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Abstract. Subglacial bedrock properties are key to under-
standing and predicting the dynamics and future evolution of
the Antarctic Ice Sheet. However, the ice sheet bed is largely
inaccessible for direct sampling, and characterization of sub-
glacial properties has so far relied on expert interpretation
of airborne geophysical data. To reduce subjective choices in
the joint analysis of data and related biases, we present a Self-
Organizing Map (SOM), an unsupervised machine learning
technique. The concept of SOMs is briefly introduced and we
discuss data selection and their associated attributes. First,
we analyzed the correlation between attributes to provide
a validation of an appropriate choice. Next, we trained the
SOM on attributes derived from gravity, magnetics and ice-
penetrating radar data for the Wilkes and Aurora Subglacial
Basin region in East Antarctica. In contrast to earlier stud-
ies, our approach uses original line data as much as possi-
ble. These have a much higher resolution than the smooth
gridded products used in previous studies. Our results show
marked agreement with past studies on predicting regional
bed characteristics such as the presence of crystalline base-
ment and sedimentary basins. Additionally, our results indi-
cate the ability to resolve finer details, demonstrating the po-
tential in applying SOM to subglacial geologic mapping.

1 Introduction

Subglacial bedrock properties, are one of the key components
in an improved understanding of the Antarctic Ice Sheet (e.g.,
Aitken et al., 2023; Bingham et al., 2012; Bell, 2008; Jordan
et al., 2023; McCormack et al., 2022). The properties at the
ice-rock interface can have a significant impact on ice flow
dynamics, as they control bed roughness and consolidation,
hydrogeological processes, friction, and basal sliding, all of
which influence ice flow velocities (Koellner et al., 2019). Of
particular interest is sediment layer and sedimentary rocks at
the ice base, as these can affect basal friction, water flow and
geothermal heat advection (e.g., Koellner, et al., 2019; Zoet
and Iverson, 2020; Li et al., 2022; Aitken et al., 2023).

There are very few reflection seismic lines on the Antarctic
continent suitable for resolving the upper crust (e.g. Anan-
dakrishnan et al., 1998; Bayer et al., 2009; Leitchenkov et
al., 2016). Therefore, geological models are conventionally
based on interpretation of bed topography (e.g., Taylor, 1914;
Elliot, 1975; Jordan et al., 2020), aeromagnetic or airborne
gravity datasets (e.g., Ferraccioli et al., 2002, 2009, 2011;
McLean et al., 2009; Aitken et al., 2014; Forsberg et al.,
2018), or a combination of those (e.g., Li et al., 2023; Wu
et al., 2023). Aeromagnetic data are especially well-suited
for inferring subglacial geology (Betts et al., 2024). The in-
terpretation of potential field data requires constraints and
the combination with other geophysical or petrophysical data
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sets in an integrated manner is a common choice (e.g., Jordan
et al., 2023; Lowe et al., 2024a, b).

Airborne radar data are complementary and well-suited for
imaging within the ice but are almost entirely reflected at the
ice-rock interface. Therefore, radar can provide information
on the bed-ice interface, while the physical properties of the
bedrock itself are difficult to derive. Still, detailed morphol-
ogy and inferred attributes like roughness can be indicative
of some near-surface geological characteristics (e.g., Shep-
herd et al., 2006; Rippin et al., 2014; Jordan et al., 2010,
2023). For example, an area with elevated roughness can be
inferred to have a more erosion-resistant bed. To complicate
the matter, the current and past flow speed of the ice sheets
also impacts erosion and modifies the roughness (Jamieson
et al., 2014). Hence, a combination of these data sets might
overcome some of the limitations.

Recently, Aitken et al. (2023) presented a detailed classifi-
cation of geological bed type in Antarctica by analyzing mul-
tiple geophysical data sets and models. Hereby, they com-
piled and synthesized available data and models into a classi-
fication map. While Aitken et al. (2023) presented continent-
wide, detailed classification of geological bed types, it is an
interpretation and remains equivocal at some locations due
to complex geology and/or limited data coverage. Another
limitation is that the compilation is based on earlier inter-
pretations, which have used different methods and are partly
relying on expert knowledge (Aitken et al., 2023).

Machine learning and statistical methods are becoming
popular approaches to reduce bias in models. Examples are
estimates of geothermal heat flow (Lösing and Ebbing, 2021;
Stål et al., 2021), the presence of sedimentary rocks (Li et
al., 2022) or subglacial geology (MacGregor et al., 2024).
Statistical methods like Stål et al. (2021) and MacGregor et
al. (2024) identify boundaries from multiple geophysical and
geological datasets. Heterogeneous data coverage and differ-
ent resolutions of the underlying models limit the validity, es-
pecially on a survey scale. As an alternative, machine learn-
ing methods such as gradient boosting regression tree have
especially become popular to map subglacial properties in
both Greenland and Antarctica (e.g., Rezvanbehbahani et al.,
2017; Lösing and Ebbing, 2021; Li et al., 2022; Colgan et al.,
2022). As for the statistical methods, these studies are com-
monly on the scale of an entire continent and rely on training
datasets of reasonable size, and the subjective choice of input
data.

As another alternative, we employ here Self-Organizing
Maps (SOMs; e.g., Kohonen, 1990; Klose, 2006) to ex-
ploit local, geophysical information on a survey scale. SOMs
are an unsupervised machine learning approach that esti-
mates similarities within different data types without assign-
ing them to predefined categories. In order to detect the sim-
ilarities, a number of attributes is provided based on the ini-
tial datasets. These are ideally chosen to enhance the feature
of interest, here details in subglacial geology. The advantage
is that no training dataset is needed, the produced map can

be used for geological interpretation, and the importance of
the input attributes can be assessed. To present the possibil-
ities of using SOMs, we chose parts of the Wilkes and Au-
rora Subglacial Basins in East Antarctica (Fig. 1). The area
is a key region for studying the role of tectonic boundary
conditions on the behavior of the East Antarctic Ice Sheet
(Aitken et al., 2014; McCormack et al., 2022), but is chosen
here mainly for the quality and preprocessing of the survey
data. In the following, we will shortly summarize the concept
of SOMs and introduce the data and attributes used for our
analysis. We discuss our results both in comparison to the
classification by Aitken et al. (2023), and with respect to the
choice of input data.

2 Self-Organizing Maps

SOMs, unlike other unsupervised learning algorithms, do not
attempt to categorize data; rather, they reduce the dimension-
ality of complex datasets. In our example, we will map the
three datasets (bed elevation, gravity, and magnetics) and the
related attributes into a 2D space (map) representation. In
this space, similar data points are placed in proximity to each
other, enabling the identification of clusters. In the following,
we briefly explain the concept of SOMs. More details and
examples for geological mapping can be found, for example,
in Klose (2006) or Carneiro et al. (2012). Self-Organizing
Maps (SOMs; e.g., Kohonen, 1990) are a simple neural net-
work consisting of a single layer. Each neuron represents a
cell on the two-dimensional map with one weight for ev-
ery dimension of the input data. Neuron j is described by
its weights mj . The weights of a cell translate to a value for
each data type (e.g., bed roughness or magnetic anomaly),
they can therefore also be understood as coordinates in the
multidimensional data space.

For a given data point xi , a best-matching neuron with the
weights mb is chosen in such a way that the Euclidean dis-
tance between xi and mb is minimized:

‖xi −mb‖ =min
j

{∥∥xi −mj∥∥} (1)

Besides the weights, a neuron also has a location on the self-
organizing map, which is described by the coordinate r in a
two-dimensional space.

The network is trained iteratively t times for a randomly
chosen input data point xi . The best-matching neuron for this
data point is determined, and then the weights of it and its
neighbors are adjusted towards xi . The value of the adjust-
ment is determined by a neighborhood function hbj (t), it will
be 1 for the best-matching neuron and decay as the neuron
is further away from the best-matching neuron on the two-
dimensional map. As a result of this neighborhood function,
the map is trained so that neighboring cells on the map have
similar weights and therefore will have similar data points
mapping to the same cluster. Additionally, for convergence
purposes, a time-dependent learning rate α(t) is employed.
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Figure 1. Overview of study area in East Antarctica: (A) bed elevation from Bedmachine (Morlighem et al., 2020; Morlighem, 2022) with
main subglacial and geographical features annotated. (B) Geological bed types from the study by Aitken et al. (2023). The black lines indicate
the flight paths of the surveys used in our study.

The training of a cell mj (t) can be expressed as follows:

mj (t + 1)=mj (t)+α(t)hbj (t)
[
xi −mj (t)

]
(2)

The choice of the neighborhood function can vary, and we
utilize a Gaussian function:

hbj (t)= exp

(
−

∥∥rb− rj∥∥
2σ 2(t)

)
(3)

Here, rb and rj represent the locations of the best-matching
neuron and the neuron to be trained on the self-organizing
map, respectively. The parameter σ influences the smooth-
ness of the computed map.

The two-dimensional SOM does not represent a geo-
graphic map; it is an arbitrary lower-dimensional represen-
tation of the higher-dimensional training dataset. E.g., an
area with crystalline rocks with high gravity and magnetic
anomaly values, as well as a rough bed, will appear close to
similar areas, even though they are geographically far apart.

3 Data and analysis

3.1 Datasets

We use the NASA Operation Ice Bridge (OIB) dataset col-
lected between 2009 and 2012 (Fig. 2) and high-level data
products derived from this dataset. The radar data were
recorded using the Hi-Capability Radar Sounder (HiCARS)
Version 1 and later on Version 2 instrument. (MacGregor et
al., 2021). We used the derived bed elevation from the radar-
grams (Blankenship et al., 2012, 2017). This dataset, how-
ever, includes several short-distance data gaps even in areas

where bed echo is clearly visible in the radargram. This re-
sults in larger gaps in derived attributes, as observed in Eisen
et al. (2020). We applied an optimization algorithm that filled
each gap with sufficiently strong returns automatically. It
specifically maximized the amplitude and the vertical gradi-
ent of the amplitude along the chosen bed elevation while
minimizing the length of the bed elevation path (Liebsch,
2023).

Magnetic data are taken from the ADMAP-2 compilation
(Golynsky et al., 2018) along the OIB flight lines. In the sup-
plementary database to Golynsky et al. (2018), the processed
line data from the individual surveys are available, which are
the basis for the ADMAP-2 map. Compared to the original
flight data, the data are slightly smoothed, but suitable for our
approach. For details on the magnetic processing, see Golyn-
sky et al. (2006, 2018).

Gravity data were also collected as part of the OIB sur-
veys. Unfortunately, the available gravity data have data gaps
and only parts of the data is available in a pre-processed for-
mat (see coverage in MacGregor et al., 2021). Instead, we
use the compilation from Scheinert et al. (2016). This 10 km-
grid dataset has been sampled along the flight lines to treat it
as survey data. Although, resampling cannot provide the full
resolution of the survey data, we deem this adequate for our
purpose, as the distance (height) between the point of obser-
vation (airplane) and the ice-bed interface is typically 3–5 km
in the study area, leading to only minor loss of information
when using the gridded gravity signal.
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Figure 2. Data along the flight lines as input for the SOM analysis: (A) bed elevation from radar data (NASA Operation Ice Bridge), (B)
magnetic anomaly (after Golynsky et al., 2018), (C) Bouguer gravity anomaly (after Scheinert et al., 2016).

3.2 Attributes

We used the above datasets to generate 30 attributes (Ta-
ble 1) for the SOM analysis. Several attributes were derived
from a single dataset (e.g., bed elevation). Not only does the
signal amplitude (e.g., bed elevation) characterize the sig-
nal, but also the spectral characteristics and local variations
(e.g., roughness). This choice is subjective; therefore, rather
than limiting the number of attributes, we include various at-
tributes even though some attributes presumably have very
similar characteristics and including both may have little im-
pact on our result compared to including only one of them.
Figure 3 shows some examples, while Figs. A1–A3 show all
attributes as normalized maps.

Attributes like roughness from radar data or spectral power
in the short-wavelength magnetic field provide information
about the variability in subglacial properties, e.g., a crys-
talline basement-ice interface can be expected to have a
stronger contrast and larger variability than an incoherent
bedrock (e.g., sedimentary basin) -ice interface. Other at-
tributes based on the gravity and magnetic data (e.g., cur-
vature) are well-suited to describe the changes between data
points, while features like the shape index or the tilt deriva-
tive are also known to reflect the source characteristics. For
some of these, Li (2015) provides a detailed analysis of the
link between source geometry and observed field.

3.2.1 Radar/Bed elevation attributes

In the following, we describe the 10 attributes based on
bedrock elevation and radar data. For example, roughness
can be computed in various ways from the bed elevation
data. We used the same four roughness attributes as Eisen
et al. (2020).

Isostatically adjusted bed elevation tiso (Isoadjusted
topo)

As we are interested in local variations, we used the isostati-
cally adjusted topography tiso. This attribute is the hypotheti-
cal topographic height of the landscape assuming that no ice
is present. In a simplified form, disregarding dynamic effects,
it can be estimated from the ice surface height s and bed ele-
vation z using the concept of isostasy after Airy with:

tiso = (s− z)× 917/3200+ z. (4)

Spectral Centroid Bed (Centroid bed)

The spectral centroid represents the mean of all frequencies
in the spectrum f (n), weighted by their spectral power S(n).

Centroid=
∑N−1
n=0 f (n) · S (n)∑N−1

n=0 S (n)
(5)

The Centroid indicates where the center of mass of the spec-
trum is located

Spectral Roughness Attribute (ξ bed)

ξ is the integrated power spectral density of the bed elevation
profile in a 500 to 2000 m wavelength bin. Given with the
following equation:

ξ =

k2∫
k1

S (k)dk (6)

where S is the power spectral density and k the wavenumber
in the spectral domain.

Spectral Roughness (η bed)

To also capture horizontal changes in the spectral properties,
Li et al. (2010) suggest including the integrated power spec-
tral density of the horizontal derivative of the bed elevation
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Table 1. List of all attributes used for the SOM and explained in the text. See examples in Fig. 3. See Fig. 4 for the correlation between the
different attributes and Fig. 5 shows the weights for the attributes.

Attribute Abbreviation

Radar/Bed Elevation Isostatically adjusted bed elevation Isoadjusted topo
(window size 10 km) Spectral Centroid Bed Centroid bed

Roughness Attribute ξ (500 to 2000 m wavelength) ξ bed
Roughness Attribute η (500 to 2000 m wavelength) η bed
Variogram value (700 to 800 m bin) v bed
Hurst coefficient (0 to 1000 m) h bed
Moving average filtered bed elevation Mean bed
Standard deviation in a moving window SD bed
Kurtosis in a moving window Kurtosis bed
Roughness from the Bed Echo Tail σ

Magnetics Magnetic Anomaly mag
(window size 40 km) TDX signal TDX mag

Spectral Centroid Centroid mag
Spectral Power in the 5 to 15 km bin Bin Power mag
Moving average filtered magnetic anomaly Mean mag
Standard deviation in a moving window SD mag
Kurtosis in a moving window Kurtosis mag
Curvature Curvature mag
Vertical Gradient VG mag
Analytical Signal AS mag
Detrended Magnetic Anomaly Detrended Mag

Gravity Isostatic Anomaly Iso grv
(no window size) Vertical Gradient VG grv

Analytical Signal AS grv
TDX Signal TDX grv
Mean Curvature Kmean grv
Mean Curvature KGauss grv
Minimum Curvature Kmin grv
Maximum Curvature Kmax grv
Shape Index SI grv

Figure 3. Example of attributes used for the SOM. (A) Basal roughness ε derived from spectral domain (B) spectral Power in a 5–15 km
wavelength bin from magnetic data and (C) shape index for gravity data. See text for more details and Figs. A1–A3 for all individual
attributes.
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ξsl, analogous to ξ . The spectral roughness attribute η is de-
fined as:

η =
ξ

ξsl
(7)

Variogram value (v bed)

This roughness attribute is derived from a variogram derived
from a window along the flight line. We use a bin covering a
700 to 800 m lag distance.

Hurst coefficient (h bed)

To complement the information on specific lag distances
used in v, we also use the Hurst coefficient h. The Hurst ex-
ponent corresponds to the slope of the variogram in a log-log
plot and can be described as:

v (1x)= v (1x0)

(
1x

1x0

)h
(8)

Moving averaged filtered bed elevation (Mean bed)

To avoid using the bed elevations directly and reduce noise
we used a 10 km-moving average filtered bed elevation

Standard deviation in a 10 km moving window (SD bed)

We compute the standard deviation of the bed elevation z in
a 10 km moving window.

σbed =

√
1
N

∑N

n=1
(zi − z)

2 (9)

where N is the number of points in a window. And z is the
mean of bed elevation in the window

Kurtosis in a 10 km moving window (Kurtosis bed)

Analogous to the standard deviation, the kurtosis w can be
computed:

w =
1
N

N∑
n=1

(
zi − z

σ

)4

(10)

Bed Echo Tail Attribute (σ )

We additionally derive an attribute from the shape of the bed
echo. The direct interpretation of reflectivity can be challeng-
ing due to unknown attenuation within the ice (Matsuoka,
2011). Instead, we use the tail of the bed echo, which refers
to the recorded signal after the initial backscattering from the
bed has occurred. The tail originates from off-nadir backscat-
tering. A significant advantage of this approach is that a
radar ray scattered at the nadir and one scattered off-nadir
encounter approximately the same conditions on their way

back. Consequently, the shape of the bed echo tail can be
described without relying on knowledge of attenuation.

To keep the fitting procedure stable and computationally
efficient across the varying conditions of the survey area,
we assume a simplistic Gaussian decay of the amplitude.
This neglects losses due to beam characteristics and spherical
spreading. The amplitude A as a function of incident angle ϕ
is given as:

A(ϕ)= A0 · exp
(
−tan2 (ϕ)

2σ 2

)
(11)

The bed echo tail σ can then be computed as the weighted
average of tan(ϕ):

σ =

∑N
i=1Ai · tan(φi)∑N

i=1Ai
(12)

3.2.2 Magnetic data attributes

For the magnetic data, 11 attributes were computed along the
flight lines (see Fig. A2). Since there are some data gaps, cer-
tain attributes are also computed in the spectral domain, us-
ing a window with a length of 40 km. These attributes are
standard features used to describe the magnetic field. See
Blakely (1996) or Li (2015) for more details.

Magnetic anomaly (Mag)

This corresponds to the total field anomaly along the flight
lines as explained above.

Tilt Derivative (TDX mag)

The TDX signal is the tilt derivative of the magnetic field
(Salem et al., 2008) computed as

TDX= arctan(HG/Mzz) (13)

where HG is the total horizontal gradient and Mzz, the verti-
cal gradient.

Spectral Centroid (Centroid mag)

Typically, magnetic fields are inspected in a power spectrum
to identify the source depth. Here, we calculate the spectral
centroid of the power spectrum for a 40 km window using the
following equation:

Centroid=
∑N−1
n=0 f (n)S(n)∑N−1

n=0 S(n)
(14)

Hereby, the spectral centroid represents the mean of all fre-
quencies f (n) in the spectrum, weighted by their spectral
power S(n).
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Spectral power bin (Bin Power mag)

The spectral power of the magnetic anomaly ςmag , limited to
a bin of 5–15 km wavelength, is calculated using the follow-
ing equation:

ςmag =

15 km∫
5 m

Smag (k)dk (15)

whereSmag is the classical power spectrum calculated in the
wavenumber domain k. The range of 5–15 km has been
chosen to represent subglacial sources, suppressing longer
wavelengths due to regional sources and noise in the short-
wavelength range. This attribute intends to represent the
wavelength corresponding to the top bedrock and is shown
as an example in Fig. 3B.

Moving average filtered magnetic anomaly (Mean mag)

This was computed by removing a linear trend from the sig-
nal within a 40 km window around each point. This attribute
is enhancing the short-wavelength content in the data.

Standard deviation in moving window (SD mag)

The attributes represent the variability of the signal in a
40 km window around each point. Details on the calculation
are provided for bed/radar data above.

Kurtosis in a moving window

Kurtosis is a measure to describe the sharpness of the mag-
netic anomaly. Details on the calculation are provided for the
bed/radar data above.

Curvature (Curvature mag)

The curvature K is calculated along the flight line by

K =−Mxz/2Mz (16)

where Mxz is the gradient along the flight line (x-direction)
of the vertical magnetic field component Mz.

More details on curvature calculations can be found in
Li (2015).

Vertical gradient (VG mag)

This is the vertical derivative of the vertical magnetic field
component:

VG=Mzz =
∂Mz

∂z
(17)

Analytical signal (AS mag)

The analytical signal is calculated from the vertical gradient
and the gradient along the flight line as follows:

AS=
√
M2
xz+M

2
zz (18)

Detrended Signal (Detrended mag)

The magnetic total field anomaly was detrended by removing
a linear fit of the signal for a 40 km window around each data
point. By removing such a linear trend, the attribute is more
sensitive to local scale variations.

3.2.3 Gravity data attributes

For the gravity data, 9 attributes (see Fig. A3) were computed
from the grids, not along the flight lines. As we have gridded
data, the derivatives are calculated using an equivalent source
approach with prisms as source bodies. The prisms extend
from the ice bed to a depth of 10 km. The densities of the
prisms are estimated by inverting the gravity field of Schein-
ert et al. (2016). From these prisms, all spatial derivatives can
be forward calculated following Nagy et al. (2000). For the
curvature attributes, we are following Li (2015), where the
full mathematical background, tests with synthetic data, and
an evaluation of these attributes for airborne gravity gradients
can be found. See also Ebbing et al. (2018) for an example of
curvature attributes from satellite gravity data over Antarc-
tica.

Isostatic anomaly (Iso grv)

To obtain the isostatic anomaly, the free air anomaly was first
mass corrected using the ice and bed elevation model Bed-
Machine Antarctica v2 (Morlighem et al., 2020). To mini-
mize isostatic effects, the undulation of the Moho boundary
was estimated assuming Airy isostasy with an assumed den-
sity contrast of 530 kg m−3 and a reference depth of 25 km.
The resulting undulation was then forward modelled using
prisms with the same density contrast and subtracted from
the mass corrected anomaly.

Vertical gradient (VG grv)

The vertical gradient of the isostatic anomaly is calculated as

VG=Gzz =
∂ Iso grv
∂z

(19)

Analytical signal (AS grv)

In contrast to the magnetic data, we calculate here the 3D
analytical signal using

AS=
√
G2
zx +G

2
yz+G

2
zz (20)

where Gxz, Gyz and Gzz are the derivatives in the x-, y- and
z-direction of the isostatic anomaly, respectively.

Tilt derivative (TDX grv)

See description for attribute Tilt Derivative of the magnetic
field (TDX mag).
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Mean curvature (Kmean grv)

When curvature is used to interpret gravity anomalies, we try
to delineate geometric information of subsurface structures
from an observed non-geometric quantity. The mean curva-
ture is calculated as

Kmean =
Gxx +Gyy

2Gz
(21)

where Gxx , Gyy are the second derivatives in the x-, y-
direction. Gz is the isostatic anomaly.

Gaussian Curvature (KGauss grv)

The Gaussian curvature is the product of minimum and max-
imum curvatures and often exhibits rapid sign changes.

KGauss =−
GxxGyy −G

2
xy

G2
z

(22)

Maximum Curvature (Kmax grv)

From the two attributes before, we can calculate the maxi-
mum curvature:

Kmax =Kmean+

√
K2

mean−K
2
Gauss (23)

Minimum Curvature (Kmin grv)

And similar as before, it follows the minimum curvature:

Kmin =Kmean−

√
K2

mean−K
2
Gauss (24)

Shape index (SI grv)

Maximum and minimum curvature can be combined as well
to compute the shape index.

SI=
(

2
π

)
arctan

[
(Kmax+Kmin)/(Kmax−Kmin)

]
(25)

The shape index is shown as an example for the gravity at-
tributes in Fig. 3c.

3.3 Calculation of the Self-Organizing Map

For the calculation of the SOMs, we use the existing Python
package MiniSOM (Vettigli, 2018). Before training a SOM,
all attributes are normalized using their standard deviation.
Additionally, we removed all values deviating by more than
ten standard deviations from the mean, as likely measure-
ment errors. The threshold was arbitrarily chosen to exclude
extreme outliers conservatively. All remaining points are part
of the training data set. A unified distance matrix is com-
puted that contains the distance to neighboring neurons for
each neuron.

The resulting SOM has a shape of 30 by 30 and was trained
using 15 000 iterations and a learning rate of 10−4. σ was set

to 5 to create soft weight maps and avoid overfitting. Natu-
rally, there are numerous possibilities and parameter sets that
yield acceptable results. For visual comparison only, the fi-
nal map was divided into 5 clusters, where the main attributes
show similar values. Boundaries were chosen in a way that
neighboring cells are distinct from each other.

4 Results and discussion

4.1 Correlation between attributes

We first examined correlations between individual attributes
(Fig. 4). Particularly high correlations or anticorrelations in-
dicate how different datasets are affecting each other, and
which ones can be used jointly in an interpretation. The cor-
relation matrix between the attributes shows that, in general,
the correlation is strongest between attributes derived from
the same data type (radar, magnetic, or gravity), as expected.
Some of the attributes do not follow this general observation.
E.g., the Tilt-Derivative of the gravity (TDX grv) correlates
stronger with radar roughness than with any other gravity-
derived attribute. Roughness reflects, first of all, variations in
the topography itself. Such a varying topography will cause
variations in the gravity signal and, to a minor extent, the
magnetic signal. This is evident in the correlations between
roughness and spectral attributes in magnetics, as well as
with the gravity signal, which may indicate that a smooth
bed-ice transition tends to be less dense and has lower sus-
ceptibility.

Some of the attributes show almost no correlation with
other attributes, such as Tilt-Derivative of the magnetic
field (TDX_mag) or Gaussian Curvature of the gravity field
(KGauss). An absence of correlation might indicate that these
attributes are sensitive to different source structures.

Another example is the correlation of the Total Magnetic
Field anomaly (Mag) and its detrended version (Detrended
mag). While the first shows some degree of correlation to the
gravity-derived attributes, the second does not. That corre-
sponds to the different sensitivity of the gravity and magnetic
field to the sources, but might also indicate that we miss some
of the gravity signal by using a gridded data set as input and
not measurements along the flight lines.

Other attributes, such as the roughness attributes (ζ bed, η
bed), show a correlation with both gravity and magnetic at-
tributes, for example, the spectral centroid (Centroid mag)
or the shape index (SI_grv). Similarly, the power of the
5 to 15 km bin (Bin Power mag) correlates with the basal
roughness attributes. This could indicate that sedimentary
basins lack short-wavelength signals as they tend to have
smoother surfaces. Similarly, correlations between the grav-
ity attributes could support the idea that dense rocks tend to
be more erosion-resistant, leading to rougher landscapes.
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Figure 4. Correlation matrix for all attributes listed in Table 1.

4.2 Weights for individual attributes

An important parameter to consider is the weights for the in-
dividual attributes (see Fig. 5) in contributing to the chosen
SOM (Fig. 6). The SOM is not a unique solution as it de-
pends on the attributes as well as on the initialization and
chosen thresholds. Hence, even with the same choice of pa-
rameters, the outcome may vary and any SOM must be con-
sidered as only a possible solution. If weights are near zero
across the whole map for a specific attribute, that indicates
that the attribute has no significant impact on the SOM and
could be omitted from the analysis without significant loss
of information. The weights map shows that some of the at-
tributes, e.g., SI_Grav, strongly influence the results, while
others, e.g., Kurtosis mag and bed, have a minor impact. That
corresponds to the correlation with other attributes (Fig. 4).
Those attributes not correlating with other attributes have in
general, less impact on the final SOMs, while those showing
a larger degree of correlation are deemed more important.
That must be taken into consideration when discussing the
dependency of the final SOM on the choice of attributes for
analysis.

4.3 Subglacial clusters from SOMs

Next, we analyze the SOMs in more detail by discussing ap-
parent clusters in the map. For a first comparison between our
SOM and the bed type classification by Aitken et al. (2023),
we map their classification on our 2D representation (Fig. 6).

The crystalline-basement class indicates where the bed is
interpreted to consist of igneous or metamorphic rocks (in-
cluding high-grade metasedimentary rocks), with either no
or only a thin veneer of sedimentary cover. Typically, these
regions possess the characteristics of high elevation and high
gravity with high spatial variability in topography, gravity,
and magnetic data. Type 1 basin class represents regions
where sedimentary basins are preserved in relatively unmod-
ified basins, with typical characteristics of low elevation and
low gravity, and low spatial variability in gravity and mag-
netic data. Along-track roughness tends to be low. The intra-
basin volcanics class includes areas where volcanic rocks are
interpreted to be emplaced within a Type 1 basin sequence.
Type 2 basin class, in turn, represents areas where sedimen-
tary rocks are known or inferred but the original depositional
basin is not preserved. These rocks tend to predate the for-
mation of the present landscape, are often uplifted to high
elevations, may be intruded by younger igneous rocks, may
be heavily eroded and may have geophysical characteristics
more similar to crystalline basement than Type 1 basins. For
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Figure 5. Weights for every attribute and cell (30 by 30) of the SOM. All attributes were rescaled using the standard deviation, before the
training started. See Figs. 3 and A1–A3 for a geographical representation of the individual attributes.

mixed classes the geophysical characteristics are not provid-
ing clear evidence for an assignment to a single class (Aitken
et al., 2023). We expect our SOM to contribute the most
to an improved understanding of the mixed or inconclusive
classes. For comparison, we sample for each data point of
our SOM its class according to Aitken et al. (2023) shown
in Fig. 6. The datapoint can then be mapped into the two di-
mensions of the SOM. The pie chart for each cell of our map
represents the different classes mapped to it, e.g., association
with Type 1 basins and Crystalline Basement is dominant on
the left and right side, respectively, while most cells sample
different domains and can be less clearly associated with a
certain class. As the SOM is mapping data firstly in a 2D
Domain based on attribute similarity and irrespective of the
geographic location (see inset in Fig. 7), the domains A to E
seen in Figs. 6 and 7 are only to guide visual comparison and
are not based on a statistical evaluation of the results.

Type 1 basins are predominantly located within cluster C,
aligning with the expected characteristics of smooth beds,
low gravity, and minimal magnetic signals. In contrast, crys-

talline rocks are predominantly found in cluster E. This
observation supports the assumption that strong magnetic
anomalies are typically generated by crystalline rocks. Fur-
thermore, crystalline rocks are also seen on the left side of
cluster B. This sub-cluster exhibits high roughness and in-
tense magnetic and gravity signals, as expected for crys-
talline rocks. Type 2 basins, however, do not show a dis-
tinct concentration but are visible across various regions of
the map. This dispersion raises questions about the feasibil-
ity of correctly inferring this class solely from the attribute
compilation used here or from the robustness of defining this
class over such a large region. Possibly, the Type 2 basins,
in this region, mainly sedimentary rocks on highlands, have
a more heterogeneous build-up or reflect different sub-types
compared to the interpretation by Aitken et al. (2023). For
the mixed class, no clear domain can be found on the SOM,
conforming to their complex nature.

In Figs. 7 and 8, we map the SOM along the individ-
ual flight lines for geographical representation, and in Fig. 9
along a profile.
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Figure 6. Visualization of the SOM and class distribution. Every data point (measurement along a flight line) was assigned a class according
to Aitken et al. (2023) and subsequently mapped onto the SOM. Each cell represents a neuron in the SOM and contains the data points
mapped to it. The pie charts within each cell indicate the proportions of different classes present. The letters A–E highlight regions of the
SOM with similar properties; they are manually defined to aid description and interpretation.

Comparison with the bed type classification of Aitken et
al. (2023) shows a general agreement (Fig. 8). Particularly,
the delineation of various highlands corresponds closely be-
tween the two classifications. However, for some structures,
as Knox Highlands (classified as Crystalline) and Highlands
A (classified as Type 2 Basin), there are differences in the re-
sults. This is consistent with the observation that the Type 2
Basin class seems to be mapped for quite dissimilar physical
settings.

Additionally, most basins, including the Southern Wilkes
Basin, Central Aurora Basin, and Aurora South Basin, ex-
hibit strong consistency with the classification presented by
Aitken et al. (2023). Furthermore, the sedimentary basin like-
lihood map as presented by Li et al. (2022) consistently in-
dicates thick sedimentary layers in areas that were mapped
within class C. The most significant disagreement between
the SOM and the classification by Aitken et al. (2023) is

shown for the Sabrina Basin and Aurora North Basin. In
these areas, the fine-scale variations within Clusters A, D,
and E of the mapped SOM appear to contradict the homoge-
neous classification by Aitken et al. (2023), suggesting that
the SOM may be able to capture local variations, which are
best observed when compared along an individual flight line
(Fig. 9).

Along a flight line (Fig. 9), the interpretation by Aitken et
al. (2023) does not clearly follow the boundaries visible in
the data and SOM. The radar data show that there are sec-
tions of the basin where no return from the bed was detected
(e.g., distance ∼ 100 km), while it appears as a very smooth
reflector in places where it was detected (∼ 140 km). Addi-
tionally, the magnetic signal exhibits a predominantly long
wavelength above the basin and shows no obvious correla-
tion with the bed. These observations indicate the presence
of non-magnetic rocks near the bed. The SOM effectively
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Figure 7. Representation of the clusters from the SOM. (A) 2D Colormap for the SOM. (B) Unified distance matrix (30 by 30 cells) for the
presented SOM. (C) Geographical distribution of the SOM. The orange box indicates the zoom-in area in Fig. 8.

Figure 8. Zoom in for the Wilkes land area for comparison of our results and Aitken et al. (2023): (A) geographical distribution of the SOM,
(B) geological bed types from the study by Aitken et al. (2023). See Fig. 7 for location and orange line indicates profile shown in Fig. 9.
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Figure 9. A combined plot of magnetics, gravity and radar data along a profile. Beneath the plots, the SOM is shown along with the
classification by Aitken et al. (2023). Color coding for SOMS is according to Fig. 7A.

captures the abrupt change at the rise of Aurora North Basin
in the north of the profile (Fig. 9). For clusters B and E,
the correlation between the magnetic signal and bed eleva-
tion becomes evident. This suggests the presence of mag-
netic rocks near the surface of Aurora North Basin, whereas
it is not the case in the Aurora Basin. This illustrates how
the SOM can successfully integrate information from various
data types into a single parameter, clearly highlighting the
most probable geological boundaries. It therefore could be a
useful tool for future mapping attempts and could also help
adjust boundaries while leveraging all available data types.

4.4 Pitfalls and possibilities of SOMs

The comparison to the expert judgment approach by Aitken
et al. (2023) by compiling available data sources, shows that
SOMs can potentially provide an added level of detail or aid
in detecting possible errors or inconsistencies as it should
be based on measured data as much as possible. Neverthe-
less, the application of SOM has certain limitations. For
example, the result is based on the selection of attributes.
Some attributes show generally low correlation with other
attributes (Fig. 4) and might be omitted (e.g., detrended mag-
netic field). For others, like the isostatic gravity field and its
vertical gradient seems to add little additional information
and only one may be used. Instead, additional attributes de-
rived either from the data used here or other independent

datasets (e.g., roughness derived from ice surface elevation
or ice flow velocity) could be added.

As such data sets often have quite dissimilar coverage, we
limit ourselves here to use data sets with a similar coverage
and sampling. The number of attributes is intended to avoid
a bias towards a single data set. However, we did not test
how the results would vary using a different number or only
a selection of the attributes, mainly due to computational rea-
sons, but also due to the different characteristics of the input
data set (flight lines and resampled gridded products).

Using a consistent data set, e.g., data based on the same
flight campaign, is preferred to improve interpretation at sur-
vey scale, with the trade-off that along-line variations may be
underestimated if line orientations are not located perpendic-
ular to the main strike direction. But this trade-off appears to
be preferential to the use of gridded data products, where in-
terpolation and the lower resolution of grids compared to line
products affect the quality of the resulting products. Still, the
insensitivity to spatial anisotropy of gridded data products
might outweigh the gains in data resolution. Furthermore,
there are additional attributes that could be derived from grid-
ded datasets, potentially enhancing the resulting SOMs. Cer-
tainly, exploring the choice of input datasets by assessing the
importance of different attributes, possibly by jack-knifing,
is worth exploring in more detail.

Another point of caution is that there is little control over
the meaning of the output clusters of the SOMs. That im-
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plies that an interpretation is needed to assign meaning to
each cluster. Here, as for other machine learning methods, a
training or validation data set might increase the confidence
in the results. Furthermore, not all features mapped by the
SOMs might be a geological signal, but some, especially lo-
cal features, might reflect data quality (measurement errors
or noise). To generate a well-informed classification, multi-
ple, quality-controlled, data types should be combined, and a
careful assessment of the data products is required.

Despite these shortcomings, SOMs can aid in defining
(geological) units with distinct properties and to help inter-
preters to make data-optimized classifications. Especially at
the spatial scale that seems to be most important for under-
standing the coupling of ice-sheets and the underlying solid
earth structure (e.g. McCormack et al., 2022), the SOMs can
provide a second level of detail that is difficult to achieve
from direct interpretation. This can be potentially combined
with statistical analysis of bedrock properties from petro-
physical samples to predict the variations of thermal parame-
ters on a local scale (e.g., Freienstein et al., 2025). As always,
careful evaluation of the final results is still a crucial point in
estimating subglacial properties as the SOMs do not provide
immediately a new geological map, but a tool for classifica-
tion and interpretation.

5 Conclusions

We present a novel mapping of subglacial geology using
Self-Organizing Maps applied to radar, gravity and magnetic
data sets along flight lines from the NASA Operation Ice
Bridge (OIB) dataset in East Antarctica. The attributes cal-
culated from the data sets provide a suite of products useful
for interpretation, however, challenging for direct manual in-
terpretation. Here, the SOM helps to group the complex fea-
tures into a simple map. Comparison to the classification of
Aitken et al. (2023) generally shows good agreement for the
major classes in regions of low complexity, while also indi-
cating variations within some of the classes. In such areas,
the SOMs can help to refine interpretations and unveil pre-
viously unknown small-scale structures. To further enhance
the clustering capabilities of the SOM, an in-depth explo-
ration of hyperparameters and choice of attributes could lead
to improved results.

In general, data selection is a key to avoid a bias by in-
consistent data sets and for example, the recently released
geophysical data catalogue from the British Antarctic Survey
includes multiple surveys with magnetic, gravity, and radar
data (Frémand et al., 2022), presenting an opportunity to fur-
ther explore the possibilities of SOMs for flight line data.

We see two possible directions as next steps.

1. The classification of different bed types could serve as
a constraint for (joint) inversion, extending this analysis
from a description of subglacial properties to a phys-

ical earth model, needed to describe the full coupling
between the Solid Earth and the overlying ice-sheets.

2. An analysis of ice-sheet modelling to the complexity
of subglacial geology, to identify which parameters and
spatial-scales are most critical to predict the future evo-
lution of the Polar ice-sheets.
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Appendix A

As an appendix, we present all 30 attributes in a normalized
form as used as input calculating the SOM discussed and pre-
sented in Figs. 5–9.

Figure A1. Normalized attributes based on topography and radar data. See text and Table 1 for more details.
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Figure A2. Normalized attributes based on magnetic data. See text and Table 1 for more details.
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Figure A3. Normalized attributes based on gravity data. See text and Table 1 for more details.
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