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Abstract. Hyperspectral data provide rich information on
both the mineralogical and fine-scale textural properties of
rocks, which also control their petrophysical characteristics.
We propose that some physical rock properties can be pre-
dicted directly from hyperspectral data, improving petro-
physical characterisation and reducing the need for often la-
borious measurements. In this contribution we explore cor-
relations between hyperspectral and petrophysical data us-
ing a deep convolutional neural network. Our model learns
relevant features from high-dimensioned hyperspectral data
to predict slowness, density, and gamma-ray values using
training and testing data from Spremberg, Germany. Our
results show that, with careful preprocessing and thorough
data cleaning, differences in resolution can be overcome to
learn the relationship between hyperspectral data and petro-
physics. Using a test dataset from a spatially independent
borehole, we generated a pixel-resolution (≈ 1 mm2) model
of the petrophysical properties and resampled it to match the
measured logs. This test indicated substantial accuracy, with
R2 scores and root-mean-squared errors (RMSEs) of 0.7 and
16.55 µsm−1, 0.86 and 0.06 gcm−3, and 0.90 and 15.29 API
for the slowness, density, and gamma-ray predictions respec-
tively. We also analysed the Shapley values of our model
to gain deeper insights into its predictions. These findings
lay the groundwork for building deep learning models that
predict physical and mechanical rock properties from hyper-
spectral data. Such models could provide the high-resolution
but large-extent data needed to bridge the different scales of
mechanical and petrophysical characterisation.

1 Introduction

Hyperspectral imaging provides detailed insights into the
mineralogical composition of rocks by capturing minute
spectral signatures across extensive wavelength ranges. This
technology enables rapid, non-invasive characterisation and
spatial analysis, with diverse applications for geological
mapping, minerals exploration and geometallurgy. These
applications typically leverage the unique combination of
millimetre-scale spatial resolution and kilometre-scale extent
possible with hyperspectral drill core or outcrop scanning
methods (Thiele et al., 2021, 2024a; Laukamp et al., 2021).

Geophysical well logging has been employed to acquire
petrophysical data from boreholes utilising a suite of tools
to measure various properties in situ. This process includes
the collection of gamma-ray, density, and sonic logs, which
provide continuous and high-resolution records of the sub-
surface properties. Gamma-ray logs are often used to iden-
tify shale-rich layers by measuring the natural radioactivity
of the formations, primarily from potassium, thorium, and
uranium content (Serra, 1984). Density logs, which measure
bulk density through the attenuation of gamma rays, can be
used for the estimation of porosity and lithological differen-
tiation (Schlumberger, 1972). Sonic logging is used to mea-
sure the travel times of acoustic waves travelling through the
formations, providing insights into both the mechanical prop-
erties and porosity of the rock, through the measurement of
slowness (inverse of P wave velocity) (Bourbié et al., 1987).

While hyperspectral data are primarily known for their
sensitivity to mineralogy (Clark, 1999), they are theoreti-
cally also sensitive to textural attributes such as grain size,
especially in the mid- and long-wave infrared regions. Initial
work by Kereszturi et al. (2023) and Lee et al. (2023) has
built on these theoretical connections to successfully predict
petrophysical and geomechanical properties, albeit on rela-
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tively small sample sets. In this contribution, we build on this
work to test if “hyperspectral upscaling” workflows that were
developed to predict mineralogy (e.g. Thiele et al., 2024a)
can also be used to map petrophysical properties along drill
cores at high (millimetre-scale) spatial resolution. In doing
so, we aim to both enhance the spatial resolution of down-
hole petrophysical logs and work towards potentially gener-
alisable methods that could, one day, be used to predict im-
portant petrophysical and mechanical properties across large
drill core libraries and hyperspectral scans of outcrops. Our
objectives are thus twofold: first, to assess the feasibility and
accuracy of predicting petrophysical properties directly from
hyperspectral drill core data, and second, to use the extensive
spatial coverage and high resolution of hyperspectral data to
upscale petrophysical measurements acquired from geophys-
ical well logging.

2 Geological setting

The central European Kupferschiefer (“copper shale”) is Eu-
rope’s largest Cu and Ag resource and one of the most prolific
sediment-hosted copper districts globally (Borg et al., 2012).
The strata-bound mineralisation occurs in a thin but laterally
persistent carbonaceous shale unit along the southern margin
of the Permian-aged central European Basin, with known de-
posits stretching from the Rhine area of western Germany to
south-central Poland.

The Spremberg–Graustein deposit in Lusatia, southeastern
Germany, was discovered in 1953 and intensively explored
between 1953 and 1974 (Kopp et al., 2012). Renewed ex-
ploration interest led to another deep drilling campaign from
2008 to 2012, producing the drill core material and geo-
physical logging data used in this study. These drill cores
sample a large part of the central European Basin’s stratig-
raphy, from the basal Rotliegend terrestrial conglomerates,
sandstones, and shales deposited in the Permian; overlying
Zechstein carbonates and evaporites; and Lower to Middle
Triassic Buntsandstein formations. The Kupferschiefer sensu
stricto is a bituminous calcareous shale usually less than a
metre thick (Spieth, 2019) at the base of the Zechstein for-
mation, and is overlain by several cycles (Werra, Stassfurt,
and Leine) of marine sedimentary rocks, including dolostone
and limestones, anhydrite and gypsum, and evaporites.

The orebody at Spremberg–Graustein occurs at a depth of
ca. 850–1580 m and hosts at least 100 Mt of Cu–Ag ore with
average copper grades of 1.5–2.0 %. For this study, two drill
holes, KSL133 and KSL131, were chosen to provide training
data, due to their comprehensive coverage of the key litho-
logical units and availability of downhole geophysical well
logging data. A third, spatially separated borehole, KSL136,
was used exclusively as test data to assess the accuracy of our
predictions.

3 Methodology

Hyperspectral data were acquired and co-registered with
downhole petrophysical logging data and then used to train
deep learning regression models. The various steps needed
to preprocess our training data and build the deep learning
models (see Fig. S1 in the Supplement for an overview) are
described in detail below.

3.1 Hyperspectral data acquisition

Hyperspectral data capturing the three drill holes (KSL133,
KSL131, and KSL136) were acquired using a SPECIM
SiSuRock drill core scanner, which is equipped with three
hyperspectral cameras. These sensors capture a broad range
of hyperspectral data across different spectral regions: with
the AisaFENIX sensor capturing 450 bands in the visible
and near-infrared to short-wave infrared (VNIR–SWIR; 380–
2500 nm) with an average spectral sampling resolution of
3.5 nm for the VNIR and 5.5 nm for the SWIR, the SPECIM
FX50 sensor capturing 308 bands in the mid-wave infrared
(MWIR; 2700–5300 nm) with an average sampling resolu-
tion of 8.4 nm, and the AisaOWL sensor capturing 103 bands
in the long-wave infrared (LWIR; 7700–12300 nm) with an
average sampling resolution of 45 nm. The extensive spec-
tral coverage captures spectral features that are diagnostic of
most common minerals, including those expected at Sprem-
berg (quartz, anhydrite, carbonates, clays, and feldspars)
(Géring et al., 2023). An in-depth review of the data acqui-
sition process, as well as the details of the Kupferschiefer
hyperspectral dataset, can be found in Thiele et al. (2024a).

3.2 Petrophysical data acquisition

Sonic logger data were acquired using the USBA-21 acous-
tic logger that measures the travel time of acoustic waves
between two magnetostrictive transducers (sources) and a
piezoelectric receiver. Two sources are used to differentiate
between formation and mud effects (since the travel time
through the mud stays constant, Sheriff and Geldart, 1995).
This travel time, recorded in microseconds per metre (a mea-
sure of slowness), is given by

1t = tfar− tnear, (1)

where tfar is the travel time from the farther transducer, and
tnear is the travel time from the nearer transducer.

For density logging, a Century-9036 density logging tool
was used. The radioactive source, typically a directional
Cs137 emitter, emits medium-energy gamma rays into the
formation. These gamma rays undergo Compton scattering
upon interacting with electrons in the formation, and the scat-
tered gamma rays reaching the detector provide a measure
related to the formation’s electron density. This electron den-
sity (ρe) is then associated with the formation’s bulk density
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(ρb) using the following relationship:

ρe = 2ρb
Z

A
, (2)

where Z is the atomic number, andA is the molecular weight
of the compound. The electron density (ρe) in gcm−3 deter-
mines the response of the density tool (Baker, 1957).

Gamma-ray logging quantifies gamma radiation levels in
the formation, which is influenced by uranium (U), thorium
(Th), and potassium (K) concentrations. The gamma-ray in-
tensity in American Petroleum Institute (API) units is derived
from these concentrations as follows:

GR (API)=8×U (ppm)+ 4×Th (ppm)
+ 16×K (wt%). (3)

This reading allows for comprehensive characterisation of
radioactive content in the formation, providing insights into
its mineralogical composition (Asquith et al., 2004).

3.3 Data co-registration

Given the varying resolutions and sensor positions inher-
ent in the different geophysical logging tools used to mea-
sure slowness, density, and gamma-ray values, it was nec-
essary to resample them to derive measurements over com-
parable depth ranges and ensure comparability. Given that
the lowest-resolution data were from the slowness log,
with a sampling of 10 cm, we employed scipy’s (Virtanen
et al., 2020) RBFInterpolator to downsample the logs.
Specifically, a thin-plate spline kernel and a different number
of nearest neighbours for the slowness, density (with a sam-
pling resolution of 2 cm), and gamma-ray (with a sampling
resolution of 5 cm) logs – 10, 50, and 20 nearest neighbours
respectively (to make sure that the truncation distance for the
interpolator was the same for each property) – were used, to
downsample the logs and match the resolutions while min-
imising potential interpolation bias and ensuring consistent
alignment across each sensor.

Finally, a rolling standard deviation of the measured petro-
physical properties was computed using a 1 km window
(Fig. 1). Due to factors like core loss, co-registration errors
are expected between the petrophysical logs and the drill
core boxes. To ensure our training dataset does not contain
spectra paired with incorrect petrophysical properties, we use
the rolling standard deviation to eliminate points from re-
gions of high property variance, as these will be highly sen-
sitive to co-registration uncertainties. Hence the underlying
assumption within our preprocessing steps is that by pick-
ing points only from petrophysically homogeneous regions
of the drill cores, we can partially mitigate challenges caused
by co-registration errors. The hyperspectral data also needed
to be downsampled by 2 orders of magnitude to match the
spatial resolution of the petrophysical measurements, given
their ≈ 1 mm2 spatial resolution (2 orders of magnitude

higher than the downhole geophysical logs). We computed
the median spectra within a defined window of 10cm×5cm
(equivalent to 100pixel× 50pixel) centred along the core.
The results represent the (linearly mixed) spectral response
of the rock volume sampled by the petrophysical loggers,
with some assumptions (e.g. on the representativity of the
scanned core surface).

3.4 Spectral processing

In addition to the standard white-reference normalisation,
lens correction and sensor co-registration described by
Thiele et al. (2024a), the hyperspectral data were further pre-
processed to (1) remove noisy bands, (2) reduce illumination
effects that result from the 3D geometry of the scanned drill
cores (e.g. shadowing), and (3) enhance mineralogically sig-
nificant absorption features (Fig. 2).

Specifically, the VNIR–SWIR data were subset to the
range between 500 and 2500 nm, while the first and last 10
bands of the MWIR and LWIR data were also removed. A
hull correction was then applied to the spectra from each
sensor separately, using hylite (Thiele et al., 2021), which si-
multaneously amplifies spectral absorption features and sup-
presses confounding variability associated with drill core
shape and associated inhomogeneous illumination.

3.5 Data balancing

The petrophysical and associated hyperspectral data form
distinct clusters, as clearly shown when they are plotted in the
petrophysical property space (Fig. 3a). After using the rolling
standard deviation to remove high-variance points and asso-
ciated mixed measurements (Fig. 3b), these clusters are even
more distinct. Importantly, the cluster sizes are unbalanced
due to different thicknesses of the lithologies in the bore-
holes, leading to an over-representation of abundant units in
the training dataset.

The Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) algorithm was used to
identify these clusters and mitigate their translation (as rep-
resentation bias) into the deep learning models. HDBSCAN
is well adapted for its ability to identify clusters of varying
densities (McInnes et al., 2017). We used HDBSCAN to au-
tomatically identify clusters in a dimensionality-reduced fea-
ture space containing the depths of each measurement (to in-
clude a spatial component) and the 30 normalised principal
components of the median spectra for each data point. This
clustering resulted in a total of 24 distinct groups, with one
additional noisy cluster excluded from the dataset (Fig. 3c)
to leave 2946 remaining spectrum–property pairs. Hyperpa-
rameters of HDBSCAN were selected manually and itera-
tively assessed based on the number and separation between
the clusters shown in Fig. 3. We aimed to over-segment the
dataset, as the clustering was solely used to help in removing
the inherent bias from a larger number of points belonging to
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Figure 1. Measured logs for KSL133 (a–c), KSL131 (d–f), and KSL136 (g–i). Panels (a), (d), and (g) show the sonic log; panels (b), (e), and
(h) show the gamma–gamma density log; and panels (c), (f), and (i) show the gamma-ray log. Measured values are shown in blue along with
the rolling standard deviation for a 1 m window in red.
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Figure 2. Preprocessing of the hyperspectral data. The images in (a) show an example set of core scans, with the long-wave infrared being
shown at the top as a false colour composite. The red rectangle is an example window measuring 100 pixels wide by 50 pixels tall, centred
along the core. The spectra within this window are averaged (using a median) and hull-corrected to give the spectrum in (b).

Figure 3. Preprocessing of the training dataset. Slowness–density scatter plots of (a) original dataset, (b) filtered dataset with high-standard-
deviation points removed, and (c) the clustered dataset with HDBSCAN class labels. N refers to the number of points in the dataset at the
current stage of processing, and Nc refers to the number of clusters defined by the HDBSCAN algorithm (excluding the noisy cluster).

one lithology. Any cluster distribution with over-segmented
clusters (i.e. the large clusters separated from the rest) would
provide similar results during training.

A stratified sampling strategy using the labels from the
HDBSCAN clusters was then employed to select well dis-
tributed training and validation subsets from drill cores
KSL131 and KSL133 (KSL136 was kept separate for in-
dependent testing), using a sixfold-stratified train–validation
split implemented by the StratifiedShuffleSplit
utility in scikit-learn (Pedregosa et al., 2011). This stratifi-
cation ensures the data diversity is captured in both the train
and validation datasets, while a weighted loss function was
developed (see Sect. 3.6) to ensure the differing cluster sizes
do not bias our model.

3.6 Model architecture and loss function

Our model was developed using PyTorch, an open-source
machine learning framework known for its flexibility and
strong support for deep learning applications (Paszke et al.,

2019). We implemented a multi-headed variant of a 1D con-
volutional neural network (CNN) architecture (Albawi et al.,
2017). The 1D CNN enhances feature extraction by incorpo-
rating convolutional layers within a multi-layer perceptron
(MLP) framework, using kernels with learnable weights that
are convolved with the input data (LeCun et al., 2015).

Each spectral range – VNIR–SWIR, MWIR, and LWIR –
was assigned a separate head within the CNN (Fig. 4) to al-
low for sensor-specific feature extraction. This configuration
was chosen to accommodate the different spectral sampling
resolutions provided by each sensor and the distinct spectral
characteristics associated with each of the respective spectral
ranges. By tailoring the kernel sizes to each spectral range,
the model was better adapted to identify and capture rele-
vant features across the diverse spectral data. The extracted
features were then concatenated and fed through additional
fully connected layers before outputting the petrophysical
predictions. To ensure balanced contributions from each of
the three outputs during loss computation, the slowness, den-
sity, and gamma-ray counts were normalised by factors of
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10−3, 10−1, and 10−3 respectively, to ensure that their val-
ues fall between 0 and 1.

A mean squared error (MSE) loss function was used for
training, with the following key adjustments. First, to address
the imbalance in the number of data points per cluster, we
multiplied each output loss by a factor inversely proportional
to the number of points in its assigned cluster (see Sect. 3.5).
This modification ensured that the model treated each clus-
ter equally, avoiding the disproportionate influence of more
populous clusters. Each data point in the kth cluster was as-
sociated with a weight wk given by

wk =
N−1
k∑Nc

j=1N
−1
j

, (4)

where Nk is the number of points in the kth cluster in the
training set, and Nc is the total number of clusters.

Secondly, we introduced a penalty term into the loss func-
tion that discouraged negative outputs, as none of the pre-
dicted properties can be negative. This ensures that the model
predictions stay within valid (positive) bounds by increasing
the loss in proportion to the square of the sum of all nega-
tive outputs. A penalty term was used instead of, for exam-
ple, a ReLU activation function to avoid issues with “dying
neurons” in the final layer (Lu et al., 2019). The final loss
function utilised for training was thus

Loss=
n∑
i=1

[
1
n
(wi (m(xi)− yi))

+ λ(max(−m(xi),0))
]
, (5)

where m is the model, xi is the input spectrum, yi denotes
the corresponding petrophysical properties, λ is the penalty
factor for negative outputs, n is the batch size, and wi is the
cluster-defined weight (Eq. 4) associated with the ith datum.

The training dataset was shuffled and split into six parts,
with the model trained iteratively on each split. Every 100
epochs, a new split was introduced for training and valida-
tion, effectively reshuffling the data to help prevent overfit-
ting. Over 600 total epochs, the model iteration with the low-
est validation loss was chosen as the best-fitting model. The
use of StratifiedShuffleSplit preserved data dis-
tribution across splits, reducing overfitting without needing
dropout layers or batch normalisation, common in CNNs but
sometimes performance-limiting. As mentioned previously,
a spatially separated borehole (KSL136) was then used to test
the model and evaluate its accuracy after the training phase
was completed.

3.7 Shapley analysis

Finally, to help understand the spectral properties that influ-
enced the model predictions, we performed a Shapley value
analysis. Shapley values are derived from cooperative game

theory and have been widely employed in the machine learn-
ing context to quantify each input feature’s contribution to
model predictions (Lipovetsky and Conklin, 2001). We ap-
ply Shapley values using the Python package shap (SHapley
Additive exPlanations) (Lundberg and Lee, 2017), specifi-
cally leveraging the DeepExplainer utility optimised for
deep learning models. This allowed us to efficiently compute
feature impacts, enhancing interpretability and transparency
in our neural network.

To reduce computational complexity, we subsampled the
data before computing Shapley values, selecting 10 random
samples from each of the HDBSCAN clusters. This ensures
that the samples extracted for Shapley analysis are represen-
tative of the entire dataset. We then visualised the results in
the form of a raster image to help qualitatively assess the
spectral regions used by the model for each of its predic-
tions. Lastly, to better understand the impact of certain bands
on the outputs, we computed the mean Shapley values for the
top 10 % of each predicted output, to explore which factors
resulted in a sample being predicted to be fast (i.e. bottom
10 % of the slowness), be dense, or exhibit high gamma-ray
counts.

4 Results

4.1 Model accuracy

The model predictions for the training set showed scores
of 0.990, 0.996, and 0.964 for the slowness, density, and
gamma-ray values respectively (Fig. 5), suggesting the
model explains more than 96 % of the petrophysical vari-
ance in the training set. The corresponding root-mean-
squared error (RMSE) for these properties was 2.544 µsm−1,
0.023 gcm−3, and 4.993 API respectively.

To better assess the model’s accuracy for upscaling appli-
cations, we applied it to every 1 mm2 pixel in the hyperspec-
tral dataset (including the test drill core), to create a high-
resolution (upscaled) map of the petrophysical properties.
The results identify fine-scale and cross-core variations that
could not be captured by traditional running log measure-
ments (Fig. 6).

Our workflow for hyperspectral downsampling (see
Sect. 3.3) was then run on these petrophysical property pre-
diction maps to derive an estimate of the petrophysical log-
ging data (noting that the predicted properties slowness, den-
sity, and gamma-ray readings are all additive, so they can be
arithmetically averaged).

The resulting predicted logging data showed a close match
to the measurements (Fig. 7), both for the two training bore-
holes and for the independent test hole (KSL136). R2 scores
for this test hole were 0.86 and 0.9 for the density and
gamma-ray logs respectively, indicating very reasonable ac-
curacy on unseen data, which even included a basement
lithology that was not sampled by the other training drill
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Figure 4. The architecture of the best-performing multi-headed CNN model. Note the difference in convolutional kernel sizes for the different
heads. As the number of bands and the shape and size of the absorption features are different across different sensors, the convolutional kernel
sizes of 60, 40, and 20 were chosen to better facilitate feature extraction.

Figure 5. Scatter plots of the measured vs. predicted properties for the training dataset. (a) Slowness (in µsm−1), (b) density (in gcm−3),
and (c) gamma-ray values (in API).

cores (highlighted by the grey box labelled Tonschiefer i.e.
argillaceous basement). The slowness prediction in KSL136
showed a relatively lower R2 score of 0.7, with most of
the erroneous predictions lying within the unseen lithology.
The measured sonic log here shows significant fluctuations,
whereas our model prediction remains steady (suggesting the
lithology is spectrally quite uniform).

4.2 Shapley analysis

The calculated Shapley values (Fig. 8) represent the quanti-
tative importance of every input feature in the form of a push
away from the mean prediction. Since the theoretical foun-
dation of Shapley analysis looks at every band as a separate
feature and not necessarily the overall shape of the absorp-
tion feature itself, the overall contribution from a particular
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Figure 6. Pixel-scale petrophysical property predictions for an example core scan from the KSL133 borehole. (a) RGB image (derived from
the RGB bands of the VNIR sensor), (b) slowness, (c) density, and (d) gamma-ray values.

spectral range cannot be ascertained from looking at the raw
Shapley values. However, a single band in the LWIR, on av-
erage, contributes more towards the output than a single band
in the VNIR–SWIR–MWIR ranges.

To look at the total contribution each spectral range makes
towards the output, we use the additive nature of Shapley
values to create a stack plot (Fig. 9). The plot shows that the
contributions from the VNIR–SWIR range are minimal in all
predictions. The net contribution from the MWIR bands is
the largest, followed by the LWIR bands for slowness predic-
tions, except for the fastest samples, where the LWIR contri-
bution exceeds that of the MWIR bands. For the density pre-
dictions, the MWIR dominates the predictions across all the
samples, closely followed by LWIR. For the gamma-ray val-
ues, the SWIR bands contribute more than in the other two
properties, but the LWIR appears to be the dominant steerer
of the predicted value.

The median Shapley values of the samples in the bot-
tom 10 % of the slowness predictions (i.e. fastest predicted
P wave velocities), the top 10 % of density predictions, and
the top 10 % of gamma-ray predictions were calculated as
well (Fig. 10). The hull-corrected spectra for these samples
(Fig. 11) were then inspected to identify possible spectral
features associated with fast, dense, or high gamma-ray pre-
dictions. From Fig. 10, it is clear that the model is focusing
on known mineral absorption features (and their surrounding
bands) in each of the spectral ranges. These include, but are
not limited to, the carbonate absorption feature at 11 200 nm,
as well as the fundamental overtones of the silicon oxide
(νSiO) absorption feature at 8575 and 9200 nm. The 1400
and 1900 nm water and 2200 AlOH SWIR absorption fea-
tures are also clearly being used, as are the bands around
2300 nm (which are likely influenced by the relatively broad
carbonate absorption at 2345 nm).

The results highlight some spectral variability within these
top 10 % groups, as would be expected, but also some com-
monalities. For instance, in the slowness plots (Fig. 10a), the
samples show a significant push below the mean due to the
bands around 11 200 and 4000 nm, corresponding to primary
and secondary overtones of carbonate absorption features.
This observation aligns with our geological understanding,

as the fastest samples are from the Stassfurt dolomite for-
mation (see legend, Fig. 7). The spectra in Fig. 11a further
support this inference, as they exhibit a clear carbonate ab-
sorption feature.

Conversely, the densest samples in the region are associ-
ated with the Werra Anhydrite formation (see legend, Fig. 7).
They do not exhibit the carbonate absorption feature as seen
in the spectra (Fig. 11b), and the low Shapley values for those
bands (Fig. 10b) confirm that the model is no longer looking
at any of the carbonate absorption features.

The samples with the top 10 % of gamma-ray readings
come from the Aller salt clay formation, the Stassfurt salt for-
mation, and the Rotliegend sandstone formation. The model
considers the bands corresponding to the water absorption
feature, as well as the clay feature in the SWIR favourably
(Fig. 10c). Furthermore, there is a considerable peak in the
9200–9600 nm range in the LWIR, which might correspond
to the tecto- and sheet-silicate absorption features (Laukamp
et al., 2021) containing potassium salts from the Aller salt
clay and Stassfurt salt formations, or the K-feldspar absorp-
tion feature from the Rotliegend sandstones, both of which
would give rise to high gamma-ray values.

5 Discussion

Our deep learning approach has managed to accurately pre-
dict the variability in petrophysical properties from hyper-
spectral data. This prompts several important questions: what
is the model using to make these predictions? Are the results
potentially generalisable or likely only valid for cores from
the Spremberg area? And how could this novel approach help
improve our understanding of, and ability to predict, subsur-
face behaviour?

The Shapley values (Figs. 8–10) clearly indicate that the
model is extracting features associated with the depth and
shape of known mineral absorption features, especially those
relating to quartz, feldspars, and carbonates in the LWIR
range. This suggests a primary sensitivity to mineralogy,
which we suggest is reasonable given the mineralogical con-
trol on all the predicted petrophysical properties. The model
also clearly places a strong emphasis on the MWIR and the
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Figure 7. Reconstructed downhole logs for KSL133, KSL131, and KSL136. Panels (a)–(b) show the slowness, density, and gamma-ray
values for the KSL133 borehole; (d)–(f) for the KSL131 borehole; and (g–i) for the KSL136 borehole. The coloured rectangles in plots (a),
(d), and (g) are the lithologies acquired from the geological logs of the three boreholes.

LWIR bands, even though much of the mineralogical varia-
tion could also be identified using these other spectral ranges.
Based on this, we speculate that the model could be learn-
ing to identify relatively subtle changes in LWIR absorp-
tion feature shape that are known (Zaini et al., 2012; Rost
et al., 2018; Salisbury et al., 1987) to vary with grain size

and surface roughness (which we suggest is likely correlated
to porosity).

Importantly, the Shapley values for predicted gamma
emission differ substantially, presumably as gamma emis-
sion is primarily controlled by mineralogy. Gamma-ray emis-
sions are triggered by natural radioactive decay of elements
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Figure 8. Shapley values for our model. Every row within a sub-figure corresponds to one input spectrum (i.e. a “sample”), and every
column corresponds to a particular band within the input spectrum. Panels (a1), (b1), and (c1) show the measured and predicted slowness
(in µsm−1), density (in gcm−3), and gamma-ray values (in API) respectively (sorted in decreasing order of predicted value). The black
vertical line corresponds to the mean predicted output. Panels (a2)–(a4) show the Shapley values for the VNIR–SWIR bands, (b2)–(b4) for
the MWIR bands, and (c2)–(c4) for the LWIR bands. Wavelengths at which key absorption features are expected have been annotated along
the x axis of these plots.

like potassium, thorium, and uranium (Asquith et al., 2004).
These are typically hosted in clay (and feldspar) minerals so
the SWIR bands, especially those around 1400 nm (associ-
ated with hydrated minerals) and 2340 nm (related to clay
minerals), are expected to play a more prominent role for
gamma prediction. The increased Shapley values in these re-
gions indicate that the model is correctly associating higher
absorption at these wavelengths with elevated gamma-ray
values, as expected in shaly rocks or clays. Similarly, the
predicted gamma emissions do not appear sensitive to many

of the spectral regions used to predict density and slowness,
such as the carbonate feature at 11 200 nm.

A common challenge for deep learning models based on
CNNs is whether or not they can be generalised. In this
study, training and applying the model to three drill cores
from the same geological sequence does not mean that simi-
lar results could be attained in different geological sequences.
However, given the results from our Shapley value analysis,
we suggest that it is unlikely that the model is “just” learn-
ing to distinguish different lithologies and returning appro-
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Figure 9. Contribution of each spectral range towards the output. The contribution from each spectral range is calculated by taking the signed
sum of all the Shapley values corresponding to the bands in that range for all the input spectra (referred to as “Sample”). The dotted line
shows the mean predicted output, and the solid line shows the predicted output value, which is the signed sum of the mean and the individual
spectral range contributions.

priate (average) predictions. Instead, it appears to generate
predictions based on the mineralogical and textural informa-
tion captured by the spectra. This is key to its demonstrated
ability to identify intra-lithology variations in each of the
petrophysical properties (Fig. 7) and possibly explains why
it produced broadly reasonable predictions for the unseen
basement lithology. The model appears to be sensitive to the
fundamental mechanical and petrophysical properties of the
rock, which suggests that it could be generalised on more di-
verse data. Hence, while we would not apply our model out-
side of the Spremberg region (given its very limited training),
it appears that our approach could be applied, given appro-
priate training information, to derive more widely applicable
predictions.

While a generalised model would require significantly
more training data (and rigorous evaluation), we suggest that
locally trained models such as the one presented here can
be very useful. The translation of ≈ metre-scale petrophysi-
cal logger measurements to millimetre-resolution maps pro-
vides significantly more detail on the physical and mechan-

ical structure of the sampled rock mass. This combination
of large extent and high spatial resolution helps to address
the scaling challenges commonly encountered when extrap-
olating properties measured at a small scale (using ≈ 1–
10 cm sized laboratory tests) to larger, reservoir-scale models
(Christie, 1996).

We suggest that the information on mesoscale hetero-
geneity captured by these hyperspectral predictions could be
used to bridge the scale gap between laboratory and reser-
voir properties. Further tests in different settings are re-
quired to confirm this assumption. The extensive literature
describes various solutions to this scaling problem. Tradi-
tional approaches, including statistical averaging, renormali-
sation techniques, and geostatistical methods, have been em-
ployed to derive effective medium parameters suitable for
reservoir simulations (Renard and de Marsily, 1997; King,
1989). Our work introduces a novel approach that leverages
hyperspectral data as an intermediary between different mea-
surement resolutions. By integrating hyperspectral data with
traditional petrophysical data, we can capture fine-scale het-
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Figure 10. Median of the Shapley values for the selected samples. The columns are split according to the sensors, while the rows are split
according to the properties, with (a) showing the median Shapley value for slowness, (b) for the density, and (c) for the gamma-ray values.
The red regions correspond to the bands that push the output above the mean, whereas the blue regions correspond to the bands that push the
output below the mean. The dotted vertical lines mark the key absorption features of interest within an IR spectrum (Laukamp et al., 2021),
with the annotations specifying the wavelength (in nm) and the corresponding molecular vibrational features.

erogeneity (at ≈ 1 mm2 resolution; Fig. 6) while retaining
coverage applicable at the reservoir scale (extent of several
hundred metres). A similar approach might also be possible
using outcrop hyperspectral data, if data quality issues asso-
ciated with hyperspectral outcrop imaging can be resolved,
further improving our ability to quantify mesoscale mechan-
ical and petrophysical variability and so linking laboratory-
and reservoir-scale properties.

6 Conclusions

To conclude, our results demonstrate the link between hy-
perspectral and petrophysical properties. We have devel-
oped a preprocessing workflow that overcomes challenges
associated with differing data resolutions and successfully
trained a deep learning model to predict slowness, density,
and gamma-ray count from VNIR, SWIR, MWIR, and LWIR
hyperspectral data. We effectively super-resolve the borehole
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Figure 11. Reflectance spectra of selected samples. The columns are split according to the sensors, while the rows are split according to the
properties, with (a) showing the spectra of the samples in the bottom 10 % of slowness predictions, (b) showing the spectra of the samples
in the top 10 % of density predictions, and (c) showing the spectra for the samples in the top 10 % of gamma-ray reading predictions. The
low-opacity grey lines plot the individual spectra, whereas the red line corresponds to the median spectrum.

petrophysics data (i.e. from ≈ 0.1 m resolution of the logger
to 0.001 m resolution of the hyperspectral cameras), which
helps us explore the intricacies and variations of these prop-
erties that cannot be captured by running log measurements.
Additionally, our workflow mitigates the co-registration un-
certainties that prevent machine learning workflows from be-
ing carried out over drill core data. The model was tested on
an independent drill core, which included an unseen lithol-
ogy, and gave accurate predictions (test R2 score > 0.7). A
Shapley analysis suggests the model is leveraging the sensi-

tivity of the MWIR–LWIR range to mineralogy, grain size,
and surface roughness to inform predictions of slowness and
density, indicating that some degree of generalisation might
be possible. The gamma predictions are much more closely
linked to mineralogy, so they could be quite broadly applica-
ble.

We suggest that this novel approach enables the quantifica-
tion of petrophysical properties at high spatial resolution over
large areas, providing the information on mesoscale hetero-
geneity needed to help bridge laboratory- and reservoir-scale
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mechanical and physical behaviour. Our work also serves as
a stepping stone toward predicting secondary properties such
as porosity and permeability, helping build a link between
hyperspectral data and widely used physical rock property
measurements.
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