (Catapano et al., 2023;
Dowd et al., 2007; Fadakar Alghalandis, 2017; Xu et al.,
2007; Zhu et al., 2022) and uniform distribution (Huseby and
Thovert, 1997). For fracture orientations, many DFNs use
isotropic models (uniform and random) (Barker, 2018; Bour
and Davy, 1997; Charlaix et al., 1984; de Dreuzy et al., 2000;
Huseby and Thovert, 1997; Jafari and Babadagli, 2013;
Khamforoush and Shams, 2007; Khamforoush et al., 2008;
Mourzenko et al., 2004; Mourzenko et al., 2012; Mourzenko
et al., 2005; Robinson, 1983; Thovert et al., 2017; Yi and
Tawerghi, 2009; Zhao et al., 2016) but anisotropic (with
a single preferential orientation or several preferential ori-
entations) models are also commonly used (Balberg and
Binenbaum, 1983; Khamforoush and Shams, 2007; Kham-
foroush et al., 2008; Manzocchi, 2002). The Fisher distribu-
tion (Khamforoush and Shams, 2007; Xu and Dowd, 2010)
is the most commonly used type of distribution for three-
dimensional fracture networks, while the von Mises distribu-
tion (Xu and Dowd, 2010) is the most commonly used for
two-dimensional fracture networks. Physically, fractures re-
lated to tectonic movements are, in general, anisotropic (e.g.,
conjugate fractures generated around the maximum principal
compressive stress (Zhao and Hou, 2017), while fractures as-
sociated with other causes, such as diagenesis, are typically
isotropic (Dong et al., 2018b).

A common method used to obtain the percolation thresh-
old of a DFN is first to calculate some indirect characteris-
tic parameters of the fracture network and then evaluate the
percolation threshold on the basis of these parameters. How-
ever, DFNs with the same indirect characteristic parameters
may have quite different direct geometrical parameters (e.g.,
number of fractures, fracture size, and orientation). Unfortu-
nately, these geometrical parameters dictate the fracture con-
nectivity and hence the percolation threshold (Dong et al.,
2019). For example, the two fracture networks in Fig. 1 have
the same number of fractures, identical fracture lengths, and
box-counting fractal dimensions, but the network in Fig. la
percolates between sides A and B, while the other (Fig. 1b)
does not percolate. The different orientations of these two
fracture models result in different percolation characteristics.
In this case, the box-counting fractal dimension provides a
good measure of the complexity of the system but it ignores
the effect of the preferential orientation of a fracture network.
Although the indirect approach can simplify the evaluation of
the percolation threshold of a fracture network, it may some-
times produce misleading results. In addition, most percola-
tion thresholds based on the excluded volume method corre-
spond to the occurrence of percolation on average (Barker,
2018; Yi and Tawerghi, 2009) (i.e., with 50 % probability,
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Figure 1. Schematic diagram of two DFN models with different
percolation features. (a) Percolated DFN; (b) Un-percolated DFN.

pS0) due to the stochastic nature of fracture networks (cf.
Sect. 2.2). The level of confidence in such thresholds may
not be sufficient for some applications. For example, for un-
derground radioactive waste storage facilities, selecting stor-
age sites that minimize the potential number of connected
pathways to the biosphere is important. In this case, a low
probability percolation threshold (p0, cf., Sect. 2.2) named
as zero-percolation threshold is more important for the con-
nectivity analysis of the fracture systems (Dong et al., 2019).

In practical engineering applications, it would be less
problematic to use the direct relationship between the per-
colation threshold and fracture network parameters for con-
nectivity assessments instead of resolving the problem by
numerical simulations in every case. In general, it is not
possible to establish such a relationship analytically due to
the complexity of DFNs. In this work, Monte Carlo simu-
lations of the number of fractures, n, fracture size (length),
L ,and fracture orientation, ¢ are used to establish this rela-
tionship for two-dimensional DFN models, the fractures are
represented by vectors representing line segments (Dong et
al., 2020). In particular, fracture locations follow the Pois-
son distribution, fracture lengths follow the exponential dis-
tribution f(L|)) (A: the exponential distribution parameter
whose reciprocal 1/ represents the mean fracture length L)
and fracture orientations follow the von-Mises distribution
f(@|lu, k), where A, u and « are their corresponding distri-
bution parameters. u represents the mean/main fracture ori-
entation, while k (concentration parameter) quantifies the di-
rectional clustering degree of fractures in the von Mises dis-
tribution (see Sect. 2.1). The zero-percolation threshold (p0)
equation L; = f (n, u, k) was established by analysing re-
sults from an extensive set of numerical simulations for frac-
ture networks with one set of fractures (fractures that ex-
hibit similar orientations) (Ali and Jakobsen, 2011; Zeng et
al., 2022) (see Sect. 3.1-3.2). Besides DFN with exponen-
tial fracture length, given the widespread adoption of lognor-
mal distribution f(L|uo) in characterizing fracture length
distributions within DFN, it is imperative to explore the im-
plications of this distribution on the phenomenon of zero-
percolation. Here, i and o are parameters of the lognormal
distribution, where p is the mean of the natural logarithm of
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fracture lengths and o is the standard deviation of the natu-
ral logarithm of fracture lengths (derived from the mean and
standard deviation of fracture lengths). Consequently, this
paper extends its investigation beyond DFNs employing ex-
ponential distribution for fracture lengths to encompass those
utilizing lognormal distribution, as detailed in Sect. 3.3-3.4.

The relationship was established by using a non-linear,
multivariate fitting method for a relationship with invariant
shapes of marginal functions; this is demonstrated by a sim-
ple example in Sect. 2.2 and 2.3. The verification of the de-
rived equations for zero-percolation underwent a comprehen-
sive series of tests in Sect. 4.

2 Principle of the mathematical method

To mitigate ambiguity, the mathematical approach will utilise
DFN with exponential distributions as an instance to elu-
cidate the fundamental principles. Fracture parameters of a
DFN model are described in Sect. 2.1. The percolation and
percolation threshold of a DFN are described in Sect. 2.2. In
Sect. 2.3, the non-linear fitting method is illustrated using a
simple percolation example.

2.1 Discrete fracture networks

DFN modelling is a stochastic simulation method that uses
marked point processes (MPP) (Dong et al., 2018b) in
which fracture location (x, y) is modelled by a point process
(Fig. 2a) following a Poisson, non-homogeneous cluster or
Cox point process (Mardia et al., 2007); and fracture prop-
erties (such as length L, orientation ¢) are modelled at each
point by marks (Fig. 2b) following their respective probabil-
ity distribution functions (e.g., f(L) and f(¢)) (Dong et al.,
2018b; Fadakar Alghalandis, 2017; Xu and Dowd, 2010). To
simulate a set of n fractures with similar orientations, the lo-
cation of a fracture (Fig. 2a) is generated first followed by the
generation of the associated marks (Fig. 2b). Subsequently,
these procedures are iterated n times to culminate in the ulti-
mate implementation of the DFN (Fig. 2c¢).

For 2D DFN models, fracture network parameters include
the number of fracture sets, number of fractures n in each
fracture set, fracture size distribution f (L) and fracture ori-
entation distribution f(¢). The study area used in this work
is 100m x 100m so P20 = n; x 10_4(m_2). P20 (2D frac-
ture density) represents the number of fractures per unit area.
Here, P20 is the fracture number per 2D unit area (Kham-
foroush et al., 2008). For fracture length, a fixed size L can
be used, or the following exponential distribution (Xu and
Dowd, 2010) is commonly used:

re L L >0

f<L|A)={ A ()

where A is the distribution parameter and therefore the aver-

age length, which in this case is L = 1/A. For fracture orien-
tation, a von-Mises distribution (Fadakar Alghalandis, 2017;

Solid Earth, 16, 1269-1287, 2025



1272 S. Dong et al.: A simplified relationship between the zero-percolation threshold and fracture set properties

(.\‘ ,y) °

s
(a) (b) ©

Figure 2. Schematic diagram of a two-dimensional DFN realiza-
tion. (a) Randomly generated fracture location; (b) Fracture proper-
ties (length, orientation) are generated from their probability distri-
butions; (c) Repeat process (a) and (b) to generate the entire fracture
network to account for the number of fractures in each fracture set
as well as the number of fracture sets. (a) Point process; (b) Mark
generation; (c) Discrete fracture network.

Xu and Dowd, 2010) is commonly used for 2D applications:

£ cos@—p)

f(@lp, k)= ENR

@

where p and « are the distribution parameters, /g is the mod-
+oo k%
=0 2

w and 1/k are analogous to the mean and variance of a
Gaussian distribution. p represents the main fracture orienta-
tion. For example, in both Fig. 3a and b, the main orientation
is NE-SW (Fig. 3e and f) so u = /4, while in Fig. 3¢ and
d, u = /2 (Fig. 3g and h), following the common practice
in geotechnical applications of measuring the bearing angle
from the North. « is a measure of concentration (reciprocal
of the measure of dispersion). A comparison of Fig. 3a and ¢
with b and d shows that the dispersion of the fracture orien-
tation increases as 1/« increases. When « = 0, the distribu-
tion of fracture orientations is completely random. The DFN
models were generated by a Matlab code based on the open-
source toolbox ADFNE (Fadakar Alghalandis, 2017).

ified Bessel function defined as: Iy (k) =

2.2 Percolation threshold of DFN models

Percolation in a DFN means there is at least one cluster of
fractures spanning the system (rock mass or reservoir) that
allows the fluid to permeate from one side to the other, as
shown in Fig. 4b, while Fig. 4a shows a non-percolating
DEFN. Obviously, one can easily conclude that an increase
in fracture number or fracture size can lead to the percola-
tion of the system at some stage. In reality, the probability
of percolation is a function of many different factors related
to the DFN parameters (Khamforoush et al., 2008), of which
fracture density (such as P20 and P21 for 2D and P30 and
P32 for 3D applications) is the most critical. Here, P21 is the
fracture length per 2D unit area, while P30 and P32 are the
fracture number and area per 3D unit volume, respectively.
For simple fracture networks, the percolation thresholds
can be found analytically. However, for most fracture net-
works, approaches such as Monte Carlo (MC) simulation are
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required (Yi and Tawerghi, 2009). Due to the random nature
of a DFN model, its corresponding percolation status is also
stochastic in nature. If N independent simulations of a DFN
are repeated for a group of parameters (n, L, ¢), resulting
in N, number of cases where the fracture network perco-
lates, then the percolation probability corresponding to the
parameter setis P = N, /N (Barker, 2018; Yi and Tawerghi,
2009). In this study, p0, p50, and p100 represent the perco-
lation thresholds of the DFN corresponding to 0 %, 50 %, and
100 % percolation, respectively. p0O (zero-percolation thresh-
old) is defined as the critical value of a fracture parameter be-
low which network connectivity is completely lost, ensuring
absolute impermeability. In a fracture network with two vari-
ables, fracture number (n) and fracture length (L), pO may
be represented either by a sufficiently small n (regardless of
L) or by a minimum L when n is fixed.

As illustrated in Fig. 5, percolation probability typically
transitions between P =0 (no percolation) and P =1 (full
percolation) through an intermediate band. The choice of
percolation threshold depends on the application. For ex-
ample, in subterranean radioactive waste repositories, where
preventing any potential connectivity to aquifers is critical
(Wei et al., 2017; Yi and Tawerghi, 2009), p0 is adopted to
ensure absolute impermeability. Conversely, for applications
such as unconventional gas extraction or enhanced geother-
mal systems, near-complete connectivity is desired, and the
threshold may correspond to P = 1. p50 is often adopted in
resource extraction (e.g., hydrocarbon reservoirs) to balance
economic viability and manageable risk. Noted in stochastic
systems, P =0 % and 100 % may not be strictly possible and
therefore the definition used here means the probability cal-
culated by Np/Nr using a reasonable number N7 ( = 20 in
this study). For stochastic systems, Fig. 5 shows a worked ex-
ample, in which the fracture orientations follow a von-Mises
distribution (u = 90°k = 24) and fracture lengths are identi-
cal for each DFN. Twenty MC simulations (N7 = 20) were
conducted using pairs of parameters (n = 20, 30,40, ...,250
and L =0.06,0.08,0.1,...0.8). The percolation probability,
P, calculated from the simulations, is shown in Fig. 5, where
the horizontal axes correspond to the number of fractures n
and the fracture length L, respectively, and the z axis is the
percolation probability of the corresponding DFN model.

Figure 6a presents data points in the vicinity of the pO per-
colation threshold. For each fracture number (n), the statisti-
cal mean of the fracture length threshold (L) corresponding
to p0 percolation is determined from 20 independent Monte
Carlo (MC) simulations, following the same procedure as
in Fig. 5 with the same parameters (u = 90°, k = 24). The
mean values are depicted as circles, with half error bars
indicating the mean = two standard deviations in Fig. 6a. To
further approach the true threshold values, an additional 20
repetitions of the Fig. 6a procedure are performed, providing
a statistically robust estimate that closely approximates the
true value. In order to reduce the computation cost, there
are a few differences in fracture number n and length L
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Figure 3. DFN models showing different fracture orientations with different u, k, together with their corresponding rose diagrams. Fractures
of the same colour in the DFN model are in the same cluster, while fractures in black are isolated ones. (a) u = /4, k =4; (b) u = /4,
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Figure 4. Schematic diagram of percolation in DFN models. (a)
Un-percolated DFEN; (b) Percolated DFN.

compared with those in Fig. 5, ie., n= round(le) =
22,32,45,...,251,j=1.35,15,1.65,...,24,L =

10F =0.0316,0.0322,0.0327, ..., 1,k =
—1.5,—1.4925,—-1.485,...,0. The corresponding non-
linear percolation threshold curve based on least-squares
regression is L = 1.7518 x n =439 with a correlation coef-
ficient of 0.9288. When the specific number # is considered,
an increase in L results in percolation. In this context, we
hold the fracture number # to determine the fracture length
threshold (denoted as L) for zero probability percolation,
hence the utilisation of L and n. Conversely, if the fracture
length is fixed, Land n will be employed. This curve defines
the percolation threshold in terms of parameter pairs of
(n,Ly). The DFN corresponding to any combination of
parameters below this curve, namely L < L, will have a
percolation probability of 0. To assess the uncertainty of this
relationship, 20 groups of MC simulations as used in Fig. 6a
were employed to obtain the non-linear relationship with
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statistical dispersion and the results are shown in Fig. 6b.
The circles correspond to the averages of 20 groups of
20 MC simulations (Fig. 6a) and the error bars represent
two times the corresponding standard deviations. The fitted
non-linear relationship based on least-squares regression of
the average values is L; = 1.592 x n~9403 with a correlation
coefficient of 0.993.

Fracture orientations will also affect the percolation
threshold curves. As the example to demonstrate these ef-
fects, the von-Mises distribution is used to describe the dis-
tribution of fracture orientations for the DFN model used
above. In this case, the fracture network parameters are
(n, L, u, k). To simplify the demonstration, the concentration
parameter « is set to 24, similar to those shown in Fig. 3b
and d; u is set to values from 90 to 0° in 5° decrements.
As the horizontal percolation is of interest here, to simplify
the comparison, u is transformed to an angle measured from
the horizontal direction, i.e., A = |u — 90| (Relative orienta-
tion angle, indicating the deviation angle between the dom-
inant fracture direction p and the horizontal direction, used
for simplified horizontal percolation analysis), hence, A =
0°,5°,...,90°. The above curve fitting process was repeated
and some results are shown in Fig. 6b. As A decreases, the
percolation threshold decreases. This is consistent with the
fact that lower A will increase the connectivity in the hori-
zontal direction between the left and the right sides; perco-
lation therefore requires a shorter fracture length, and so the
percolation threshold curve decreases.

Solid Earth, 16, 1269-1287, 2025
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Figure 5. Percolation probability P versus fracture number n and fracture length L for DFN models with random orientations and identical
lengths. Each P value is obtained from 20 Monte Carlo simulations for a given (n, L) pair. For each n, the fracture length threshold
corresponding to the p0? zero-percolation point is determined, and the average over 20 repeats is taken as the statistical p0 threshold.
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Figure 6. Percolation threshold of (r, L) for the example DFN model. (a) Lt vs. n from 20 MC simulations in Fig. 5, with circles showing
means and half error bars indicating twice the standard deviation. (b) (n, Lt) corresponding to different A, where each point is the average

of 20 repetitions in (a).

2.3 Non-linear relationship for the percolation
threshold

The general shapes of the percolation curves in Fig. 6¢ can
be considered to have similar shapes, which are represented
as coloured curves in Fig. 7. To understand further the rela-
tionship between L, n and A, average values of 20 MC sim-
ulations are shown in Fig. 7. Coloured curves refer to slices
of different n and A. The left colour curves are the varia-
tion of L; and n with different values of A, and the right
coloured curves are the variations of L; and A with different
values of n. Clearly, the threshold fracture length increases as
the number of fractures decreases and the relative orientation
A increases. This is because higher fracture density leads to
greater percolation probability, whereas a lower number of
fractures requires longer fractures to maintain the same per-
colation probability.

Solid Earth, 16, 1269-1287, 2025

From the results in Fig. 7, L= f (n, A) is non-linear.
To establish this relationship, the variation of L; with n for
different values of A is examined first, i.e., L = f1 (n) |a,
followed by assessing the influence of A on the derived
f1 (n) relationship. Note that at the second stage, cos A is
used instead of A as it is more relevant to the quantification
of the fracture projection length in the horizontal direction
(len/cos A).

Based on the simulation results discussed above, Eq. (3) is
considered an appropriate fit to f (n):

Li= fi (n) = an’, 3)

where a and b are parameters to be determined in the fit-
ting process. The correlation coefficients for all curves for
different A values (0, 5 ... 85, 90°) are 0.9985, 0.9895,
..., 0.9949, respectively. The high correlation coefficients

https://doi.org/10.5194/se-16-1269-2025
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Figure 7. Simulated percolation threshold L vs. (n, A). For each
pair of (n, A), 20 MC simulations are implemented to obtained the
average Lt. Coloured curves are lines corresponding to slices of
different n and A.

(> 0.96) confirm the suitability of using Eq. (3) to represent
fi(n).

The relationships between a, b and cos A, shown in Fig. 8,
suggest linear relationships. Least squares regression was
used to obtain the following equations:

a:alcoszA +apcos A + as, @)
b =bicos’ A +bycos A+ b3, 5)

with correlation coefficients of 0.9919 and 0.9712, respec-
tively; ai, a2, az, b1, by, bz are 2.726, —5.304, 2.887,
—0.2552, 0.6134, and —0.5724, respectively.

By incorporating Egs. (4) and (5) into Eq. (3) the final
form of the expression of L in terms of the fracture network
parameters is obtained, as shown in Eq. (6). This form is
then used directly in a bivariate least squares fitting using the
Levenberg-Marquardt algorithm (Ngia and Sjoberg, 2000),
an optimal search technique for multivariate non-linear curve
fitting. The original values of parameters shown in Egs. (4)
and (5) are used as initial inputs to the optimisation algorithm
to improve computational efficiency and accuracy and the fi-
nal derived parameters in this case are (ai, a2, a3, by, by, b3)
=(2.4757, —4.9064, 2.7359, —0.1841, 0.5097, —0.5336).
This set of values should be a more accurate reflection of the
bivariate relationship than the values obtained in the two sep-
arate consecutive steps described above. The L, parameter
(mean fracture length threshold) quantifies the orientation-
dependent critical length for percolation, defined mathemat-
ically as:

Li= (a1 cos’A +ancos A + ag) n(Brcos? Atbycos Atbs) (6)

The final fitted surface is shown in Fig. 9a. The points are the
average values of 20 groups of MC simulation results shown
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in Fig. 7. The suitability of the chosen functional form (Eq. 6)
is confirmed by the fact that almost all the points are on the
fitted surface. The plot in Fig. 9b of simulated values of L,
against those predicted by Eq. (6) gives an extremely high
correlation coefficient of nearly 1. It is also encouraging that,
on visual inspection, the fitted curve is conditionally unbi-
ased.

Although this workflow is useful for multivariate non-
linear fitting problems in which marginal relationships are of
invariant shape, it should be noted that difficulties may arise
for very high dimensions (Dong et al., 2016).

The process described above can be summarised as an ap-
proach for fitting multiple variables. This approach starts by
fitting a hypothetical relationship between L; and »n is ini-
tially fitted. Then, a new variable A is added by analysing
relationships with the parameters in the hypothetical relation-
ship model. The parameters in the hypothetical relationship
model are then replaced by expressions of the newly added
variable. Ultimately, the relationship between L; and (n, A)
can be obtained. This approach will be applied in the rela-
tionship fitting of Sect. 3.2, where the independent variables
are (ncos Ax).

3 Percolation analysis of DFN models

3.1 Experiment design for DFN with exponential
fracture lengths

In the example used above, the lengths and orientations were
identical for all fractures in a fracture network, which was not
generally the case in practical applications. The relationship
described above could be made more useful by extending it
to cover realistic fracture networks. The following numerical
experiments were all implemented on a dimensionless unit
square (1 x 1). Based on previously published work (Dong
et al., 2018c; Xu et al., 2007), the lengths of rock fractures
could generally be modelled by an exponential or lognor-
mal distribution. In this work, the exponential distribution
was used, and therefore the average length L is equal to 1/
where A was the distribution parameter. The von-Mises dis-
tribution (Eq. 2) was used for fracture orientation.

There are now three independent variables (n, A, «) and
the aim is to establish the relationship Li= fn,Ak). To
simulate percolation states similar to those shown in Fig. 5,
DFNs corresponding to a combination of 8 x 18 x 13 x 200
(374 400) sets of variables were simulated and analysed, with
each case simulated independently 20 times. The number of
changes explored for each variable are listed in Table 1.

For each pair of (A,«), 20 independent realisations of
DFNs with different n and L were generated to obtain the
percolation threshold curves Li= f1 (n). These 20 MC sim-
ulations are used to calculate the percolation probability to
obtain the points (n Zt), as shown in Fig. 10. The points are
the average values of 20 groups of 20 MC simulations and
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Figure 9. Bivariate percolation threshold fitting. (a) Fitted percolation threshold surface and simulation data; (b) Cross plot between simulated

values of L and those predicted by Eq. (6).

Table 1. Parameters of DFNs in Sect. 3.2.

Parameter Values analyzed Number of

values
n round(10%),i =1.5,1.65,1.8,...,2.4 8
A=p—90 (G—-1)x5°%i=1,2,3,...,18 18
K round(10),i = 0.602,....,2 13
L=1/x 101 = —1.5,—1.4925, —1.485,...,0 200

the error bars represent two times of the corresponding stan-
dard deviation. The relationship in Eq. (3) was used again
for L; = J1(m)|A . A comparison of Figs. 6b and 10 indi-
cates that the standard deviations in this case are much larger,
which is expected due to the variability in the lengths of frac-
tures generated in simulations. Note that the uncertainty (re-
flected by the size of the error bar) increases as the number
of fractures, n, decreases.
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3.2 Determining percolation threshold equation for
DFN with exponential fracture length

Equation (6) is only for a specific parameter «. Establishing
the full relationship, L= f(n,cos A, k), requires the rela-
tionships between (a1, az, as, by, b, b3) in Eq. (6) and k for
different DFNs. The regression results for these parameters
for different « values are shown in Table 2, which provides
the input data for the final non-linear fitting of the percola-
tion threshold function. The correlation coefficients for each
of the regressions in the table are all greater than 0.98, which
ensures the suitability of the derived relationships.

The relationships between a; and «, between a; and k and
between a3 and « are linear as described by Egs. (7)—(9);
the relationship between b1 and «, between b, and « and be-
tween b3 and « are quadratic as shown in Egs. (10)—(12). The
correlation coefficients of this set of regression curves are all
greater than 0.98. Overall, these variables display a clear and
strong relationship that can be described by an appropriate
functional form. Table 3 lists the constants in Egs. (7)-(12)
obtained by least squares regression.

ay =ank +ai, @)
axy = azik +ax, (8)
az = a3k +azp, &)
by = b1k + biak® +by3, (10)
by = btk + baak® + b3, (11)
by = b1k + byak? + b33, (12)

where a1y, a1z, a1, ax, as1, az, bi1, b1z, b13, bay, by, bas,

b31, b3y, b3z are parameters.
Finally, the  combined  percolation  equation

ft = f(n,cos A, k) can be obtained, as shown in Eq. (13).

The correlation coefficient is again nearly 1 (0.99).

L = (a1« +an)x* + (a2 +an)x
(b11k +bi1ak? + bi3)x?
+(b21k + book? + byz)x + b3k

+ (a3 +032))n( bso? + by ; (13)

where x =cos A. x is a derived variable that optimizes the
equation structure.

Again, these parameters are used as the inputs for the
final multivariate least squares optimisation based on the
Levenberg-Marquardt algorithm using all the simulation re-
sults. The final optimised values of the parameters in Eq. (13)
are shown in Table 4. These values are similar to the initial
parameter values obtained by the step-wise fitting process de-
scribed above but they have been refined by global optimisa-
tion. The correlation coefficient between the prediction and
simulation values based on the initial parameters (Table 3) is
only 0.43 due to the error propagation in the step-wise fitting
process. After global optimisation, the correlation coefficient
increases significantly to nearly 1 (0.99) based on the values
listed in Table 4.
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To visualize the relationships in Eq. (13), several surfaces
of Ly vs. (n, A) corresponding to different values « (4, 18,
42 and 75) are shown in Fig. 12. In general, higher « val-
ues correspond to higher percolation threshold values. This
is because higher « values correspond to lower variation of
fracture orientations, which leads to lower probabilities of
fracture intersections. Consequently, this reduces the connec-
tivity of the fracture network and hence longer fractures are
needed to reach percolation.

Equation (13) is derived for the region of a dimensionless
unit square, the result is expected to be applicable to areas at
different scales (y x y). For these cases, the scaled percola-
tion threshold L, will be used (Eq. 14) revised from Eq. (13).
If the average fracture length of a fracture network L > L,
there is more probability reach percolation.

ZtSZZths (14)

3.3 Design of experiments for DFN with lognormal
fracture lengths

Unlike the previous example, the fracture lengths in this sec-
tion are modeled with a lognormal distribution. The mean
fracture length L and standard deviation v, which quantifies
the dispersion of fracture lengths under the lognormal distri-
bution, are used to derive the distribution parameters p and
o . These parameters, along with the probability density func-
tion, are calculated according to Egs. (15)—(17). Five inde-
pendent variables (Z, v, Ak) are considered with the aim of
establishing the relationship n, = f (L, v, A, k). In this con-
text, n represents the fracture number threshold at which the
percolation threshold may be reached at a low probability
(p0) in DFNs characterized by the parameters (L, v, Ak). In
Sect. 3.1, the exponential distribution of fracture length is de-
fined by a single parameter. Consequently, the fracture length
is selected to determine the threshold corresponding to pO.
Given that the fracture length is governed by two parameters
(L, v), the parameters corresponding to the fracture length
distribution are not selected. Instead, the fracture number is
chosen.

w=log(L’ Nv+T), (15)
o =+/log(v/L* + 1), (16)
FTlwo) = — ™% T (17)
,0) = ———=¢€ 20 , L >0,
H LoA/2m

Simulations and analyses were conducted corresponding to
the 8 x6x6x 18 x 13 (684 400) variable combinations for the
DFNs, with each case independently simulated 20 times. The
number of variations for each variable are listed in Table 5.
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Table 2. Regression parameters (a1, ap, a3, b1, by, b3) for different values of «.

K ai ap az by by b3
3 30.1061  —0.3339 0.6003 —0.03176 0.08575 —0.329
6 0.3431 —0.8712 0.8535 —0.08643 0.2164 —0.3734
10 0.8132 —1.835 1.338 —0.1105 0.3005 —0.4269
13 1.328 —=2.77 1.765 —0.1555 0.3679 —0.4494
18 1.883 —3.781 2.199 —0.2105 0.5097 —0.5119
24 2.726 —5.304 2.887 —0.2552 0.6134 —0.5724
32 3.212 —6.382 3.45 —0.3276 0.8044 —0.6671
56 6.14 —11.59 5.724 —0.2222 0.6696 —0.6211
75 8.671 —15.94 7.582 0.04139 0.3522  —0.5445
10 0 8
5k 6
— a o
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2
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Figure 11. Relationship between « and fitted parameters (a1, az, a3, by, by, b3). (a) k vs. ay; (b) k vs. ap; (¢) k vs. az; (d) k vs. by; (e) k vs.

by; (f) k vs. b3.

3.4 Derivation of percolation threshold equation for
DFN with lognormal fracture lengths

The multivariable fitting process for the DFN with lognormal
fracture lengths was analogous to that described in Sect. 3.2.
Initially, the hypothetical relationship between n, and L was
fitted (Eq. 18). Subsequently, by analysing the relationship
between the parameters in the hypothetical model, new vari-
ables v, A, and « were sequentially incorporated. The ex-
pressions for the newly added variables were then used to re-
place the parameters in the hypothetical model. Ultimately,
this yields the fitted relationship between n¢ and (L, v, A, «),
with the fitting process detailed in Eqgs. (18)—(21), where
X =cosA.

ntzf(Z) =azb+c,

_ —b 5
ne=f(L,v)=a1e?"L”" +cv?,

(18)
19)
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ne=f(L,v,A) = (anx +a12)e“22”zb1'x+b12
+C11v012X+C13, (20)
ng=f (Z, v, A,K) = [(d1K2 + dhk +d3)x
« oy
+ (d4/<2 + dsk +d6)]e(d77+d8>KULd9x+d10K+d”
+ dypuhav e @1)

Similarly, the parameters are used as inputs for the final mul-
tivariable least squares optimisation based on the Levenberg-
Marquardt algorithm, utilising all simulation results. The fi-
nal optimised values of the parameters in Eq. (21) are pre-
sented in Table 6.

To visualise the relationships in Eq. (21), several surfaces
of ny vs. (Z, v, A, k) corresponding to different values of v
(2, 4, and 12) and « (2, 7, and 10) are presented in Fig. 13.
Generally, higher A and lower L result in increased percola-
tion threshold n;.
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Table 3. Parameters of Eqs. (7)—(12).

1279

ap ap azy ax azy asp b1y b1
0.1177 —0.296 —0.2143 0.2192 0.096 0.4064 0.0002 —0.0182
b3 by by b3 b31 b3 b33
0.0299 —0.0004 0.0377 —-0.0204 0.0002 -—-0.0165 —0.279

Table 4. Parameters of the percolation equation in terms of fracture properties.

arg ap azy a asj asp b1y by
0.0643 —0.1587 —0.1188 —0.5551 0.0549 0.9823 —0.1612 0.2501
b3 by by by3 b33 b3y b33
—0.0945 0.2633  —0.0657 0.1313 —0.2025 0.1519 —-0.4730

Table 5. Parameters of DFNs in Sect. 3.3.

Parameter Values analysed Number of

values
n round(10%),i = 1.5,1.65,1.8,...,2.4 8
L 0.05,0.12,0.19,0.26,0.33,0.4 6
v 2,4,6,8,10,12 6
A=|p—90 (G—-1)x5°%i=1,2,3,..,18 18
K round(10%),i = 0.602,...,2 13

Equation (21) is derived for a dimensionless unit square,
with its results expected to be applicable to regions of vary-
ing scales (y x y). For these scenarios, the percolation thresh-
old n; will be adjusted using a scaling modification from
Eq. (21), resulting in Eq. (22). If the number of fractures N
is more than 715, the probability of achieving percolation will
be high.

Ntg = N¢ X Yp,

(22)

where y, is the scaling correction factor, y, = 10g10(% +20).

4 Validation of the derived percolation threshold
equation

4.1 Percolation analysis of fracture networks not used
for deriving the threshold equation

1. DFN with exponential fracture length. To test the
performance of the derived zero percolation thresh-
olds (Eq. 14), additional DFN models with different
parameters (n = 100,200, A =3°, 63°, k = 5,40, 50)
at different scales 2m x2m, 60m x 60m, 300m x
300m, 900m x 900m, 1100m x 1100m, 1200m x
1200m, 1300m x 1300m) were generated for percola-
tion analysis. The percolation thresholds obtained from
Eq. (14) and numerical simulation are shown in Fig. 14.
The close agreement between the predicted thresholds
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and the simulation results demonstrates that the derived
relationships (Eq. 14) performed extremely well for pre-
dicting of zero percolation thresholds of DFNs with dif-
ferent parameters at different study scales.

2. DFN with lognormal fracture length. To test the derived
zero percolation thresholds (Eq. 22), additional DFN
models with different parameters (Z: 0.150.25, v =
5,7, A =26°56° k =5,9) at different scales (2m x
2m, 60 mx60m, 300 mx 300 m) were generated for per-
colation analysis. The percolation thresholds obtained
from Eq. (22) and numerical simulations were depicted
in Fig. 15. The remarkable concurrence between the
predicted thresholds and the simulation outcomes un-
derscores the robust performance of the derived rela-
tionships (Eq. 22) in accurately forecasting percolation
thresholds across diverse parameter configurations and
study scales for DFNs.

4.2 Comparison with analytical solutions of simple
fracture networks

The equations derived in Sect. 3.2 are for stochastic frac-
ture networks with fracture lengths that follow an exponen-
tial distribution and fracture orientations that follow a von-
Mises distribution. Because of the complexity of such frac-
ture networks, there is no analytical solution for the corre-
sponding percolation threshold. However, for simple fracture
networks, where both fracture location and orientation follow
completely random distributions and the fracture length is
identical, the analytical solution for the percolation threshold
of fracture length is (Balberg et al., 1984; Berkowitz, 1995):

Le =42/ J7p, (23)

where p is the fracture density (= P20) calculated as p =
n/y? and y? is the area of the study region. For the case of
varying fracture length, the corresponding threshold is:

Zt:‘/L%w—O‘z,

(24)
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Figure 12. Extracted surfaces from the final percolation threshold equation. (a) k =4; (b) k = 18; (¢) k =42; (d) k =75.

n

Table 6. Parameters of the percolation equation in terms of fracture properties.

di dy d3 dy ds dg d7
—0.0344 0.0560 0.2381 0.0335 0.0418 0.0053 —0.0002
dg dy ) di dyp di3 dis
0.0091 0.3048 0.0174 —1.4019 747657 —0.0001 0.0174

where o2 is the variance of fracture length distribution. If
the length follows an exponential distribution with parameter
A, Eq. (24) becomes (Berkowitz, 1995). Therefore, this sec-
tion utilises fracture networks characterized by an exponen-
tial distribution of fracture lengths as a case study to compare
the derived thresholds with analytical solutions.

2rn

Li=Lc/N2=42/ 7

~1.676 yn ™%, (25)

This is a special case covered by the relationships derived in
this work by setting x = 0 for a completely random distribu-
tion of fracture orientation and ignoring cos A as it is now
irrelevant. Eq. (14) then becomes:
Lis = yazn", (26)
where a3y =0.9823, b33 = —0.4730 The equation can be
further simplified to:

Lis = 0.9823yn 04730, 27

Solid Earth, 16, 1269-1287, 2025

which should be compared to Eq. (25). Note that the differ-
ence between the two equations is due to the different proba-
bilities used to derive the percolation threshold. The theoreti-
cal solution is for a percolation probability of 50 % while the
derived relationship is for a percolation probability of 0 %, as
discussed above, and therefore it should be smaller.

There is a striking similarity between the analytical solu-
tion for p50 and the solution we derived for p0. The reasons
why these two equations are so similar and what the factor
of two in the first coefficient represents are important. These
will be discussed in future work instead of here since it is not
the focus of this work.

To compare the solutions, fracture networks with n =
100, 200, 300,400 and 500 in a square of 75m x 75m are
used for the simulations. Percolation thresholds correspond-
ing to p, p50 and p100 are calculated by Monte Carlo simu-
lations and the results are shown in Fig. 16. As demonstrated,
the analytical solution is close to the p50 percolation thresh-
old with an average absolute difference of 4.9 %. On the other
hand, the solution based on the derived equation is close to
that of p with an average absolute difference of 11.4 %.
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Figure 13. Extracted surfaces from the final percolation threshold equation. (a) v=4,k =2; (b)v=4,k=7;(c)v=2,k=10; (d) v =
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Figure 14. Validation of Eq. (14) in study areas on different scales.

4.3 Percolation analysis of real fracture networks using
the derived equation

Two real fracture networks, as shown in Figs. 17a and 18a,
are used to demonstrate further the application of the derived
percolation threshold equations. Figure 17a shows a set of
fractures traces on a rock outcrop taken from Wilson (Wil-
son, 2001). Figure 18a shows fracture traces in the deforma-
tion bands on the Valley of Fire State Park, Nevada (Bar-
ton and Hsieh, 1989). Mid-points of the fractures are used to
represent the fracture locations, as shown in Figs. 17b and

https://doi.org/10.5194/se-16-1269-2025
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Figure 15. Validation of Eq. (22) in study areas on different scales.

18b, respectively. They are all considered to follow approxi-
mately the Poisson distribution. The numbers of fractures, n,
in the two systems are 35 and 186. Clearly there is one dom-
inant direction of fracture orientations in these systems, as
illustrated in the rose diagrams shown in Figs. 17c and 18c.
The orientation dispersion parameters («) were calculated to
be 145.18 and 25.68. For fracture length, the histogram in
Fig. 17d indicates an approximately exponential distribution
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Figure 16. Comparison of percolation thresholds determined by the
analytical solution, the derived equation, and numerical simulations.
The points are the averages of 20 groups of MC simulations and the
error bars are three times the corresponding standard deviations.

for the first fracture set. For the second and third sets, the
histograms (Fig. 18d) suggest lognormal distributions. The
average fracture lengths L are 0.249 m, 0.282 mm, 0.9544 m
and the side lengths y of study areas are 2.5m, 8 mm, 7 m,
respectively.

Using Eqs. (21) and (22) with the parameters (L, v, A, «)
listed in Table 7, the calculated percolation thresholds (y, x
ny) in the horizontal and vertical directions can be calculated.
For Fig. 17a, the calculated percolation thresholds are 126
(horizontal) and 94 (vertical). The threshold in the horizontal
direction is much greater than that in the vertical direction
due to the fact that fractures are mainly vertical in this case.
The fracture numbers are all less than these two thresholds,
hence the fracture network is not percolated in both direc-
tions. This conclusion can easily be confirmed in this case by
visual inspection of the fracture system displayed in Fig. 17a.

For the fracture set (Fig. 18a), the average fracture length
is 1.19m. The horizontal percolation threshold y x L; is
1.34 m and the vertical threshold is 0.69 m. The average frac-
ture length in this case is greater than the vertical threshold
and therefore the fracture network is percolated vertically but
not horizontally. On close inspection of Fig. 18a, there is a
cluster of fractures (marked in red) connecting the top and
bottom sides of the study region.

5 Discussions

While the simplified relationships proposed in this study pro-
vide an efficient means of estimating the zero-percolation
threshold directly from fracture network parameters, several
limitations should be acknowledged. First, the present for-
mulation is restricted to a two-dimensional (2D) domain with
a single fracture set of similar orientation. This abstraction
neglects the inherently three-dimensional (3D) nature of nat-
ural fracture systems, which typically comprise multiple in-
tersecting sets formed under polyphase tectonic regimes. Ex-
tending the methodology to accommodate 3D configurations
with multiple fracture sets will be a critical next step, al-
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though the associated analytical derivations are considerably
more complex.

Second, the current approach relies on specific statistical
assumptions for fracture attributes (e.g., Poisson-distributed
locations, exponential or lognormal length distributions, and
von Mises orientation distributions). While these choices are
consistent with many prior DEN studies, natural fracture sys-
tems often exhibit spatial correlations, clustering, or heavy-
tailed distributions that may deviate from these idealizations.
Future work will explore non-parametric estimation methods
to mitigate dependency on pre-defined distribution forms and
to better capture geological variability.

Third, the present formulation addresses only the geo-
metric aspects of network connectivity. In real-world appli-
cations, hydraulic connectivity depends on both geometry
and fracture transmissivity, which is influenced by aperture,
roughness, and in-situ stress. Incorporating coupled flow—
mechanical models would enable the framework to more di-
rectly predict hydraulic properties such as permeability.

A particularly promising avenue lies in integrating the de-
rived functional forms of percolation thresholds into physics-
informed machine learning workflows. The explicit param-
eter, threshold relationships, established here can serve as
strong physical constraints within emerging architectures,
such as Kolmogorov—Arnold Networks (KAN), to enhance
generalizability and reduce training data requirements. Em-
bedding these analytical insights into Al frameworks is ex-
pected to significantly improve predictive efficiency for com-
plex, data-limited geological systems.

While the proposed 2D, single-set formulation consti-
tutes a foundational step, its extension to multi-set, 3D, and
distribution-flexible fracture systems, together with integra-
tion into advanced machine learning paradigms, offers a clear
and impactful trajectory for future research.

6 Conclusions

Percolation analysis of fracture networks is important for
many applications, including oil and gas recovery, geother-
mal energy exploitation, hydrology, and groundwater pro-
tection in radioactive waste storage. In this paper, we focus
on the percolation threshold relevant to rock impermeability,
which is critically important for the safe underground storage
of waste and energy materials.

Our approach to the calculation of the percolation thresh-
old makes direct use of the characteristic parameters of 2D
fracture network, in particular the number of fractures n, the
fracture size (length) L and the fracture orientation A. This
differs from the simplified approaches of using indirect char-
acteristic parameters (e.g., fractal dimension), which could
produce misleading results because fracture orientation is not
considered. The assessment of fracture networks in this re-
search was made under the following assumptions: (1). the
centre points of fractures are randomly and independently

https://doi.org/10.5194/se-16-1269-2025
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Figure 17. A set of fractures from an outcrop (Wilson, 2001) and the network properties. (a) Fracture network from an outcrop; (b) Fracture

centres; (c¢) Fracture orientation; (d) Fracture length.

Table 7. Parameters of the real fracture network in Fig. 17a and percolation assessment.

Direction N A v k L y ynxng N>y, xng Percolated
Horizontal 35 7247 0.18 14518 025m 2.5m 126 No No
Vertical 35 1753 0.18 14518 025m 2.5m 94 No No

distributed in space; (2). the lengths of fractures follow an
exponential distribution; and (3). the orientations of fractures
follow a von-Mises distribution, the parameters of which are
the mean orientation u and the concentration parameter .
The relationship between fracture network parameters and
the corresponding percolation threshold is obtained from a
large number of simulations. A non-linear multivariate fitting
process was used to derive the final prediction equation for
the percolation threshold in the form of L= f(n,cosA, k).
The derived equation provides a reliable relationship and an
efficient way to estimate the connectivity and percolation

https://doi.org/10.5194/se-16-1269-2025

state of a fracture network based directly on its parameters.
The relationship was cross-validated using a published ana-
Iytical solution and was further applied to three real fracture
networks. The results demonstrate that the derived relation-
ship can be used for fracture networks at different scales us-
ing a rescaling coefficient and can also be used for the assess-
ment of percolation in different directions. The derived rela-
tionship is a useful extension for rock impermeability eval-
uation (zero probability percolation p0), compared with the
commonly used percolation assessment based on excluded
volume, which corresponds only to the occurrence of perco-

Solid Earth, 16, 1269-1287, 2025



1284 S. Dong et al.: A simplified relationship between the zero-percolation threshold and fracture set properties

Table 8. Parameters of the real fracture network in Fig. 18a and percolation assessment.

Direction N A(®) Ky L yxLy L=>yxLg Percolated
Horizontal 146 8054 2568 7m 1.19m 134m No No
Vertical 146 946 2568 7m 1.19m 0.69m Yes Yes
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Figure 18. Fracture traces of deformation bands in the Valley of Fire State Park, Nevada (Barton and Hsieh, 1989) and the corresponding
network properties. (a) Fracture network from an outcrop; (b) Fracture centres; (¢) Fracture orientation; (d) Fracture length.

lation on average (i.e., 50 % probability percolation, p50).
Additionally, this work also studies fracture network mod-
els with log-normally distributed fracture lengths and derives
zero percolation formulas, reaching conclusions similar to
those mentioned above.

Owing to the complexity of multiple fracture sets, the
present study is confined to a 2D fracture network with a
single set. Future work will extend the framework to both
2D and 3D systems with multiple fracture sets, incorporating
machine learning techniques to address the increased com-
plexity.
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Appendix A: Description of parameters

The parameter descriptions are shown in Table Al.

Table A1. Description of parameters.

1285

Parameter Explanation Parameter ~ Explanation
p0, p50, p100  Percolation thresholds of DFNs corresponding P30, P32 Number and total fracture area of fractures per
to 0%, 50 %, and 100 % percolation, unit volume.
respectively.
n Number of fractures in the network. ¢ Orientation angle of a fracture (measured from
a reference direction, e.g., North).
nt Fracture number threshold for p0. " Mean direction of fractures in the von-Mises
distribution (primary orientation).
L Length of a fracture. A Relative orientation angle = H u—90° H
Exponential distribution parameter whose X x =cosA.
reciprocal represents mean fracture length.
L Mean fracture length in DFN. K von-Mises concentration parameters,
quantifying fracture orientation aggregation.
o Standard deviation of lognormal fracture y Scale of the study region.
lengths.
v Variance of lognormal fracture lengths. Yn Scaling correction factor.
L¢ Critical fracture length threshold for pO. Iy(x) Modified Bessel function of order 0.
P20, P21 Fracture number and length per unit area. P Equal to P20
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