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Abstract. This study explores stress drops and earthquake
sequences in the simplest pressure-sensitive elasto-plastic
media using two-dimensional simulations, emphasizing the
critical role of temporal and spatial resolution in accurately
capturing stress evolution and strain localization during seis-
mic cycles. Our analysis reveals that stress drops – trig-
gered by plastic deformation once local stresses reach the
yield criterion – resemble fault rupture mechanics, where
accumulated strain energy is suddenly released, simulating
earthquake-like behavior. Finer temporal and spatial dis-
cretization leads to sharper stress drops and lower minimum
stress values, for simulations that have not converged yet.
Displacement accumulates gradually during interseismic pe-
riods and intensifies during major stress drops, capturing
key features of natural earthquake cycles. The histogram of
stress drop amplitudes exhibits a non-Gaussian distribution.
This “solid turbulence” behavior suggests that stress is re-
distributed across spatial and temporal scales, with implica-
tions for understanding the variability of stress drop mag-
nitudes. Our results demonstrate that high-resolution elasto-
plastic models can reproduce essential features of earthquake
nucleation and stress drop behavior without relying on com-
plex friction laws or velocity-dependent weakening mecha-
nisms. These findings emphasize the necessity of incorporat-
ing plasticity into fault slip models to better understand the
mechanisms of fault weakening and rupture. Furthermore,
our work suggests that extending these models to three-
dimensional fault systems and incorporating material hetero-
geneity and fluid interactions could offer deeper insights into
seismic hazard assessment and earthquake mechanics.

1 Introduction

Understanding earthquake nucleation remains a significant
challenge in geophysics, as it directly influences our ability to
predict and mitigate seismic hazards. Earthquake nucleation
is often conceptualized through the study of sliding behavior
along fault surfaces, with models traditionally describing the
interseismic period as one of near-elastic deformation in the
surrounding crust, interrupted by phases of anelastic slip that
eventually result in seismic rupture (Pranger et al., 2022).
Such models typically rely on phenomenological rate- and
state-dependent friction laws (Dieterich, 1978, 1979; Ruina,
1983), which have been highly successful in describing var-
ious aspects of the seismic cycle. However, these friction-
based models may overlook critical physical processes that
govern the transition from aseismic slip to seismic rupture,
particularly when plastic deformation and off-fault processes
are involved.

Numerical modeling of elasto-plastic strain localization
in pressure-sensetive geomaterials has a long history, with
early contributions from Cundall (1989, 1990), Poliakov
et al. (1993, 1994), Poliakov and Herrmann (1994). Reg-
ularization of strain localization thickness was addressed
by Duretz et al. (2019) and de Borst and Duretz (2020).
A single-phase (visco)-hypoelastic-perfectly plastic medium
was modeled in both 2D and 3D domains by Alkhimenkov
et al. (2024b), while compaction-driven fluid flow and shear
bands in porous media were numerically modeled in 3D by
Alkhimenkov et al. (2024a).
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One of the first computational earthquake dynamics mod-
els with slip-weakening rupture simulations was introduced
by Andrews (1976). Numerical studies have suggested that
plasticity plays a crucial role in earthquake rupture, particu-
larly through off-fault plasticity mechanisms (e.g., Andrews,
1976, 2005). Off-fault plasticity refers to the deformation
that occurs away from the main fault plane and can signif-
icantly influence the dynamics of rupture propagation. Pre-
vious works have explored the effects of off-fault plasticity
in two-dimensional (2D) in-plane dynamic rupture simula-
tions (Templeton and Rice, 2008; Kaneko and Fialko, 2011;
Gabriel et al., 2013; Tong and Lavier, 2018; Allison and
Dunham, 2018). For instance, Dal Zilio et al. (2022) pre-
sented a 2D thermomechanical computational framework for
simulating earthquake sequences in a nonlinear visco-elasto-
plastic compressible medium, highlighting the importance of
including viscoelastic and plastic behavior in realistic mod-
els. Other studies highlighting the importance of plasticity in
earthquake physics modeling include Erickson et al. (2017),
Preuss et al. (2020), and Simpson (2023).

In addition to 2D studies, three-dimensional (3D) dynamic
rupture simulations incorporating off-fault plasticity have
provided deeper insights into the complexity of earthquake
mechanics (Wollherr et al., 2018). Ma (2008); Ma and An-
drews (2010) conducted some of the earliest 3D studies on
dynamic rupture with plasticity. Another significant advance-
ment was made by Uphoff et al. (2023), who utilized a dis-
continuous Galerkin method to model earthquake sequences
and aseismic slip on multiple faults, demonstrating the ver-
satility of numerical approaches in capturing the nuances of
seismic phenomena.

The role of plasticity in earthquake nucleation has also
been emphasized in laboratory experiments. Studies have
shown that plastic deformation can precede seismic slip, in-
dicating that the onset of plastic yielding may be a precursor
to earthquake initiation (Johnson et al., 2008; Scuderi et al.,
2016). These experimental findings support the incorporation
of plasticity in numerical models to enhance the understand-
ing of the nucleation process.

Despite these advancements, there remains a need for sim-
plified models that can effectively capture the essential fea-
tures of earthquake nucleation and stress drops while being
computationally efficient. The simplest elasto-plastic models
offer a promising avenue for such investigations. By focus-
ing on basic physical principles, these models can provide
insights into the fundamental mechanisms of earthquake nu-
cleation, such as the role of stress accumulation and release,
the interaction between elastic and plastic deformation, and
the influence of material heterogeneity on seismic behavior.

In this study, we employ a two-dimensional elasto-plastic
model to investigate stress drops and earthquake nucleation.
The friction coefficient is assumed to be constant in all sim-
ulations, with no hardening or softening, which corresponds
to an ideal plasticity model. We conduct a series of numerical
simulations to explore the effects of temporal and spatial res-

olutions on the accuracy of stress and strain predictions. Our
goal is to understand how these resolutions impact the mod-
eled behavior of stress evolution, strain accumulation, and
the nucleation of seismic events. Our approach involves de-
tailed convergence tests for temporal and spatial discretiza-
tions, analysis of stress drop sequences, and examination of
interseismic periods. An important goal is to ensure con-
vergence of the numerical results, after which we focus on
high-resolution, converged simulations. We also investigate
the initial wave field patterns during earthquake nucleation to
gain insights into the complex interplay between quasi-static
and elasto-dynamic mechanics. Through this comprehensive
study, we aim to highlight the critical role of high-resolution
modeling in capturing the intricate dynamics of earthquake
nucleation and stress drops, providing a foundation for future
research and practical applications in seismic hazard assess-
ment.

The distinct features of this study among other recent HPC
simulations are:

1. We employ the simplest pressure-sensitive ideal plastic-
ity model, characterized by a spatially and temporally
constant friction coefficient.

2. We systematically investigate a previously proposed
physics-based explanation for spontaneous stress drops
using convergence-controlled, high-resolution GPU
simulations, thereby extending the accessible resolution
and fidelity of the theory.

3. We allow faults to emerge spontaneously from the
evolving stress field, as it was done in a few previous
studies. Our higher spatial/temporal resolution and GPU
throughput produce a much larger population of emer-
gent faults, enabling analyses that were previously in-
tractable.

4. We demonstrate a scalable GPU implementation that
enables high-resolution, convergence-verified simula-
tions at practical runtimes, supporting systematic tem-
poral and spatial resolution studies.

2 Mathematical formulation

2.1 Quasi-statics

The conservation of linear momentum is expressed as:

∇jσij + fi = 0, (1)

where σij is the stress tensor, fi is the body force, ∇ is the
dell operator, j = 1,2,3 and Einstein summation convention
is applied (summation over repeated indices). The stress ten-
sor is decomposed into bulk (volumetric) and deviatoric com-
ponents

σij =−pδij + τij , (2)
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where p is pressure, τij is the deviatoric stress tensor, δij is
the Kronecker delta. The strain rate is defined as

ε̇ij =
1
2
(∇ivj +∇jvi) (3)

The rheology is elasto-plastic, which is characterized by an
additive decomposition of the strain rate into an elastic (vol-
umetric and deviatoric) and plastic components

ε̇ij = ε̇
ebδij + ε̇

ed
ij + ε̇

pl
ij , (4)

where the superscripts ·eb, ·ed, ·pl denote elastic volumetric
(bulk), elastic deviatoric and plastic parts, respectively. The
plastic strain rate tensor is

ε̇
pl
ij = λ̇

∂Q

∂σij
, (5)

where λ̇ is the plastic multiplier rate andQ is the plastic flow
potential. The volumetric (bulk) elastic strain rate is

ε̇eb
=∇kvk − ε̇

pl
kk =−

1
K

Dp
Dt
, (6)

where Dp/Dt is the material derivative (provided in the fol-
lowing section), the deviatoric elastic strain rate tensor is

ε̇ed
ij =

1
2G

Dτij
Dt

, (7)

where the Jaumann rate of deviator of Cauchy stress tensor,
represented as Dτij/Dt , is provided in the following section.
Combining Eqs. (4)–(5), the total strain rate can be reformu-
lated as

ε̇ij =
1
2
(∇ivj +∇jvi)

=−
1

3K
Dp
Dt
δij +

1
2G

Dτij
Dt
+ λ̇

∂Q

∂σij
. (8)

This system of equation is the static elasto-plastic model
routinely used in solid mechanics (Zienkiewicz and Taylor,
2005).

Large strain formulation

The inelastic response is described using hypoelastic consti-
tutive theory. Hypoelasticity involves formulating the con-
stitutive equations for stress in terms of objective (frame-
invariant) stress rates (de Souza Neto et al., 2011).

The scalar pressure material derivative is represented by
the following equation:

Dp
Dt
=
∂p

∂t
+ vk

∂p

∂xk
. (9)

The Jaumann rate of deviator of Cauchy stress tensor, repre-
sented as Dτij/Dt , is defined by (de Souza Neto et al., 2011):

Dτij
Dt
=
∂τij

∂t
+ vk

∂τij

∂xk
− ẇikτjk − ẇjkτik, (10)

where ẇij is the vorticity tensor defined as: ẇij = (∇ivj −
∇jvi)/2.

2.2 Elasto-dynamics

The conservation of linear momentum is extended by addi-
tion of inertia (under small strain assumption):

∇jσij + fi = ρ
∂vi

∂t
, (11)

where v is the velocity and ρ is the density.

2.3 Plasticity

Plasticity is implemented using a non-associated, pressure-
dependent Drucker–Prager criterion (Drucker and Prager,
1952; de Souza Neto et al., 2011; De Borst et al., 2012).
According to this criterion, plastic yielding begins when the
second invariant of the deviatoric stress, J2, and the pressure
(minus the mean stress), p, meet the following condition:√
J2− sin(ϕ)p = cos(ϕ)c, (12)

where c is the cohesion and ϕ is the angle of internal friction.
In terms of the stress tensor, plastic deformations occur when
the stresses reach the yield surface. The yield function F and
the plastic potential Q for the Drucker–Prager criterion are
defined as:

F(τ,p)=
√
J2− sin(ϕ)p− cos(ϕ)c, (13)

where ϕ is the internal friction angle.

Q(τ,p)=
√
J2− sin(ψ)p, (14)

where ψ ≤ ϕ is the dilation angle. In two dimensions un-
der plane strain conditions, with ε̇zz = 0, the Drucker–Prager
criterion is equivalent to the Mohr–Coulomb criterion (Tem-
pleton and Rice, 2008). In 2D, the second invariant of the
deviatoric stress, J2, is expressed as:

J2 =
1
2
τij τji =

1
2

(
τ 2
xx + τ

2
yy + τ

2
zz

)
+ τ 2

xy . (15)

As long as F ≤ 0, the material remains in the elastic regime.
Once F reaches zero (F = 0), plasticity is activated. If the
material remains in a plastic state (∂F/∂t = 0), plastic yield-
ing continues. The current implementation of perfect plas-
ticity requires small time increments and is computationally
expensive. To ensure spontaneous strain localization, strain
softening is often introduced, which promotes the formation
of shear bands (Lavier et al., 1999; Moresi et al., 2007; Popov
and Sobolev, 2008; Lemiale et al., 2008). However, there are
concerns about the thermodynamic admissibility of such so-
lutions (Duretz et al., 2019). Additionally, the softening or
hardening moduli are small compared to the shear modu-
lus and can be neglected as a first-order approximation (Ver-
meer, 1990), leading to the ideal plasticity model used in the
present study.

For the case of regularized plasticity, the yield function is
defined as (Heeres et al., 2002):

F(τ,p)=
√
J2− sin(ϕ)p− cos(ϕ)c− ηvpλ̇. (16)
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3 Numerical implementation

3.1 Discretization

The numerical domain is discretized using a staggered grid
in both space and time (Virieux, 1986). This method pro-
vides a variant of the conservative finite volume approach
(Dormy and Tarantola, 1995). For the elasto-dynamic equa-
tions, an explicit time integration method is employed, of-
fering second-order accuracy in both space and time. De-
tailed representations of the discrete equations are available
in Alkhimenkov et al. (2021). For the quasi-static equa-
tions, the discrete scheme achieves second-order accuracy
in space. Advection is carried out using an upwind scheme,
which is first-order. Consequently, due to the application of
the pseudo-transient method, the solution demonstrates first-
order accuracy in time (Alkhimenkov and Podladchikov,
2025). The quasi-static equations are solved with the accel-
erated pseudo transient method (described below), while the
dynamic wave-propagation is only visualized to illustrate the
transient fields and does not affect the quasi-static evolution.

3.2 Accelerated pseudo transient method

The solution of the quasi-static equations is achieved using
the matrix-free accelerated pseudo-transient (APT) method
(Frankel, 1950; Räss et al., 2022; Alkhimenkov and Pod-
ladchikov, 2025). The core concept of this method involves
solving dynamic equations with appropriate attenuation of
the dynamic fields instead of directly solving inertialess
equations. To achieve this, the equations are written in their
non-dimensional residual form and iterated over “pseudo-
time” until convergence is reached. Once the dynamic fields
attenuate to a specific precision (e.g., to 10−12), the solution
of the quasi-static equations is attained. In other words, the
quasi-static problem serves as an attractor for the dynamic
problem with damping. The APT method is capable of han-
dling numerical domains with more than a billion grid cells.
Additionally, since all operations are local, this method can
be naturally parallelized using GPUs, which is the approach
taken in this study.

3.3 Implementation of plasticity

In the return mapping algorithm, the following steps are per-
formed:

1. Calculate the components of the trial deviatoric stresses,
τ trial
ij .

2. Compute the trial second invariant of the deviatoric
stresses, J trial

2 , using τ trial
ij .

3. Determine F trial using the equation:

F trial
=

√
J trial

2 − (sin(ϕ)p+ cos(ϕ)c). (17)

When the material is in the plastic state, the trial deviatoric
stress components, τ trial

ij , are re-scaled according to:

τ new
ij = τ

trial
ij

1−
F trial√
J trial

2

≡ τ trial
ij λ̃, (18)

where λ̃= 1− F trial√
J trial

2

is the scaling parameter. This re-scaling

process is iterated over “pseudo-time” until the updated trial
deviatoric stresses, τ new

ij , satisfy the plasticity criterion, en-
suring F trial

= 0 (thus, λ̃= 1 and no re-scaling occurs). A
regularized version of this procedure modifies formula (18)
to (assuming non-zero dilatation angle ψ):

λ̃= 1−
F trial1tGe

√
J2(Ge1t +K1t sinϕ sinψ + ηvp)

. (19)

where ηvp is the regularization parameter having units of vis-
cosity, [Pa s]. The numerical viscosity ηvp is usually set to a
small value. If this value is too high, the shear bands become
very thick; conversely, if the value is too small, the thickness
of the shear band is just one pixel. The correct value of the
viscosity damper lies between these limits. In the following
section, we examine how the choice of viscosity damper af-
fects the solution. This implementation of plasticity through
re-scaling deviatoric stress components is equivalent to the
standard procedure using the plastic multiplier rate, λ̇, which
is defined as

λ̇=
F trial

1t Ge+K1t sinϕ sinψ + ηvp . (20)

For a more detailed explanation of how plasticity with reg-
ularization is implemented in single-phase media, refer to
Duretz et al. (2018, 2019, 2021).

3.4 Model configuration, boundary conditions, and
non-dimensionalization

The computational domain is a square with dimensions
x,y ∈ [−Lx/2,Lx/2]×[−Ly/2,Ly/2] (Fig. 1). All simula-
tions in this study are performed using a simple initial model
configuration and non-dimensional equations. To ensure a
consistent dimensionless framework, we define the follow-
ing characteristic scales: length l∗ = Lx and time t∗ = 1/a.
Here, Lx represents the domain size in the x-direction, Lx =
Ly = 1 and a denotes the background strain rate. Deforma-
tion evolves over timescales inversely proportional to the ini-
tial background strain rate a0 at t = 0. The ratio of cohesion
c to the pressure scale p∗ is defined as r = c0

G0
, G0 = 1 and

c0 = 10−2.
For all computations, we set the coefficient of internal fric-

tion to µ= 0.5. Pure shear boundary conditions are applied
by prescribing normal velocities at the left and right bound-
aries:

vx = ax (21)
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Figure 1. Heterogeneous initial setup of cohesion c. The arrows
indicate the pure shear boundary condition which is applied at the
model boundaries.

and at top and bottom boundaries

vy =−ay, (22)

which corresponds to the extension in x-dimension and com-
pression in y-dimension. At all boundaries, free-slip bound-
ary conditions are implemented. The following initial condi-
tion is implemented: p = 0,

τxx = c0, (23)
τyy =−c0. (24)

We introduce a circular inclusion in the non-dimensional co-
hesion c, representing a localized stiff inclusion. The expres-
sion in the dimensionless framework is as follows:

c =

{
2c0, if

√
(x+Lx/10)2+ (y+Ly/5)2 < 0.06252,

c0, otherwise.
(25)

We impose loading increments applied to the strain compo-
nents.

4 Results

4.1 Integrated stress σ INT
xx

To analyze the evolution of the simulated system, we evaluate
the integrated axial stress σ INT

xx along a vertical line segment
using the following expression:

σ INT
xx =

1
Ly

Ly∫
0

(−p(x0,y)+ τxx(x0,y)) dy, (26)

where x0 is a fixed coordinate in the x-direction (x0 = Lx/4).

4.1.1 Convergence study

To determine the necessary spatial and temporal resolutions
(i.e., the resolution with respect to loading increments), we
performed a convergence study. Simulations were conducted
with different spatial resolutions, ranging from N = 632 to
N = 20472 (N is the number of grid cells in x-dimension),
while keeping the regularization viscosity constant across all
cases. The results are shown in Fig. 2.

At low resolution (e.g., N = 632), the model does not cap-
ture sharp stress drops. However, as resolution increases,
stress drops become increasingly pronounced. Notably, both
the amplitude and clarity of the stress drops converge for res-
olutions of N = 10232 and higher.

Figure 3 illustrates the strain localization pattern at time
t3 for four different resolutions. Starting at N = 10232, the
structure and distribution of shear bands remain qualitatively
similar, indicating convergence of the deformation pattern.

The total (Eulerian) displacement in the x- and y-
directions is updated from the velocities using

u(n)x = u
(n−1)
x + v(n)x 1t, u(n)y = u

(n−1)
y + v(n)y 1t. (27)

where n and n−1 denote the current and previous time steps,
respectively. The incremental (Eulerian) displacement is then
given by

1ux = u
(n)
x − u

(n−1)
x , 1uy = u

(n)
y − u

(n−1)
y . (28)

Strain components are computed from (Eulerian) displace-
ment gradients as

∇ ·u=
∂ux

∂x
+
∂uy

∂y
, (29)

εxx =
∂ux

∂x
−

1
3
∇ ·u, (30)

εyy =
∂uy

∂y
−

1
3
∇ ·u, (31)

εxy =
1
2

(
∂ux

∂y
+
∂uy

∂x

)
. (32)

Finally, the (Eulerian) deviatoric strain measure is defined as

J u2 =

√
1
2

(
ε2
xx + ε

2
yy

)
+ ε2

xy . (33)

Note that Eulerian-type fields are plotted only for visualisa-
tion in all figures, and these plotted quantities are not used in
the actual calculations. A zoomed-in view of log10(J

u
2 ) field

is provided in Fig. 4, where we observe that the thickness
of the shear bands spans several grid cells even at N = 5112

(panel a), and more than ten grid cells at N = 10232 (panel
b). This confirms that the regularization is effective – if it
were not, the shear bands would collapse to 1–3 grid cells
irrespective of resolution.

Figure 5 shows the pressure field p at time t3 for four spa-
tial resolutions. As resolution increases from N = 5112 to

https://doi.org/10.5194/se-16-1335-2025 Solid Earth, 16, 1335–1350, 2025
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Figure 2. Convergence study. Panel (a) shows the integrated stress σ INT
xx as a function of total strain for multiple resolutions. Panels (b)–

(j) show the velocity field vx at three different time steps (t1–t3) and three different resolutions: N = 10232, N = 15352, N = 20472.
t1 corresponds to the total strain ε = 0.022, t2 corresponds to the total strain ε = 0.026, and t3 corresponds to the total strain ε = 0.04.
Regularization parameter is ηvp

= 1/2× 10−5 in all simulations.

N = 20472, finer pressure structures become apparent, high-
lighting the emergence of sharp gradients. All snapshots cor-
respond to a total strain of ε = 0.04. Based on these results,
we conclude that a resolution of N = 10232 is sufficient for
capturing both stress drop dynamics and shear band struc-
ture while maintaining a balance between accuracy, compu-
tational cost, and memory requirements.

5 Earthquake sequence

In this section, we analyze the stress response of the sys-
tem over a complete loading cycle comprising 16 000 incre-
mental steps. We focus on three aspects: (i) the sequence of
stress drops that emerge as strain accumulates, (ii) the statis-
tical distribution of these drops, and (iii) the wavefield dy-
namics resulting from a single stress drop event. All results

Solid Earth, 16, 1335–1350, 2025 https://doi.org/10.5194/se-16-1335-2025
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Figure 3. The total velocity field
√
v2
x + v

2
y . Simulations at t3 for four different resolutions: N = 5112, N = 10232, N = 15352, and N =

20472. t3 corresponds to the total strain ε = 0.04.

presented in this section are obtained from a fully converged
simulation with spatial resolution N = 10232, constant reg-
ularization viscosity, and pseudo-transient iterations that en-
sure convergence at each step.

5.1 Numerical convergence and stability

To ensure that the stress drops analyzed in this study arise
from physically meaningful simulation, we monitor the con-
vergence behavior of the pseudo-transient iterations used to
solve the elasto-plastic equations at each time step. Figure 6
shows the number of iterations required per physical time
step (top panel), the corresponding final residual at conver-
gence (middle panel), and the residual curve versus pseudo-
time iterations for the final step (bottom panel). The resid-
ual error is calculated using the L∞ norm. The number of
iterations per step remains moderate throughout the simula-
tion, and the final residuals consistently remain below a pre-
scribed threshold, confirming that the nonlinear solver con-
verges consistently even during dynamic events such as stress
drops. These diagnostics support the reliability of the stress
evolution and wavefield results presented in the following
sections.

5.2 Final velocity and pressure fields

The final velocity and pressure distributions highlight the
complex flow and stress responses at the end of the sim-
ulation, as shown in Fig. 7. The velocity field vx exhibits
sharp gradients in zones of intense shear, while the solid-
phase pressure p shows localized shear bands.

5.3 Stress drops

Figure 8 presents the evolution of integrated axial stress σ INT
xx

as a function of total applied strain for 16 000 loading in-
crements (Fig. 9 presents the same result in a logarithmic
scale). The main panel (Fig. 8a) shows the full sequence,
while the three lower panels provide zoomed-in views of the
early (0–1/3), middle (1/3–2/3), and late (2/3–1) loading
stages, where individual stress drops become clearly visi-
ble. Throughout the loading process, numerous stress drops
are observed. These drops correspond to abrupt changes in
the system’s stress state, occurring when strain localization
reaches a critical threshold and further deformation in the
prescribed direction becomes unsustainable. At these points,

https://doi.org/10.5194/se-16-1335-2025 Solid Earth, 16, 1335–1350, 2025
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Figure 4. log10J
u
2 field. Zoomed-in view of simulations at t3 for four different resolutions: N = 5112 (a), N = 10232 (b), N = 15352 (c),

and N = 20472 (d). t3 corresponds to the total strain ε = 0.04.

Figure 5. Pressure field p. Zoomed-in view of simulations at t3 for four different resolutions: N = 5112 (a), N = 10232 (b), N = 15352 (c),
and N = 20472 (d). t3 corresponds to the total strain ε = 0.04.

Solid Earth, 16, 1335–1350, 2025 https://doi.org/10.5194/se-16-1335-2025
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Figure 6. Convergence diagnostics for pseudo-transient iterations.
Top: Number of iterations per physical time step. Middle: Final
residual error per time step. Bottom: Residual magnitude versus it-
eration number for the final time step.

the system undergoes a rapid stress redistribution, manifested
as discrete decreases in the integrated stress σ INT

xx .
These events are indicative of dynamic rupture-like be-

havior, resembling the rapid stress release that occurs during
seismic slip in natural earthquakes. However, we note that
in this initial study, we focus only on the qualitative resem-
blance and do not provide a detailed analysis of slip rates or
rupture propagation speeds. The observed sequence of stress
drops mimics the typical behavior of fault systems, where in-
terseismic periods of stress accumulation are interrupted by
sudden stress release events. This behavior supports the in-
terpretation of the model as capturing essential features of
earthquake cycles within an elasto-plastic framework.

5.3.1 Histogram of stress drop amplitudes

The histogram of stress drop amplitudes shown in Fig. 10
provides a quantitative representation of the frequency and
magnitude of stress drops observed over the course of the
full simulation (16 000 loading increments). The distribution
is clearly non-Gaussian, spanning more than five orders of

magnitude in amplitude. It is unimodal and asymmetric, with
a pronounced peak near log10(1σ)≈−4.5 and long tails to-
ward both smaller and larger events. Small stress drops are
significantly more frequent, but large-magnitude stress re-
leases are still present.

This behavior is reminiscent of turbulence-like spectra
in other complex systems, where intermittent bursts coexist
with background fluctuations. In the context of solid defor-
mation, this has been described as “solid turbulence” and was
first explored by Poliakov et al. (1994), who analyzed the
multifractal structure of shear localization in elasto-plastic
media. In our model, the broad-tailed nature of the histogram
reflects a complex interaction between localized plastic yield
and global elastic stress redistribution. As in fluid turbu-
lence – where energy cascades from large to small scales –
stress in the solid is redistributed across multiple spatial and
temporal scales, leading to intermittent bursts of plastic de-
formation.

Understanding this type of emergent behavior is crucial for
modeling seismicity, where stress drops represent analogs of
earthquake events. The prevalence of small events and the
presence of occasional larger ones are qualitatively consis-
tent with the Gutenberg–Richter-like relationship. However,
we emphasize that our current study does not perform a sta-
tistical fit (e.g., power-law or log-normal) to extract quanti-
tative scaling exponents. Such an analysis would be required
to firmly establish the statistical nature of the tail and its con-
nection to real seismicity. Overall, the histogram supports the
idea that even minimal elasto-plastic models, with no pre-
scribed faults or complex frictional laws, can give rise to rich
and realistic emergent behavior.

5.3.2 Wave propagation due to a single stress drop

Figure 11 shows the snapshots of wave fields following a sin-
gle stress drop. The wave response is visualized in terms of
velocity (vx) and pressure (p) at different physical time steps.
Panels (a) and (b) present the initial wavefield immediately
after the stress drop. The velocity and pressure distributions
are spatially complex and dominated by shear-dominated nu-
cleation patterns, qualitatively resembling a double-couple
source mechanism. The volumetric pressure field also ex-
hibits localized amplitudes, indicating simultaneous com-
pressional response.

Panels (c, d), (e, f) and (g, h) show the evolution of the
wavefield after 360, 720, and 1080 time steps, respectively.
The velocity field, initially concentrated near the nucle-
ation region, spreads outward as the system relaxes dynam-
ically. The pressure field also evolves, exhibiting outward-
propagating features that reflect the elastic response of the
medium. These results indicate that a localized stress drop in
a plastic medium generates complex wave activity, with both
velocity and pressure fluctuations contributing to the redis-
tribution of energy. The simulation is performed with a time
step size of 1t = 4× 10−5.

https://doi.org/10.5194/se-16-1335-2025 Solid Earth, 16, 1335–1350, 2025



1344 Y. Alkhimenkov et al.: Stress drops sequences

Figure 7. Final spatial fields of velocity vx and solid pressure p after 16000 incremental steps.

Figure 8. Evolution of the normalized integrated stress as a function of total applied strain in a converged simulation with N = 10232 grid
cells, strain increment1ε = 1/4×10−5, and viscoplastic regularization ηvp

= 1/2×10−5. The main panel shows the full sequence of stress
drops over the entire deformation interval. The three lower panels provide zoomed-in views of the early (0–1/3), middle (1/3–2/3), and late
(2/3–1) loading stages, highlighting the multiscale and irregular nature of stress release events in the model.

6 Discussion

6.1 The nature of stress drops

As shown in Fig. 8, numerous stress drops occur through-
out the loading process. From a theoretical standpoint, the
initial stress drop – following the onset of strain localiza-

tion – has been analyzed by, for example, Vermeer (1990)
and Le Pourhiet (2013). Subsequent stress drops are associ-
ated with transitions between quasi-static loading intervals.
These events represent moments when the system shifts from
one quasi-equilibrium state to another due to the breakdown
of stable deformation paths. Specifically, when local stresses
exceed the yield criterion, plastic deformation is activated,
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Figure 9. Evolution of the normalized integrated stress as a function of total applied strain in a converged simulation in a logarithmic scale
with N = 10232 grid cells, strain increment 1ε = 1/4× 10−5, and viscoplastic regularization ηvp

= 1/2× 10−5. The main panel shows
the full sequence of stress drops over the entire deformation interval. The three lower panels provide zoomed-in views of the early (0–1/3),
middle (1/3–2/3), and late (2/3–1) loading stages, highlighting the multiscale and irregular nature of stress release events in the model.

causing a redistribution of stress and a rapid release of stored
energy in the form of a stress drop.

This process mimics the mechanics of fault rupture, where
accumulated strain energy is suddenly released during seis-
mic events. The sharp, discrete stress drops observed in our
simulations – particularly at high spatial and temporal reso-
lutions – are consistent with such rupture-like behavior.

Beyond the magnitude of individual stress drops, the spa-
tial distribution of strain localization plays a key role in gov-
erning how stress is released. Localized shear bands serve
as preferential paths for stress concentration and redistribu-
tion, determining the geometry and timing of stress release.
The interplay between elastic loading during interseismic in-
tervals and localized plastic deformation during stress drops
offers a minimal yet effective model of the earthquake cycle.

6.2 Role of regularization in elasto-plastic simulations

Regularization plays a critical role in numerical simulations
of elasto-plastic materials, especially when strain localiza-
tion is involved. Without regularization, simulations may
produce unphysical results such as infinitely narrow shear

bands and grid-dependent failure modes. In this study, the
viscoplastic regularization parameter ηvp was carefully se-
lected to ensure numerical stability while preserving physi-
cally realistic stress and strain fields.

Excessive regularization, however, can overly smooth
these fields, suppressing strain localization and significantly
reducing the occurrence and sharpness of stress drops. This
effect is clearly observqed in low-resolution simulations,
where the regularization length scale becomes comparable
to or larger than the grid resolution. Conversely, insufficient
regularization can result in non-convergent or unstable solu-
tions.

Our results demonstrate that appropriate regularization en-
ables the model to capture both large-scale and fine-scale
features of dynamic deformation – specifically, the spatial
organization of shear bands and the timing and magnitude
of stress drops. These findings align with prior work empha-
sizing the importance of regularization in elasto-plastic mod-
eling, particularly for resolving localized deformation while
maintaining convergence and computational stability (Popov
and Sobolev, 2008; Duretz et al., 2018).
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Figure 10. Histogram of stress drop amplitudes computed from
a high-resolution simulation (N = 10232). The amplitude of each
drop is defined as the difference in integrated axial stress between
consecutive local maxima and minima, and plotted on a base-10
logarithmic scale. The resulting distribution is non-Gaussian and
asymmetric, spanning over five orders of magnitude, with frequent
small drops and rarer large-scale stress releases – consistent with
turbulence-like plastic deformation dynamics.

6.3 3D simulations with zero regularization

Alkhimenkov et al. (2023) conducted three-dimensional sim-
ulations of a single-phase elasto-plastic model without regu-
larization. These results provide valuable insight into how
strain localization and stress drops manifest in fully three-
dimensional domains. Notably, the trends observed in 3D –
both in terms of spatial and temporal resolution – are consis-
tent with the 2D results presented in this study.

Extending the analysis to three dimensions is essential for
a more realistic representation of fault systems, which are in-
herently three-dimensional. In 3D, the stress and strain fields
exhibit additional complexity, including the influence of out-
of-plane stresses on rupture propagation. The fact that un-
regularized 3D simulations produce physically meaningful
and qualitatively similar results further validates the robust-
ness of the elasto-plastic framework employed here. This
also suggests that certain dynamic features – such as stress
drop sequences and fault-like deformation – can emerge nat-
urally in elasto-plastic systems even in the absence of artifi-
cial smoothing.

Figure 11. Wave propagation following a single stress drop. Pan-
els (a) and (b) show the initial wavefields: (a) velocity magnitude√
v2
x + v

2
y , and (b) pressure p. Panels (c, d), (e, f), and (g, h) show

the evolution of the velocity (vx ) and pressure (p) fields after 360,
720, and 1080 physical time steps, respectively. The pattern indi-
cates nucleation dominated by shear (double-couple-like) and volu-
metric pressure release, consistent with the early stages of dynamic
rupture.

6.4 Implications for earthquake sequences and fault
mechanics

The results of both 2D and 3D (Alkhimenkov et al., 2023)
simulations offer important insights into earthquake nucle-
ation and fault mechanics. The stress drops observed in our
models are directly analogous to the rapid release of accu-
mulated stress during natural seismic events, supporting the
idea that pressure-sensitive elasto-plastic models can repli-
cate key features of rupture initiation. The pattern of stress
drops does not correspond to log-normal or normal distribu-
tions. The pattern, separated by intervals of gradual strain ac-
cumulation, mirrors the fundamental structure of the seismic
cycle.
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As deformation progresses, the emergence of multiple
shear bands becomes evident. Importantly, stress drops do
not always occur on newly formed bands – instead, they
frequently reoccur along existing localized zones of weak-
ness. This behavior is consistent with observations of natural
fault systems, where pre-existing fault planes accommodate
repeated episodes of stress accumulation and release over
multiple cycles. Our results highlight the capacity of simple
elasto-plastic models to reproduce not only the mechanical
ingredients of rupture, but also the spatial memory and cyclic
behavior observed in fault systems.

6.5 Comparison to rate-and-state friction models

While this study focuses on elasto-plasticity as the primary
mechanism governing stress drops and strain localization, it
is instructive to compare our approach to traditional rate-
and-state friction (RSF) models. RSF models have been
widely used to describe fault slip behavior, particularly due
to their ability to capture velocity-weakening and velocity-
strengthening effects that are critical for earthquake nucle-
ation and stability analyses.

In contrast, the elasto-plastic model presented here does
not rely on any velocity-dependent constitutive law. Instead,
stress drops emerge naturally through local plastic yielding
when the material reaches a yield criterion. This distinction
is significant: it suggests that fault weakening and slip can
be modeled purely through stress-based plasticity, without
invoking empirical velocity dependence.

Furthermore, classical RSF models typically describe fault
slip on a predefined, spatially fixed fault interface. In our
model, by contrast, faults emerge spontaneously as localized
zones of plastic strain, allowing for the generation, reacti-
vation, and migration of shear bands. This feature provides
an important advantage in capturing fault system evolution
in heterogeneous or evolving tectonic environments, which
cannot be represented by single-fault RSF frameworks.

6.6 Limitations and future work

While the present study offers valuable insights into the
mechanics of stress drops and fault-like behavior in elasto-
plastic materials, several limitations remain.

First, the model assumes homogeneous material proper-
ties. In reality, natural fault zones are highly heterogeneous,
with variations in lithology, porosity, cohesion, and pre-
existing damage that significantly affect strain localization
and rupture dynamics. Incorporating spatially variable prop-
erties would allow for a more realistic simulation of fault
behavior and could reveal additional mechanisms of rupture
complexity.

Second, the model currently neglects fluid-rock interac-
tions. Fluids are known to play a critical role in fault weak-
ening, particularly through pore pressure buildup and fluid-
induced instabilities. Future extensions of this model should

incorporate poroelasticity or two-phase flow to study the cou-
pling between deformation and fluid transport, especially in
overpressured or fluid-saturated fault zones.

Finally, while the present study includes detailed two-
dimensional simulations, the primary findings are limited
to 2D geometries. Three-dimensional simulations provide a
more realistic framework for fault mechanics, capturing ef-
fects such as off-plane deformation, complex rupture geome-
tries, and interactions among multiple shear bands. Alkhi-
menkov et al. (2023) performed 3D simulations of elasto-
plastic deformation and observed multiple stress drops con-
sistent with the results presented here. However, that study
did not focus on earthquake nucleation or the dynamics of
earthquake sequences. Future high-resolution 3D studies will
be essential for advancing elasto-plastic modeling of seismic
processes, particularly in relation to rupture initiation, stress
transfer, and fault interaction in realistic geological settings.

7 Conclusions

In this study, we investigated stress drops and earthquake-
like behavior in idealized elasto-plastic media using two-
dimensional numerical simulations. The first stress drop oc-
curs following the onset of strain localization, a process
driven by structural softening (Vermeer, 1990; Le Pourhiet,
2013; Sabet and de Borst, 2019). This structural softening
mechanism, which received relatively little attention until re-
cently (Sabet and de Borst, 2019), is explored here as a cause
of spontaneous strain localization in an ideal plasticity model
with a constant friction coefficient. Subsequent stress drops
are associated with transitions between quasi-static loading
intervals, during which the system moves from one equilib-
rium state to another due to the inability of strain localiza-
tion to continue growing in the same direction. This behavior
is consistent with fault offset theories developed by Forsyth
(1992); Buck (1993) and validated by Lavier et al. (1999).
Forsyth (1992) emphasized that Anderson’s theory for fault-
ing applies strictly to infinitesimal displacements. The initial
orientation of a fault corresponds to the orientation that min-
imizes the regional stress required for slip initiation. How-
ever, Forsyth (1992) demonstrated that the additional hori-
zontal stress necessary to maintain slip along the same fault
increases linearly with accumulated displacement. Conse-
quently, after only a few hundred meters of slip on a typi-
cal fault, it becomes mechanically more favorable to nucle-
ate a new fault than to continue slip on the pre-existing one.
Switching from sliding along an active fault to nucleation of
a new fault is a fundamental cause of sudden stress drops and
a potential mechanism for earthquake cycles.

Our results underscore the critical importance of both tem-
poral and spatial resolution in capturing the evolution of
stress and strain fields throughout the seismic cycle. Con-
vergence tests demonstrate that finer discretization sharp-
ens stress drops and leads to lower minimum stress values,
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emphasizing the need for high-resolution modeling to accu-
rately resolve dynamic stress changes. Analysis of the in-
terseismic periods and stress drops reveals a typical cycle:
gradual displacement accumulation followed by abrupt, lo-
calized deformation. This mirrors the natural earthquake cy-
cle, in which periods of aseismic slip are interrupted by rapid
seismic events that release accumulated strain energy. More-
over, wavefield analysis following a single stress drop re-
vealed complex nucleation patterns, offering insight into the
mechanics of rupture initiation.

One of the key contributions of this work is the demon-
stration that simple pressure-sensitive elasto-plastic models –
with constant friction coefficient in time and space – can re-
produce key features of earthquake sequences and stress drop
behavior, provided sufficient spatial and temporal resolution.
Notably, this is achieved without the use of complex fric-
tional laws or velocity-dependent weakening mechanisms.
Our results show that plastic yielding alone can account for
fundamental aspects of fault slip and rupture. A second im-
portant contribution is that faults are not prescribed a priori,
as in conventional rate-and-state models; instead, new faults
emerge spontaneously from the evolving stress field, offering
a key advantage in modeling complex fault dynamics.

These findings have important implications for seismic
hazard assessment and the development of predictive mod-
els. First, they highlight the need for high-resolution nu-
merical models to capture the transient, localized phenom-
ena that govern earthquake nucleation. Second, they reaf-
firm the critical role of plastic deformation in fault weak-
ening and rupture, suggesting that plasticity should be in-
corporated alongside traditional frictional formulations in fu-
ture modeling efforts. Finally, although this study focuses on
two-dimensional idealized settings, the insights gained pro-
vide a foundation for extending the framework to more re-
alistic three-dimensional, heterogeneous systems. Future re-
search could explore the interaction between plasticity, ma-
terial heterogeneity, and fluid migration, thereby contribut-
ing to a more comprehensive understanding of the physi-
cal mechanisms underlying seismic events. Advancing these
models brings us closer to developing robust, physics-based
tools for earthquake forecasting and seismic risk mitigation.
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