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Abstract. Many geodynamical models are formulated in
terms of the Stokes equations that are then coupled to other
equations. For the numerical solution of the Stokes equa-
tions, geodynamics codes over the past decades have used
essentially every finite element that has ever been proposed
for the solution of this equation, on both triangular/tetra-
hedral (“simplex”) and quadrilaterals/hexahedral (“hyper-
cube”) meshes. However, in many and perhaps most cases,
the specific choice of element does not seem to have been
the result of careful benchmarking efforts but based on im-
plementation efficiency or the implementers’ background.

In a first part of this paper (Thieulot and Bangerth, 2022),
we have provided a comprehensive comparison of the accu-
racy and efficiency of the most widely used hypercube el-
ements for the Stokes equations. We have done so using a
number of benchmarks that illustrate “typical” geodynamic
situations, specifically taking into account spatially variable
viscosities. Our findings there showed that only Taylor–
Hood-type elements with either continuous (Q2×Q1) or dis-
continuous (Q2×P−1) pressure are able to adequately and
efficiently approximate the solution of the Stokes equations.

In this, the second part of this work, we extend the com-
parison to simplex meshes. In particular, we compare trian-
gular Taylor–Hood elements against the MINI element and
one often referred to as the “Crouzeix–Raviart” element. We
compare these choices against the accuracy obtained on hy-
percube Taylor–Hood elements with approximately the same
computational cost. Our results show that, like on hyper-
cubes, the Taylor–Hood element is substantially more accu-
rate and efficient than the other choices. Our results also in-
dicate that hypercube meshes yield slightly more accurate re-
sults than simplex meshes but that the difference is relatively

small and likely unimportant given that hypercube meshes
often lead to slightly denser (and consequently more expen-
sive) matrices.

1 Introduction

Over the past decades, a large number of geodynamics sim-
ulation codes have been built on the finite element method.
In the specific context of mantle convection and long-term
dynamics simulators, the key component of many models
that needs to be solved is the Stokes equations for which fi-
nite element methods are well suited but which leaves many
choices still to be made: (1) should the element choice be
of Taylor–Hood type (where the polynomial degree used for
the velocity is chosen one higher than that for the pressure) or
a stabilized equal-order element combination, or any of the
nonconforming elements? (2) Should the reference cell for
the underlying mesh be simplices (triangles or tetrahedra) or
hypercubes (quadrilaterals or hexahedra)?

In an earlier part of this work (see Thieulot and Bangerth,
2022), we have extensively compared different hypercube
choices for the finite element combination used to discretize
the Stokes equations in the context of models that are rele-
vant to geodynamic applications. Our conclusions there were
that the lowest-order Taylor–Hood-type element (denoted by
Q2×Q1 on quadrilaterals or Q2×P−1 if one uses a dis-
continuous pressure element that then leads to local mass
conservation) is the only one that produces accurate results
in all circumstances. This conclusion is notwithstanding the
fact that these elements are not cheap, owing to their higher-
order shape functions and the consequent large number of
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entries in the system matrix. Yet, all other choices we have
compared there – specifically, the stabilizedQ1×Q1 and the
unstable Q1×P0 combinations – were too inaccurate, were
too unstable, and had too much difficulty representing the
hydrostatic pressure component to be competitive. Of course
these other choices are widely used in many existing codes,
making studies such as Thieulot and Bangerth (2022) useful
to inform what the next generation of codes should build on.

At the same time, in Thieulot and Bangerth (2022) we did
not investigate whether simplex or hypercube meshes are bet-
ter suited to the task. Historically, geodynamics has largely
settled on the use of quadrilateral or hexahedral (“hyper-
cube”) elements – somewhat separate from the rest of the fi-
nite element world that has traditionally predominantly used
triangular or tetrahedral (“simplex”) meshes. The reasons for
this deviation are likely rooted in the fact that the geometries
of the domains used in geodynamics are largely rather sim-
ple: rectangles and boxes, along with circles, spheres, and
shells. These geometries present no difficulties in meshing
with hypercube cells, whereas the complex geometries fre-
quently used in solid and fluid mechanics can often only rea-
sonably be meshed using mesh generators that create simplex
meshes. Still, one could of course also use simplex meshes in
geodynamics, and in fact many codes have done so over the
past decades; see, for example, Barr and Houseman (1996)
(BASIL code, P2×P1), Dabrowski et al. (2008) (MILAMIN
code, P+2 ×P−1), Tommasi et al. (2009) (FORGE2005 soft-
ware, P+1 ×P1), Davies et al. (2011) (Fluidity code, P2×P1),
Chertova et al. (2014) (SEPRAN, P2×P1), Paczkowski et al.
(2014) (COMSOL, P2×P1), de Montserrat et al. (2019)
(LaCoDe, P+2 ×P−1), Jones et al. (2021) (FEniCS project,
P2×P1), and Ilangovan et al. (2024) (HyTeG framework,
P2×P1). It is, therefore, a reasonable question of whether it
would result in more accurate simulations for the same com-
putational cost or less costly simulations at the same accu-
racy.

We are not aware of systematic comparisons between the
two choices of reference cell – simplex or hypercube – in
the geodynamics literature. Perhaps surprisingly, there is also
not a large body of literature on the topic in other disciplines,
nor is there a strong oral “lore” in the scientific computing
community about which of the two approaches is better. In
our search for past work, we have found a modestly infor-
mative recent publication that clearly illustrates the bene-
fits of quadratic over linear elements but only a weak pref-
erence for triangles/tetrahedra over quadrilaterals/hexahedra
(Schneider et al., 2022). That publication also contains ref-
erences to other, earlier studies in the same direction; it is
worth also pointing out Terrel et al. (2012) as another exam-
ple of a study that compares different elements, though not in
great depth and not for applications relevant in geodynamics.
On the other hand, while discretization accuracy matters, so
does solver speed. In this regard, modern solver techniques
intended to better utilize the power of CPUs over the limita-
tions of memory latency, specifically matrix-free approaches,

heavily build on the fact that shape functions on hypercube
cells can be written as a tensor product of 1D functions and
so are naturally more suited to hypercube cells (Kronbichler
and Kormann, 2019; Munch et al., 2023).

Regardless of which reference element is better suited, us-
ing simplex meshes also opens up a number of other possibil-
ities. Specifically, the number of stable Stokes element com-
binations for triangles and tetrahedra is substantially larger
than it is for quadrilaterals and hexahedra, owing to decades
of research on “nonconforming” elements – i.e., finite ele-
ment choices whose basis functions are not continuous but
have a sufficient number of structural properties (such as be-
ing continuous at edge midpoints) that it is not necessary
to add specific stabilization terms to the weak formulation
of the Stokes equations.1 Examples of such nonconform-
ing elements include the Brezzi–Douglas–Marini (BDM) el-
ement (Brezzi et al., 1985) and the Crouzeix–Raviart non-
conforming P1 element2 (Braess, 2007). Nonconforming el-
ements have of course also been developed for hypercube
meshes – see, e.g., the Rannacher–Turek element (Rannacher
and Turek, 1992) or the DSSY element (Douglas et al.,
1999). However, in contrast to their relatives defined on sim-
plex meshes, they have not found widespread use and are less
often implemented in widely used finite element libraries.
Thus, nonconforming elements are generally only considered
viable choices on simplex meshes.

In practice, however, nonconforming elements have never
found much use in the geodynamics community. As a con-
sequence, while we consider them viable alternatives (and
potential targets for future studies), we will not include any
nonconforming elements in this work (see also Sect. 3.3).

We end this overview by mentioning that while we have
not found much literature that quantitatively compares ref-
erence cell and element choices, the book by Gresho and
Sani (2000) contains an extensive and excellent overview
of the many available choices for the Stokes equations in
Sects. 3.13.2 to 3.13.6, covering more than 150 pages. Ta-
bles 3.13-1 to 3.13-4, along with lengthy comments through-
out the section, provide arguments that lead the authors of
that book to favor hypercube cells over simplex cells and
to favor Taylor–Hood-type elements over others, based on
qualitative arguments and references to the literature from
the 1970s, 1980s, and 1990s – opinions that we share, based
on the results of this paper and of Thieulot and Bangerth
(2022). Yet, the authors also state that the question is not at
all trivial, is not settled, and is in need of systematic quanti-

1Stability despite a lack of continuity for nonconforming ele-
ments is in contrast to the “discontinuous Galerkin (dG)” approach
in which shape functions are entirely discontinuous and the prob-
lem is regularized by introducing penalty terms that ensure that the
jumps between cells in the discrete solution are not too large.

2The “nonconforming Crouzeix–Raviart element” must not be
confused with the P+2 ×P−1 element we will discuss below and
that is often also called the “Crouzeix–Raviart element”.
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tative comparisons. In any case, both the book and the litera-
ture cited therein exclusively consider the isoviscous Stokes
equations which typically has a much smoother solution than
the ones we find in geodynamic applications with their highly
variable viscosity coefficient. As a consequence, we believe
that the comparisons we provide here are useful not only be-
cause they are quantitative, but also because they are spe-
cific to the kinds of applications we typically encounter in
our discipline. We should also mention the paper by Pelletier
et al. (1989) that contains qualitative comparisons between
Taylor–Hood elements with continuous and discontinuous
pressures and that advocates for the use of discontinuous
pressure elements. However, we consider its interpretation
difficult in today’s context because the meshes used there are
quite coarse, and we think it likely that their recommenda-
tions are perhaps no longer as applicable to today’s much
finer meshes as they were in the historical context nearly
40 years ago when the paper was written.

Goals of this paper

Given the setting described above, our goal in this contribu-
tion is to compare finite element choices on simplex and hy-
percube meshes both qualitatively and quantitatively. For hy-
percube meshes, our previous work in Thieulot and Bangerth
(2022) has already indicated that only the Taylor–Hood vari-
ants Q2×Q1 or Q2×P−1 are reasonable choices, whereas
equal-order elements are not. Based on this observation, we
then pose the following two questions for the current work:

1. What is the best choice of finite element on simplex
meshes?

2. How does the best choice of finite element on simplex
meshes compare to the choice of the Q2×Q1 or Q2×

P−1 element on hypercube meshes?

For our numerical comparisons, we will consider both the
accuracy and computational cost of a finite element as a func-
tion of the mesh size (or number of unknowns) as a criterion.
The elements we will consider for simplex meshes include
the P2×P1 Taylor–Hood-type element, the P2×P0 element
(the cheapest stable element with discontinuous pressure),
the MINI element P+1 ×P1, and the “Crouzeix–Raviart” el-
ement P+2 ×P−1.

Outline of the paper

In the remainder of this paper, we will first briefly state the
equations we seek to solve (Sect. 2). In Sect. 3 we will then
discuss the finite elements one can choose on simplex meshes
for the discretization of the Stokes equations, along with a
description of the elements we do and do not compare in
this work. Section 4 then provides a numerical comparison
of these elements using a series of benchmarks that illustrate
how solutions of geodynamic models often behave. We con-
clude in Sect. 5.

2 The governing equations

As in the first part of this work, we will here be concerned
with the accurate numerical solution of the incompressible
Stokes equations:

−∇ · [2ηε(u)] +∇p = ρg, (1)
−∇ ·u= 0, (2)

where η is the viscosity, ρ the density, and g the gravity vec-
tor, and we will denote by ε(·) the symmetric gradient oper-
ator defined by ε(u)= 1

2 (∇u+∇uT ). �⊂ Rd , d = 2 or 3 is
the domain of interest. Both the viscosity η and the density ρ
will, in typical applications, be spatially variable; the vari-
ability is often introduced through nonlinear dependencies
on the strain rate ε(u) and/or the pressure p, but the exact
reasons are not of relevance to us here: the important point is
that these coefficients may vary strongly and on short length
scales.

In actual applications, the equations above will be com-
pleted by appropriate boundary conditions and will be aug-
mented by additional and often time-dependent equations,
such as ones that describe the evolution of the temperature
field or of the composition of rocks (see, for example, Schu-
bert et al., 2001; Turcotte and Schubert, 2012). This coupling
is also not of interest to us here, nor is the fact the “true”
equations in geodynamics are often compressible – in most
cases, the equations above will have to be solved as a “sub-
problem” to what one really wants to do, and the efficiency of
a discretization of these equations then translates to a lower
bound for the efficiency of solving the outer problem.

3 Discretization

3.1 Elements and element combinations

The finite element discretization of the Stokes equations is
complicated by the fact that one cannot choose the piece-
wise polynomial spaces for velocity and pressure indepen-
dently. Rather, to obtain a stable discretization, the pair of
spaces needs to satisfy a compatibility condition known as
the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf-sup con-
dition (Braess, 2007; John, 2016); the condition, in essence,
states that the velocity space must be sufficiently large com-
pared to the pressure space. A common, stable choice is
the “Taylor–Hood” space (Taylor and Hood, 1973) that uses
piecewise quadratic elements for the velocity and piecewise
linear elements for the pressure.3

3Strictly speaking, Taylor and Hood (1973) did not propose what
is today commonly implied by the term “Taylor–Hood” element:
they proposed an eight-node serendipity space on quadrilaterals for
the velocity components and the usual four-node, continuous bilin-
ear space for the pressure. Nonetheless, in today’s common usage
of the term, a “Taylor–Hood element” is one in which the velocity

https://doi.org/10.5194/se-16-457-2025 Solid Earth, 16, 457–476, 2025



460 C. Thieulot and W. Bangerth: On the choice of finite element for applications in geodynamics – Part 2

Yet, there are many more combinations than just the
Taylor–Hood choice one could consider (and that are used
in practical applications). Specifically, among the conform-
ing velocity elements4 on simplex meshes, we can consider
the following choices:

– P1, the space of piecewise linear, continuous elements;

– P+1 , the same space as above but with the addition of
a “bubble function” on each cell that is a polynomial
of order d + 1 (where d is the number of space dimen-
sions) and is zero on the faces of the cell (see for exam-
ple Sect. 3.6.1 of John, 2016);

– P2, the space of piecewise quadratic, continuous ele-
ments;

– P+2 , the same space as before but enriched with cubic
bubble functions on each cell.

For the pressure, common choices that match those for the
velocity above are

– P0, the space of piecewise constant and consequently
discontinuous elements;

– P1, the space of piecewise linear, continuous elements;

– P−1, the space of piecewise linear but discontinuous el-
ements.

Not all combinations of these are stable (that is, satisfy
the LBB condition). Table 1 illustrates which combinations
are stable and can consequently be used. At the same time,
not all of the combinations are useful; for example, it makes
perhaps little sense to use high-order polynomials for the ve-
locity when using P0 for the pressure because the latter might
limit the convergence order of the former. As a consequence,
we will here only consider a subset of the combinations.

components are discretized by a piecewise polynomial one degree
higher than that used for the pressure, including Q2×Q1 on hy-
percube cells but also including Qk+1×Qk (k ≥ 1) on hypercubes
and Pk+1×Pk (k ≥ 1) on simplices. The term is frequently also
used for elements of the same structure but with a discontinuous
pressure space that then guarantees mass conservation. We use the
term “Taylor–Hood” herein in this generalized meaning, no longer
tied to what the proposed element in Taylor and Hood (1973) may
have been. See also John (2016, p.98).

4The term “conforming” refers to an element choice that re-
spects the continuity properties of the exact solution of a partial
differential equation. For example, for solutions of the Stokes equa-
tions, the velocity is in the Sobolev spaceH 1 whose elements in 2D
are functions that may be discontinuous at individual points but not
along entire lines. Conforming choices for the velocity space must
therefore be continuous along faces between cells. At the same time,
the pressure solution is only in L2, a space whose members do not
need to be continuous, and so any choice of finite element space
for the pressure is conforming. Note however that a combination of
conforming spaces need not be stable.

Table 1. A summary of which simplex element combination is sta-
ble. A dash indicates that the element combination is not stable,
whereas a check mark indicates that it is (John, 2016; Arnold et al.,
1984; Reddy and Gartling, 2010). Circles indicate element combi-
nations we consider in this study.

Velocity

P1 P+1 P2 P+2

Pr
es

su
re P0 – X X

P1 – X

P−1 – – –

3.2 Element combinations used in this study

Concretely, we will show results for the following.

– P+1 ×P1. This element is also often called the “MINI”
element. It has not been widely used in the geodynam-
ics community, with the noticeable exception of Zlotnik
et al. (2007) in 2D and Tommasi et al. (2009) in 3D.

Because the bubble degrees of freedom only couple to
the other degrees on one cell, it can easily be eliminated
from the overall linear system through “static elimina-
tion” or “static condensation”, making the element as
cheap as P1×P1 (but stable!) (see for example Braess,
2007). Since we are mostly interested in questions of
accuracy, we will use this element combination but not
make use of static elimination in our implementation.

– P2×P0. We could not find any example of this ele-
ment’s use in the (geodynamical) literature. Nonethe-
less, we decided to include it in this study to document
its performance (see previous section) as it is a cheap
and stable element with discontinuous pressure and eas-
ily constructible from typical building blocks available
in many finite element codes.

– P2×P1. This element is commonly called the “Taylor–
Hood” element (see also footnote 3 above). It is used in
geodynamics in, for example, the Fluidity (Davies et al.,
2011) and TerraFerma5 codes (Wilson et al., 2017). It is
also used in Schubert and Anderson (1985) and Cuffaro
et al. (2020).

This element corresponds to the widely used Q2×Q1
space on hypercube cells that is used, for example, in the
ASPECT code (Kronbichler et al., 2012; Heister et al.,
2017).

– P+2 ×P−1. This element is often referenced as the
“Crouzeix–Raviart” element (Dabrowski et al., 2008;

5http://terraferma.github.io/ (last access: 13 December 2024)
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Figure 1. A graphical representation of the elements and their degrees of freedom we consider herein. Filled dots indicate locations where
velocity degrees are defined, whereas open circles indicate where pressure degrees of freedom are defined. The figure does not reflect whether
the shape function associated with a degree of freedom is continuous across cell boundaries.

Gresho and Sani, 2000).6 It has a discontinuous pres-
sure, leading to local mass conservation. The relatively
large pressure space requires the augmentation of the
P2 velocity space by bubble functions to guarantee sta-
bility, but – just like in the case of the P+1 ×P1 space
above – the bubble degrees of freedom can be removed
by static elimination.

This element is used in geodynamics in, for example,
Poliakov and Podlachikov (1992) to study the deforma-
tion of the surface above a rising diapir. It is also used
in the MILAMIN code (Dabrowski et al., 2008) and in
LaCoDe (de Montserrat et al., 2019).

The closest analog to this element on hypercube el-
ements is Q2×P−1 used for example in May et al.
(2015).

All of these choices are represented graphically in Fig. 1.
In our numerical results below, we will compare these
choices against the Q2×Q1 and Q2×P−1 elements on hy-
percube cells, as we have found these to be the best choice in
the first part of this study (Thieulot and Bangerth, 2022).

6Other authors, for example Ern and Guermond (2021, chap-
ter 36), use the term “Crouzeix–Raviart element” for a different,
nonconforming element that is linear but discontinuous, with nodes
at edge mid-points. The confusion originates from the fact that
Crouzeix and Raviart in the 44 pages of Crouzeix and Raviart
(1973) introduced a substantial number of elements, including both
the one mentioned in the main text and the one of this footnote.

3.3 Alternative elements and element combinations
and alternative mappings

There are many more choices one could consider beyond the
ones discussed in the previous section. For example, the fol-
lowing come to mind:

– Nearly all of the elements listed above have ana-
logues with higher polynomial degrees. For example,
the Taylor–Hood element P2×P1 can be generalized
to Pk+1×Pk with k > 1; all of these combinations are
known to be stable and at least theoretically result in
higher convergence rates. At the same time – see the dis-
cussion in Sect. 3.2 of Thieulot and Bangerth (2022) –
the lack of regularity of solutions in typical geodynamic
applications makes these choices unattractive: they are
more expensive without delivering higher accuracy be-
cause the solution is not smooth enough to actually al-
low for higher convergence orders. As a consequence,
we will not consider higher polynomial degrees herein
than the ones mentioned previously.

– There are variations in the spaces above in which a
P1 pressure space is enriched by piecewise constants,
yielding the P1+P0 space. The resulting element, when
paired with a sufficiently large velocity space, is then
mass conserving.

– Another variation is to replace a P2 velocity space by a
P1 space on a once-refined mesh. This is commonly re-
ferred to as the “P1isoP2” space (Bercovier and Piron-
neau, 1979). The original intent in developing this el-
ement was to re-use parts of existing implementations,
as well as the robustness of linear elements (for example
the fact that they always attain their minima and maxima
at node points, unlike higher-order shape functions).
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– There are also numerous nonconforming velocity
spaces in which the velocity is not continuous and
which can then be made convergent either through
penalty terms or by requiring structural properties such
as that the velocity is at least continuous at face mid-
points (see Gresho and Sani, 2000, or John, 2016, and
references therein).

While perhaps useful, these alternatives are not widely
used in geodynamics, and we will consequently not con-
sider them herein. Given the conclusions we will come to
in Sect. 5, one can also (retroactively) speculate that at least
the nonconforming elements will not be competitive with the
best elements we will find in the numerical results in Sect. 4.
This is because most of the nonconforming elements were
developed with the specific purpose to scope out how small
one can make elements (in terms of degrees of freedom),
dating back to a time when that was a prime consideration
given how small computer memory was at the time rather
than with the purpose of coming up with accurate and uni-
versally robust elements. Indeed, the “small” elements we
consider herein will prove to be unacceptable for some rea-
son or other below. Of course, whether the speculation that
nonconforming elements are not competitive is in fact true
would make for an interesting topic for follow-up work.

A separate issue we defer to a later study is how the choice
of mapping from the reference cell (triangles or quadrilat-
erals in our 2D examples herein) affects the accuracy. For
elements with quadratic velocity shape functions, it would
not be unreasonable to use quadratic (i.e., “isoparametric”)
mappings resulting in curved edges. In contrast, herein we
only ever use straight-edged elements. Indeed, one could
completely separate the polynomial degree of the mapping
from that of the finite element – for example, ASPECT by
default uses quartic (i.e., “supraparametric”) mappings to ac-
curately resolve curved surfaces (Kronbichler et al., 2012).
It is not entirely clear how the choice of higher-order map-
pings would affect accuracy: practical experience shows that
using higher-order mappings results in smaller errors when
the geometry is curved (and one might conjecture that this
would also be the case if one could resolve internal bound-
aries). At the same time, there remain open theoretical ques-
tions about the stability of the usual Stokes elements when
curved boundaries are used (see for example Chilton and
Suri, 2000). In the end, we believe that the choice of mapping
is orthogonal to the choice of element, as we see no reason
that an element that is not competitive with the best elements
we identify here when using straight edges should become
competitive when using curved edges. Rather, we consider
the current study as a “filter” that allows us to identify which
elements are competitive and which are not; we will then
leave it to a later study to determine how they can be used
with higher-order mappings.

3.4 Computational setup

For the numerical simulations shown in the following sec-
tions, we use the elements mentioned in Sect. 3.2. Because
there is no reason to believe that the elements we choose per-
form differently in three space dimensions, we restrict our
computations to 2D benchmarks because (i) these computa-
tions are substantially cheaper and (ii) it is far easier to ob-
serve convergence rates accurately in 2D: it is possible to
reach much higher mesh resolutions and, consequently, get
more data points in the asymptotic range where errors strictly
follow O(hα) rates, where h is the mesh size and α describes
the convergence rate.

The finite element method requires the computations of in-
tegrals, for which we will use quadrature with a number of
points that guarantees exact integration as long as coefficients
are constant. For example, when using the Taylor–Hood ele-
ment with quadratic shape functions, we use a quadrature for-
mula with six quadrature points per triangle, arranged in the
usual fashion of Gauss-type schemes. The result of the finite
element integration is then a matrix for the Stokes system that
is passed to a linear solver. Although advanced linear solvers
are usually preferable for geodynamical codes (e.g., Kron-
bichler et al., 2012; May et al., 2015; Clevenger et al., 2020;
Clevenger and Heister, 2021), we here resort to building the
whole Stokes matrix as a sparse array and use a direct solver
provided via the SciPy package.7 None of the computational
experiments we perform herein presents the problem of a ve-
locity nullspace; consequently, after solving the linear sys-
tem, we normalize the pressure by subtracting a constant so
that the average pressure is zero. All of these steps were im-
plemented in a Python code written for the purposes of this
study.

From the velocity and pressure fields computed via the
procedure described above, we can then compute errors by
subtracting the exact solutions (where known) and apply-
ing appropriate norms. In order to make results compara-
ble to those in Thieulot and Bangerth (2022), we show
these errors as a function of the “mesh size” h. For a spe-
cific cell K , we define its size as hK =

√
2 area(K) for tri-

angles and hK =
√

area(K) for quadrilaterals. As a conse-
quence, the cell sizes hK are the same for a volume subdi-
vided into quadrilaterals and for one in which every quadri-
lateral is then further subdivided into two triangles; when
using corresponding polynomial degrees, these two meshes
generally have the same (or approximately the same) num-
ber of degrees of freedom, and the definitions of hK above
then guarantee comparability of results. In practice, on struc-
tured meshes, all cells have the same hK ; on the unstructured
meshes we will use, they are approximately equal. We there-
fore only report results as a function of h, which we define
as the average value of the hK values.

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.
sparse.linalg.spsolve.html (last access: 13 December 2024)
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Figure 2. Meshes used in this benchmark:(a) an example of a structured quadrilateral mesh. (b) An example of a structured triangular mesh.
(c) An example of an unstructured triangular mesh. (d) An example of the unstructured triangular mesh used for the SolVi benchmark of
Sect. 4.3; note the nodes (and joining edges) aligned on the quarter circle at the bottom left highlighted in red.

Clearly, different elements will have different costs for the
same value of h. However, in practice, the actual cost de-
pends on many specifics of the element choice as well as
the linear solver used; consequently, we present our compar-
isons primarily in terms of the mesh size h rather than the
number of unknowns N or any other measure primarily be-
cause h is what we used before and because theoretical re-
sults about convergence rates that readers are likely familiar
with are typically shown in terms of powers of h. However,
Sect. 4.1 also contains a brief discussion of run times for the
various element choices.

In this study we present results obtained on structured
and unstructured meshes. Structured meshes are obtained by
tessellating the domain with Nx ×Ny quadrilaterals (and in
practice setting Ny =Nx for simplicity) as shown in Fig. 2a.
For simplex meshes, these quadrilaterals are then cut along a
diagonal. In order to avoid very anisotropic meshes and po-
tentially problematic cases where three vertices of a triangle
would be on the boundary (see Boffi et al., 2012, or Cioncol-
ini and Boffi, 2019, for reasons to avoid this situation), sim-

plex meshes are built so that we vary the direction of splitting
quadrilaterals as shown in Fig. 2b.

We create unstructured simplex meshes by creating
meshes via the Triangle module, which is a Python wrap-
per around Jonathan Richard Shewchuk’s 2D quality mesh
generator and Delaunay triangulator library (Shewchuk,
1996, 2014) based on a target mesh size (see Fig. 2c). Se-
quences of unstructured meshes are always created de novo
rather than by refinement of the previous mesh, since succes-
sive refinement results in block structured meshes. For the
particular case of the SolVi benchmark in Sect. 4.3, we in-
struct Triangle to place a number of nodes along a quarter
circle to match the discontinuity in the coefficients of the
benchmark (see Fig. 2d).

4 Numerical results

Having so set the scene, let us now turn to quantitative eval-
uations of the performance of the elements discussed in the
previous section. Specifically, in the current section, we will
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Figure 3. Donea and Huerta benchmark: velocity (a, c) and pressure (b, d) errors as a function of (average) mesh size for structured (a, b)
and unstructured meshes (c, d).

use carefully selected benchmarks that are widely used in the
literature to assess geodynamics software and that we have
already used (at least in parts) in the first part of this paper.
More complete descriptions of the Donea–Huerta, SolCx,
and SolVi benchmarks shown in Sects. 4.1–4.4, along with
visual depictions of their solutions, can be found in the first
part of this work (Thieulot and Bangerth, 2022). We refer the
reader there for more details rather than repeating them here.
The Rayleigh–Taylor benchmark of Sect. 4.5 is outlined in
its own section. We end with a comparison of convergence
rates between the different elements in Sect. 4.6.

4.1 The Donea and Huerta manufactured solution
benchmark

The setup for this benchmark – originally described in Donea
and Huerta (2003) – considers a situation where the solution
is described by smooth polynomials and where the coeffi-
cients in the Stokes equations are all constant. The solution
is driven by a (nonphysical) gravity field. Given the smooth
solution, the different elements ought to all reach their the-
oretically optimal convergence rate. We use this benchmark,
among other reasons, to verify the correctness of our imple-
mentations.

We show results in Fig. 3 that illustrate the accuracy with
which the various discretizations approximate the exact so-
lution. It shows that – on both structured and unstructured
meshes – the discretizations that use piecewise quadratic
polynomials for the velocity and linear polynomials for the

pressure reach their expected velocity error of ‖u−uh‖L2 =

O(h3), whereas the others only achieve ‖u−uh‖L2 =O(h2).
The latter category includes the P2×P0 discretization that
uses a large number of degrees of freedom for the velocity
but achieves an error only smaller than the P+1 ×P1 by a fac-
tor despite having a number of degrees of freedom roughly
4 times higher (in 2D); conversely, it has approximately the
same number of degrees of freedom as the P2×P1 elements
but an error about 2 orders of magnitude larger on the finest
meshes. The figure also shows that the P2×P0 element fares
even worse in approximating the pressure, being substan-
tially less accurate than the far cheaper P+1 ×P1 element (at
least on structured meshes).

The figure also shows that, at least in terms of accuracy
as a function of mesh size h (and consequently number of
unknowns), the best-performing discretization is the P2×P1
element and that it produces errors quite close to theQ2×Q1
and Q2×P−1 elements we have found to be best on quadri-
laterals. Finally, the figure shows that at least for some of the
elements, unstructured meshes can lead to errors nearly an
order of magnitude worse than structured meshes with the
same mesh size.

In practice, of course, accuracy is only one indicator of
performance. A different way to measure how well the dif-
ferent elements perform is to measure the time required to
solve a given problem. As a consequence, let us also report
run times for the different benchmarks as a function of the
number of degrees of freedom using a laptop with an Intel
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Core i7-7820HQ CPU run at 2.90 GHz with 32 GB of mem-
ory. We caution that unlike the results obtained in the first
part of the paper (where we used the ASPECT code), the run
times shown here are obtained with a test code written in
Python rather than a production code written in C++.

Figures 4 and 5 show run times for the two dominant oper-
ations – the assembly of the linear system and the solution of
the linear system – as a function of the number of unknowns
and the mesh size h, respectively. The figures show that the
cost of both of these operations is, in essence, a function of
the number of degrees of freedom of an element combina-
tion rather than the specific details of how an element’s shape
functions are defined. As a consequence, the costs of differ-
ent elements only differ by a (modestly sized) constant factor,
rather than leading to different rates. What this also implies
is that if we had shown the results of, say, Fig. 3 as a function
of run time instead of mesh size h, curves would only have
been moved up and down, but they would have retained their
relative convergence rates, and elements shown there with a
higher convergence rate will also have a higher convergence
rate as a function of run time. A secondary observation is that
the run times for the various Taylor–Hood-type elements are
not substantially different from each other; as a consequence,
run time is not a criterion that will help us choose one of these
variants over the others.

Similar observations will hold for the benchmarks in the
following sub-sections, and we will consequently omit com-
parisons of run times there.

4.2 SolCx

SolCx is a substantially more difficult benchmark to solve
since it involves a viscosity that jumps by a factor of 106

along the vertical mid-line of the domain. This results in a
nearly discontinuous pressure as well as a kink in the veloc-
ity along this line. With properly aligned meshes, some ele-
ments can resolve these singularities, though this of course
makes the benchmark not representative of real-world sit-
uations where the locations and directions of jumps in the
viscosity of geodynamic models can typically not be pre-
dicted a priori and may change with time. Elements using
continuous pressures consequently exhibit poor convergence.
This benchmark is widely used in many geodynamical papers
(e.g., Zhong, 1996; Duretz et al., 2011; Kronbichler et al.,
2012; Thielmann et al., 2014; de Montserrat et al., 2019;
Thieulot and Bangerth, 2022).

Figure 6 shows the approximation errors we obtain for this
benchmark. It illustrates the difficulties elements with contin-
uous pressure (such as Q2×Q1 and P2×P1, specifically as
opposed to Q2×P−1 and P+2 ×P−1) have with this bench-
mark: they all only achieve a convergence rate of O(h0.5),
reflecting the lack of regularity in the exact pressure. No-
tably, the convergence rate for elements using a continuous
piecewise linear pressure is even worse than for the P2×P0

element that uses (discontinuous) piecewise constant pres-
sures.

4.3 SolVi

Of course, the difficulties of the SolCx benchmark of the pre-
vious section are somewhat artificial given that the disconti-
nuity in the viscosity is along a vertical line that is easily
matched by the mesh (if desired). In other words, while the
struggles of elements with continuous pressure are real, the
fact that elements with discontinuous pressures work well on
such meshes could be considered a lucky break because the
jump in viscosity is aligned with the discontinuity of pres-
sures along cell interfaces – at least on structured meshes
with an even number of cells per coordinate direction, as we
use here.

At the same time, this is perhaps not so. Figure 6c and d
already suggest that elements with discontinuous pressure
spaces can adequately resolve the discontinuous pressure
even on unstructured meshes, where the jump in viscosity
in the SolCx benchmark is no longer aligned with cell in-
terfaces. The SolVi benchmark we consider in this section
illustrates this in more detail. It models a situation where the
viscosity inside an inclusion is 1000 times larger than outside
the inclusion and where we make no attempt at resolving this
boundary with the structured mesh – similar to realistic situ-
ations of slab subduction or other cases of large and perhaps
dynamically changing viscosity jumps that cannot practically
be resolved using the meshes in use. The setup is identical to
the one in Thieulot and Bangerth (2022), although here we
only model one quadrant of the problem: the domain is the
unit square (0,1)2, the inclusion is centered on the origin,
and the analytical velocity is prescribed on all sides. Schmid
and Podlachikov (2003) derived a simple analytical solution
for the pressure and velocity fields for this case, which was
subsequently used in many other publications (Deubelbeiss
and Kaus, 2008; Suckale et al., 2010; Duretz et al., 2011;
Kronbichler et al., 2012; Gerya et al., 2013; Thielmann et al.,
2014; de Montserrat et al., 2019).

We show results for the errors in velocity and pressure in
Fig. 7. In the case of structured meshes (Fig. 7a and b), the
figures show that the lack of regularity in the solution, cou-
pled with the fact that the line where this singularity occurs
is not captured by the mesh, leads to a situation where all
elements only obtain the convergence rate allowed by the so-
lution rather than based on their polynomial degrees. Indeed,
the quality of approximation is largely determined simply by
the number of degrees of freedom an element can offer for a
given mesh size h.

For unstructured meshes, we use the modified procedure
shown in Fig. 2d to obtain a triangular mesh whose edges
are aligned with the discontinuity of the viscosity – an ap-
proach that is admittedly artificial and would not be possible
in “real” applications. The corresponding results are shown
in Fig. 7c and d. They show that the alignment of cell edges
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Figure 4. Donea and Huerta benchmark: run time to assemble the linear system (a) and to solve the linear system (b) for the different element
combinations as a function of the number of degrees of freedom on a sequence of meshes.

Figure 5. Donea and Huerta benchmark: run time to assemble the linear system (a) and to solve the linear system (b) for the different
element combinations as a function of the mesh size (which is inversely proportional to the square root of the number of cells) on a sequence
of meshes.

to the discontinuity can recover one order of convergence for
the velocity (from O(h) to O(h2) for all of the elements we
investigated) and up to one order of convergence for the pres-
sure if one uses discontinuous pressure elements. Yet, even
with these aligned meshes, none of the elements achieves its
optimal convergence rate.

A comparison of the curves for the structured meshes
shows that, for this complex situation, the Taylor–Hood ele-
mentsQ2×Q1 and P2×P1 fare the best, at least as far as “er-
ror for a given mesh size” is concerned. For the very specific
discontinuity-aligned unstructured meshes, the P+2 ×P−1
pair emerges as the overall best with a quadratic pressure er-
ror convergence. The observations from these experiments
also support the assertion in Sect. 3.3 (as well as the con-
clusions of Thieulot and Bangerth, 2022) that higher-order
Taylor–Hood elements (i.e., Qk ×Qk−1 or Qk ×P−(k−1) on
hypercubes and Pk×Pk−1 or P+k ×P−k on simplices, in both
cases with k > 2) would not yield better convergence orders
despite their additional cost and are therefore not worth in-
vestigating further for geodynamic applications. This justi-
fies why we do not consider them for this study.

4.4 The sinking block

In the SolCx and SolVi cases, the difficulty is driven by a dis-
continuous coefficient (the viscosity) in the differential oper-
ator of the Stokes equations (Eqs. 1 and 2). In contrast, for
the sinking block benchmark, one considers a situation where
a square part of the domain differs not only in viscosity, but
also in density from the surrounding material – that is, in the
right hand side of the equation. This results in singularities in
the solution at the edges of the inclusion that have a qualita-
tively different behavior than that one observes in the SolCx
and SolVi benchmarks. Similar or identical benchmarks can
be found, for example, in May and Moresi (2008), Gerya
(2019), Thieulot (2011), Mishin et al. (2022), and Schuh-
Senlis et al. (2020). The current benchmark also involves
having to deal with buoyancy forces (that is, a non-trivial
hydrostatic pressure) that are of course the driving force for
many effects in geodynamics and whose resolution is there-
fore important; we have found in the first part of this paper
that dealing with buoyancy presented substantial problems to
the stabilized Q1×Q1 element.

In the current benchmark, we consider a “sinker” inclusion
that has a density ρsinker = ρfluid+ δρ and viscosity ηsinker =

η∗ηfluid. Boundary conditions are free slip on all sides, and
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Figure 6. SolCx: velocity (a, c) and pressure (b, d) errors as a function of (average) mesh size for structured (a, b) and unstructured
meshes (c, d).

Figure 7. SolVi: velocity (a, c) and pressure (b, d) L2 errors as a function of (average) mesh size for structured (a, b) and unstructured
meshes (c, d).
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gravity is given by g =−ey . The domain is the unit square,
and we set ρfluid = 1 and ηfluid = 1. The sinker is a square
of size 0.25× 0.25 centered at (xs,ys)= (0,0.75). As ex-
plained in Thieulot and Bangerth (2022), “in a geodynamical
context, this setup could be interpreted as a detached slab
(δρ > 0) or a plume head (δρ < 0). As such its viscosity and
density can vary (a cold slab has a higher effective viscosity
than the surrounding mantle, while it is the other way around
for a plume head).”

We consider two cases: (1) the fluid and the sinker den-
sities are as described above (the “full density” case) and
(2) the fluid has zero density and the density of the block
is set to ρsinker = δρ (the “reduced density” case). The two
cases of course lead to the same exact velocity field but differ
in the fact that the pressure field contains a “hydrostatic” (or,
in the current context, “lithostatic”) component only in the
first case, whereas the background fluid (having zero density
ρfluid) does not contribute to the pressure field in the second
case. Even though the difference between the two cases is
only the addition of a pressure that grows linearly with depth,
the discretized equations may show an element-dependent
behavior. For example, it is clear that resolving a linear pres-
sure with an element that uses piecewise constant pressures
(such as the P2×P0 element) will incur a substantial accu-
racy penalty; likewise, as shown in Thieulot and Bangerth
(2022), stabilized elements yield different solutions based on
whether or not the hydrostatic pressure is included.

In order to evaluate the accuracy of different elements for
this benchmark, we will make use of the observation shown
in Appendix A.2 of Thieulot (2011): while one can inde-
pendently vary ηfluid, ρsinker, and ηsinker and measure |vy | in
the middle of the sinker for each combination, the quantity
v∗ = |vy |ηfluid/δρ is found to be a function of only the ratio
η∗ = ηsinker/ηfluid. At high-enough mesh resolution, all data
points then collapse onto a single line (but this may not be the
case on coarse meshes: different values of the material con-
stants may correspond to the same η∗ but numerically result
in different values of v∗). Similarly, the normalized pressure
p∗ = p/δρgLb measured in the middle of the block is, on
sufficient fine meshes, a function of η∗ only.

We will therefore show figures that report the com-
puted values of v∗ and p∗ as a function of η∗ for all
six elements. For each η∗, we show data for δρ/ρfluid ∈

{0.25%,1%,40%}. As mentioned, the values of v∗ and p∗

obtained with these three density ratios should be the same
but are not the same on coarse meshes; however, this is
only visible in the figures for the P2×P0 element where
for each η∗ up to three different values of v∗ (one for each
value of δρ/ρ considered) are apparent. We here restrict our-
selves to structured meshes with resolutions of 162, 322, 642,
and 1282 so that element edges align with the boundary of
the block.

4.4.1 Full density

Figure 8 shows results for all elements and four different
mesh resolutions for the case where we include the lithostatic
pressure in the model. We find that, as we increase the mesh
resolution, all elements but the P2×P0 converge to reference
results obtained with the ASPECT code at 256× 256 with the
Q2×P−1 element. Because the overall pressure is dominated
by the lithostatic component that grows linearly with depth, it
is not surprising that the P2×P0 has a hard time approximat-
ing the pressure well; the figures show that this also translates
to a poor approximation of the normalized velocity v∗. This
error becomes smaller the larger η∗ becomes since η∗ is a
measure of the ratio of the dynamic to the lithostatic pres-
sure.

4.4.2 Reduced density

In the second case, where the density outside the inclusion
is zero, the lithostatic pressure is absent and we can inves-
tigate both the dimensionless velocity (Fig. 9) and pressure
(Fig. 10) in the middle of the block.

While the figure shows that the P2×P0 element has re-
covered some of its accuracy in approximating the veloc-
ity, it is unable to provide an accurate approximation of the
pressure. A comparison of the convergence behavior (going
from coarse to fine meshes) shows that the P+1 ×P1 element
also behaves pretty poorly. The remaining elements are all
of Taylor–Hood type; of these, the P2×P1 element with
continuous pressure is substantially more accurate than the
P+2 ×P−1 element with discontinuous pressure.

4.5 Rayleigh–Taylor wave benchmark

As a final comparison, we have also carried out the
buoyancy-driven Rayleigh–Taylor wave instability bench-
mark found, for example, in Gerya (2019), Deubelbeiss and
Kaus (2008), and Thieulot (2011) and for which an analytical
solution of the initial growth rate can be found in Ramberg
(1968). The benchmark consists of a two-layer system in a
box of size Lx×Ly driven by gravity. A layer of fluid 1 (with
viscosity and density η1 and ρ1 and thickness h1 = Ly/2)
overlies a layer of fluid 2 (with viscosity and density η2 and
ρ2 and thickness h2 = Ly/2). The interface between the two
layers is disturbed by a sinusoidal displacement character-
ized by its amplitude 1= 0.01 and wavelength λ= Lx/2.
No-slip boundary conditions are imposed on the top and the
bottom of the domain, while free slip is imposed on the sides.
Gravity is set to g =−ey . We use a mesh that is slightly dis-
torted so as to accommodate the sinusoidal interface; how-
ever, we use straight element edges in keeping with the other
benchmarks solved in this contribution. In our experiments,
we specifically choose Lx = Ly = 1.

The non-horizontal interface in the setup leads to diapiric
growth (illustrated in Fig. 11) whose initial vertical veloc-
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Figure 8. The sinking block benchmark with full densities: normalized velocity v∗ in the middle of the block (obtained for three density
ratios δρ/ρfluid) as a function of viscosity ratio η∗. Each panel corresponds to a different mesh resolution. For the P2×P0 element, some of
the data points fall outside of the range of the plots. (See the main text for an explanation of the scattered red dots for the P2×P0 element.)
For reference, we also show results obtained with ASPECT on a 256× 256 mesh.

Figure 9. The sinking block benchmark with reduced densities: normalized velocity v∗ as a function of viscosity ratio η∗ for various
resolutions.
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Figure 10. The sinking block benchmark with reduced densities: normalized pressure p∗ in the middle of the block as a function of viscosity
ratio η∗ for various resolutions. For the P2×P0, P+2 ×P−1, andQ2×P−1 elements with their discontinuous pressure spaces, we show p∗ at
several slightly displaced points (xs±δx,ys±δy). For the P+2 ×P−1 andQ2×P−1 elements the difference is not visible at high resolution,
and values for the P2×P0 element (red dots) fall outside the range shown here at low resolution and still show substantial differences at high
resolution.

Figure 11. Rayleigh–Taylor wave benchmark. The figure shows the
two layers and the velocity field that results from their unequal den-
sities, as obtained on a 64× 64 mesh usingQ2×Q1 elements, with
η2 = 102.

ity v, at points where it is maximal, can be shown to satisfy
the analytic relationship v =−1K ρ1−ρ2

2η2
h2g, with K being

a dimensionless growth factor that depends on φ1, φ2, η1,
and η2 (see Gerya, 2019). Instead of targeting a specific node
in the domain, we evaluate v by taking the maximum vertical
velocity |vy | in the domain.

We then solve this benchmark with η1 = 1, ρ1 = 1.1, and
ρ2 = 1, and we vary η2 between 10−2 and 102 and compu-

tationally determine the vertical growth velocity at the initial
time for all six element pairs and for various resolutions.

We show results in Fig. 12. We find that all elements but
the P2×P0 perform as expected for the range of explored
viscosity values η2: the obtained velocities fall on the analyt-
ical dashed line, with fairly little variation between element
combinations that is only visible on the coarsest mesh. On the
other hand, the results obtained with the P2×P0 combination
are far from the exact values; we find that with increasing res-
olution, obtained velocities get closer to the analytical values
(especially for η2 > 1), but even at a resolution of 256× 256
elements, v is more than a factor 2 off for η2 = 0.01. This be-
havior is consistent with what we have found for the sinking
block benchmark in Sect. 4.4.

In order to elucidate the underlying reasons, we have re-
run this experiment with reduced densities (see Sect. 4.4)
where we choose ρ1 = 0.1 and ρ2 = 0; in other words, we
have subtracted a constant from the densities in both layers
since flow is only driven by density differences, not densities
themselves. This results in a different pressure field but the
same velocity. We find that in this case the obtained veloc-
ities for the P2×P0 converge much faster to the analytical
ones over the entire range of viscosities, as shown in Fig. 13.
This is again in line with the observations for the sinking
block benchmark and also matches our findings in Thieu-
lot and Bangerth (2022) that constant-pressure elements per-
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Figure 12. Rayleigh–Taylor wave benchmark. For each of the six element combinations considered in this paper, we show the maximum
(absolute) vertical velocity |vy | as a function of viscosity η2 for several different mesh resolutions.

form poorly in buoyancy-driven flow experiments where the
lithostatic pressure is dominant.

4.6 A quantitative comparison of convergence rates

For three of the benchmarks shown in the previous sub-
sections, an analytic solution is available that allowed us
to compute errors. For these cases, we can also compute
error rates in the L2 norm, namely ‖u− uh‖L2 ∝ h

α and
‖p−ph‖L2 ∝ h

β . Generally, for Taylor–Hood-type elements
with polynomial degree k for the velocity, one would expect
α = k+ 1 and β = k if the solution is smooth, but not all
elements always achieve this rate and the rate is also lim-
ited by the smoothness of the solution – see the discussion in
Sects. 3.1 and 3.2 of Thieulot and Bangerth (2022).

We summarize the rates we observe in our computations in
Table 2, along with the optimal rate one would expect theo-
retically for each of these elements. The table illustrates that

in cases where the solution is smooth, the Taylor–Hood-type
elements achieve a higher order of convergence and, conse-
quently, will be asymptotically more efficient than the other
elements. (In practice, the results of the previous sections as
well as the first part of this paper show that the Taylor–Hood-
type elements are already more efficient for rather coarse
meshes.) This observation will apply to the large parts of
the domain in geodynamics simulations where the viscosity
varies smoothly. The second observation one can draw from
the table is that for cases where the solution is not smooth be-
cause the viscosity or density is discontinuous, all discretiza-
tions take a hit (unless the mesh is aligned with the disconti-
nuity) and convergence rates are limited by the regularity of
the solution.

We end this section by noting that we also computed so-
lutions to the SolKz benchmark (Zhong, 1996) that, like the
Donea–Huerta benchmark, has a smooth solution and that
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Table 2. Observed convergence rates for the three benchmarks for which an analytic solution is available, along with the theoretically
predicted optimal convergence rate for each of the elements assuming a sufficiently smooth solution. Each entry in the table consists of a pair
α and β of convergence rates for the L2 norms of the error in the velocity and pressure. “struct.”: structured meshes; “unstruct.”: unstructured
meshes (for simplex elements only). Note that the optimal pressure convergence rate for the MINI element P+1 ×P1 depends on the type
of mesh; on general meshes, standard finite element theory predicts it to be 1 but in certain conditions can be up to 1.5 as observed for the
Donea–Huerta benchmark (see Cioncolini and Boffi, 2019, and John, 2016, p.157, for experimental evidence and Eichel et al., 2011, for an
earlier theoretical investigation).

Optimal Donea–Huerta SolCx SolVi

struct. unstruct. struct. unstruct. struct. unstruct.

Hypercube Q2×Q1 3/2 3/2 – 3/0.5 – 1/0.5 –
elements Q2×P−1 3/2 3/2 – 3/2 – 1/0.5 –

Simplex P+1 ×P1 2/1 2/1.5 2/1 2/0.5 2/0.5 1/0.5 2/0.5
elements P2×P1 3/2 3/2 3/2 3/0.5 3/0.5 1/0.5 2/0.5

P2×P0 2/1 2/1 2/1 2/1 2/1 1/0.5 2/1
P+2 ×P−1 3/2 3/2 3/2 3/2 3/2 1/0.5 2/1.5

Figure 13. Rayleigh–Taylor wave benchmark. We show the maxi-
mum (absolute) vertical velocity |vy | as a function of viscosity η2
for several different mesh resolutions for the P2×P0 element. Com-
pared with the bottom-left panel in Fig. 12, we here use reduced
densities, as explained in the main text.

has been widely used in the community for similar purposes
(Duretz et al., 2011; Kronbichler et al., 2012; Gerya et al.,
2013; de Montserrat et al., 2019). The results are very sim-
ilar to those of the Donea–Huerta case. We have also run
the benchmark described in John (2016, p. 752), with results
matching those provided there. In both cases, the results con-
firm the correctness of our implementation but do not provide
any insight not already available from the benchmarks shown
above; we have consequently chosen not to show these re-
sults in this contribution.

Finally, in the first part of this paper, we followed our re-
sults on benchmarks with a more concrete geodynamic ap-
plication. The observations there reinforced the conclusions
we had drawn based on benchmarks. Based on the results of
the current paper, we see no reason to believe that solving the
same application again with triangular meshes would result
in any different outcomes than reported there, and we conse-
quently omit it here.

5 Conclusions

Historically as well as recently, geodynamics codes that
solve the Stokes equations have based their numerical meth-
ods on a wide variety of finite element discretizations –
nearly every element ever invented has been used in some
geodynamics code or other. This diversity of approaches may
not always have been motivated by careful considerations of
what the best method is but also by human elements such
as what the implementer was familiar with or felt feasible
to implement. At the same time, today’s finite element dis-
cretization libraries upon which most new codes are built
support a broad range of elements, both low and high order,
and as a consequence, evidence-based decisions about which
element to use are now both possible and called for. As a
consequence, comparative studies such as the current one for
simplex elements and the first part of our work in Thieulot
and Bangerth (2022) for hypercube elements are both useful
and necessary.

Having compared a number of possible finite element
choices for the Stokes equations using a carefully selected set
of benchmarks, we can summarize our findings as follows.

– The P+1 ×P1 element is not accurate enough. Although
appealing on paper because of its stability and small
number of unknowns, the P+1 ×P1 element is also the
least accurate one in most benchmarks.

– The P2×P0 element can not accurately represent the
lithostatic pressure. Similarly, the P2×P0 element is
appealing because of its small pressure space and the
fact that it is mass conservative due to the discontinu-
ous pressure. At the same time, the low-order pressure
does not allow the velocity to reach the optimal con-
vergence rate, and using a piecewise constant pressure
simply does not result in sufficient accuracy for appli-
cations in which an accurate representation of the litho-
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static pressure field is important – e.g., for problems
with pressure-dependent rheologies.

– Only Taylor–Hood elements are accurate and robust. As
a consequence of these considerations, only the Taylor–
Hood-type elements P2×P1 and P+2 ×P−1 are truly
competitive across all applications we have considered.
This is in line with the conclusions of the first part of
this work (Thieulot and Bangerth, 2022) where we have
found that on hypercube cells, only the Q2×Q1 and
Q2×P−1 elements are consistently able to provide suf-
ficient accuracy across benchmarks. This is despite the
non-trivial costs of these elements due to their large
number of velocity degrees of freedom, in particular
in 3D, and consequent large number of nonzero entries
in system matrices – apparently this is a price one needs
to pay for consistently high accuracy.

– It is not obvious which of the Taylor–Hood variants is
better. Comparing between the two Taylor–Hood-like
elements on triangles, the P2×P1 element provides
a substantially better pressure approximation than the
P+2 ×P−1 element for smooth solutions; in other cases,
the difference is marginal, and in yet other cases the dis-
continuous pressure elements are substantially better. In
essence, the difference is not universally large enough
either way to recommend one over the other based on
accuracy alone. The same is true when considering run
times: all of the Taylor–Hood-type elements take about
the same time in the assembly of the matrix and in the
solution of the linear system; run time is consequently
not a criterion to choose one Taylor–Hood variant over
another. On the other hand, if local mass conservation
is important, or if one wanted to use a linear solver that
can exploit the block diagonal structure of the pressure
mass matrix of the P+2 ×P−1 combination, then this el-
ement may have a benefit over the P2×P1 element.

– Per degree of freedom, hypercube elements are slightly
more accurate than the corresponding simplex ele-
ments. Comparing between the Taylor–Hood-type ele-
ments on simplex and hypercube meshes, the P2×P1
element is typically less accurate than its counterpart
Q2×Q1. Likewise, the P+2 ×P−1 element is typically
less accurate than its counterpart Q2×P−1 for smooth
solutions. In neither case are the differences very large,
however.

These conclusions conform with the results of the first part
of this study: at the end of the day, only Taylor–Hood-type
elements are consistently able to provide reliable and robust
accuracy in geodynamic applications, not because they are
inherently superior but because all of the other choices fail
on one benchmark or other in a way that make them unsuit-
able for the task. It is reassuring that this conclusion is the
same for simplex and hypercube elements as this hints at the

universality of the properties of finite element families, re-
gardless of the choice of reference cell.

The comparisons we have made also support another con-
clusion: while triangular and tetrahedral meshes have right-
fully been dominant in engineering applications for their
ability to mesh complex geometries (and perhaps situations
in which coefficients jump at predictable locations), they are
generally slightly less accurate than the corresponding finite
element on quadrilateral and hexahedral cells. Taking into ac-
count that they typically lead to matrices with fewer entries,
one can speculate that per unit computational cost, their per-
formance in terms of error as a function of computational
work is roughly comparable to that of hypercube cells. But,
given that geodynamic applications oftentimes do not need
complex geometries, this also implies that simplex meshes
and elements offer no specific benefit over hypercubes and
that there is no reason to abandon the common practice in
the field to build codes based on hypercube cells.
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