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Abstract. Mesoscale fractures, with lengths between meters
and tens of meters, cannot be effectively characterized in
the subsurface, due to limitations of borehole and geophysi-
cal datasets. On the other hand, large quantitative structural
datasets can be collected on outcrops by combining direct
observations and remote sensing (digital outcrop models –
DOMs). These data can be used to constrain geometrical
models of subsurface fracture networks with the outcrop ana-
logue approach.

In this contribution we present a workflow that leverages
DOMs with at least two perpendicular faces and combines
multiple types of input data (point cloud, textured surfaces
and orthophoto DOMs), to collect a suite of statistical pa-
rameters to be used as input in current stochastic 3D DFN
(Discrete Fracture Network) models.

Orientation data are collected with a semi-automatic pro-
cedure applied to point cloud DOMs of the vertical side of
the outcrop to extract 2D polygonal facets. Fracture sets are
defined with a clustering procedure and different orientation
distributions are fitted and tested with goodness-of-fit tests.

Fracture traces are digitized on textured surface or or-
thophoto DOMs. Topological parameters are calculated on
the digitized fracture network on horizontal and vertical or-
thomosaics, also considering relationships between fractures
and bedding. Trace length and height distributions are esti-
mated with an innovative approach, accounting for the cen-
soring bias with survival/reliability analysis. P21 (ratio be-
tween total fracture length and sampling area) is measured
from traces digitized on the large horizontal outcrop, also al-

lowing for the Representative Elementary Area (REA) to be
assessed. Even if the height/length ratio cannot be measured
on an outcrop by any means, we attempt to relate heights
and lengths under the assumption that the two datasets are
correlated, with the longest fractures being also the tallest.
We discuss the applicability of our workflow on a large high-
quality fractured limestone outcrop in the Murge Plateau near
Altamura (Puglia, Italy).

1 Introduction

Fractures exert a fundamental control on the mechanical and
hydraulic properties of rock masses, and their relevance ex-
tends to multiple applications, including reservoirs of every
kind of geofluid (March et al., 2017; Wallace et al., 2021;
Wang et al., 2022; Forstner et al., 2025), nuclear waste repos-
itories (Follin et al., 2014; Hadgu et al., 2017), geology en-
gineering (Eberhardt et al., 2004; Agliardi et al., 2017; Fran-
zosi et al., 2023a, b) and contaminant transport (Medici et
al., 2024; Cherubini, 2008). In all these applications, fracture
patterns hold great importance as they influence the direc-
tion, magnitude, and heterogeneity of fluid flow, the storage
volume of reservoirs (Davy et al., 2013; Wang et al., 2022),
and rock mass strength.

Fracture networks are complex geological objects com-
posed of all the fractures in a rock mass. Here, the term “frac-
ture” will be used as a general term including both opening-
mode or shear fractures (joints, faults, etc.), filled or not
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(veins, joints, etc.). Broadening the meaning of “fracture”
by including other kind of discontinuities, such as defor-
mation/compaction bands, foliations, bedding, pressure so-
lution seams and stylolites, etc., may be useful in some re-
search field or application, such as engineering rock mechan-
ics, geomorphology or hydrogeology (Schultz, 2019; Eppes
et al., 2024). Fractures can be classified in sets, i.e. popula-
tions of cogenetic discontinuities related to the same defor-
mation phases, kinematics (e.g. joint, normal fault), filling
(e.g. quartz vein) and orientation, within statistical variabil-
ity (Hancock, 1985; Laubach et al., 2019).

The quantitative characterization of fracture networks re-
quires the determination of several geometrical and topolog-
ical attributes of fractures and their statistical distributions
(Table 1). Some of these attributes apply to the individual
fracture set (e.g., orientation, length/height distribution) oth-
ers to the whole fracture network (e.g., topology).

Several factors negatively impact our ability to quantify
these parameters, both in the subsurface and in outcrops (e.g.
Healy et al., 2017; Laubach et al., 2019; Martinelli et al.,
2020):

1. Fractures in the subsurface (e.g. in reservoirs) can only
be partially characterized at the mesoscale (meters to
tens of meters) using direct techniques. Boreholes pro-
vide local information (limited to1D traces in a 3D vol-
ume) about the orientation distribution, aperture, frac-
ture abundance (P10, Dershowitz and Herda, 1992) and,
if the borehole is properly oriented with respect to the
average orientation of a fracture set, 1D spatial arrange-
ment. In contrast, length and height distributions, con-
nectivity and the REA cannot be measured.

2. Geophysical methods can provide continuous 3D infor-
mation, but with important limitations since (i) frac-
tures are not always associated to a contrast in physical
properties that can be imaged with geophysical tech-
niques, and (ii) in any case the spatial resolution of
these datasets is limited. For instance, in good qual-
ity industrial 3D seismics, fractures smaller than about
200–300 m cannot be detected, and, in order to be di-
rectly observed, these fractures should be characterized
by a displacement that results in a contrast of seismic
impedance across the discontinuity. Summing up, only
macro-scale faults can be reasonably imaged in seis-
mics, and this induces a biased estimate of volumetric
fracture metrics (e.g. Laubach et al., 2019).

3. At the outcrop scale four major biases must be taken
into account (Baecher and Lanney, 1978): orientation
bias, truncation bias, censoring bias and size bias. The
orientation bias stems from the nature of the intersec-
tions between the fracture plane and the outcrop sur-
face and to the choice of the sampling dimensionality
(e.g., lines, areas or volumes). It influences the repre-
sentativity of field measurements, and results in down-

sampling of certain fracture sets with respect to others.
The truncation bias imposes a lower boundary to the
measured fracture trace length, and it is defined by the
smallest feature that is possible to detect. The censoring
bias is due to the finite nature of outcrops since the full
length of the longest fractures is limited by the outcrop
size, and in any case the length of fractures ending out-
side of the outcrop is not known exactly. The size bias
states that larger fractures (i.e. fracture surfaces with a
larger area) have a greater probability to intersect the
outcrop surface and to be sampled. Another bias, re-
lated to layered media, is the under-sampling of frac-
tures shorter than the bed thickness (Ortega and Mar-
rett, 2000). This bias changes the shape of the length
distribution, given that only the fracture high enough to
abut or crosscut the bedding interface can be systemat-
ically sampled. To these major biases it is important to
add that the morphological and weathering conditions
of the outcrop strongly influence the calculation of pa-
rameters like topology, density and intensity. In addition
to objective biases related to outcrop geometry or sam-
pling methods, subjective biases introduced by the inter-
preter should also be considered (Andrews et al., 2019).
In the specific context of automatic feature extraction,
it is also important to account for biases inherent to the
algorithms themselves, including the potential for ex-
tracting artifact features.

4. A complete 3D description of the fracture state is only
possible in the lab at the centimetric to decametric
scale, using non-destructive imaging techniques such as
X-Ray Computer Tomography (Agliardi et al., 2014,
2017), which allow measuring volumetric parameters
such as P33 (fracture porosity, i.e. fracture volume per
unit volume), P32 (volumetric fracture intensity, i.e.
fracture area per unit volume) and P30 (volumetric frac-
ture density, i.e. fracture number per unit volume; Der-
showitz and Herda, 1992).

The impossibility to directly map or image fractures
in the subsurface lead to using continuum representations
based on some form of upscaling or homogenization, such
as the dual porosity model (Warren and Root, 1963). Al-
ternatively, the Discrete Fracture Network (DFN) approach
allows generating stochastic simulations where fractures
are simplified as planar polygons in 3D or segments in
2D. In the standard and most widespread approaches to
stochastic 3D DFNs, the geometrical properties of each
fracture are drawn from parametric length and orientation
distributions, and fracture height is generally controlled
by a fixed height/length ratio. The simulator generates
fractures until a target fracture intensity P32 (Dershowitz
and Herda, 1992) is reached in the simulation volume (e.g.
Move – https://www.petex.com/pe-geology/move-suite/, last
access: 25 September 2025, Petrel – https://www.slb.com/
products-and-services/delivering-digital-at-scale/software/

Solid Earth, 16, 1351–1382, 2025 https://doi.org/10.5194/se-16-1351-2025

https://www.petex.com/pe-geology/move-suite/
https://www.slb.com/products-and-services/delivering-digital-at-scale/software/petrel-subsurface-software/petrel
https://www.slb.com/products-and-services/delivering-digital-at-scale/software/petrel-subsurface-software/petrel


S. Casiraghi et al.: An integrated workflow for parametrization of fracture network geometry 1353

Table 1. Summary of the fracture properties needed to quantitatively characterize a fracture network. (1) The Pxx system introduced by
Dershowitz and Herda (1992) is generally used for density and intensity. (2) The representative elementary volume (REV) can be different
for each property and the overall REV of the fracture network can be seen as a combination of REVs for individual properties (e.g. Martinelli
et al., 2020). (3) Candela et al. (2012), (4) Bistacchi et al. (2011).

Parameter Fracture network Fracture set DOM – Facets DOM – Traces

Number of sets * * *
Orientation * *
Topology * * *
Size (length/height) * *
H /L ratio * *
Density/Intensity (1) * * *
Aperture *
Spatial organization * * *
Representative Elementary Volume, Area (2) * * *
Roughness * *(3) *(4)
Kinematics *
Deformation Mechanism *
Filling *

petrel-subsurface-software/petrel, last access: 25 September
2025, FracMan – https://www.wsp.com/en-gl/services/
fracman, last access: 25 September 2025, DFNworks –
https://dfnworks.lanl.gov/, last access: 25 September 2025).
Fractures are randomly distributed in the simulation volume
according to a Poisson point process, therefore connec-
tivity or any other form of spatial organization cannot be
reproduced in these models. More sophisticated approaches
have been developed in the last years to try and solve this
fundamental limitation (Bonneau et al., 2013, 2016; Davy
et al., 2013; Shakiba et al., 2024), but a satisfactory solution
has yet to be found, especially in 3D.

Due to the beforementioned limitations in subsurface
datasets, input properties for generating stochastic DFNs are
often obtained from representative analogues exposed in out-
crops that can be characterized, compensating for the in-
formation gap at the reservoir scale. The outcrop analogue
approach assumes that the detailed information gathered at
selected, high-quality rock outcrops can be considered rep-
resentative of the fracture network properties of deep rock
masses that underwent a geological and tectonic evolution
that is at least partly comparable. The applicability of an
outcrop as an analogue should be evaluated carefully, and
some assumptions should be eventually made (Forstner and
Laubach, 2022).

This approach relies on the availability of extensive
datasets to characterize statistical distributions of the frac-
ture network. In this regard, field survey, intended as physi-
cally inspecting and collecting data from outcrops, is a fun-
damental step in the process of fracture network characteri-
zation, because features such as kinematics, roughness, rela-
tive chronology and mineralization/filling can only be gath-
ered during fieldwork. At the same time, even if it is pos-
sible, manually collecting massive amounts of data is time

consuming on horizontal outcrops, and very difficult in ver-
tical outcrops, where the accessibility is limited (data can
only be collected in the portion of the outcrop reachable by
the geologist) and depending on the conditions, safety is not
guaranteed (e.g. rocks falling from the top of the cliff). To
solve this problem, Digital Outcrop Models (DOMs) – high-
resolution 3D photorealistic representations of natural out-
crops (Bellian et al., 2005; Bistacchi et al., 2022b) have been
successfully employed to collect large quantitative structural
datasets, overcoming the limitations of classical survey tech-
niques (Sturzenegger and Stead, 2009; Gigli and Casagli,
2011; Sturzenegger et al., 2011; Riquelme et al., 2014, 2015;
Bistacchi et al., 2020, 2022a; Martinelli et al., 2020; Storti
et al., 2022).

Depending on the outcrop morphological expression, data
can be collected from DOMs using either facets – 2D planes
interpolated on the DOM, or traces – polylines that are usu-
ally digitized in a GIS environment, but sometimes also on a
3D DOM (Bistacchi et al., 2022b). These two types of data
carry different but complementary information; however, the
methodologies developed in previous contributions by differ-
ent authors are often based on only one of these kind of data,
limiting the number of parameters that can be obtained (Or-
tega et al., 2006; Boro et al., 2014; Martinelli et al., 2020;
Smeraglia et al., 2021).

The scope of this paper is to present a workflow based on
statistically rigorous methodologies to characterize a fracture
network from the geometrical point of view. The result of
such workflow provides a suite of parametrical distributions
to be used as input in current stochastic 3D DFN models. The
parameters considered here are: The orientation distribution,
the length/height distributions, the topological parameters,
the fracture areal intensity (P21) and the H /L ratio. We aim
at integrating 2D and 3D data sources (point clouds, ortho-
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Figure 1. Flow chart of the presented workflow. Numbered boxes define the sections of this contribution in which the respective steps of the
workflow are addressed.

mosaics, DEMs), vertical and horizontal outcrops and facets
and traces data to achieve a 3D geometrical parametrization
of the fracture network (Sect. 9 and following). The method-
ologies proposed to estimate each parameter can be applied
independently, subject to the type and quality of the outcrop.

The first part of the paper is dedicated to best practices
about data acquisition (both ground-based and UAV-based),
pre-processing, reconstruction and quality assessment of a
photogrammetric model (Sect. 3). Then two separate pro-
cessing pipelines are presented, depending on the DOM type:
(i) semi-automated fracture orientation analysis carried out
on point cloud DOMs (Sect. 4.4); and (ii) fracture trace anal-
ysis carried out on orthomosaics, allowing to measure topo-
logical relationships, length and/or height distributions, P21,
and to estimate (subject to assumptions) the H /L ratio dis-
tribution (Sect. 5–8).

We tested our workflow at an abandoned quarry of the Al-
tamura Limestone Fm. (Puglia, Italy), where both a horizon-
tal pavement and vertical walls provide the opportunity to
fully characterize the fracture network in 3D.

2 Selecting an outcrop: the Altamura Limestone at
Pontrelli quarry

Outcrops for quantitative fracture survey needs to be care-
fully selected, in order to satisfy some requirements: (a) rep-
resentativity of the structural and lithological properties of
the larger rock volume of interest (e.g. lithological charac-
teristics, structural setting, etc.); (b) size large enough to be
representative for the structures to be investigated; (c) con-
tinuous unimpeded exposure; (d) optimal orientation with re-
spect to the main fracture sets, to minimize orientation biases
(Terzaghi, 1965; Zhang et al., 2002). In this context, it is im-
portant to select outcrops that present at least two exposed
perpendicular sides (e.g., a vertical cliff and an exposed pave-
ments), natural or artificial (e.g., quarry site), for a full 3D
characterization of the fracture network metrics.

Here we consider an abandoned quarry (cava Pontrelli)
carved into the fractured limestones of the Apulian platform,
in the Murge Plateau near Altamura (Puglia, Italy), in the
forebulge of the Southern Apennines fold and thrust belt
(Panza et al., 2019). The quarry provides 18 000 m2 of hori-
zontal pavement and vertical walls with a cumulative width
of up to 500 m and up to 6 m in height, where fractures are
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beautifully exposed thanks to the careful maintenance of the
site (Fig. 2a–c) that is carried out because of thousands of
dinosaur footprints that were discovered by Nicosia et al.
(1999). The outcrop, well known and described in previous
papers (Panza et al., 2015, 2016, 2019) has been recognized
as a suitable analogue for reservoirs in related areas (Zam-
brano et al., 2016).

The quarry is carved into the shallow marine intertidal
limestones of the Calcare di Altamura Formation (Conia-
cian to Early Campanian, Panza et al., 2016). Limestones
are well-stratified light-brown mudstones, with wackestone-
packstone layers at the bottom of the beds and sometimes
algal laminites in the upper parts. Strata are 20–60 cm thick
and are organized in thickening upward cycles, some me-
ters thick, bounded at the top by major surfaces of subaerial
exposure. Bed interfaces often consist of stylolites having
teeth both perpendicular to the folded bedding and tangen-
tial (slickolites). The outcrop shows three main fracture sets
and a set of “major” structures, that are actually major at the
outcrop scale, but negligeable at the regional scale (Fig. 2b).
Set 1 is the most persistent, it is NW-SE striking and, based
on abutting relationships, predates all the other sets (Table 2).
It presents both joints and meso-faults with a vertical dis-
placement up to a few cm. Set 2 is also striking NW-SE on
average, but with a wider scatter, and it also includes both
joints and strike-slip meso-faults. However, structures be-
longing to Set 2 always abut on those belonging to Set 1,
showing that Set 2 is younger (Table 2). Set 3 is NE–SW
striking and includes fractures that abut on those belonging to
both Set 1 and 2. The trace of these fractures, that are limited
by older structures, are relatively short, but are responsible of
most of the connectivity of the network (Table 2). Aside from
the geometrical characteristics, veins are absent in all of the
three fracture sets, as well as fibres on small faults (Set 1 and
Set 2).

Even though this outcrop is top-quality in terms of frac-
ture parameterization, due to the areal extension, cleanliness
of the pavement, and the association between horizontal and
vertical outcrops, some limitations must be still evaluated.

The pavement (Fig. 1a and b) presents some no data
zones – where no data can be collected at all, due to de-
bris patches or the presence of strong concentrations of
non-natural features produced by quarrying activities. Other
zones distributed across the pavement are partially affected
by non-natural, quarrying-related fractures, but with a careful
analysis it is still possible to detect Set 1, while Set 2 and es-
pecially Set 3, being composed of smaller fractures, are more
difficult to interpret and separate from the ones related to
quarrying. Regarding the quarry walls, here we present data
on the NW wall (Fig. 2c), that is less disturbed by quarrying
activities and favourably oriented with respect to Set 1 and 2,
while Set 3 is sub-parallel to the wall. The wall is around 6 m
tall, and according to the stratigraphic analysis proposed by
Panza et al. (2016), includes a bed package developed above
the quarry pavement, which is one major subaerial exposure

surface, while other prominent subaerial exposure surfaces
are not detected inside the wall.

3 Digital Outcrop Model reconstruction and
pre-processing

Once the best exposures have been selected, we must also
take care of collecting the best input data in order to create
a high-quality DOM, that will greatly facilitate the workflow
downstream. This topic was covered extensively by Bistacchi
et al. (2022b) and here we just summarize the main require-
ments in the next paragraphs, always considering the Cava
Pontrelli case study.

3.1 Photogrammetric acquisition

Horizontal pavement DOMs have been acquired with a DJI
Mavic 3E drone flown with an autonomous flight application
(DJI Fly app). The photos were shot perpendicular to the out-
crop, with a 70 % overlap, both between photos pertaining
to a single strip and between adjacent strips. As discussed in
Bistacchi et al. (2022b), flights at different altitudes were col-
lected to avoid large-scale distortion in the photogrammetric
model, and the minimum altitude of 8 m allowed collecting
images with a ground resolution of 4 mmpx−1. Georeferenc-
ing of these DOMs is based on GPS data collected by the
drone and recorded in EXIF data of each photo.

Vertical cliff DOMs have been collected with a Nikon Z7
full-frame mirrorless camera mounted on a tripod with a
graduated head, adopting a multiple fan scheme (Bistacchi
et al., 2022b), in which every shooting station is evenly
spaced by 10° of interstation vision angle, measured target-
ing a certain point on the outcrop and moving parallel to
the outcrop by a distance corresponding to 10°. From each
camera locations several photos were shot with a fan pat-
tern, trying to cover the whole outcrop and using different fo-
cal lengths, and some shooting stations were collected from
a larger distance. This shooting scheme allows (i) avoid-
ing large-scale distortion in the photogrammetric model and
(ii) results in an optimal reconstruction of rough outcrop
faces, characterized by facets that form a high angle with re-
spect to the main viewpoint. Noteworthy, this kind of survey
could be also carried out with a drone, flying and shooting
manually, replicating the ground-based multiple fan scheme,
but only high-end cinema-grade drones have cameras that
can come close to the quality of a high-end full frame DLSR
or mirrorless camera, with significantly higher costs, hence
where possible we prefer to use the ground-based technique.
The resulting photogrammetric model has a resolution of ap-
proximately 2 mmpx−1.

Georeferencing of the terrestrial surveys was simply per-
formed by marking on the outcrop the location of the mirror-
less camera shooting stations before carrying out the drone
survey. These points were then retrieved from the drone
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Figure 2. (a) Aerial view of the Pontrelli quarry, Altamura, Italy. The quarry pavement is highlighted in pink, while the analysed quarry
wall is highlighted in green. (b) Orthomosaic of the quarry pavement, with digitized fractures and interpretation boundary. (c) Orthomosaic
of the interpreted vertical wall, with digitized fractures and interpretation boundary. (d) Field data collected along the quarry walls. The
stars represent the medoid of each cluster. Each medoid is colorized with the color of the set according to the legend. (e) Rose diagram of
orientation data collected from fracture traces on the orthophoto of the pavement (b). (f) Rose diagram of orientation data collected from
fracture facets on the digital outcrop shown in (c).
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Table 2. Summary of fracture sets characteristics at the Pontrelli quarry.

Fracture set Structures and kinematics Average strike Relative chronology

Set 1 Joints and meso-faults NW-SE Abutted by Set 2 and 3
Set 2 Joints and meso-faults NW-SE Joints abut on Set 1 and abutted by Set 3.

Faults crosscut Set 1 and abutted by Set 3.
Set 3 Joints SW-NE Abut on Set 1 and 2

dataset with an accuracy of better than 4 mm (allowed by the
high resolution) and used to co-locate the terrestrial dataset
in an accurate and perfectly consistent way.

3.2 Point cloud DOM and Textured surface DOM

Regardless of the technique used to acquire the data, DOMs
can be rendered, depending on the outcrop morphology and
the scope of the work, as point cloud DOMs (PC-DOMs) or
textured surface DOMs (TS-DOMs) (Bistacchi et al., 2022b).
PC-DOMs, as the name suggests, are dense sets of points,
where each point is characterized by XYZ coordinates and
an RGB value, and they are the main output of SFM/MVS
photogrammetric reconstructions or laser scanning acquisi-
tions. PC-DOMs are particularly suitable to carry on struc-
tural interpretations, using specific tools (Thiele et al., 2017),
on outcrops where fractures appear as facets of different size
and orientation (as in Fig. 3). TS-DOMs are derived from
PC-DOMs by generating a polygonal mesh from the point
cloud and texturing images onto its surface (Tavani et al.,
2014; Bistacchi et al., 2015). In this case the geological and
structural interpretation can be carried out in 3D or, as we do
in this contribution, with a standard 2D Geographical Infor-
mation System (GIS) environment (e.g., QGIS).

3.3 Quality of the photogrammetric model

Defining an absolute quality criterion for a point cloud ob-
tained from a photogrammetric survey is not easy, as dif-
ferent kinds of applications have different requirements. In
our application scenario, absolute precision is of lesser prior-
ity with respect to the relative accuracy within a local refer-
ence frame. This can be evaluated in early stages of the pho-
togrammetric processing considering the image reprojection
error, measured in pixels, as it directly impacts the relative
accuracy of the photogrammetric model as a fraction of its
ground resolution (expressed in mmpx−1).

A fundamental requirement in a DOM aimed at structural
analysis is that it must be completely free from artifacts (dou-
bled surfaces, distortion, doming), and that noise (isolated
points outside the outcrop surface) should be as low as pos-
sible. A typical artifact resulting from a low-quality acquisi-
tion scheme, that does not include fans or photos collected at
variable altitude as discussed above, is the presence of dou-
bled “surfaces”, consisting in layers of duplicated points that
do not define univocally the outcrop surface. Bistacchi et al.

(2022b), suggested that the best solution is to use a high-
quality acquisition scheme, since a posteriori solutions do not
work or are hugely time-consuming.

We believe that the most important parameter to evaluate
the quality of a photogrammetric model for applications in
structural geology is the point cloud surface density (SD). By
defining a kernel – a sphere of radiusR moving in such a way
as to being cantered on each point – the point surface density
SD can be calculated as the ratio between the number N of
points falling in the kernel and the area πR2 of the largest
circle inscribed in the sphere with radius R:

SD=
N

πR2 (1)

As an example, in Fig. 3, two PC-DOMs of the same vertical
outcrop are compared, collected in two different ways to ob-
tain a different SD PC-DOM in Fig. 3c is reconstructed from
more than 400 photos collected as discussed above (fans
scheme, with high end camera, Nikon Z7). On the other hand,
the PC-DOM in Fig. 3d is collected with a smaller dataset
(150 photos) collected with a lower quality camera (DJI Mini
3 Pro). The mean SD of the PC-DOM shown in Fig. 3d is
two orders of magnitude higher than the PC-DOM of Fig. 3c
(298 826 vs. 5249 points mm−2), resulting in a much sharper
point cloud, from which it is possible to extract more easily,
much more structural information.

In conclusion a good PC-DOM must be free of artifacts,
have low noise, and have a high SD on all surfaces of interest,
including facets that form a high angle with the outcrop mean
plane, which can be properly imaged only if a multiple fans
scheme is used.

4 PC-DOM: semi-automated analysis of fracture
orientation

The goals of orientation analysis are to measure the attitude
of each fracture facet that can be mapped on the DOM and to
classify it within a fracture set (i.e. a statistically defined frac-
ture cluster), amongst those identified in the preliminary field
survey, or emerging from the clustering analysis (Sect. 4.3),
and finally to obtain statistically validated orientation statis-
tics for each fracture set.

Fractures in PC-DOMs are mainly represented by point
patches that are the morphological expression, on the outcrop
surface, of fracture surfaces, exposed due to natural (e.g. ero-
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Figure 3. Comparison between two different PC-DOMs of the same vertical outcrop. (a, b) frequency distribution of the SD measured with
a kernel of 0.049 m. The parameters are obtained by fitting a Gaussian model. (c) PC-DOM reconstructed from photos collected with a
high-resolution full-frame mirrorless camera. (d) PC-DOM reconstructed from photos collected with a commercial drone and a simplified
acquisition scheme. Point size has been magnified five times, for visualization reasons.

sion or rockfall) or anthropic (e.g. excavation) events. Here
we propose a semi-automatic workflow to map these patches,
based on a first step of manual mapping of a subset of fracture
planes on the PC-DOM. This allows selecting different sets
of structures, characterizing their orientation statistics, and
assigning them to sets defined in the field. Based on dip and
dip direction ranges, the PC-DOM is manually segmented
into as many parts as the number of recognized fracture sets.
The automatic step consists in the automatic interpolation of
2D planar features from the segmented point cloud, even-
tually allowing to greatly increase the number of facets in-
cluded in the analysis, with important benefits for the statis-
tical analysis (Fig. 5).

Our workflow can be carried out in CloudCompare (https:
//www.danielgm.net/cc/, last access: 25 September 2025),

the most used open-source software for point cloud process-
ing (Dewez et al., 2016; Thiele et al., 2017) or in PZero,
a new 3D geomodelling application where we are also de-
veloping new tools for DOM analysis (https://github.com/
gecos-lab/PZero, last access: 25 September 2025).

4.1 Orientation parameters for fracture sets

Orientation data are usually recorded in geology using po-
lar coordinates, either as dip and dip direction (dip azimuth)
or dip and strike for planar features, or as plunge and trend
for axes. In general, any orientation can be represented as
a unit vector within a three-dimensional spatial framework
(e.g. Mardia and Jupp, 2000), and polar coordinates can be
converted into director cosines in a dextral cartesian refer-
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ence with:

L= sin(dir)cos(dip) (2)
M = cos(dir)cos(dip) (3)
N =−sin(dip) (4)

where L is the component in direction East, M is directed
towards the North, and N is directed upwards (Borradaile,
2003).

The unit normal vector (v = L,M,N ) is calculated on ev-
ery point of the point cloud by fitting a plane to the points that
fall within a sphere of specified radius, cantered at the point
itself. The larger the radius the smoother the normal vectors
will result, with the drawback of longer computational times.

With a few exceptions (e.g. bedding with polarity, flow di-
rections), the orientation of geological structures and partic-
ularly of deformational features like fractures shows a sym-
metry where the sense does not bear any geological meaning.
In mathematical terms this means that two vectors v and −v

are equivalent in this kind of analysis. This symmetry im-
plies that different conventions can be adopted for the sense
of normal vectors, i.e. the geological convention where nor-
mal vectors always point downwards or the photogrammetric
convention where they point out of the outcrop.

4.2 Manual orientation mapping

The first step of the workflow is carried out by manually map-
ping facets, and particularly their attitude, in the PC-DOM
with the Compass plugin in CloudCompare (Thiele et al.,
2017) or with the facet mapping tool in PZero. These tools
behave in the same way and mimic the process of manually
collecting attitude data in the field with a geologist compass-
clinometer. The fundamental goal of this step of the work-
flow is to sample each set to define its dip and dip direc-
tion range, that will be used in the manual segmentation step.
Therefore, we suggest carrying out the mapping with an ini-
tial random sampling and then avoiding oversampling the
most represented sets (that are generally those favoured by
the outcrop orientation bias).

Dip and dip direction values are obtained by fitting a lo-
cal plane on points selected with a spherical kernel. The ker-
nel radius is defined on-the-fly during mapping by the user,
based on the dimension of the fracture plane. A too small ker-
nel will result in measurements affected by the roughness of
the fracture plane, while a too big kernel will include points
pertaining to other surfaces, biasing the orientation value.
Orientation data collected in this way are plotted in stereo-
plots and compared with data collected in the field (Fig. 2d),
in order to assess whether all field-defined sets are also rep-
resented in the digital dataset.

4.3 K-medoid clustering

The precise identification of fracture clusters is fundamental
in the following automated segmentation step, where each

fracture set corresponds to a cluster of orientation data that
can be uniquely defined with a measure of location – a se-
ries of measures to locate the fracture cluster in the param-
eter space (e.g., mean L,M,N ), and a measure of concen-
tration or dispersion (Borradaile, 2003). Clustering analysis
provides a quantitative answer to both the number of clus-
ters the dataset is composed of, and the parameters of each
cluster, given an assumption on the type of distribution.

We apply the K-medoid method to a dataset organized
as a table, with n rows corresponding to individual orien-
tation data and three columns corresponding to the three
director cosines. K-medoids is a partitional method (Kauf-
man and Rousseeuw, 2005) aimed at classifying the data into
km groups, where km is the number of fracture set defined
in the field, eventually adjusted by the visual inspection of
the plotted data . Each group must contain at least one ob-
ject, and each object must belong to only one group. Par-
titional methods try to find a suitable partition by separat-
ing objects close to each other from objects far away from
each other, and how the proximity between objects is calcu-
lated determines the specificity of the method. Considering
K-medoids in a 3D parameter space (L,M,N ), the location
parameter is defined by a medoid, i.e. the point belonging
to the cluster that minimizes the average distance in the 3-
dimensional space between all the other data belonging to
the cluster and the medoid itself (Kaufman and Rousseeuw,
2005).K-medoids therefore measure distance in an isotropic
way in the 3-dimensional space of the dataset. When com-
pared to the more popular K-means approach, K-medoids
are more robust and less affected by outliers (Kaufman and
Rousseeuw, 2005).

One of the problems that arises withK-medoids and other
similar partitional methods lies in the definition of the ap-
proach itself, as the number km of cluster is imposed by the
user, and this can lead to an underestimation or overestima-
tion of the real number of clusters (Kaufman and Rousseeuw,
2005). However, in our application this is not a problem,
since the number of fracture sets is iteratively defined start-
ing from an initial guess defined in the field and the clustering
algorithm is applied as a validation of that hypothesis, even-
tually adjusting the number of sets to account for clusters that
only surfaced during the statistical analysis.

A second drawback is that in the standard implementa-
tion the initial guess for the medoids is chosen randomly, and
when different fracture sets show a partial superposition, the
clustering algorithm could yield inconsistent and unreliable
results. To address this issue, the initial guess can be defined
by the interpreter by manually positioning the initial guess
for the medoid.

Finally, to avoid the sense ambiguity of orientation unit
vectors discussed above, particularly critical for clusters of
sub-horizontal vectors that can be mirrored across the stere-
oplot equator, we have developed a solution based on mirror-
ing all input data. For each input vector vi we create another
vector −vi with parallel direction and opposite sense (i.e.
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pointing in the upper hemisphere, Fig. 4). Then we perform
the K-medoids clustering on this duplicated dataset, extract-
ing 2km clusters both in the upper and lower hemisphere.
Given the symmetry imposed by duplicating the data with
mirroring, also the resulting 2km medoids will be symmet-
rical, with each medoid in the lower hemisphere having a
perfectly symmetrical pair in the upper hemisphere and vice
versa, then to conclude the analysis we extract just the km
clusters with the medoid pointing downwards, in the lower
hemisphere (Fig. 4).

4.4 Manual segmentation of PC-DOM and
semi-automatic planar feature extraction

Based on orientation statistics and K-medoids clustering, it
is now possible to segment the whole point cloud into subsets
with normal unit vectors falling within the statistical variabil-
ity of different fracture sets.

The subsets are composed of isolated clusters of points,
with the same orientation, each representing a portion of
a separated fracture plane. This greatly improves the auto-
matic extraction of 2D polygonal features during the follow-
ing steps because every patch of points is isolated from the
others, nullifying the risk of merging adjacent clusters into
one bigger 2D polygon and avoiding the possibility of gen-
erating planes with an averaged orientation between two dif-
ferent point clusters, pertaining to two different fracture sets
with different orientations. Another advantage of the manual
segmentation is that it is possible to specifically calibrate the
algorithm for each fracture set.

The segmented point cloud subsets are then fed to the
CloudCompare FACETS plugin (Dewez et al., 2016), and
specifically to its fast-marching algorithm (Sethian, 1999), to
interpolate a planar polygonal feature per every point patch
that matches the calibrated algorithm parameters. In this con-
text, manual mapping and orientation analysis act as a cali-
bration step in preparation for the final automatic extraction
of planar features, that is greatly simplified and results in
clean results thanks to the segmentation step, that avoids gen-
erating spurious facets.

Fast marching algorithms are a class of methods devel-
oped to track propagating interfaces into a bi-dimensional
or three-dimensional space (Sethian, 1999). In the FACETS
plugin (Dewez et al., 2016), the fast-marching algorithm is
employed to create polygonal planar surfaces interpolating
subsets of the point cloud. The algorithm is based on four
parameters that need to be calibrated for optimal results. In
particular:

– Octree level defines the level of systematic recursive
subdivision of the point cloud three-dimensional space,
defined by its bounding box, in this case, a cube. Every
level involves subdividing the box into 8 sub-cubes, that
allow optimizing the definition of the smallest feature
we want to detect (i.e. the scale of analysis), with the
computational time increasing with the level. No spe-

cific strategy exists to calibrate the octree level. As a
starting guess we should chose a value that results in
cubes with a dimension comparable to the smaller frac-
ture facet we want to detect. From this value, it is possi-
ble to decrease or increase the octree level by one level,
visually checking the results. In our experience, increas-
ing too much the octree level does not increase the qual-
ity of the analysis but will result in an over-segmentation
of the facets and possibly in an increase of noise.

– Maximum distance defines a generalization criterion to
merge adjacent features. For instance, if maximum dis-
tance is set at 68 %, at least 68 % of the points associated
to a facet must have a distance to the facet mean plane
that is lower than the standard deviation of the distances
from the mean plane fitted from the points defining the
facet. In geological terms, this parameter controls the
maximum roughness accepted for a plane to be fitted.
The maximum distance parameter can be calculated by
manually isolating a certain patch of points, represent-
ing a fracture plane. The distance from the mean plane
of every point can be manually calculated by fitting a
mean plane to the point patch. The result is given in the
form of a scalar field associated to the point cloud. The
mean distance is calculated by fitting a Gaussian model
to the frequency histogram of the previously calculated
distances.

– Minimum points per facet defines the minimum num-
ber of points needed to define a facet. The higher the
octree level, the smaller this parameter should be, as
the dimension of the smallest feature detected decreases
and so the related number of points. This parameter can
be considered a threshold between what we consider as
noise, and what we consider as a proper feature. The
minimum points per facet parameter must be tuned ac-
cording to the average surface density SD of the PC-
DOM. The higher the surface density the higher will be
number of points in the smaller element produced by
the octree subdivision, therefore the higher this param-
eter can be set.

– Maximum edge length is related to the length of the
boundary of the facet. Small values of this parameter
impose concave and compact boundaries, while larger
values allow for elongated and/or convex boundaries.
There is no general rule for the calculation of this pa-
rameter, which must be empirically calibrated on a case-
by-case basis.

Calibrating all these parameters on the whole point cloud is
taxing in terms of computational time, therefore we suggest
selecting at least 30 representative facets (Fisher, 1992), in
terms of dimension and roughness, for every fracture set, cal-
ibrating the algorithm parameters on these facets, and then
use this calibration to process the whole PC-DOM. When
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Figure 4. (a) 3D stereoplot of two hypothetical fracture set collected on the field. Light blue and magenta sets are the same set but recognized
as two different sets, due to the geological sign convention. (b) Every set is doubled and mirrored with respect to the center of the sphere (b).
The clustering algorithm is applied on double the number of the set and only the centrotypes that follow the geological sign convention are
kept (b).

working on a single facet, the octree level must be set to 0,
as an isolated facet is considered as a point cloud on its own
(Fig. 6).

The result of the feature extraction algorithm is a set of
2D polygonal facets resulting from the interpolation of point
patches that met the criteria defined in the calibration, from
which orientation parameters will be obtained (Fig. 7e).

It is important to remember that facets can be interpolated
only on fully exposed planar structures, therefore they rep-
resent only the part of the fracture plane that shows a mor-
phological expression. Moreover, based on the calibrated pa-
rameters there is the possibility that the interpolation of an
exposed surface will result in a combination of facets, and
not a single one. All of this to say that data like faces height
and surface extension can be useful but should be handled
with care if trying to obtain volumetric parameters (P30 or
P32) or height distributions.

4.5 Orientation parameters calculation

In structural studies of fracture networks, is common prac-
tice to assume that each fracture set shows an orientation
distribution described by the unimodal circular symmetric
Von Mises–Fisher distribution on a sphere (Fisher, 1953) –
a specific declination of the more general Von Mises distri-
bution (Mardia and Jupp, 2000) that, following a common
practice in geological applications, will be called “Fisher dis-
tribution” in the following.

Even if it is sometimes reasonable to assume that fracture
sets follow a distribution with circular symmetry, with the ex-
ception of particular situations like radial dikes and fractures
formed in a flat layer before the onset of folding (e.g. Mandl,

2005), a statistical test is needed, particularly if the final goal
is to use the results of orientation analysis in downstream
simulations.

Fisher and Best (1984) proposed a goodness-of-fit test for
the Fisher model, starting from a previous graphical test de-
veloped by the same authors (Lewis and Fisher, 1982). The
poles of the family of n planes that need to be tested (Ij ,Dj )
with mean dip and direction (I ,D), are rotated to obtain vec-
tors with new coordinates (I ′j ,D

′

j ), with mean dip and dip
direction (0,0). The original vectors are than rotated a second
time to obtain a new set of vectors (I ′′j ,D

′′

j ). On these rotated
values, the following derived datasets are tested:

SE ≡ {c
′

i = 1− cosD′j , 1≤ j ≤ n} (5)

SU ≡ {I
′

j , 1≤ j ≤ n} (6)

SN ≡ {Zi =D
′′

j

√
sinD′′j , 1≤ j ≤ n} (7)

SE is tested with the Kolmogorov–Smirnov test (Stephens,
1974) against an exponential distribution E(1/k) to check
the underlying colatitude distribution (exponentiality test).
The Kuiper test (Stephens, 1974) is applied to test SU against
a uniform distribution U(0,2π) to check the assumption
of rotational symmetry around the mean vector (circular-
ity test). The goodness-of-fit of SN to a normal distribu-
tion N

(
0, σ 2) is tested with the Kolmogorov–Smirnov test

(Stephens, 1974) to check against the correlation between
colatitude and longitude (normality test) (Fig. 7).

Overall, this procedure provides a quantitative way to as-
sess if the dataset can be fit with a Fisher model, allowing
the calculation of the mean dip and dip direction of the clus-
ter and the concentration parameter k.
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Figure 5. Scheme of the semi-automatic workflow for segmenting the point cloud presented in Sect. 4. Point cloud colored based on
dip direction with a HSV 380 colour scale. (a) Manual data collection on PC-DOM. (b) Manually collected orientation data during the
preliminary orientation analysis. Number of data: Set 1= 351, Set 1= 256, S = 87, Set 3a= 74, Set 3b= 42. (c) Manual segmentation of
the PC-DOM. (d) automatic feature detection with FACETS plugin. (e) Final result of the semi-automatic extraction workflow. Each fracture
set is individually shown with contour lines.

If the Goodness-of-fit test is rejected, it is possible to fit a
more general distribution. The Kent distribution is a natural
extension of the Fisher distribution as it represents the ana-
logue of a general bivariate normal distribution on a sphere
(Kent, 1982). It includes the additional parameter β that de-
scribe the ovalness of the distribution, allowing to fit more
elliptical clusters (Kent, 1982). No goodness-of-fit tests exist
to check if the data follow the Kent distribution. Notewor-
thy, the Kent model results in orientation distributions that
are similar to those off the Bingham-5-parameter distribution
(Kent, 1982), but has a different mathematical formula.

5 Enhanced interpretation on orthomosaic and DEM

Collecting orientation data directly from outcrops that lack a
noticeable 3D morphological expression (i.e. the facets dis-

cussed above) is not possible. At the same time, measuring
fracture size and intensity or density (length, height, P21,
etc.) from PC-DOMs is not reliable because facets do not cor-
respond to complete fracture surfaces. For these reasons, we
digitize fracture traces on TS-DOMs, obtained by projecting
and merging the images collected during the photogrammet-
ric survey onto a polygonal mesh or a DEM (in turn interpo-
lated from the PC-DOM). The data extracted from fracture
traces are different and complementary to those provided b
fracture traces, and only combining both kinds of informa-
tion we can extract the most complete datasets from a DOM.
The digitization of fracture traces on the vertical TS-DOM is
done considering also the corresponding PC-DOM. By inte-
grating TS-DOM and PC-DOM data, each digitized fracture
trace can be associated with a best-fit plane derived from the
point cloud. This approach enables the assignment of frac-
ture traces to specific fracture sets. Fractures on the vertical
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Figure 6. Example of the parameter calibration on a single facet. The max distance is calculated as the mean of the frequency distribution
of the distances from the mean plane. (a) Example of a planar feature extraction when the max edge length parameter is too low. (b) When
the max edge length is too high the planar feature results in a non-representative polygon. When the parameters are correctly calibrated the
output planar feature precisely follows the point cloud border and no point is excluded from the interpolation for a too low max distance
value.

wall that could not be reliably linked to a fracture plane were
excluded from the digitization process.

The dataset deriving from the interpretation of TS-DOMs
is composed of an interpretation boundary (closed polygon)
and a series of fracture traces (polylines) attributed to dif-
ferent fracture sets. The interpretation boundary limits the
portion of the outcrop where fractures can be detected and
digitized. It can include holes to isolate parts of the outcrop,
covered by debris or vegetation, that are large enough to hin-
der the interpretation.

In this case study we were able to obtain orthophotos (see
Sect. 3) of both the sub-horizontal pavement and of sub-
vertical walls (Fig. 2), and this allowed carrying out the frac-
ture trace digitalization in a 2D GIS environment.

The availability of both RGB images and DEM for the
sub-horizontal pavement (from which we can derive slope,
aspect and hillshade), can allow following structures that
may be challenging to detect in RGB images only, due to
alteration of the pavement surface, lack of colour contrast or
zones damaged by quarrying activities, where longer frac-
tures can still be digitized but are difficult to detect.

Every fracture set is saved in a dedicated file and every
characteristic pertaining to a specific set is recorded into an
attribute table field. For example, both Set 1 and Set 2 in-
clude meso-faults and joints, this information is stored in an
integer field coded as 1 for faults and 0 for joints. At the
same time, Set 3 is characterized by two main average ori-
entations (Set 3a and 3b), but the fractures can be associated

by their average length and abutting relationships with other
sets. Fractures of Set 3a and 3b are than separated in a spe-
cific field.

Precise termination (snapping in GIS jargon) of abutting
fracture traces is managed automatically, defining a thresh-
old distance quantified in pixels. In the following sections
we discuss how we characterize topological relationships,
length/height distribution, H /L ratio and P21 from digitized
fracture traces.

6 Fracture network topology

Due to the limitations imposed by observing them in out-
crop, the topology of fracture networks, which are actually
composed of fracture surfaces embedded in a 3D rock vol-
ume, is most of the times characterized in 2D, from fractures
traces limited and/or connected by nodes (Dershowitz and
Einstein, 1988; Barton et al., 1989; Renshaw, 1996; Man-
zocchi, 2002; Sanderson and Nixon, 2015; Sanderson et al.,
2019). Even under this limitation, topology is a fundamental
component of fracture network analysis because it is directly
related to connectivity, as demonstrated by Sanderson and
Nixon (2015).

Topological relationships are also instrumental in calculat-
ing unbiased length and height distributions, because topol-
ogy allows identifying censored fractures by means of B
nodes (Benedetti et al., 2025), and this also cascades into the
estimation of the H /L ratio.
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Figure 7. Example of the goodness-of-fit test for Set 2 and Set 3a of the Pontrelli quarry. The hypothesis of sphericity of the data is rejected
based on all the tests.

6.1 Standard topological analysis

From a topological point of view, a fracture network can
be seen as a connected set of branches (fracture traces) and
nodes (terminations and intersections), delimited by an inter-
pretation boundary (e.g. defined by the natural limits of an
outcrop). Six main nodes categories can be defined in a frac-
ture network (Benedetti et al., 2025; Forstner and Laubach,
2022; Nyberg et al., 2018, Fig. 8):

– I nodes: fracture trace true tip points;

– Y nodes: abutting relationship;

– X nodes: crosscutting relationship;

– V nodes: perfect coincidence of two tip points belong-
ing to two different fractures – these are theoretically
possible, but hard to recognize at the interpretation
scale;

– B nodes: boundary nodes, where a fracture trace termi-
nates at the interpretation boundary.

– C nodes: Contingent nodes that can be enabled or not,
generating different fracture network configurations,
depending on configuration rules defined according to
the study objectives and sometimes micro-scale obser-
vations (Forstner and Laubach, 2022).

The nature of I, Y, X, V and C nodes is related to the pro-
cesses that generate the fractures in the first place, but an
additional consideration pertains to B nodes (Nyberg et al.,
2018, Benedetti et al., 2025), which result from the interac-
tion between the fracture network and the size and shape of
the outcrop. This interaction leads to the formation of false
tip lines (false I nodes→B nodes) and the censoring of frac-
ture traces. To prevent an underestimation of network con-
nectivity, it is fundamental to exclude B nodes from the cal-
culation of the relative proportions of I, Y, and X nodes.

Nodes classification is based on their topological value
(Sanderson et al., 2019), representing the number of branches
connected to each node. Specifically, I nodes have a topolog-
ical value of 1, V nodes have a value of 2, Y nodes have
a value of 3, and X nodes have a value of 4. B nodes can
be categorized as nodes with a topological value of 3, but
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one branch originates from the fracture trace while the oth-
ers come from the interpretation boundary. C nodes assume a
different topological value depending on the chosen configu-
ration. If they are enabled, the topological value will be equal
to 2 (V node), if they are not enabled, topological value will
be equal to 1, and one C node generates two I nodes. This
choice heavily impacts length and height distribution calcu-
lation as it is controlling the results of the topological analy-
sis. Therefore, the decision about connecting or not fractures
through C nodes should be made before running the topolog-
ical classification.

FracAbility (Benedetti et al., 2025) is an easy-to-use orig-
inal Python library developed for the quantitative statistical
processing of fracture networks. Taking as input a set of poly-
lines for each fracture set and a polygon representing the in-
terpretation boundary, it is possible to obtain:

– IYX ternary diagram: the standard classification when
it comes to topology (Fig. 8a). In this diagram, the nor-
malized distance from each vertex represents the rela-
tive frequency of I, Y and X nodes.

– Connectivity Index (CI): the mean number of connec-
tions per line, rendered as contour lines on the IYX
ternary diagram (Manzocchi, 2002). As a reference,
CI= 3.57 was defined as the critical CI for a constant
length uniformly clustered system (Manzocchi, 2002).

– Backbone: the largest cluster of connected fractures in
the network.

These results represent different aspects of the degree of con-
nectivity of the fracture network. The ternary diagram and
the connectivity index give information about the average
connectivity of the network. Only when a fracture abuts on
another one it is possible to reduce the number of I nodes in
the network, thus moving towards the X and Y nodes ver-
tices in the diagram means increasing, on average, the pos-
sibility to form large, connected clusters within the network.
However, the presence of clusters of connected fractures with
a high connectivity index cannot be unravelled by the sim-
ple node count. Backbone extraction addresses this problem
by highlighting the most extensively connected cluster. Un-
der the assumption that all fractures are open, it also pro-
vides a graphical solution to the percolation threshold prob-
lem. Specifically, if the backbone spans two opposite sides
of the interpretation boundary, it indicates the presence of a
giant connected component, allowing for the establishment
of a continuous flow (Haridy et al., 2020). As illustrated in
Fig. 9, the backbone is characterized by a notable increase in
the CI value.

6.2 Directional Topology

Topological parameters presented in the previous section
give a general picture of the fracture network as a whole and
are calculated considering the fracture network as a single

entity, not considering the geological classification of frac-
tures in different sets (Fig. 10a). It is thus impossible to re-
trieve information about a specific fracture set, for example,
how many I, Y and X nodes a certain set have, or how a set
is related to another one in terms of crosscutting and abutting
relationships. This kind of information can be obtained using
what we call “directional topology.” In standard topological
analysis, nodes store only the topological value. In contrast,
in directional topology nodes also contain information about
the fracture set (in the case of I-nodes) or sets (in the case
of Y- and X-nodes) from which the connected branches orig-
inate. This enables a more detailed topological characteri-
zation: I-nodes are classified by set, X-nodes are described
by the intersecting sets (e.g., an X-node between Set 1 and
Set 2), and for Y-nodes, it is possible to determine whether
they are generated by Set 1 abutting on Set 2 or vice versa,
by counting the number of branches (Fig. 10).

To address this issue, when splitting fractures into
branches to calculate topological values, FracAbility stores
into the node attributes the set to which every branch belongs
and the associated directionality (Fig. 10b).

The usefulness of directional topology is not only limited
to a more advanced description of the topological relation-
ships within the fracture network, but can be also employed
to define a quantitative parametrization of relative chronol-
ogy between fracture sets, and of the stratabound versus non-
stratabound nature of fractures.

In a hypothetical case where a fracture network is com-
posed of two fracture sets, without censored terminations,
and one of the two sets consistently abuts on the other, the
abutting set will only show Y nodes. Thus, dividing the num-
ber of nodes by the number of fractures will yield exactly 2.
In a real scenario, where the fracture network also includes
censored fractures and B nodes, this result will be less than
2 because some of the Y-nodes are masked by censoring. To
shield this relationship from censoring, it is necessary not
only to subtract the number of censored fracture traces from
the total, but also the number of Y-nodes that represent the
termination of a censored fracture trace from the total Y-
nodes, defining the following relationship:

Fracture Binding Index=
nY nodes− nY censored

2(nfrac.− nfrac. censored)
× 100

=100%
(8)

where nY nodes is the number of Y nodes of the abutting set,
nY censored is the number of Y nodes associated to a cen-
sored fracture (i.e. trace with one B node and one Y node),
nfrac. is the total number of fractures of the abutting set and
nfrac. censored is the number of censored fractures of the abut-
ting set. The Fracture Binding Index (FBI) ranges from 0,
when no fractures from the abutting set abuts on the other
set, to 100 % when every fracture is abutting on another frac-
ture set. 100 % of abutting nodes is an asymptotic value, dif-
ficult to reach in a natural context, but nonetheless revealing
a tendency in this direction would be interesting.
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Figure 8. Topological relationship of the Pontrelli quarry fracture network. (a) Associated IYX ternary diagram, the red dot represents the
connectivity index (CI).

FBI can assume a different meaning depending on the con-
text in which it is applied. In general FBI represents a quanti-
tative way to assess relative chronology. In fact, considering
two fracture sets, the one with the higher FBI is interpreted as
being younger than the other one since it is consistently abut-
ting. Moreover in vertical outcrops, if we consider the topo-
logical relationships between one fracture set and the bed-
ding, FBI represents a quantitative parameter for the quan-
tification of the tendency of a fracture set to be bounded by
bedding surfaces.

Figure 11 shows the application of directional topology to
the Pontrelli vertical wall, considering Set 1 and the bedding
(S). Applying the directional topology analysis we obtain:

– nY nodes = 100

– nY censored = 28

– nfrac. = 93

– nfrac. censored = 40

FBI1−B =
100− 28

2(93− 40)
× 100= 67%

Therefore Set 1 is stratabound at 67 %.
Considering now, for example, the abutting relationships

of Set 3 on Set 1 as mapped in the pavement:

– nY nodes (3–1) = 1161

– nY censored (3) = 4

– nfrac. (3) = 1863

– nfrac. censored (3) = 12

FBI3−1 =
1161− 4

2(1863− 12)
× 100= 31.2%

On the contrary:

– nY nodes (1–3) = 183

– nY censored (3) = 1

– nfrac. (3) = 2003

– nfrac. censored (3) = 175

FBI1−3 =
183− 1

2(2003− 175)
× 100= 4.9%

Therefore Set 3 abuts with a FBI of 31.2 % on Set 1, and
on the other hand Set 1 abuts with only a marginal FBI of
4.9 % on Set 3, which is considered just an effect of a few
digitization errors or local deformational effects.
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Figure 9. Backbone of the Pontrelli quarry fracture network. The backbone connects two sides of the pavement, indicating the presence of a
giant connected component. (a) XYI ternary diagram of the backbone zone, the CI increase form 1.4 for the whole network to 3.5 along the
backbone zone.

Figure 10. (a) Topological relationships based on the topological value for a fracture network composed of two fracture sets. Highlighted
in red, the branches necessary to define one specific node. (b) Topological relationship calculated taking into account the branch origin. X
nodes are identified by the presence of two branches for every fracture set, Y nodes are identified by three connected branches. Of the three
branches if only one pertain to a specific set it means that it is abutting on the other. I nodes are classified depending on the origin of the
connected branch.
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Figure 11. (a) Directional topology applied to Set 1 fractures on Pontrelli vertical wall (b) Standard topological classification of Pontrelli
vertical wall. The complete topological characterization is given by the combination of A and B visualizations.

7 Trace length/height distribution

Defining an unbiased trace length distribution has always
been one of the main challenges in rock mass and frac-
ture network characterization. When calculating or estimat-
ing trace length parameters it is possible to distinguish be-
tween distribution-dependent (assume a specific probability
distribution) and distribution-free methods (population pa-
rameters not linked to any specific probability distribution,
Mauldon, 1998). On one hand, distribution-free methods do
not rely on any specific assumption about the underlying dis-
tribution, but provide an unbiased estimator of only the mean
trace length by an indirect correlation (i.e. length is not phys-
ically measured, Warburton, 1980; Pahl, 1981; Kulatilake
and Wu, 1984; Mauldon, 1998; Zhang and Einstein, 1998;
Mauldon et al., 2001; Rohrbaugh et al., 2002). Not making
assumptions about the shape and mathematical form of the
distribution could be seen as an advantage, but actually the
non-parametrical nature of these approaches implies that it is
not possible to obtain statistical parameters of the population
such as the standard deviation without imposing further as-
sumptions (Pahl, 1981). This makes distribution-free meth-
ods unsuitable for modern modelling applications, such as
stochastic generation of fracture network, where a fully spec-
ified distribution is required. On the other hand, distribution-
dependent methods make assumptions on the shape of the
underlying trace length distribution, thus constraining their
results. Because of this, it is necessary to test how well the
chosen distribution fits the data. In the past this was a strong
limitation, due to the biases discussed in Sect. 1.

Digital outcrops and the increasing computational power
make it possible to overcome some problems that previous
authors could only consider theoretically from a mathemati-
cal and stereological point of view. On one hand, these new
techniques facilitate the acquisition of massive datasets on
large sampling windows and successfully tackle the different
biases that can be present on an outcrop. On the other hand,
the increased computational power makes it possible to cal-
culate the solution to mathematical problems that previously
could not be solved due to the lack of a closed form solution
(Baecher, 1980).

The orientation bias can be treated by applying areal sam-
pling on outcrops with perpendicular faces. All the frac-
ture sets perpendicular or sub-perpendicular to the horizontal
plane are detected on the pavement. If present, fracture sets
parallel to the horizontal pavement can be measured on the
perpendicular vertical wall, eliminating the issue of under-
sampling fracture sets with unfavourable orientations.

The size bias applies to 1D sampling methodologies (scan-
lines) where longer fractures have a higher probability of be-
ing sampled, but this bias does not apply to areal sampling
strategies where everything inside the interpretation bound-
ary is sampled. Even fractures much longer than the interpre-
tation boundary are sampled and classified as censored frac-
tures (see below). Areal sampling alone, however, does not
account for the possibility of fractures parallel to the outcrop
mean plane, and for the under-sampling of fractures shorter
than the bed thickness (Ortega and Marrett, 2000). The as-
sociation between the vertical and horizontal side of the out-
crop can partially solve this bias. On the vertical side it is
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possible to check the presence/absence of a fracture set par-
allel to the horizontal outcrop surface and the relationship
between fractures and the bedding interface. The problem re-
mains for fracture sets parallel to the vertical outcrop mean
plane, as the orientation bias hinders the trace mapping. Re-
garding our case study, we observed that the number of Set 1
fractures on the vertical outcrop roughly matches the number
of fractures in the adjacent part of the horizontal outcrop. For
Set 2 fractures, we can measure them on the vertical side but
they are hidden by artificial fractures related to quarrying ac-
tivities on the horizontal side. Set 3 is almost parallel to the
vertical outcrop configuring the situation in which this bias
cannot be evaluated.

Working with DOMs, the truncation bias applies to small
fractures that can be truncated by limited DOM resolution. In
our case, the resolution of the TS-DOM is around 4 mmpx−1

and the smallest digitized fracture is 57 cm. Although the
possibility remains that some fractures were missed dur-
ing the digitization process – including potentially fractures
smaller than the identified truncation threshold – the order
of magnitude difference between the resolution of the DOM
and the smallest recognized fracture is expected to mitigate
truncation bias at a fixed scale.

Consequently, the only remaining bias to be treated is the
censoring bias, which occurs naturally due to the finite nature
of the outcrop or due to the presence of vegetation or debris.
In statistics, censoring is a condition where the value of a
measurement is partially known. This occurs when some of
the data are subject to limitations or restrictions, preventing
us from observing the complete information. Censoring can
happen for various reasons, and it is a common scenario in
statistical analysis (Kaplan and Meier, 1958; Leung et al.,
1997; Lawless, 2011). In our case, the fractures that touch the
interpretation boundary are objects whose length is partially
measured, therefore affected by random censoring (Benedetti
et al., 2025).

We thus apply the theory and approaches described in
Benedetti et al. (2025) to obtain an unbiased statistical model
from censoring of both the length and height distributions. As
discussed in Benedetti et al. (2025), this analysis solves the
problems related to single censoring, double censoring, and
those related to “holes” within the interpretation boundary,
as depicted in Fig. 12.

Survival analysis parameter estimation is based on opti-
mization algorithms, like the Maximum Likelihood Estima-
tion (MLE), where censoring is taken into account by cal-
culating the likelihood of a censored measurement by using
the survival function instead of the probability density func-
tion (Benedetti et al., 2025). MLE is a parametric approach
that needs a testing phase to validate its results. Working with
censored data, without a specified distribution, leads to a sit-
uation where none of the standard non-parametric goodness-
of-fit test can be applied (Benedetti et al., 2025).

Table 3. Ranking based on the Kolmogorov–Smirnoff distance,
Koziol–Green distance and Anderson–Darling distance for Set 1
trace length data.

Name DCn 92
n AC2

n Mean
rank rank rank rank

Lognormal 1 1 1 1
General Gamma 2 2 2 2
Weibull 3 4 3 3.33
Exponential 4 3 5 4
Gamma 5 5 4 4.67
Logistic 6 6 6 6
Normal 7 7 7 7

Using the survival analysis approach different hypothesis
(statistical models) can be estimated with the censored data.
For this case study we propose to fit the following statistical
models: Lognormal, General Gamma, Weibull, Exponential,
Gamma, Logistic and Normal. Several statistical distances
are calculated between the available empirical data and the
fitted model to show which of the proposed models is more
representative of the data. We chose to use the same distances
as (Benedetti et al., 2025) thus using: Kolmogorov–Smirnov
distance (DCn) (maximum distance), the Koziol–Green dis-
tance (92

n) (sum of squared distances) and the Anderson–
Darling distance (AC2

n) (weighted sum of squared distances),
with respect to a uniform distribution U(0,1) (2) Akaike in-
formation criterion (Benedetti et al., 2025).

7.1 Distance from U(0,1)

The probability integral transformation theorem (Fisher,
1990) is a fundamental concept in probability and statistics,
whose primary application is to transform the values of a ran-
dom variable into a random uniform variable. The perfect
model for fitting a dataset will follow a uniform distribution
between 0 and 1, meaning a perfect correspondence between
the empirical data and the theoretical distribution, and other
models that are close to the uniform U(0,1) with a small de-
viation will be suitable to describe the data (Fig. 13). There-
fore, the purpose of the probability integral transformation
is to normalize distributions in order to be able to compare
deviations on a common ground.

Table 3 show the rankings based on the different normal-
ized distances for Set 1 fractures. The lognormal distribution
and the general gamma distribution rank respectively first
and second in all the 3 rankings. In contrast, the logistic and
the normal distribution are not suitable for our data. With in-
termediate rankings, we can appreciate the different meaning
of the various distances; for example, the Weibull distribution
shows a smaller maximum distance (DCn) with respect to the
exponential and the gamma distribution.
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Figure 12. Different cases of censoring in a natural outcrop. The presence of information gaps affects trace length measurements. Double
censored fractures are considered a single censored fractures with one of the end nodes coinciding with the interpretation boundary. Fractures
that look coplanar across an information gap are considered two separate censored fractures.

Figure 13. piT visualization for Set 1 fractures.
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Table 4. Ranking based on the Akaike information criterion for
Set 1 trace length data.

Rank Distribution name AIC wi

1 Lognormal 7514.617939 0.9912701876
2 General Gamma 7524.082426 0.0087298124
3 Gamma 7636.568978 0
4 Weibull 7653.734152 0
5 Exponential 7655.821815 0
6 Logistic 8804.536054 0
7 Normal 9246.922169 0

7.2 Akaike information criterion

The Akaike information criterion (AIC), is a criterion to rank
models from the best to worst based on the empirical data
(Akaike, 1974; Burnham and Anderson, 2004). AIC is de-
signed to identifying the so called MAICE (Minimum infor-
mation theoretic criterion (AIC) Estimate) (Akaike, 1974), as
the model that give the minimum of AIC, defined as:

AIC= 2k− 2ln(Lmax) (9)

where k – number of model parameters, Lmax maximized
value of the likelihood function.

Therefore the Akaike Information Criterion favours par-
simony, preferring models with fewer parameters that still
adequately explain the data (Akaike, 1974).

Associated to AIC, there is another important parameter
that gives the probability that a certain model is the best
model for a given dataset, the Akaike weights (wi) (Burn-
ham and Anderson, 2004). These sum to 1 and have to be
interpreted as a weight of evidence, meaning that the higher
the value, the higher the probability that a certain model, in
the pool of the selected models, is the best model for our data
(Benedetti et al., 2025).

The main advantage of this method is that it takes as in-
put the maximized value of the likelihood function, de facto
ranking models and their relative parameters taking into ac-
count censored data.

Just looking at AIC values (Table 4), and at the various
distances measured in the previous section, it seems that even
if the lognormal distribution wins, the three-parameters gen-
eral gamma distribution is still a valid model for our data.
Akaike weights clarify this situation showing that the log-
normal model is much more powerful at describing our data
with respect to the gamma model. At the same time, all the
other models have Akaike weight equal to 0 meaning that
with respect to the lognormal and the General gamma mod-
els, they are completely unsuitable.

8 Fracture areal intensity (P21)

Fracture areal intensity is defined as the ratio between the
total sum of fracture trace length and the sampling area (Der-
showitz and Herda, 1992; Mauldon et al., 2001). This pa-
rameter is very important since its volumetric equivalent P32
(total fracture area in unit volume) is used as a stopping crite-
rion in stochastic DFN modelling, meaning that the stochas-
tic generation of fractures will stop when the target intensity
is reached, and P32 can be obtained form P21 via a calibration
procedure (Antonellini et al., 2014). Given the heterogeneous
distribution of fractures in natural outcrops, the character-
ization of this value cannot be separated from the concept
of Representative Elementary Volume (REV) or Area (REA)
Bear, 1975). In outcrop studies REA is the area above which
a certain parameter value becomes independent from the po-
sition and scan area size with which it is calculated and thus
the value can be used to constrain wider models.

To perform this analysis limiting the orientation bias we
cover the outcrop surface with hexagonal grids of increasing
edge length, ranging from 1–26 m in the Pontrelli quarry case
study. Only whole hexagons are considered and data are plot-
ted using the graphical boxplot method proposed by Tukey,
1977 (Fig. 14a). The lower threshold of REA can be defined
as the minimum hexagon area where no significant difference
is detected between the mean and standard deviation of P21
obtained at that area and at the next step.

To quantitatively measure the significance of this differ-
ence, statistical techniques like ANOVA, used to compare
the mean of different populations, can be used in theory
(Stahle and Wold, 1989; Moder, 2010). However, ANOVA
is based on three assumptions: (i) hypothesis of normality,
(ii) homogeneity of variances, (iii) independence between
samples (Moder, 2010). In our case, P21 samples collected
with smaller scan areas are clearly asymmetrical (from 1–
5 m), while P21 samples collected with larger scan areas tend
to be more symmetrical (Fig. 14a). Consequently, variance
is inhomogeneous through the dataset, leading to an increase
of type 1 errors (Moder, 2010). This problem is enhanced by
the fact that the sample size is unequal and decays as the scan
area edge length increases due to the finite size of the outcrop
(the larger the outcrop, the smaller the number of scan areas).
For these reasons, ANOVA and similar tests cannot be ap-
plied, and we decided to adopt a qualitative approach based
on the difference between the interquartile range (deltaIQR)
of two subsequential P21 samples. With this approach, REA
is reached when deltaIQR stabilizes around 0 (Fig. 14b).
To account for “far out” data, that are not included in the
IQR, we also consider the range between the whiskers cal-
culated as the difference between the upper whisker length
(Q3+ 1.5IQR) and the lower whisker length (Q1− 1.5IQR)
(Fig. 14c).

In both cases, the REA correspond to a plateau that in
our case study between 5 and 12 m of scan-area edge length.
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Figure 14. Representative Elementary Area analysis on Pontrelli quarry Set 1. (a) Boxplot of P21 data collected with increasing scan area
size. Red dashed line: P21 calculated on the whole outcrop, with the interpretation boundary as scan area. The green box identifies REA
range. Small number under the boxplot: sample numerosity. (b) Delta between IQR of two subsequential P21 samples. (c) Range between
upper and lower whiskers for each P21 sample.

Above 12 m, the representativity is compromised by the too
small sample size (< 15hexagons).
P21 REA can be safely calculated only for Set 1 fractures,

because, as highlighted in Sect. 2, in some areas only Set 1
fractures can be digitized, while Set 2 and Set 3 are drowned
by the quarrying related fractures.

9 Height/Length ratio

The H /L ratio between height of fractures, measured along
the dip direction, and their length, measured along strike, is
the object of an extensive literature and is believed to span
from 1 : 2 (Odling, 1997; Panza et al., 2015; Giuffrida et al.,
2020), to 1 : 4 (Panza et al., 2015) or even 1 : 5 (Boro et al.,
2014; Smeraglia et al., 2021), depending and different me-
chanical hypotheses, but could be probably even more vari-
able when the possible combinations of crosscutting/abutting
relationships between fracture sets and with bedding are con-
sidered.

H /L ratio is applied, in association with the length dis-
tribution, in most commercial and open-source 3D stochas-
tic DFNs to model the geometry of the discontinuities, often
represented as rectangular or elliptical surfaces. Therefore,
the H /L ratio is directly correlated to the shape of the frac-
ture planes generated by the DFN and controls the switch in
dimensionality between 2D and 3D models. Unfortunately,
the H /L ratio cannot be directly measured in outcrops due
to the impossibility to map the full extension of fracture sur-
faces (but only their traces or partial facets).

In the studied outcrop, the availability of both height and
length data allows us to make at least some realistic and
transparent assumption on the H /L ratio based on a correla-
tion of length and height distributions.

Our assumption is that traces mapped on the pavement (i.e.
lengths) and on the wall (i.e. heights) can be associated in or-
dered pairs from the shortest to the longest. Making some
assumption of this kind is unavoidable since there is no way
to directly observe the correspondence between horizontal
and vertical traces. We want to stress that this criterion is not
unique, and other relationships can be established between
length and height data (e.g., random association), but this cri-
terion seems reasonable from a fracture mechanics point of
view.

To test our hypothesis, a hundred values of length and
height are randomly sampled from the statistical distributions
of length and height, ordered from smallest to largest and as-
sociated in pairs, and the H /L ratio is eventually obtained
with linear regression (Fig. 16a).

In our case study the height of Set 1 fractures should be
limited by the height of the bed package, but the random
sampling of the height distribution, that is a lognormal distri-
bution, also generates, although with decreasing probability,
fractures that are much higher. This is why in Fig. 15 we lim-
ited the linear regression to height values smaller than 6 m
(height of bed package, Panza et al., 2016). One thousand re-
alizations are made to account for the variability of the ran-
dom sampling and the arithmetic mean of the regression line
is taken as the representative H /L ratio (Fig. 15b).

10 Summary of the results: fracture network
characteristics at the Pontrelli quarry

In this section we describe the fracture network of the
Pontrelli quarry and the results and limitations of the
parametrization obtained with our workflow. Field observa-

Solid Earth, 16, 1351–1382, 2025 https://doi.org/10.5194/se-16-1351-2025



S. Casiraghi et al.: An integrated workflow for parametrization of fracture network geometry 1373

Figure 15. H /L ratio calculated for Set 1 fractures. (a) Example of one realization, where hundred values are sampled from the height and
length distributions. r: Pearson correlation coefficient. (b) Frequency histogram of H /L ratios calculated from thousand realizations.

tions show that Set 1 is the most prominent set in the outcrop,
its fracture traces are homogeneously distributed across the
pavement, and it can be detected even in areas damaged by
quarrying. From field and DOM evidence, all other fracture
sets abut or crosscut Set 1, therefore pinpointing this set as
the older one. This conclusion is also supported by the topo-
logical, length and height analyses. Set 1 shows a lognormal
length distribution with the largest average and maximum
length, in agreement with a condition in which fractures are
free to grow, in absence of a mechanical compartmentaliza-
tion defined by previously developed fracture sets, bedding
aside (Ackermann and Schlische, 1997). Set 1 also shows
a negligible percentage of abutting relationships with Set 2
(2.7 %) and Set 3 (4.9 %). This marginal number of unlikely
relationships, in a geological context in which Set 2 and Set 3
postdate Set 1, can be explained considering a limited reac-
tivation of Set 1 fractures in more recent tectonic phases. On
the contrary, both Set 2 and Set 3 exhibit a significant number
of abutting relationships against Set 1, respectively 21.41 %
and 31.2 %.

The favourable orientation of the vertical wall supports the
collection of a consistent statistical sample of height mea-
surements, enabling reliable fitting of the height distribu-
tion. However, the height of the vertical wall is barely suf-
ficient to get a complete observation window on a bed pack-
age. This limits the representativity of the assumption on the
stratabound nature of Set 1. Our interpretation relies on the
results from the directional topology analysis between Set 1
and the bedding. Since more than 67 % of the observed Set 1
fractures abut on bedding surfaces, we believe that it should
be vertically confined by the height of the bed package.
In relation to classical height pattern classification schemes
(Hooker et al., 2013), Set 1 falls between the perfectly bed
bounded and the top bounded classes, given that even if the
majority of the fracture about on the bedding, some fractures
(33 % of the non-censored fractures) end between two bed-
ding surfaces. The H /L ratio for Set 1 is calculated as dis-

cussed above from the trace height and length distributions,
under the assumption that height and length values are asso-
ciated in pairs from smallest to largest. This assumption is
supported by the strong linear correlation between the two
sets of values (Fig. 15) and the resulting mean H /L ratio is
0.345.

Set 2 mean length is intermediate between Set 1 and Set 3
and the topological relationships exhibit a higher occurrence
of Y nodes against Set 1 with respect to Set 3, in good agree-
ment with Set 2 being the second older set. The orientation of
the vertical wall still allows to collect both faces and traces
of Set 2 fractures, albeit the trace height dataset is less nu-
merous than for Set 1, resulting in a less constrained height
distribution. This is also reflected in the H /L ratio calcula-
tion, which should be applied more cautiously to stochastic
modelling.

Unlike Set 1, Set 2 fracture traces in the northern part of
the outcrop are masked by the non-systematic fractures gen-
erated by quarrying activities. Faces and traces data collected
on the wall prove however that Set 2 fractures are developed
also in this sector of the quarry. The incomplete sampling
of fracture traces across the pavement defines a strong bias
that hinders the calculation of the P21 for Set 2, since with-
out a sufficiently wide sampling area the REA calculation is
not representative. Therefore, if we would model this frac-
ture set with a stochastic approach, some assumption on the
REA should be introduced.

Most of Set 1 and Set 2 fractures on the vertical wall abut
on bedding surfaces. In particular, almost all the Set 2 frac-
tures abut on the bedding surfaces, identifying it a perfectly
bed bound fracture set in the height classification scheme of
Hooker et al. (2013). This implies that bedding surfaces, in
this context, actually have a control on the vertical develop-
ment of the fractures. This is particularly true for the “high
order” bedding surfaces that limit the bed package, where al-
most 50 % of Set 1 fractures abut.
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Table 5. Result summary for Set 1 fractures.

Set 1
Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data

Orientation rejected 213.94 86.3 36.59 39.59 5.42 1475

Set 2 Set 3 S (Bedding)
FBI 2.70 % 4.9 % 67 %

Dist. Type Mean Standard dev. n. data
Length distribution Lognormal 4.49 6.03 2014
Height distribution Lognormal 2.09 1.69 93

Value
H /L ratio 0.345

REA
P21 0.7 m−1 5–12 m

Table 6. Result summary for Set 2 fractures.

Set 2
Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data

Orientation rejected 75.37 89.31 26.47 27.91 3.1 1933

Set 1 Set 3 S (Bedding)
FBI 21.41 % 9.69 % 97.91 %

Dist. Type Mean Standard dev. n. data
Length distribution Lognormal 2.094 2.2 913
Height distribution Lognormal 1.3 0.78 32

H /L ratio 0.359

Value REA
P21 \ \

Set 3 shows the highest number of abutting relationships
against the other sets and the smallest average length, in
agreement with Set 3 being the younger in this outcrop.

Given the unfavourable orientation of the vertical wall
(sub-parallel to Set 3 average attitude), only orientation data
from facets can be collected and the height distribution can-
not be characterized. This implies that also the H /L ratio
cannot be obtained. Finally, regarding P21 and REA, the
same limitations as for Set 2 apply. Therefore, in case we
would model this fracture set with a stochastic approach,
many relevant assumptions must be introduced even if in
general the quality of the outcrop is high.

11 Discussion

This contribution is focused on the geometrical characteriza-
tion of fracture networks and in particular on the input pa-
rameters necessary to generate stochastic DFN models. The
main goal of the paper is to provide quantitative methodolo-
gies that limit the user choices as much as possible through

the implementation of statistical tests (e.g. orientation distri-
bution). If statistical tests are not viable due to the violation
of the underlying assumptions, other statistical parameters
(P21 REA) or statistical distances from a non-parametrical
estimator (length and height distribution) are provided. The
presented methodologies are based on data collected from
DOMs, both point clouds and orthomosaics. In the context
of upscaling geometrical parameters, DOMs are a conve-
nient framework when it comes to collecting data on wide
outcrops, decreasing the time for the acquisition process, al-
lowing data collection in areas inaccessible due to practical
or safety reasons, and opening to the possibility of imple-
menting automatic feature extraction methods or automatic
classification methods (topology). For a complete character-
ization of the fracture network, especially when targeted to
fluid flow simulations, the geometrical parameters included
in this contribution have to be integrated with further anal-
ysis, to characterize filling, mineralization and other charac-
teristics of the network (e.g., microscale connectivity) that
can be assessed with other type of techniques and at a smaller
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Table 7. Result summary for Set 3 fractures.

Set 3
Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data

Orientation (Set 3a) rejected 157.46 78.75 132.83 133.52 4.45 1269
Orientation (Set 3b) rejected 124.08 76.8 91.83 92.63 4.2 2123

Set 1 Set 3 S (Bedding)
FBI 31.2 % 21.19 % \

Dist. Type Mean Standard dev. n. data
Length distribution Lognormal 0.74 0.75 1863
Height distribution \ \ \ \

H /L ratio \

Value REA
P21 \ \

scale (Forstner et al., 2025). Our approach is based on a com-
bination of field surveys and DOM surveys, the latter used to
obtain large datasets to support statistical analysis, the for-
mer to guide the digital mapping, filtering the noise given by
external factors (e.g. quarrying operations) and assigning ev-
ery fracture to a specific set through geological observations
(particularly kinematics and relative chronology).

In quarries some fractures are generated during excava-
tion. It is thus of the utmost importance, for both genetic re-
constructions and analogue modelling, to exclude fractures
that are related to anthropogenic surface processes. In our
case study, the measured fracture sets are in accordance with
the existing literature on the area (Sect. 2). In the outcrop
pavement are present no data zones, characterized by debris
accumulations, where no fracture set can be detected. Other
parts of the pavement are affected by quarrying activities,
resulting in zones “saturated” by fractures with random ori-
entations or distributed following a radial pattern (related to
explosions). In these areas only Set 1 is clearly detectable,
given the constant spacing and orientation, an average length
higher than the other fractures and the centimetrical displace-
ment. Set 2 and Set 3 are drowned by these artificial fractures
and even if present it is difficult to reliably isolate and digi-
tized them.

The high quality of the outcrop, with adjacent horizontal
and vertical surfaces, was instrumental in testing techniques
that represent, in our opinion, a step forward in collecting
rich quantitative datasets and developing rigorous statistical
treatments for many geometrical parameters of a fracture net-
work (Table 1). On the other hand, we must also recall that
for some parameters there are still limitations in data col-
lection and analysis. Both these points are discussed in the
following sub-sections.

11.1 Combined analysis of fracture traces and faces

The integration of facets and traces (collected both on hor-
izontal and vertical outcrops) allows a complete character-
ization of the parameters listed in Table 1, while other ap-
proaches rely on the analysis of facets or traces only (e.g.
Ortega et al., 2006; Boro et al., 2014; Martinelli et al., 2020;
Smeraglia et al., 2021).

Orientation data have been collected on the vertical wall
PC-DOM, where dip and dip direction of true 3D planes can
be measured by fitting a mean plane to planar patches of the
point cloud.

TS-DOMs enable the digitalization of fracture traces and
interpretation boundaries on both horizontal and vertical
outcrops at a fixed scale, corresponding to the resolution
at which they were collected. Nonetheless, the proposed
methodologies can be applied to different scales, from thin
sections to satellite images, provided that data are organized
as digitized fracture traces combined with the interpretation
boundary. The integration between fracture traces and the in-
terpretation boundary is fundamental to avoid underestimat-
ing the connectivity index by misinterpreting B-nodes as I-
nodes and provides a fundamental input to identify censored
fractures.
P21 is calculated on the pavement TS-DOM where the

huge areal extension (≈ 18000m2) enables to define a suf-
ficient number of scan areas to detect the REA lower thresh-
old.

11.2 Orientation analysis

The methodologies we suggest for orientation analysis are
aimed at reducing subjective choices of the interpreter and
at the same time exploiting semi-automatic data collection to
increase the volume of data that support statistical analysis.
This was achieved by:
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– Introducing cluster analysis, in addition to classical
structural observation, to segment fracture sets follow-
ing a statistical criterion.

– Calibrating an automatic feature extraction algorithm
(FACETS) to maximize the data that can be extracted
from PC-DOMs, avoiding the generations of artifacts
(e.g. planes with an intermediate orientation) as some-
times happens in workflows tested by previous authors
(e.g. Menegoni et al., 2019; Panara et al., 2024).

– Rather than assuming circular symmetry and fitting a
Fisher distribution without prior statistical verification,
our approach explicitly tests the fitted orientation dis-
tributions using goodness-of-fit tests. This provides a
statistically grounded assessment of fracture set orien-
tation parameters.

Our rigorous analysis revealed that, in our case study, no frac-
ture set follows a Fisher distribution (Tables 5–7), in contrast
to the conclusions of previous studies on the same outcrop
(Panza et al., 2016; Zambrano et al., 2016). At the same time,
Kent distribution parameters indicate a low ovalness for all
fracture sets, even if Set 3a and Set 3b seem to be almost el-
liptical clusters (Fig. 5e). The reason is that sets 2, 3a, and 3b
are strongly asymmetrical and Set 1 is multimodal, as high-
lighted by contour plots in Fig. 5.

The applicability, and thus the quality of the results pro-
duced by the automatic feature extraction algorithm, strongly
depend on the ability to distinguish and characterize each
fracture set within the network. In this study, reliable results
were obtained by clearly distinguishing fracture sets through
the integration of field data, DOM-derived data, and cluster-
ing analysis. In more geologically complex settings, where
fracture sets are less well defined, caution is advised both
when applying the clustering algorithm – since the number
of sets must be specified a priori – and when using the auto-
matic feature extraction algorithm.

In the context of generating analogue fracture sets with
stochastic modelling (e.g. in DFN), where only the Fisher
distribution can be modelled by standard software, these pa-
rameters should be handled with care. Using a Fisher distri-
bution with a K parameter small enough to fit all the planes
in the cluster (i.e. with a large spherical variance) will result
in artifacts along the minimum axis of the elliptical distribu-
tion, or in not properly represented tails in case of asymmet-
rical distributions. On the contrary, using a K parameter that
is too large (i.e. with a small spherical variance) will result in
an underrepresentation of the oval tails of the data. All these
problems will result in an incorrect modelling of connectiv-
ity, that is positively correlated to orientation dispersion (e.g.
Smith et al., 2013).

A possible workaround for this problem, using the avail-
able software, could be to split the oval clusters and fit
multiple Fisher distributions to model their parts, possi-
bly validating the results generating synthetic clusters and

comparing them with the natural ones. More in general,
more advanced distributions such as the, Kent, Bingham-5-
parameters, Bingham-8-parameters or mixed Bingham can
be adopted to fit asymmetrical or multimodal clusters (Kurz
et al., 2014; Gilitschenski et al., 2016; Yamaji, 2016), and we
feel that adopting at least the Kent distribution in stochastic
modelling applications would be a significant improvement
along the path of creating realistic stochastic fracture net-
works.

11.3 Topology

In the ongoing discussion on topological analysis in frac-
ture studies, some authors (e.g. Sanderson and Nixon, 2015)
proposed to consider the connectivity of fracture branches,
instead of full fracture traces, due to a supposed uncer-
tainty in unravelling crosscutting, abutting, or splay rela-
tionships when branches form a small angle. Other authors
(Forstner and Laubach, 2022) suggest considering also con-
tingent nodes (C nodes) that would allow merging individual
small branches to form larger traces, based on the considered
scale and/or diagenetic consideration. In this context, we like
to recall that (i) linear traces or branches represent the in-
tersection of fracture surfaces with the outcrop surface (e.g.
Sanderson and Nixon, 2015), and that (ii) most of the time
we are actually interested in fracture surfaces rather than in
their traces. In other words, branch connectivity parameters
and length distribution can be useful information to charac-
terize 2D connectivity of lines, but we would like to stress
that considering branch length data as if they were full trace
lengths would dramatically underestimate the dimensions of
the underlying fracture surfaces, overestimate fracture den-
sity (since branches are more numerous that full traces) and
would not allow performing directional topology analysis on
a per-set basis, as discussed above. For these reasons we in-
sist in considering fracture traces, relying on geological in-
formation collected in the field to solve the ambiguity high-
lighted by Sanderson and Nixon (2015).

Directional topology adds a further improvement to the
fracture network characterization by assigning every node to
specific fracture set(s). This allows quantifying crosscutting
and abutting relationships between different fracture sets and
understanding how the different fracture sets contribute to
the overall connectivity of the fracture network. At the same
time, it is possible to derive parameters like the FBI that ex-
press the relative chronology and relationships with bedding
surfaces in a more quantitative way. The necessity of exclud-
ing censored fracture traces from the FBI calculation might
result in either an overestimation of this index, in case the
longest traces tend to have I-nodes, or an underestimation in
case they tend to terminate with Y-nodes. Unfortunately, this
effect is difficult to assess at the moment, and we leave a
more detailed analysis for future studies.

Extracting the backbone of the trace network as in Fig. 9,
i.e. the largest connected cluster of the network, seems a re-
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ally interesting result, and is possible thanks to the code we
developed (https://github.com/gecos-lab/FracAbility, last ac-
cess: 25 September 2025). However, we would like to raise
some cautionary note about these results. In fact in our out-
crop the backbone is located along one of the major struc-
tures present in the pavement but, at the same time, it has
been detected in a zone of the pavement that is particularly
clean and free from quarrying-induced fractures, and it is
bound by zones where the possibility to detect smaller frac-
tures belonging to Set 2 and 3 is more limited. Therefore,
there is no way of knowing if the shape and position of the
backbone are due only to the presence of a major structure,
or if they would change if other areas of the outcrop were not
disturbed. In conclusion, the backbone detected by our analy-
sis probably represents a subset of what it could be, if a com-
plete undisturbed dataset was available. This also means that
the connectivity index of the whole fracture network is prob-
ably underestimated, even in such a high-quality outcrop.

11.4 Length and height distributions

Of the four major biases that hinder the definition of a correct
length and height distribution, censoring is the only one that
cannot be addressed by changing sampling strategy (as for
size and orientation bias) or improving data acquisition tech-
niques and checking the quality of the input data by quantify-
ing the resolution of the TS-DOM with respect to the small-
est fracture that can be detected (truncation bias, Sect. 7).
This has led to excluding censored data (Bisdom et al., 2014)
or considering censored fractures as complete ones (Panara
et al., 2024; Smeraglia et al., 2021), resulting in statistical
models that always underestimate length (Benedetti et al.,
2025). At the same time, non-parametric approaches do not
provide a fully specified parametric distribution (Mauldon
et al., 2001), that is a fundamental input data in applications
such as stochastic models, and also to evaluate the meaning
of data in general (i.e. knowing the mean without any hint
on standard deviation is meaningless). The censoring correc-
tion obtained by Benedetti et al. (2025) with survival analysis
allows to use the full extent of the dataset collected from TS-
DOM, and obtaining an unbiased statistical distribution.

In this contribution we leverage the availability of both
pavement and vertical wall exposures, obtaining an H /L ra-
tio specific for our outcrop. This is a significant improve-
ment with respect to previous approaches, where the H /L
ratio is generally assumed based e.g. on theoretical mechan-
ical considerations, without any comparison with empirical
data (Odling et al., 1999; Schultz and Fossen, 2002, and ref-
erences therein).

The approach we propose, however, is not completely im-
mune from a-priori assumptions. In fact, even in ideal out-
crops, it is impossible to actually measure H /L of a single
fracture surface because either we see the direct connection
of the fracture surface in the vertical and pavement expo-
sures – but in this case both traces are censored, or we see

complete traces – but in this case we cannot see the connec-
tion. Our assumption is that height and length statistics must
be correlated according to size rank, as discussed above in
Sect. 9, and we believe that this is a reasonable assumption
based e.g. on mechanical considerations (Odling et al., 1999)
and results of our linear regression (Fig. 15) but it is never-
theless important to state this transparently.

11.5 Fracture intensity and representative elementary
area

Areal fracture intensity is often estimated using meth-
ods based on scan lines, scan areas or circular scan line
(Rohrbaugh et al., 2002; Zeeb et al., 2013). These methods
provide a minimum scan area size for a representative esti-
mation of P21 based on the mean fracture trace length. In this
contribution we proposed a different approach, based on the
concept of Representative Elementary Area to try to quantify
the range of scan area size in which fracture intensity can be
mediated to ensure a proper continuum-equivalent descrip-
tion (Bear, 1975).

As a partial correction to the approach in Martinelli et al.
(2020), we recently noticed that the finite nature of outcrops
determines limits in the collection of P21 data, such as the
progressive decrease in scan areas numerosity as the scan
area is increased, and the non-independence of P21 samples
collected at increasing scan area sizes. For these reasons a
quantitative approach based on formal statistical tests cannot
be safely applied. Adopting a more qualitative approach will
result in a less significant result, which partially depends on
the interpreter choice, however, it does not require such strin-
gent assumptions as the tests used by Martinelli et al. (2020).
We also recognize that adopting a more qualitative approach
may introduce subjectivity in the selection of window size,
but still having an order of magnitude for the REA (and hence
for REV) is important in modelling studies. Indeed, in addi-
tion to formal statistical reasons, defining the REA has im-
portant practical applications. For instance, the choice of the
optimal cell size in reservoir-scale models stems from a com-
bination of several factors, that are the geological characteris-
tics of the area, lithostratigraphic heterogeneities, mean spac-
ing between wells and the available computational power. In
general, however, there is a lower limit to the resolution of the
model – around 50 m of cell size, dictated by computational
power. This is an important piece of information because it
outlines the minimum size that an analogue outcrop should
have to capture all the variability within a hypothetical cell.
From this point of view, the Pontrelli quarry provides a pave-
ment two to three times larger than the minimum cell size,
granting a sufficient area to calculate representative statis-
tics. At the same time, the P21 REA, determined for Set 1
fractures between 5 and 12 m, is approximately five to ten
times smaller than the minimum cell size, allowing a safe
application of continuum-equivalent upscaling techniques.
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12 Conclusions

In conclusion, this paper presented a series of quantitative
methodologies to characterize fracture network geometry
from Digital Outcrop Models (DOMs). The ideal conditions
for applying our methodologies involve an outcrop that en-
ables the collection of a statistically significant and complete
dataset (depending on the scope of the work). This requires
favorable orientation of the outcrop faces relative to the frac-
ture set orientation, overall surface cleanliness (minimal de-
bris, vegetation, or damaged zones), sufficient size to ensure
adequate sampling, and the presence of at least two perpen-
dicular exposures (horizontal and vertical). Although such
conditions are challenging to achieve in natural settings, they
should serve as guidelines for selecting a suitable outcrop.
Among all the parameters required to fully characterize a
fracture network, we focused on those required to generate
3D stochastic DFN models, that are: orientation parameters,
topological relationships, length and height distribution pa-
rameters, H /L ratio and P21:

– Orientation data are collected through a semi-automatic
workflow, clustered with k-medoids, and tested for the
goodness-of-fit to a Fisher distribution. Alternatively,
the Kent distribution parameters are also provided. This
procedure allows subjectivity to be removed from the
assignment of dip/dip direction data to a specific frac-
ture set and supports the choice of meaningful orienta-
tion parameters through the implementation of statisti-
cal tests.

– Topological relationships are calculated including the
interpretation boundary, this allows to: (i) to define B
nodes and exclude them from the connectivity index
(CI) calculation (ii) to identify censored fractures in
an automatic way. Backbone extraction highlights the
presence of large, connected clusters in the network.
Crosscutting and abutting relationships between differ-
ent fracture sets are quantified through directional topol-
ogy.

– The approach developed to deal with censoring bias
provides as a result a set of fully specified distribu-
tions (all parameters are explicit) corrected for censor-
ing. The best model among the initial selection is de-
fined through a graphical approach and a series of sta-
tistical distances.

– We demonstrate that estimating H /L is not possible
without introducing some assumption, even for the best
exposed set and in the presence of both horizontal and
vertical exposures. Therefore, we opted to make our as-
sumption as transparent as possible, and we tested it
with regression analysis.

– P21 REA is calculated with a qualitative approach to
avoid violating the underlying assumption of more for-
mal statistical tests.

Code and data availability. Codes and data are avail-
able at the following GitHub repositories owned by the
Gecos-lab group of the University of Milano-Bicocca
(https://github.com/gecos-lab, last access: 30 October 2025,
https://doi.org/doi.org/10.5281/zenodo.17483588, Casiraghi,
2025a):

– FracAttitude: Python code for orientation data analysis avail-
able at https://github.com/gecos-lab/FracAttitude (last access:
30 October 2025, https://doi.org/10.5281/zenodo.17492139,
Bistacchi, 2025a);

– DomStudioOrientation: Matlab code for orientation
data analysis available at https://github.com/gecos-lab/
DomStudioOrientation (last access: 30 October 2025),
https://doi.org/10.5281/zenodo.17486587, Bistacchi, 2025b);

– FracAbility: Python toolbox for topology and
survival analysis available at https://github.com/
gecos-lab/FracAbility (last access: 30 October 2025,
https://doi.org/10.5281/zenodo.14893964, Benedetti, 2025);

– FracAspect: Python code for H /L ratio calculation available at
https://github.com/gecos-lab/FracAspect (last access: 30 Oc-
tober 2025, https://doi.org/10.5281/zenodo.17492257, Casir-
aghi, 2025b);

– FracElementary: Python code for P21 and REA
analysis available at https://github.com/gecos-lab/
FracElementary (last access: 30 October 2025,
https://doi.org/10.5281/zenodo.17492055, Casiraghi, 2025c).
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