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Abstract. A proper quantitative statistical characterization of
fracture length or height is of paramount importance when
analysing outcrops of fractured rocks. Past literature sug-
gests adopting a non-parametric approach, such as circular
scanlines, for the unbiased estimation of the fracture-length
mean value. This is due to the fact that, in the past, estimat-
ing any type of statistical distribution was difficult and there
was no real interest in defining precise parametrical mod-
els. However, due to the recent rise in popularity of digi-
tal outcrop models (DOMs) and of stochastic discrete frac-
ture networks (DFNs), there is an increasing demand for
distribution-based solutions that output a correct estimation
of parameters for a given proposed model (e.g. mean and
standard deviation). This change in demand highlights in
the geological literature the absence of properly structured
theoretical works on this topic. Our methodology, presented
for the first time in this contribution, represents a powerful
alternative to non-parametrical methods, aimed at specifi-
cally treating censoring bias and obtaining an unbiased trace-
length statistical model. As our first objective, we propose to
tackle the censoring bias by applying survival analysis tech-
niques: a branch of statistics focused on modelling time-to-
event data and correctly estimating model parameters with
data affected by censoring. As a second objective, we pro-
pose a novel approach for selecting the most representative
parametric model. We combine a direct visual approach and
the calculation of four statistics to quantify how well pro-
posed models reflect the data. We apply survival analysis to
correctly estimate statistical parameters of a censored length
dataset in three different case studies and show the effects

of the censoring percentage on parametrical estimations that
do not use this paradigm. The presented analyses are carried
out using an open-source Python package called FracAbil-
ity, which we purposefully created to carry out the described
workflow (https://github.com/gecos-lab/FracAbility, last ac-
cess: 8 September 2024).

1 Introduction

Fractured rock masses are complex systems composed of in-
tact rock and discontinuities (Hoek, 1983). Characterizing
the statistical distribution of three-dimensional (3D) geomet-
rical properties of such discontinuities (e.g. aperture, rough-
ness, area, orientation, height / length ratio) is fundamental
for understanding and modelling mechanical and hydraulic
properties of rock masses and fluid—rock interaction. The re-
cent increase in computing power and the emergence of new
approaches based on digital outcrop models (DOMs) allow
the extraction of large datasets and facilitate the sampling of
properties instead of just their estimation (Bistacchi et al.,
2015; Tavani et al., 2016; Healy et al., 2017; Thiele et al.,
2017; Marrett et al., 2018; Nyberg et al., 2018; Bistacchi
et al., 2020; Martinelli et al., 2020; Bistacchi et al., 2022;
Mittempergher and Bistacchi, 2022; Storti et al., 2022). The
need for a more rigorous statistical approach to structural
data analysis is also motivated by the popularization of
stochastic discrete fracture networks (DFNs) as a modelling
approach for rock masses. In DFNs, discontinuities are rep-
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resented, in a simplified way, as finite planar surfaces, gener-
ally rectangular, polygonal, or elliptical (Cacas et al., 1990;
Dershowitz et al., 1992; Tavakkoli et al., 2009; Hyman et al.,
2015). In fact, stochastic algorithms used to generate these
surfaces are guided by statistical distributions obtained from
field or well data or are assumed based on some prior knowl-
edge (Andersson et al., 1984; Cacas et al., 1990; Davy et al.,
2018). For example, DFNs where fractures are represented
as rectangular surfaces (the most common implementation)
require the definition of fracture size via parametric distribu-
tions of length (measured along strike) and height (measured
along dip) or, alternatively, length and length / height ratio
(Hyman et al., 2015). However, it is worth noting that DFNs
are not the only viable approach to modelling fractured rock
volumes. Other methods, such as tensorial approximations
(Brown and Bruhn, 1998; Suzuki et al., 1998) based on the
crack tensor measure (Oda, 1983), are also used (Healy et al.,
2017) and, with details depending on the implementation, re-
quire similar parameters in input.

The main obstacle that geologists encounter while trying
to characterize a fractured rock volume is the impossibility of
directly measuring the 3D properties of discontinuities, since
only indirect geophysical methods may provide complete 3D
datasets. However, imaging discontinuities with geophysical
methods are strongly limited by spatial resolution and/or by
the absence of contrast in the physical properties investigated
by a particular technique (Martinelli et al., 2020). Therefore,
a vast body of research focuses on the characterization of
properties of discontinuity traces or lineaments, i.e. the two-
dimensional (2D) intersections of 3D discontinuity surfaces
with the outcrop surface or with topography (Dershowitz and
Herda, 1992; Bonnet et al., 2001; Manzocchi, 2002; Bis-
tacchi et al., 2011; Sanderson and Nixon, 2015; Bistacchi
et al., 2020; Martinelli et al., 2020; Storti et al., 2022). In
this contribution, we focus on the problem of defining accu-
rate and unbiased length (or height) distributions based on
data collected on DOMs. In any given outcrop, lineament
length measurements will always be affected by four main
biases: length (i.e. size), censoring, truncation, and orien-
tation (Baecher, 1983). The correction of these biases has
been thoroughly researched, and the standard solution cur-
rently adopted by many authors is based on circular scan-
lines (Mauldon, 1998; Zhang and Einstein, 1998; Mauldon
et al., 2001; Rohrbaugh et al., 2002). The method consists
of drawing a circle directly on the outcrop or on an image
and counting the intersections of the circle with lineaments.
With a chain of assumptions, defining an indirect relation-
ship between mean length and the intersections of lineaments
with the scanline, an unbiased non-parametric estimation of
mean length, fracture density, and intensity can be obtained
(Mauldon et al., 2001). Thanks to its simple implementation
in the field, this technique is widely used; however, it has
an important limitation: lineament lengths are never directly
measured. For this reason, analysis carried out with the cir-
cular scanline method yields estimates of mean length val-
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ues but is unable to provide a complete characterization of
the lineament length distribution and therefore lacks any real
statistical significance. Despite this problem, the popularity
of this method was motivated by the fact that, in the past,
without modern digital imaging techniques, length data ac-
quisition was slow and tedious; thus datasets were usually
small. Moreover, calculating the length and estimating any
distribution other than the exponential was difficult and com-
putationally intensive (Baecher and Lanney, 1978; Baecher,
1980), and, due to limitations in early algorithms used to
generate stochastic fracture networks, there was no real in-
terest in using precise distribution parameters in input. These
limitations have mostly been overcome by modern charac-
terization methods; thus new tools and techniques based on
the maximum likelihood estimator (MLE), such as FracPaQ
(Healy et al., 2017; Rizzo et al., 2017), have been developed,
enabling researchers to apply quantitative statistical infer-
ence on dense digital datasets.

Our methodology, presented for the first time in this contri-
bution, represents a powerful alternative to circular scanline
methods to treat specifically the censoring bias and to obtain
unbiased trace length statistical models. This specific bias is
defined when, for some traces, one or both ends cannot be
seen due to the limited size of the outcrop (Baecher and Lan-
ney, 1978). This effect is present from thin section to satellite
image scale, and it is caused by the inability to see beyond
the study area (i.e. thin-section limits, outcrop extension;
Mauldon et al., 2001). From a statistical point of view, this
problem is analogous to the censoring bias affecting some
medical, biological, and engineering datasets, and the tech-
niques used in these disciplines to solve or limit the effects of
this bias go under the names of survival analysis, life testing,
or reliability analysis (Kaplan and Meier, 1958; Leung et al.,
1997; Lawless, 2003; Cox, 2017; Karim and Islam, 2019).
Even though, in these disciplines, the recorded random vari-
ables are time spans (e.g. lifetime of a patient, time to fail-
ure of a mechanical part), we demonstrate that this statistical
technique can also be adapted to length measurements. Mea-
suring length is straightforward with dedicated code or with
a simple GIS software; however, applying survival analysis
and fitting robust unbiased parametric statistical distributions
needs a more detailed treatment. As the main topic of this
contribution, we propose to adapt survival/reliability analysis
techniques to correctly account for censored lengths and es-
timate robust trace length distributions derived from DOM:s.
Furthermore, we define a quantitative methodology to select
the most representative estimated statistical model (i.e. para-
metric distribution) from a list of proposed models. The the-
ory and techniques presented in this paper are available as an
open-source Python package called FracAbility that accepts
shapefiles as input and allows one to carry out a complete
and unbiased statistical analysis workflow for fracture-length
data (https://github.com/gecos-lab/FracAbility. last access:
8 September 2024).
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2 Fracture surveys and terminology

A discontinuity in a rock mass can be defined as a surface
across which a material has lost its cohesion or was originally
discontinuous. This definition thus includes faults, fractures,
foliations, stylolites, compaction or deformation bands, and
bedding interfaces. Fractures are classified as shear or ten-
sional fractures. Tensional fractures, when possible, can be
further divided into joints when empty or veins when filled
by minerals (Twiss and Moores, 2007; Davis et al., 2012).
This distinction, however, is often difficult to make with-
out an in-depth field and sample validation, since some frac-
tures may have hybrid fill attributes and may be only partly
filled with inconspicuous mineral deposits and thus resemble
joints. Moreover, the degree of fill may depend on fracture
width so that small fractures resemble veins (Laubach et al.,
2019). Although three-dimensional by nature, most of the
times discontinuities are mapped as 2D lineaments or traces
over a surface. These lineaments are the intersections of such
discontinuities with an exposed surface, such as the topogra-
phy, an outcrop, a borehole, or a sample. In this work, fol-
lowing a common usage in outcrop studies, the term fracture
is used as a generic term to indicate any type of discontinu-
ity trace. Fractures with the same formation age, kinematics,
and orientation can be grouped into families or sets. Multiple
fracture sets present within an area form a fracture network
or system (Davis et al., 2012).

Additionally, fracture networks present two other funda-
mental components: boundaries and nodes (Fig. 1a). Bound-
aries are the limits of the sampling area, at scales from
thin sections to satellite images, within which the sampled
fracture traces are assumed to be complete. Ideally, bound-
aries are strictly convex; however, this is often not the case.
Boundaries often show tight bends, coves, and holes, and the
final shapes are mostly controlled by localized alteration, an-
thropogenic activity, vegetation, etc. (Fig. 1b).

Nodes are points in the network that define how fractures
interact or do not interact with other elements of the network
(other fractures, boundary, holes). Nodes can be classified by
the number and type of segments (branches) that insist on the
given point (Sanderson and Nixon, 2015) (Fig. 2):

— Isolated I nodes are connected to only one branch be-
longing to a fracture.

— Y/T and X nodes are respectively connected to three and
four branches belonging to two fractures.

— “Boundary” B nodes are connected to one branch be-
longing to a fracture and two branches belonging to the
boundary.

Node elements describe useful hydraulic properties of a frac-
tured rock mass (Gueguen et al., 1991; Manzocchi, 2002;
Sanderson and Nixon, 2015).

In a non-porous rock with all open fractures, a network with
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a prevalence of I nodes is less connected; thus fluid flow is
usually more restrained. Conversely, both Y/T and X nodes
increase the connectivity of the network and thus increase
both fluid flow and the permeability. However, sometimes
this is indeed not the case, e.g. sealed faults and opening-
mode fractures (Forstner and Laubach, 2022). Moreover, if
a rock is porous, then length becomes the key parameter for
controlling fluid flow; thus, even in a network with only I
nodes, length can markedly augment fluid flow (Philip et al.,
2005). Additionally, nodes give important chronological in-
formation about the network. I nodes indicate that fractures
terminate within the observational boundary and that they
do not end or cross with other fractures. Y/T nodes can be
evidence of either abutting or cross-cutting relationships of
non-coeval discontinuities; the former is relevant for discon-
tinuities with no displacement, while the latter applies to dis-
continuities with visible displacement. X nodes represent a
mutual cross-cutting relationship, and the chronological in-
terpretation depends also on other observations. Finally, B
nodes identify whether a fracture is complete or censored
and, as such, define if measured properties along a trace are
also complete or incomplete. These nodes could be regarded
as a sort of equivalent of the U (undefined) nodes in Nyberg
et al. (2018), however, with a slightly different meaning and
more precise definition.

3 Statistical modelling of censored length data

Having a length dataset, there is usually the necessity of es-
timating the parameters of one or multiple statistical distri-
butions. When doing so, censoring is inevitable, as the area
within which measures are carried out will always be lim-
ited. Then, how can we carry out an unbiased estimation of
such parameters? On the one hand, common and simplistic
approaches, such as ignoring censoring (i.e. regarding cen-
sored lengths as if they were complete) or excluding censored
measurements (i.e. cherry-picking only non-censored data),
should be avoided, as they will always lead to an underesti-
mation of the model parameters (see Discussion for a more
in-depth analysis). On the other hand, circular scanline meth-
ods offer an unbiased estimate of the mean length; however,
being non-parametric, they yield neither the distribution type
(e.g. normal, exponential) nor distribution shape parameters
(e.g. standard deviation, variance). This in turn makes the es-
timate’s use quite limited and not apt for downstream statis-
tical modelling applications (such as DFNs). To solve these
problems, we propose using survival analysis, a specialized
field of statistics, developed to deal with censored data. Sur-
vival analysis focuses on the analysis of time of occurrence
until an event of interest (Kalbfleisch and Prentice, 2002).
Although, in literature, the terms survival times, time to fail-
ure, and (more generally) lifetimes (Lawless, 2003) seem to
imply that time is the only valid variable, any non-negative
continuous variable, such as length, can be valid (Kalbfleisch
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Figure 1. Panel (a) shows an example of a simple fracture network and its components. Panel (b) shows a modified version of the boundary
with a “hole” (in red) in which no interpretation can be carried out. The presence of these holes can increase the number of censored fractures
and introduce uncertainty into the interpretation, splitting fractures into multiple pieces (i.e. fracture 10 is split in two).
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Figure 2. Topological abstraction of the simple fracture network in Fig. 1 following the described node classification.

and Prentice, 2002; Lawless, 2003). The advantage of sur-
vival analysis over the other methods discussed above is that
it regards censored data as a valid data point and as a car-
rier of the information that the event did not occur up to the
censoring time. This is a necessary shift in perspective that
allows an unbiased estimation of statistical models that will
be described in this paper. We will start by describing the
theory of survival analysis in function of time, then we will
show how the same theory can be applied in space to sets of
length or distance measurements.

3.1 Survival analysis theory and standard terminology

Since this technique is rooted in medical and biological ap-
plications, the nomenclature from this type of literature is
carried along. The event of interest (for which we measure
the time to event) is often defined as death, while a loss in-
dicates that the observation has been lost because it was hin-
dered by a secondary event, called a censoring event (Kaplan
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and Meier, 1958). Censoring events can be classified as three
main types depending on when censoring happens in respect
of the observation period (Karim and Islam, 2019) (Fig. 3):

1. Right censoring. The event happens after the end of the
study period; thus the partial lifetime of the event is ob-
served.

2. Left censoring. The event happens before the start of the
study; thus it is not observed.

3. Interval censoring. The event happens somewhere be-
tween observation intervals within the study period be-
cause it was not possible to continuously monitor the
occurrence of the event.

The most treated and common type is right censoring,
which can be further divided into the following (Fig. 4):

1. Single censoring. When there is an imposed end time
equal for all events (i.e. controlled loss).

https://doi.org/10.5194/se-16-367-2025
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Figure 3. Different censoring types in a fixed observation period. Right censoring is defined when the event happens after the end of the
study. Left censoring occurs when the event happens before the start of the study. Interval censoring happens somewhere between observation

intervals within the study period.

2. Random censoring. When each measured event is char-
acterized by a random censoring event (i.e. accidental
loss).

3.2 The survival curve and the Kaplan-Meier
estimator

A fundamental assumption in survival analysis is the in-
dependence of the right-censoring mechanisms, i.e. the as-
sumption that the probability of occurrence of the event does
not depend on the censoring mechanism (Kalbfleisch and
Prentice, 2002; Lawless, 2003; Kleinbaum and Klein, 2012).
Independent censoring is also called non-informative cen-
soring, as it does not affect inference and only indicates
that the lifetime exceeds the censoring time (Kalbfleisch and
Prentice, 2002). This assumption is the basis of the non-
parametric Kaplan—Meier estimator of the survival function
(SF), i.e. the population probability that X; exceeds a given
value x (Kaplan and Meier, 1958; Kalbfleisch and Prentice,
2002):

SF(x) = P(X; > x). 1)
The survival function is often called the complementary cu-
mulative function, since it adds to 1 with the cumulative dis-
tribution function (CDF):

CDF(x)=P(X; <x)=1—P(X; >x)=1—SFx). (2)

The non-parametric Kaplan—Meier estimator P (x) is defined
by ordering N values of complete x., and censored x.. data
by increasing magnitude, with x; < xp <... < xp, such that
(Kaplan and Meier, 1958; Kalbfleisch and Prentice, 2002)

~ N —
Po=Ily= 2
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where r is the indexes in which the complete values are
smaller than a value x (i.e. xco < x).
Therefore, P(x) is a step function that (Fig. 5)

1. remains constant in any given time interval where no
new events are recorded or where censoring occurs;

2. decreases by a degree (step) depending on the number
of events that occur in a time interval.

Empirical survival curves are fundamental for representing,
comparing, and understanding the survival rates of different
censored datasets. The curve’s steepness is directly propor-
tional to the survival rate, and the median of the (random)
survival time (i.e. time value corresponding to a 50 % chance
of survival) can be used as a simple indicator to compare dif-
ferent survival curves.

3.3 The time-length dimensional shift

Since length is, as time, a non-negative continuous variable,
it is theoretically possible to apply survival analysis tech-
niques to length datasets by considering (Fig. 6)

1. the complete fracture trace length analogous to the life-
time;

2. the event as the end (death) of a trace, marked by a node
(I and/or Y/T nodes in the case of complete traces);

3. the study area, defined by its boundary, analogous to the
study period;

4. the censored event to be the intersection between the
fracture trace and the boundary (marked by a B node).

By applying the definitions of the different types of cen-
soring (described in Sect. 3.1) to our specific application,

Solid Earth, 16, 367-390, 2025
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Figure 4. Different right-censoring types for the same seven subject experiments. Panel (a) represents single censoring, where events 1, 3,
and 6 are complete measurements, while the remaining events are censored at time C. In panel (b), only event 7 is complete, while the others

are all censored at different times.
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Figure 5. An example of the Kaplan—-Meier estimated survival curve. In panel (a), the estimated curve seems continuous; however, when
zooming in (red rectangle in panel a), one can see it is a step function (b). The red crosses indicate the censoring events and show how the

function never jumps at these values.

it is reasonable to assume that only random censoring oc-
curs in trace length analysis. Moreover, censoring is non-
informative, since the boundary is the product of secondary
events (i.e. alteration, erosion, debris covering parts of the
outcrop, vegetation, human activity) that occur after fracture
genesis and thus do not inform the occurrence of the event
(see Discussion for a more in-depth analysis).

3.4 Unbiased MLE model estimation for censored data

Considering that the censored event does not modify the
probability of occurrence of the measured event, survival an-
alysts try to solve the problem of estimating a parametric sta-
tistical model (i.e. distribution) by using optimization algo-
rithms such as linear regression or the maximum likelihood
estimator (MLE). Both methods are valid; however, in these
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types of applications, MLE is most used; thus we will discuss
this technique in more detail.

Given a statistical parametric model with density g(x, 0)
(i.e. an assumed theoretical distribution) and a sample x of
size n, the main objective of MLE is to estimate the parame-
ters @ such that the observations x are the most likely under
g(x,6) (Burnham and Anderson, 2002, 2004; Karim and Is-
lam, 2019).

In the simplest one-dimensional (1D) case (estimation of
the parameter of a one-parameter distribution), the likelihood
can be described as a chain product of probabilities carried
out on all n individuals in the following sample:

L®lx,8) =] 2x:. ). )

i=1
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Figure 6. Censoring effect on an example of a simple fracture network and corresponding survival diagram. The survival diagram is a 1D
representation of the fracture length. On the y axis the fracture number is indicated, and on the x axis the length is represented. Solid lines
indicate the actual measured length, while dashed lines indicate the possible continuation of the fracture. Yellow pentagons represent the
censoring event given by the intersection of the fracture with the boundary.

Given the fixed (assumed) distribution type g with parame-
ter # and a sample x, the likelihood will be the product of
all the probabilities g(x;, @), i.e. the distribution’s probabil-
ity density function (PDF) calculated at value x; (P (6|x;)).
In practice, since g and x are fixed, the likelihood is a func-
tion only of the distribution parameter . The maximum of
this function will be , i.e. the parameter that maximizes the
likelihood for that model type and data combination. This
process can be extended to estimate multiple parameters, in-
creasing the complexity, but the core concept remains unal-
tered. However, Eq. (4) is valid only for complete datasets
because the probabilities associated with right-censored data
cannot be calculated using the PDF. To solve this problem,
it is possible to calculate the MLE for censored datasets, un-
der the assumption of random censoring, using the model’s
survival function (SF) §$(@|x;) instead of the PDF for the cen-
sored data (Karim and Islam, 2019):

L@lx, ) =] [POIx)” x S@1x)' 7, ()

i=1

where § is an on—off switch for complete (6 = 1) or censored
(6 =0) values. In other words, when data are censored, we
use the probability information that the individual survived
up to the censoring event, given by the survival function.
MLE is a consistent (i.e. estimation approaches the pop-
ulation parameter as sample size increases) and efficient
(i.e. lowest variance) estimator (Enders, 2005); however, it
has its limitations. For example, if the model has more than
one parameter, the weight of influence of each parameter is
not known; thus it is difficult to know which parameter con-
trols the fit. Moreover, simplistic MLE algorithms output a
single likelihood value, with a possibility that the optimiza-
tion gets trapped in a local minimum. This ultimately leads to
questioning whether the estimated parameter or combination
of parameters is the absolute best or if there are other more
optimal solutions. These (and other) problems culminate to
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an even greater uncertainty related to the choice of the dis-
tribution, as an infinite variety of functions can be used for
the same dataset. These uncertainties tie nicely to the follow-
ing subsection discussing model selection comparison crite-
ria and how we propose to solve this problem.

3.5 Model selection

With a series of fitted models, it is important to understand
which model better represents the data. In the geological
literature, this is usually achieved using a specific type of
null hypothesis test defined as a goodness-of-fit (GOF) test
(i.e. Storti et al., 2022). These types of tests, in general, do
not identify the best-fitting distribution among a set of pos-
sible distributions. A GOF test takes a distribution L and the
sample data and tells if the model L is not plausible; that is,
if the probability of drawing such a set of data, from a pop-
ulation of distribution L, is too small. This means that more
than one distribution may be deemed plausible and that the
conclusion is strong only when a distribution is an unlikely
model for the data. Moreover, GOF tests usually have un-
derlying assumptions that, if ignored, undermine the test’s
accuracy (Storti et al., 2022). For example, the Kolmogorov—
Smirnov test (Kolmogorov, 1933) is biased if the parameters
of the tested distribution are estimated from the data (Bistac-
chi et al., 2020). As an alternative to GOF tests, we propose
a combined visual and quantitative approach that guides the
researcher in an informed choice of the most representative
model out of a list of sensible candidates. By sensible can-
didates, we mean those models that make physical sense for
the case study. For example, for fracture lengths, a power law
can be considered a sensible candidate, since it describes an
observed pattern of fracture self-similarity. A lognormal is
also an equally sensible candidate because of the effect of
truncation. Conversely, a normal distribution is not very sen-
sible, since values in the left tail can be negative. Thus, for a

Solid Earth, 16, 367-390, 2025
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normal model, either the average length is very high and the
standard deviation is very low or a truncated normal should
be tested. In the Case studies section, we will cover different
models, purposefully adding non-sensible models (such as a
standard normal) to showcase the model selection workflow.

3.5.1 A visual approach using the probability integral
transform (PIT)

The probability integral transform (PIT) is a well-known
transformation of continuous distributions which converts
random variables with continuous distribution to standard
uniform distributed random variables (Fisher, 1990), given

1. arandom variable Y,
2. Fy asthe CDF of Y,

3. Z=Fy(Y) asthe PIT of Y and a standard uniform ran-
dom variable.

This means that, given a random sample X, sampled from a
population with distribution Y, the transformed sample Z =
Fy(X) has, with large probability, an empirical distribution
which is close to the standard uniform distribution. Clearly,
if we transform X with another distribution W, which is
not the true distribution of the population, then Fy (X) is
not uniformly distributed. This observation provides a visual
tool to compare different fits: indeed, suppose that sample
X might have been sampled from a population of distribu-
tion Y or W. We may compute the two transformed samples
Z,=Fy(X) and Z, = Fw(X): if X was drawn from dis-
tribution Y, then the empirical distribution of Z is likely to
be close to the standard uniform, while, if the true distribu-
tion was W, then we expect that Z,, instead of Z;, would
be close to the standard uniform. A synthetic example of PIT
is presented in Fig. 7. A random sample X of 10000 (non-
censored) measures is extracted from a standard normal dis-
tribution Y (Fig. 7a). The exponential Yg model (hypothesis)
has been fit with an MLE to the random sample. Figure 7b
and c represent the empirical frequency histogram and the
empirical CDF (ECDF) of Z for both models (Zy = F,,(X)
and Zg = F.(X)). Both figures show that the normal esti-
mated model follows a standard uniform, while the exponen-
tial model does not. The ECDF visualization of Fig. 7c is
preferred over the simple frequency binning of Fig. 7b, since
multiple models can be tidily represented with the reference
uniform distribution appearing as the diagonal of the plot.
The closer the ECDF of Z is to the diagonal of the plot, the
closer the fit is to the true underlying model. Values in the
PIT plot that are below the diagonal indicate an overestima-
tion of the model’s CDF in respect to the empirical cumula-
tive. Conversely, values that are above the diagonal will result
in an underestimation of the model’s CDF. Hence, the PIT
provides a simple visual, yet powerful, method to estimate
which parametric model better fits the empirical data.
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3.5.2 A quantitative approach using distances

While the PIT visual approach is very intuitive, we propose
also using a quantitative approach, calculating four different
statistics. The first is the Akaike information criterion (AIC)
(Akaike, 1974), which, by using the result of the MLE, quan-
tifies the distance between the true natural phenomena and
the estimated model as

AIC = 2k —2In £(9), (©6)

where k is the number of parameters used by the model
(i.e. the dimension of the parameter vector) and @ is the k-
dimensional parameter vector that maximizes the likelihood
of the model (£).

This formulation outputs a real number (either positive or
negative) which should be small as the distance between the
true population and the model decreases. If multiple models
are tested, then it is possible and advised to calculate the A;
parameter, i.e. the distances between the different models to
the best-scoring one (AICnp):

A; = AIC; — AICn, @)

where i is the index of the proposed model.
From A; it is possible to obtain the weight of evidence
(w;) of the given model with the following formula:

e—hi/2
R _AR/2’
Zr:le R/

where R is the total number of tested models (i.e. models
deemed reasonable by the researcher).

The weight of evidence outputs a value between [0; 1] that
represents, in a set of proposed hypotheses, how likely it
is that the model comes close to the true underlying pro-
cess. The closer to 1, the more likely it is that, in the pool
of candidates, the model represents the true underlying pro-
cess (Burnham and Anderson, 2004). Since AIC and the de-
rived formulas are directly based on the MLE, they are af-
fected by the same limitations discussed in Sect. 3.4 (Akaike,
1974). We thus propose calculating three different distances
between the model and the data (Kim, 2019). Usually, dis-
tances are calculated by comparing the empirical cumula-
tive frequency with the cumulative frequency of the model;
however, the data are censored; thus we use the empirical
cumulative frequency estimated from Kaplan—-Meier. More-
over, Kim (2019) proposes to calculate the distances using
the data transformed with PIT (i.e. Z = F,(X)). We would
like to highlight that, purely from the point of view of the
calculation, the distances are the same with or without using
the transform; however, with PIT, the data are “normalized”;
thus the different models are compared over the same scale
(0, 1). Equation (3) then can be rewritten as

®)

w; =

0, A
Gn(@) = 11—z <. (F55D". 2<Zy . ©9)
1, z2>2ZN
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Figure 7. Synthetic example of the probability integral transform. Panel (a) shows 10 000 random samples X drawn from a standard normal
distribution Y. Panel (b) shows the frequency distribution of Z from two different models (hypotheses): normal (YN) and exponential (YE).
Panel (c) shows the empirical cumulative of Z for both models. In panels (b) and (c), it is possible to observe the effect of the probability
integral transform. In panel (b), the empirical frequency histogram of the normal model is remarkably close to a uniform distribution, while
the exponential model is not. This is visualized much more clearly in panel (c¢), where the normal model is the closest to the diagonal line

y = x (i.e. the standard uniform).

where r is the indexes of each data point and §, is the same
on—off switch of Eq. (5).
Kim (2019) then proposes to calculate

— the Kolmogorov—Smirnov statistic (DC,), representing
the maximum distance between the two cumulative
curves (Kolmogorov, 1933; Smirnov, 1939);

- The Koziol and Green statistic (W2), representing the
sum of squared distances between the two cumulative
curves (Koziol and Green, 1976);

— the Anderson—Darling statistic (AC%), representing the
weighted sum of squared distances between the two
cumulative curves, imparting more weight than the
Kolmogorov—Smirnov on tail observation (the closer to
0 or 1, the higher the weight; Anderson and Darling,
1954).

The three sets of statistics can be modified to accommodate
the presence of censored data by using the Kaplan—Meier es-
timator.

The Kolmogorov—Smirnov statistic is generally calculated
as

DC, = max(DC,J{, DC,)), (10)
where, with censored data,

DC; = max(Gu(Z,) — Zy),
DC, = max(Z,41 — Gu(Z,)).

(10a)
(10b)
The Koziol-Green statistic is a generalization of the Cramér—

von Mises statistic (Koziol and Green, 1976):

W N / Gn(2) — 2)%dz, an
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which, considering censored data, can be written as (Ap-
pendix 2 in Koziol and Green, 1976)

1 AN
WE=IN4NY GuZ) X (Zrp1) = Z

r=1
X [Gn(Zy) = (Zr41 — Z0)].

Finally, the Anderson—Darling distance (Anderson and Dar-
ling, 1954), generally defined as

N2
Cz(l-z)

(11a)

where Z(ll—_z) is the weight, can be calculated accounting for
censoring as a finite sum (Kim, 2019):

N—-1

AC, =N )~ (Gu(Z,))’ x (=In(l = Zys1) +In(Zr41)
r=1
+N X (1= Z) = In(Z,)+
N-1
—2N Y (Gu(Zp) x (=In(l = Zri1) +In(1 = Z,)+
r=1

—NxIn(1-Zy)+ N xIn(Zy)+ N.
(12a)

Once these distances are calculated for each model, we pro-
pose to rank the models independently for each distance
(from minimum to maximum). If all distances converge
(i.e. for the same model, the same rank is assigned), then
we regard this as sufficient proof for the overall ranking of
the model in the list. By comparing multiple rankings, even
if the calculated distances are ranked differently, it is still
possible to make a sensible guided choice, for example, by
using the PIT representation together with the mean ranking
position or by following a specific type of distance.
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4 Case studies

We demonstrate the applicability of the discussed theory by
using the FracAbility package in three different case stud-
ies. The first case study focuses on the characterization of a
very regular and densely fractured fracture network with a
simple boundary geometry. The second focuses on analysing
a typical average-quality outcrop, with multiple fracture sets
and complex boundary geometry. Finally, the third case study
presents an application with spacing analysis to demonstrate
that any type of length can (and must) be corrected from
right-censoring bias. We propose to test six statistical models
of length, frequently adopted in the literature (Bonnet et al.,
2001) or used in stochastic DFNs:

Lognormal

Truncated power law (power law in the following)

Normal

Weibull

Exponential

Two-parameter gamma (gamma in the following).

4.1 First case study: Cava Pontrelli, Puglia (IT)

This first case study focuses on the analysis of a single NW—
SE-striking fracture set present in an abandoned quarry near
the town of Altamura in Puglia (Italy). The study area is lo-
cated on the Apulian Platform, representing the forebulge of
the southern part of the fold and thrust belt of the Apennines
(Vai and Martini, 2001; Patacca and Scandone, 2007). The
outcrop is characterized by an extensive horizontal pavement
of about 18.000 m?, showing densely fractured Cretaceous
platform limestone of the Altamura Limestone Formation
(Ricchetti and Luperto Sinni, 1979). The continuous main-
tenance that followed the discovery of thousands of dinosaur
footprints on the quarry pavement (Nicosia et al., 1999) made
it possible to obtain an exceptionally clean outcrop surface.
This in turn resulted in the definition of a simple boundary
geometry (with a couple of interpretational holes) and the
digitalization of a very regular and dense fracture network
(1941 fractures). The combination of these factors led to a
very low percentage of censoring, with only 8.9 % of the to-
tal fractures being censored (Fig. 8).

We applied survival analysis as implemented in FracA-
bility, and, in Fig. 9, the resulting PIT plot is shown. The
most representative model appears to be the lognormal, con-
firmed by all the distances calculated in Table 1 (ordered by
ascending Akaike scores; see Fig. 10 for a summary of the
fit). Figure 9 shows that the PIT of the lognormal model is
quite linear, with gentle undulations indicating a slight un-
derestimation for lengths between 1 and 2 m (accounting for
20 % of the measures) and a slight overestimation for lengths
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between 3.5 and 6.5 m (accounting for another 20 % of the
measures). For the calculated distance scores, the lognormal
is followed by the gamma and Weibull models; however, the
rank scores of these last two models are not uniform. While
the Koziol and Green distance favours the gamma model, the
Anderson—Darling distance favours the Weibull model. Fi-
nally, the power-law and normal models rank lowest in com-
parison to the other models, indicating that they are less able
to represent the dataset.

4.2 Second case study: Colle Salza, Valle d’Aosta (IT)

The second case study focuses on the analysis of a less ideal,
albeit more realistic, outcrop. The study area is located in
the basement of the Western Alps (Dal Piaz et al., 2003), on
paragneiss of the Monte Rosa Nappe (Dal Piaz and Lom-
bardo, 1986). The outcrop is cross-cut by several brittle frac-
tures, Tertiary in age (Bistacchi and Massironi, 2000), and is
characterized by a main central area of 1234 m? and two sec-
ondary smaller satellite areas of 9 and 3 m?. The boundary
geometry is highly concave, thus leading to a high censor-
ing fraction of fracture traces. Moreover, the outcrop is ex-
posed on top of a small topographical height with a slightly
ellipsoidal shape due to glacial erosion (i.e. a roche mou-
tonnée), with the main axis directed NW-SE. This leads to
an inevitable deformation of the orthophoto (and thus of
the measured lengths) along the extremities of the analysed
area. The analysed fractures are subdivided in two main sets,
striking NE-SW (Set 1) and NW-SE (Set 2), conforming
to the general trend of the area for brittle deformation (Bis-
tacchi et al., 2000; Bistacchi and Massironi, 2000; Bistacchi
et al., 2001). The total number of fractures is 1718 (24.7 %
censored), while, set-wise, the number of fractures is 692
(24.3 % censored) for Set 1 and 1026 (24.9 % censored) for
Set 2 (Fig. 11).

The different estimated models are represented for both
sets in Fig. 12. In both cases, the lognormal model better fits
the data overall. Nonetheless, the fit of estimated models is
visibly worse than in the first case study, particularly for Set 1
(Fig. 12a). The lognormal fit of Set 1 underestimates lengths
between 0.34 and 1.5 m (about 50 % of the measures), while
lengths above this value are generally overestimated. For the
lognormal fit of Set 2 (Fig. 12b), there is a less relevant un-
derestimation of the length values between 0.44 and 2.57 m
(about 60 % of the measures) and a slight overestimation for
longer length values. The distance values in Table 2 (ordered
by ascending values of Akaike) confirm the lognormal as the
most representative for both sets (see Fig. 13 for the sum-
mary plots of the best fit). For the other models, the mean
rank value can be used to assign a final ranking. The mean
ranks show that the gamma distribution is less representative
than both the exponential and the Weibull (respectively the
second- and third-most representative models).
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Figure 8. Overview maps of the first case study area. Pictured on the left is a general overview of the area with the boundary geometry
overlaid on the orthophoto and a small sample of the digitized fracture set. Pictured on the right is a subarea of the quarry with the boundary,

fracture traces, and boundary nodes (yellow pentagons).
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Figure 9. PIT visualization for the proposed length models in the Pontrelli quarry. The red line represents the reference U(0,1): the closer
the model line is to this reference line, the more representative the model. For this dataset, the lognormal model is the most representative,
following the reference line almost perfectly, with some minor underestimation between 1.16 and 2.11 m and overestimation between 3.58

and 6.47 m.

4.3 Third case study: spacing analysis

Survival analysis can also be used to analyse the spacing
length distribution for each fracture set. Thus, the same work-
flow was applied to spacing measurements of both Set 1 and
Set 2 of the Colle Salza dataset. It is worth noting that the
censoring analysis is a secondary part of the analysis for
spacing. Analysing the spatial arrangement of the fractures
in the network (such as Marrett et al., 2018; Bistacchi et al.,
2020) is of fundamental importance; however, we decided
not to include this analysis and focus mainly on censoring to
avoid increasing the length of an already dense text. Spacing
is defined as the distance between two fractures of the same
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set, measured perpendicular to the average fracture plane at-
titude (Bistacchi et al., 2020, and references therein). Tradi-
tionally, this type of statistic is obtained in the field with scan-
line surveys, with properly oriented scanlines, or by apply-
ing the Terzaghi correction (Terzaghi, 1965). With DOMs,
this procedure can easily be sped up with custom scripts,
programmatically tracing a large number of parallel scan-
lines and thus increasing the number of spacing measure-
ments (De Toffoli et al., 2021; Storti et al., 2022). However,
this leads to a higher number of censored spacing measure-
ments occurring at the outcrop boundary and where “holes”
are present. As with standard lengths, the introduction of a
boundary affects the actual estimation of the spacing by a
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Table 1. Models’ distance tables and ranking score tables for the Pontrelli quarry. The closer to 0, the better. For this dataset, the lognormal
is the most representative of the data in all the different distances, while the power-law and normal models are the least representative. The
positions of the other models in between are less certain (especially the gamma and exponential).

Model AIC A; w; DC, w? AC?  AICrank DC,rank W2 rank AC2 rank Mean rank
Lognormal 8522.15 0.00 1.00 0.02 0.07 0.56 1 1 1 1 1
Gamma 8742.20 220.05 0.00 0.07 2.97 19.53 2 4 4 3 3
Weibull 8770.37 24822  0.00 0.06 2.53 19.18 3 2 3 2 3
Exponential 8774.85 252770  0.00 0.06 2.33 19.53 4 3 2 4 3
Power law 10639.54 211740 0.00 032 71.71 354.20 5 6 6 6 6
Normal 10682.11 2159.97 0.00 0.18 24.54 148.01 6 5 5 5 5
Pontrelli quarry summary plots
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Figure 10. Summary of the best-fitting model (lognormal) for the Pontrelli quarry dataset. (a) The probability density function against the
histogram of the dataset. (b) The cumulative distribution function and (c¢) the survival function against the empirical counterparts calculated
with the Kaplan—Meier estimator. (d) The summary table of the main statistics for the data (e.g. sample mean, sample variance) compared

with the estimated model.

degree depending on the outcrop’s convexity (Fig. 14). Per-
fectly convex boundaries (Fig. 14b) will lead to minor cen-
soring, affecting only the ends of the scanlines, while more
realistic non-convex boundaries will increase the censoring
percentage because the boundary will cross the same scan-
line at multiple points (Fig. 14c).

For the Colle Salza dataset, 1282 and 1119 spacing mea-
surements were obtained for fracture sets 1 and 2 respectively
(with 52.5 % and 36.5 % censoring). Figure 15 shows the dis-
tances of the different models for the obtained spacing val-
ues. In this case, for Set 1, an extreme underestimation of
the lognormal model is present for values longer than 4 m
(Fig. 15a), while, for the other proposed models, particularly
the Weibull, the distances at the same values are smaller. This
is also visible in the distance tables (Table 3). Although the
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Akaike distance for the lognormal model is the smallest, the
difference from the other models (A;) is not as big as in the
other examples. Thus, the weight of evidence (w;) is also not
completely in favour of the lognormal model. The poor fit of
the lognormal model is also confirmed by the other distances
that rank the lognormal lower than the Weibull and gamma
models (ranking first and second respectively). All these fac-
tors point to the fact that, in this case, the Weibull is the
most representative model (see Fig. 16 for a summary rep-
resentation of the best fit). Conversely, the lognormal model
is clearly the most representative for Set 2 (Fig. 15b). The
PIT plot shows a quite linear behaviour and all the calculated
distances ranking first.
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Figure 11. Overview maps of the second case study area. Pictured on the left is a general overview of the area with the boundary geometry
overlaid on the orthophoto and a small sample of the digitized fracture sets. On the right is a subarea of the quarry with the boundary, fracture
traces, and intersection nodes between the two (yellow pentagons).

Table 2. Models’ distance and rank tables for both Colle Salza sets. The closer to 0, the better. For this length dataset, the lognormal is the
most representative of the data for all the different distances. Using the mean rank, the lognormal is followed by the exponential, Weibull,
and gamma distributions. As with the first case study, the power-law and normal distributions are the least representative.

Set 1

Model AIC A;  w; DC, W2  AC? AICrank DCjrank W2 rank AC2rank Mean rank
Lognormal ~ 1118.98 0.00 1.00 006 0.5 5.05 1 1 1 1 1
Gamma 126459 14561 000 0.12 267  23.59 2 4 4 4 35
Exponential 128038 16140 0.00 0.10 232  20.82 3 2 2 2 2.25
Weibull 1281.01 16203 0.00 0.11 240 2163 4 3 3 3 3.25
Powerlaw 193596 81698 0.00 036 32.68 160.01 5 6 6 6 5.75
Normal 206824 94926 0.00 022 11.84  79.92 6 5 5 5 5.25
Set 2

Model AIC A; w; DGy w2 AC?  AICrank DCprank W2 rank AC2 rank  Mean rank
Lognormal  2204.06 0.00 1.00 004 039 453 1 1 1 1 1
Gamma 2379.13 17507 0.00 0.09 297  29.94 2 4 4 4 35
Exponential  2390.81 18675 0.00 0.09 254 2531 3 2 2 2 2.25
Weibull 239234 18828 0.00 0.09 262 2624 4 3 3 3 3.25
Powerlaw  3109.95 905.89 0.00 031 3529 167.56 5 6 6 6 5.75
Normal 342172 1217.66  0.00 021 1524 137.05 6 5 5 5 5.25

5 Discussion

With this work, we delineate a robust statistical framework to
quantitatively analyse and statistically model fracture trace
length and spacing. The statistical distributions are estimated
using the entire length of fracture traces, following the origi-
nal works of Baecher and Lanney (1978) and Baecher (1980)
and not the length of branches as defined in Sanderson and
Nixon (2015). Branches offer a useful topological abstraction
of the network (making it possible to classify node intersec-
tions); however, they do not carry a real geological or phys-
ical meaning; thus a distribution obtained by fitting branch
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length will have a different meaning compared to one ob-
tained from complete lengths. Furthermore, length can some-
times be affected by a subjective bias leading to an uncer-
tainty as to which structure should be measured. For exam-
ple, with segmented or en echelon fractures, do we measure
the single segments or consider their cuamulative sum? By ap-
proaching this problem with branches, a clear objective an-
swer cannot be reached, while, by regarding a 2D lineament
as a representation of the 3D geological structure, contex-
tualized in the geological history of the outcrop, a more ra-
tional and informed decision can be made (i.e. Forstner and
Laubach, 2022).
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Figure 12. PIT visualization for the proposed length models is shown for Set 1 (a) and Set 2 (b) of the Colle Salza dataset. The red line
represents the reference U(0,1); the closer a model’s line is to this reference, the more representative the model. Among the models, the
lognormal distribution demonstrates the closest fit to the reference line in both sets, although showing a worse fit to that observed in the first
case study. Across both sets, all estimated models exhibit less linearity, with notable underestimation between 0.34 and 1.5 m in Set 1 (a) and

between 0.44 and 2.57 m in Set 2 (b).

The first and crucial point of discussion is the objective
of having a representative unbiased statistical model that is
sufficiently likely to reproduce the observed length data. In
particular, we want to stress that there is no real interest or
practical reason and no theoretical possibility to find the real
underlying distribution, while there is a strong necessity to
fit specific simplified parametric models, useful for stochas-
tic modelling applications (such as DFENs). Due to this, non-
parametrical methods, such as those proposed by Mauldon
et al. (2001), are unfit, since they are not linked to any model.
Furthermore, having an unbiased statical model can also be
extremely important for engineering applications. For exam-
ple, at the end of the paper by Pahl (1981) it is stated that,
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in geomechanical application, it could be useful to know the
longest trace likely to occur in a group of traces. With a para-
metric model, this can easily be estimated by checking the
length values associated to a probability chosen, depending
on the safety margin that is needed for the use case. Mod-
ern alternatives that use a simple implementation of MLE,
such as FracPaQ (Healy et al., 2017), are a good step for-
ward; however, the censoring bias is still present; thus the
results are biased, always underestimating length. The ap-
proach proposed here provides for the middle ground that
was missing. We have shown that it is possible to use sur-
vival analysis to model censored length datasets, and we have
showcased a new approach in model selection via quanti-
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Figure 13. Summary of the best-fitting model for the Colle Salza dataset (Set 1 and 2). (a) The probability density function against the
histogram of the dataset. (b) The cumulative distribution function and (¢) the survival function against the empirical counterparts calculated
with the Kaplan—Meier estimator. (d) The summary table of the main statistics for the data (e.g. sample mean, sample variance) and estimated

model.

tative distances to rank and choose the most representative
model from a pool of simple candidates that can be used in
common modelling applications.

As stated, to use MLE for a given model, we assumed
that, in geological applications, the only censoring mecha-
nism present is random censoring. Both left and interval cen-
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soring, by definition, cannot happen because the event of in-
terest coincides with the end of the fracture. Thus, for left
censoring, fractures terminate outside the boundary and thus
cannot be measured (this is analogous to a patient never en-
tering the study because they are already dead). The same
applies to interval censoring that could be erroneously iden-
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Figure 14. The effect of boundary geometry on censoring for spacing distribution modelling. (a) The ideal situation where no censoring
occurs. The visible intersections between the scanline and the fracture are green, while the measured spacing segments are blue. (b) The
effect of a perfectly convex boundary (i.e. a circle) on the estimation of censoring. For the “visible” scanlines, only the final segments are
censored. (c) The effect of a complex boundary geometry. Here, the number of censoring measurements increases drastically, showing that
censoring is no longer limited to the ends of the scanlines.

Table 3. Models’ distance and rank tables for the spacing calculated on both Colle Salza sets. The closer to 0, the better. For Set 1, the low
performance of the lognormal in the estimation of longer values (Fig. 15a) is visible at all distances. Even if the Akaike distance calculated
for the lognormal is the smallest, the difference from the other calculated values is not enough to completely justify the selection of this
model. This is also shown in the other distances where the lognormal clearly underperforms. On the other hand, for Set 2, the lognormal
model is the most representative for the spacing values for all the different distances.

Set 1

Model AIC A; w; DC, 2 AC?  AICrank DC,rank W2 rank AC2rank Mean rank
Lognormal  2508.66 0.00 0.5 0.11 1.25 13.32 1 4 3 4 3
Weibull 2509.59 093 035 005 075 6.17 2 1 1 1 1.25
Gamma 2512.84 4.17 0.07 0.06 1.03 8.37 3 2 2 2 2.25
Exponential ~ 2514.14 548 0.04 0.07 1.65 13.27 4 3 4 3 35
Power law 2682.15 17349 000 0.16 12.65 11642 5 6 6 5 5.5
Normal 3247.15 73849 000 0.14 1045 169.38 6 5 5 6 5.5
Set 2

Model AIC A; w; DC, w? AC?  AICrank DC,rank W2 rank AC2rank Mean rank
Lognormal 1652.30 0.00 1.00 0.03 0.15 1.47 1 1 1 1 1
Gamma 1709.71 5741 0.00 007 140 2353 2 4 4 4 3.5
Exponential  1712.78  60.48 0.00 0.06  1.18 19.66 3 2 2 2 2.25
Weibull 1714.62 6231 0.00 0.06 .22 2053 4 3 3 3 3.25
Power law 234023 68793 0.00 031 38.10 180.73 5 6 6 6 5.75
Normal 2603.07 950.77 0.00 0.17 11.56 136.26 6 5 5 5 5.25

tified when holes are present in the sampling area or when
boundaries are concave. However, since the measured event
is the end of the fracture, on the other side of the interrup-
tion no fractures should be present. In terms of classic sur-
vival analysis theory, this would compare to a patient’s loss
of follow-up in the study period, caused by voluntary or in-
voluntary exit from the study group, thus classifying it again
as right censoring (Leung et al., 1997).

Solid Earth, 16, 367-390, 2025

To correctly classify censoring as random, we must as-
sume independence between the censoring and length dis-
tribution. By “independence”, it is intended that the mecha-
nisms behind the generation of a fracture-length distribution
are different from the mechanisms that censor such lengths.
The boundary, which represents censoring, is usually the
product of secondary events that occur after fracture genesis
(i.e. alteration, debris hiding part of the outcrop, vegetation,
human activity). Thus, while it is often the case that such
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Figure 15. PIT visualization for the proposed length models is shown for Set 1 (a) and Set 2 (b) of the Colle Salza dataset. The red line
represents the reference U(0,1); the closer a model’s line is to this reference, the more representative the model. In contrast with the other
case studies, the lognormal distribution demonstrates a marked underestimation for values longer than 4.4 m for the spacing of Set 1 (a).
In this case, the closest fit is the Weibull. Conversely, for the spacing of Set 2 (b), the lognormal model is again the model closest to the

reference line, performing similarly to the first case study.

events are controlled by pre-existing structures, the physical
processes that caused censoring are not the same ones that
generated the fracture set and thus the original length dis-
tribution. This leads to an important implicit caveat where
the measured lengths must be related only to the mechanism
that we are interested in modelling, for example, lengths that
are surely linked to tectonics and no other secondary events.
Such discussion highlights that the assumption of indepen-
dence is difficult to rigorously prove, since the true distribu-
tion of the length of fractures is not known (we only observe
a set of complete and censored data). In some applications
(Eppes et al., 2024), this assumption may not hold, and a
more in-depth study may be required to prove the indepen-
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dence hypothesis before proceeding. Nonetheless, we believe
that it can be safely assumed in geological applications when
the appropriate field work and a posteriori analysis are car-
ried out.

As a second point, we would like to discuss the relation-
ship between the fraction of censored data and the uncer-
tainty in the estimated statistical model. There is not much
literature on this relationship, probably because, since tradi-
tional survival analysis is applied in the context of time, the
time boundary can be expanded if necessary. For example,
if a study shows a censoring rate that is deemed too high,
the researcher could repeat the experiment and simply extend
the study period to observe the event of interest. In our case,
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Figure 16. Summary of the best-fitting model for the spacing dataset (

Set 1 and 2). (a) The probability density function against the histogram

of the dataset. (b) The cumulative distribution function and (c) the survival function against the empirical counterparts calculated with the
Kaplan—Meier estimator. (d) A summary table of the main statistics for the data (e.g. sample mean, sample variance) and estimated model.
The spacing of Set 1 is the only case where the data are not lognormally distributed, and the frequency histogram reflects such a conclusion.

the spatial boundary usually cannot be expanded; thus know-
ing the effects of censoring on estimation is an important as-
pect. For example, it would be useful to know how censor-
ing influences the estimations based on simplistic approaches
described in Sect. 3, the censoring percentage value above
which survival analysis must be used, or the value above
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which even survival analysis fails. Moreover, it can also be
useful to estimate the precision of estimation with survival
analysis, knowing the censoring percentage. The case stud-
ies discussed in this work show a censoring percentage rang-
ing from 8.96 % (first case) to 52.50 % (third case) and ef-
fectively showcase the influence of censoring on the estima-
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tion. For each dataset, it is possible to use the best-fitting
statistical model defined in the results and to use PIT plots
to visualize the differences. The comparison with the circu-
lar scanline approaches was intentionally omitted because it
cannot be compared in any way. Being a non-parametrical
approach, cumulative frequencies cannot be compared, and
comparing mean values without a variance is not informa-
tive. Figure 17 shows that, in all cases, the estimated model
using survival analysis closely follows the reference uniform,
while the other two approaches (i.e. ignoring censoring and
removing censored data) always overestimate the cuamulative
frequency, diverging with a rate positively correlated with the
censored fraction. This translates to an underestimation of a
model’s parameters proportional to the censoring percentage.
This effect is due to the fact that measured lengths of cen-
sored fractures will always be shorter than their true lengths.
Thus, by using the first simple approach, the dataset is essen-
tially “polluted” by shorter fractures, thus always decreasing
the measured mean. The second simple method will also lead
to an underestimation of the mean because of the size bias.
However, this second method can be less impacted by cen-
soring. For example, if a fracture population has a very small
standard deviation (i.e. almost all fractures have the same
length) and/or fractures are occurring in an outcrop that is
much bigger than the characteristic fracture length, then re-
moving censored values would not have a great impact on
the estimation. But, even if small, the underestimation will
always be present. Overestimation of the mean length would
be possible in these scenarios when we do not regard censor-
ing as independent from the length distribution (for example,
if only fractures shorter than a certain value are systemati-
cally censored). However, this would violate both the core
underlying hypothesis of random censoring and standard ge-
ological experience; thus we do not deem it possible under
these imposed limits. Furthermore, the model obtained by re-
moving censored values is always the worst. This is because
MLE is a consistent estimator that converges as the number
of data increase; thus, by removing data, we are effectively
hindering the estimator’s precision (in the last case study, we
removed 52 % of the data, i.e. 667 fractures). This effect is
also visible when comparing the estimation of important dis-
tribution parameters such as mean (w) and standard devia-
tion (o2). Table 4 compares the values of these parameters
calculated with the different methods, showing a consistent
underestimation of both the mean and the standard deviation,
with a greater underestimation coming from the method that
removes censored data.

The outlined effect could be useful to predict what to ex-
pect from any survival analysis and shed some light on the
exploration of the censoring mechanics that govern these
types of datasets. Still, the comparison briefly discussed in
this chapter is not rigorous enough to fully constrain this re-
lationship. Even if we have a clear increase in the censor-
ing percentage in the different datasets, the genetic factors,
lithology, and censoring mechanics are completely different.
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Moreover, the number of measures in each case study are dif-
ferent and thus not statistically comparable. Because of these
reasons, this behaviour should be isolated and modelled in
controlled synthetic experiments to be carried out in the fu-
ture. Nevertheless, we found that our preliminary results and
the possible implications were too interesting not to be dis-
cussed.

As a third point, the readers that support and firmly be-
lieve in power-law distribution of length may be shocked
by the results of this paper. In all the different case studies,
the power-law distribution always ranked last or second to
last together with the normal distribution. Power-law distri-
butions theoretically describe many natural events, and, in
our case, if fractures, for example, are self-similar, then the
lengths could show a power-law distribution (Bonnet et al.,
2001). However, it is shown that, in general, truncated power-
law models better fit natural and realistic data; thus usually
only the tails of the distribution follow a power law (Clauset
et al., 2009). This means that, to properly fit a power law, it is
necessary to estimate both the scaling parameter () and the
minimum truncation value (xpi,). Truncation is a constantly
present bias caused by the resolution limits of the data source
above or under which no data can be acquired (right and left
truncation respectively). In our case, left truncation (i.e. Xmin)
is the most common type, and it is caused by the pixel res-
olution of the images under which fracture traces cannot be
seen. Due to this limitation, for a constant-resolution scale,
the modelled length distribution will always have an under-
estimation of the frequencies for the shorter lengths; thus
usually only the tail of the distribution follows a power law.
Adding to this bias is also the human error caused by count-
less different factors (one of which is the inevitable boredom
of digitizing an outcrop). If the length distribution truly fol-
lows truncated power laws, then shorter fractures near the
truncation limit would be much more frequent but harder to
spot. Moreover, for some fracture systems, the smaller frac-
tures are more prone to be mineral-filled and potentially less
obvious features on images. This usually results in fractures
that are left uninterpreted even if visible, thus leading to an
increase in the real xpj, value. Truncation bias and fitting
power laws are a very active field of research still with no
definitive solution (Clauset et al., 2009; Deluca and Corral,
2013); thus, the implementation, testing, and discussion of
such solutions would lie outside this work. For the same rea-
son, a proper estimation procedure could not be included, and
the results obtained in this work relative to the power-law
model must be taken with a grain of salt. Nonetheless, we
still wanted to leave the estimation results and discussion of
power laws to again show, as Healy et al. (2017) and Rizzo
et al. (2017) did, how this model cannot be blindly applied
to geological data without carrying out necessary important
considerations.

Finally, censoring is one of many biases that influence the
length measurements, and the presented work only treats this
specific bias. Because of this, if other biases are present,
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Figure 17. PIT visualization for the lognormal model estimated with three different approaches: ignoring censoring (full line), removing
censored data (dashed line), and using a survival analysis approach (dashed—dotted line). The survival model follows the true model almost
constantly (red line), while the other two approaches increasingly diverge on longer fractures with a rate depending on the censored fraction.

Table 4. Summary table comparing mean (1) and standard deviation (0'2) values for increasing censoring fractions. The method ignoring
censoring and the method removing censored data both underestimate the values, with the latter always showing a greater underestimation.

Pontrelli (8.96 %) | Salza S1(24.28 %) | Spacing S2 (36.46 %) | Spacing S1 (52.50 %)

Method

u o? | u o? | u o? | n o?
Ignore censoring  4.077 5.032 0.9 0.895 | 0.844 1.225 | 1.373 1.453
Remove censored  3.856 4.721 | 0.811 0.785 | 0.744 0974 | 1.291 1.351
Survival 4.586 6.156 | 1.218 1.482 | 1.551 2.804 | 3.072 3.324

they will also be carried out after the correction. Moreover,
the underlying statistical model between different sets can
be different; each fracture set has its own set of biases that
influence measurements; and variation in the statistics can
also occur within the same set, for example, in proximity
of a fault or local changes in rheology. Because of all these
reasons, grouping all entities in the same statistical model
without any kind of consideration leads to inevitable misin-
terpretation of the statistics and provides a wrong statistical
parametrization of the whole network; thus the analysis of a
fractured rock system must be carried out in a homogeneous
domain or different stationary domains must be defined be-
fore any further analysis is carried out (Bistacchi et al., 2020).
By applying this divide-and-conquer approach, a more pre-
cise and robust characterization is assured because statistical
models and inevitable biases related to different families will
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not mix. These observations further highlight the crucial im-
portance of field data acquisition and geological reasoning to
avoid blindly applying these methods to outcrops and making
severe inferential errors.

6 Conclusions

In this paper, the effects of censoring bias on the estimation
of statistical length models are delineated and discussed. In
particular, we demonstrated that censoring bias leads to a
general underestimation of any distribution. The typical ap-
proaches found in the literature are not suitable, and we have
shown that using survival analysis is also the better way to
treat censoring in length datasets. In particular, survival anal-
ysis offers a valid alternative to the popular circular scanline
method. Firstly, survival analysis methods are based on the
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relationship between the event of interest and the censoring
mechanism. Without any underlying geometrical assump-
tions (basis of the circular scanline method), this methodol-
ogy is quite flexible and can easily be applied to any geologi-
cal case study. Secondly, the parameters that are estimated
with survival analysis are directly based on the measured
length (i.e. the quantity that we want to model) and are al-
ways associated with a model; thus they have a higher statis-
tical significance of the scanline method. Regarding the other
parametrical methods (i.e. ignoring censoring and removing
censored data), we have shown that the censoring percentage
heavily influences the estimation quality. In particular, with
only 8.96 % censoring, the two classical methods underesti-
mate the mean and variance, and the increase in censoring
percentage positively correlates with such underestimation.
Also, survival analysis is visibly impacted by the increase in
censoring; however, its output always remains stable around
the natural model (i.e. the reference diagonal). Nonetheless,
the influence of censoring percentage is not yet fully con-
strained, since, in this study, the visible variation is probably
also given by different datasets, with different genetic fac-
tors. Thus, a more robust and in-depth analysis must be car-
ried out to fully understand this relationship. The proposed
combination of PIT plots and distance calculations demon-
strates an effective approach to quantitatively rank a list of
length distribution models. The workflow has the objective
of comparing sensible (simple) models useful to practical ap-
plications (such as DFNs) and finding which one best repre-
sents the data. The theory and necessary tools to carry out a
complete statistical characterization of a fracture network are
included in the specifically developed FracAbility Python li-
brary (https://github.com/gecos-lab/FracAbility, last access:
8 September 2024), which encapsulates the necessary steps
to carry out as easily and quickly as possible the workflow
starting from input shapefiles. The methodology and library
were successfully tested in three different use cases, the first
having almost no censoring bias and the last with more than
50 % of the total measurements being censored. In all cases,
except for the last, in which one of the two spacing distri-
butions follows a Weibull distribution, the lognormal model
was the most accurate, followed by either gamma, exponen-
tial, or Weibull.

Code and data availability. The code and data are
available in a GitHub repository (https:/github.com/
gecos-lab/FracAbility, last access: 8  September 2024;
https://doi.org/10.5281/zenodo.14893964, Benedetti, 2025).
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