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Abstract. Model predictions are important to assess the sub-
surface state distributions (such as the stress), which are es-
sential for, for instance, determining the location of potential
nuclear waste disposal sites. Providing these predictions with
quantified uncertainties often requires a large number of sim-
ulations, which is difficult due to the high CPU time needed.
One possibility for addressing the computational burden is
to use surrogate models. Purely data-driven approaches face
challenges when operating in data-sparse application fields
such as geomechanical modeling or producing interpretable
models. The latter aspect is critical for applications such
as nuclear waste disposal, where it is essential to provide
trustworthy predictions. To overcome the challenge of trust-
worthiness, we propose the usage of a novel hybrid ma-
chine learning method, namely the non-intrusive reduced-
basis method, as a surrogate model. This method resolves
both of the above challenges while being orders of magni-
tude faster than classical finite element simulations. In the pa-
per, we demonstrate the usage of the non-intrusive reduced-
basis method for 3-D geomechanical–numerical modeling
with a comprehensive sensitivity assessment. The usage of
these surrogate geomechanical models yields a speed-up of
6 orders of magnitude while maintaining global errors in the
range of less than 0.01 %. Because of this enormous reduc-
tion in computation time, computationally demanding meth-
ods such as global sensitivity analyses, which provide valu-
able information about the contribution of the various model

parameters to stress variability, become feasible. The op-
portunities of these added benefits are demonstrated with a
benchmark example and a simplified study for a siting region
for a potential nuclear waste repository in Nördlich Lägern
(Switzerland).

1 Introduction

Knowledge of the crustal stress field is of key importance for
the safe usage of the subsurface, for example, for geother-
mal exploitation or storage of energy, CO2, and nuclear waste
(Blöcher et al., 2018; Henk, 2008; Hergert et al., 2015; Smart
et al., 2014). The importance is expressed in the unwanted
release of stored elastic energy during anthropogenic utiliza-
tion by means of failure of boreholes (Schmitt et al., 2012;
Tingay et al., 2008), caverns, and tunnels (Brady and Brown,
2006); subsidence; or induced seismic events (Ellsworth,
2013; Segall and Fitzgerald, 1998; Ziegler et al., 2015). Thus,
to develop strategies that reduce the risks of induced hazards
and prevent failure due to human-made interventions in the
subsurface, it is important to understand the undisturbed 3-D
in situ stress state (Gaucher et al., 2015). However, the in situ
stress state is challenging to quantify. Stress data are rare; of-
ten subject to large uncertainties; and describe, in most cases,
only a subset of the six independent components of the sym-
metric second-rank tensor that formally describes the stress
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state at an arbitrary point in the subsurface (Amadei and
Stephansson, 1997; Desroches et al., 2021; Heidbach et al.,
2018; Morawietz et al., 2020).

To obtain a continuous description of the 3-D stress ten-
sor in a given rock volume, geomechanical–numerical mod-
els are employed. These models usually use the finite ele-
ment method to solve the partial differential equation that
describes the equilibrium of forces (e.g., Ahlers et al., 2021;
Fischer and Henk, 2013; Lecampion and Lei, 2010; Reiter
and Heidbach, 2014; Singha and Chatterjee, 2015; van Wees
et al., 2018). For the model input, we have to describe the
rock properties, the boundary conditions, and the subsurface
geological structures. However, knowledge about these pa-
rameters is usually incomplete and consequently associated
with uncertainties (e.g., Hergert et al., 2015; Ziegler and Hei-
dbach, 2020). This means that for providing reliable model
predictions the information regarding these parameter vari-
abilities needs to be included and assessed.

Such tasks are commonly achieved through global sensi-
tivity analyses (SAs; Degen et al., 2021a, b; Saltelli et al.,
2019) and uncertainty quantification methods (Degen et al.,
2022a, c; Saltelli et al., 2019). Both methods have the re-
quirement of numerous model evaluations in common, which
poses major challenges when each model evaluation is com-
putationally costly. One way to circumvent the issue is the
use of surrogate models (also referred to as meta or re-
duced models), i.e., low-order representations of the orig-
inal model that are significantly faster to compute. Many
surrogate model construction techniques exist, ranging from
physics-based to data-driven approaches (e.g., Benner et al.,
2015; Degen et al., 2023; Hesthaven et al., 2016; Jordan
and Mitchell, 2015; Kotsiantis et al., 2007; Mahesh, 2020).
Nonetheless, every surrogate model needs to be evaluated
concerning its trustworthiness and explainability. This is im-
portant for several reasons: (i) if we use the surrogate in sub-
sequent analyses such as global sensitivity analyses, we need
to ensure that the surrogate represents the original model,
otherwise the obtained sensitivities are not representative; (ii)
if the model results are used for decision-making processes,
they need to be reliable and robust.

Different techniques exist for the construction of surrogate
models, generally subdivided into three categories. In the fol-
lowing we briefly present the various techniques, explaining
their key advantages and disadvantages:

1. One class of techniques is the data-driven machine
learning approach, which recently gained attention in
the construction of surrogate models (e.g., Bergen et al.,
2019; Degen et al., 2023; Li et al., 2023; Swischuk
et al., 2019; Willcox et al., 2021). This is thanks to their
capabilities of approximating well nonlinear applica-
tions, their straightforward usage because of their black
box and non-intrusive nature (meaning that they do not
need direct access to the numerical solver), and their
availability in software frameworks such as PyTorch

(Paszke et al., 2019) and TensorFlow (Abadi et al.,
2015). Nonetheless, the black box nature also has the
disadvantage of yielding non-explainable models that
do not preserve the governing physical equations, mak-
ing their utilization challenging in terms of reliability.

2. Physics-based methods such as the reduced-basis
method or the proper orthogonal decomposition have
the advantage of preserving the physics (Benner et al.,
2015; Degen et al., 2020a; Hesthaven et al., 2016; Quar-
teroni et al., 2015; Rozza et al., 2008). The reduced-
basis method has been developed in the field of applied
mathematics and has been used for various applica-
tions, such as transport and continuum mechanics (e.g.,
Benner et al., 2015; Hesthaven et al., 2016; Quarteroni
et al., 2015; Rozza et al., 2008) and also for large-scale
geothermal applications (Degen et al., 2021b, 2022c).
However, they reach their limits in efficiently approxi-
mating highly nonlinear problems (Degen et al., 2023;
Hesthaven and Ubbiali, 2018; Wang et al., 2019, see
also Sect. 2).

3. To overcome the limitations of both individual ap-
proaches, physics-based machine learning methods are
introduced, which combine data-driven and physics-
based techniques. Several physics-based machine learn-
ing methods are available, and they have different im-
plications concerning the question of explainable surro-
gate models (e.g., Degen et al., 2023; Faroughi et al.,
2022; Willard et al., 2022). In this study, we use
the non-intrusive reduced-basis (NI-RB) method (Hes-
thaven and Ubbiali, 2018; Swischuk et al., 2019) for the
construction of the surrogate models for geomechanical
applications and demonstrate how it fulfills the criteria
of explainable and reliable surrogate models in contrast
to other physics-based machine learning techniques.

This paper focuses on two main aspects: (i) the com-
bined consideration of different sources of uncertainty, such
as stress magnitude data records used for calibration, mate-
rial properties, and subsurface geometry, and (ii) the consid-
eration of rapid changes in the state distribution. Especially
the later part distinguishes the work significantly from pre-
vious studies in geothermal applications (e.g., Degen et al.,
2022a), where only smooth-state variable distributions of the
pore pressure and/or temperature have been considered so
far. Depending on the permeability contrast, the pore pres-
sure exhibits rapid changes as well. However, these scenar-
ios have not yet been investigated with respect to the non-
intrusive reduced-basis method. Following a benchmark ex-
ample the workflow is applied to a data set from northern
Switzerland, where an underground repository for nuclear
waste is planned.
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2 Background and methods

In the following, we present the governing equations for
geomechanical–numerical modeling presented in this paper.
Afterwards, we introduce the non-intrusive reduced-basis
method, which is responsible for constructing the surrogate
models. Additionally, we explain the concept of global sen-
sitivity analyses, which are used to investigate the influence
of the model parameters.

2.1 Subsurface stress state

The stress state in the subsurface is usually described by the
symmetric second-rank stress tensor σij :

σ ij =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , (1)

with six independent components – the three normal stresses
σxx , σyy , and σzz as well as three shear stresses σxy = σyx ,
σyz = σzy , and σzx = σxz. Commonly, instead of the full
stress tensor, the stress state, in its main axis system which
is a rotation of the stress tensor, is referred to in a way that
all shear stresses dissipate and only normal stresses remain
so that

S=

S1 0 0
0 S2 0
0 0 S3

 , (2)

with the principal stress components S1, S2, and S3 that are
perpendicular to each other but arbitrarily oriented in space.
A common assumption in upper-crustal geomechanics is that
one of the principal stress axes is vertical as a result of the
overburden which can then be referred to as Sv (Zoback,
2007). The other two principal stress axes are then by defini-
tion horizontal and called the maximum and minimum hor-
izontal stress SHmax and Shmin, respectively. Then the stress
state can be fully described by four variables only: the magni-
tudes of Sv, SHmax, and Shmin as well as the orientation of one
of the two horizontal stress components. This is then called
the reduced stress tensor (Zoback, 2007).

Information on the orientation of SHmax is available from
a variety of stress indicators that are, e.g., compiled in the
World Stress Map (Heidbach et al., 2018). Stress magnitude
data are less frequently available, sparse, and often of little
quality (Morawietz et al., 2020). However, in particular, the
stress magnitudes are important for many subsurface appli-
cations. If detailed information on the in situ stress state is re-
quired, 3-D geomechanical–numerical modeling is applied in
order to estimate the stress state in a volume of interest based
on few data records (e.g., Fischer and Henk, 2013; Lecam-
pion and Lei, 2010; Singha and Chatterjee, 2015; van Wees
et al., 2018; Ziegler et al., 2016).

2.2 Governing equations

The modeling of the in situ stress state is conducted under
the assumption of a linear elastic upper crust as the govern-
ing constitutive equation (Reiter and Heidbach, 2014; Herg-
ert et al., 2015; Singha and Chatterjee, 2015) and no acceler-
ation except for gravity. The required material properties are
thus the Young modulus (E), the Poisson ratio (ν), and the
density (ρ). We derive the total stress σ from the momentum
balance (Cacace and Jacquey, 2017):

∇ · σ + ρg = 0, (3)

where ρ is the density and g the gravity acceleration. The
numerical forward simulations are performed in GOLEM
(Cacace and Jacquey, 2017), which is an open-source high-
performance finite element software based on the MOOSE
framework (Lindsay et al., 2022). The result is the full stress
tensor σij at discrete locations throughout the model volume.
This information is used to derive scalar values such as in-
dividual components from the reduced stress tensor or the
slip tendency of faults (Röckel et al., 2022). Furthermore,
we consider the following constitutive linear elastic relation-
ships:

E =
σ

εaxial
and ν =−

εtrans

εaxial
. (4)

Here, εaxial and εtrans are the axial and transverses strains,
respectively.

The model geometry is usually oriented in a way that
the boundaries are parallel and perpendicular to the orien-
tation of SHmax and Shmin (Fig. 1). The stress state is intro-
duced to the model using displacement boundary conditions
(Dirichlet-type) on the lateral boundaries of the model. The
magnitude of displacements is adapted in a way that the re-
sulting stress magnitudes (SHmax and Shmin) match observed
data records (Reiter and Heidbach, 2014; Ziegler and Heid-
bach, 2020). This process is referred to as the calibration of
the model. It is of an iterative nature or aided by the software
tool FAST Calibration (Ziegler et al., 2023).

2.3 Non-intrusive reduced-basis method

In this work, we evaluate the trustworthiness of geomechan-
ical surrogate models for use in applications such as nuclear
waste disposal. Note that we focus on the construction of
surrogate models for the Shmin, SHmax, and Sv components.
For better illustration of the general concepts, we assume that
the material properties are homogeneous and isotropic within
each layer. However, the presented concepts are not restricted
to these assumptions. Further details regarding the model
setup are listed in Sect. 3. For the purpose of the surrogate
model construction, we use the non-intrusive reduced-basis
(NI-RB) method to construct the surrogate models (Hes-
thaven and Ubbiali, 2018; Swischuk et al., 2019; Wang et al.,
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Figure 1. The model setup with the Cartesian model coordinate sys-
tem (x and y axes) and the coordinate system used for application
of boundary conditions (x′ and y′ axes) perpendicular to the model
boundaries and the orientations of SHmax and Shmin, respectively.
The boundary conditions (Dirichlet-type) are indicated by the bold
arrows (prescribed displacements) and rollers that indicate a zero
displacement perpendicular to the model boundary.

2019). The NI-RB method combines physics-based and data-
driven approaches to provide reliable predictions even for
complex nonlinear and hyperbolic partial differential equa-
tions (PDEs).

The NI-RB method is most advantageous in the many-
query or real-time context, so if either many and/or fast
model evaluations are required (Benner et al., 2015; Hes-
thaven and Ubbiali, 2018; Hesthaven et al., 2016). To en-
sure this, the method is divided into two stages: the offline
and online stages, as illustrated in Fig. 2. During the offline
stage, the training data are generated and the surrogate model
is constructed. This stage is computationally expensive since
it requires several full-order solutions of the model, as we
explain in the next paragraph. However, it needs to be per-
formed only once. On the other hand, during the following
online stage, the surrogate model is evaluated. This is a com-
putationally fast procedure allowing numerous evaluations of
the surrogate model in a short amount of time (Benner et al.,
2015; Hesthaven and Ubbiali, 2018).

2.3.1 Offline stage

The construction of the surrogate model in the offline stage
is also a two-step procedure, which is preceded by step zero
where the model parameters for the full-order solutions are
determined (step 0 in Fig. 2). In our case, we use a quasi-
random Latin hypercube sampling strategy (Loh, 1996) for
the generation of the 100–200 training snapshots with the
parameter ranges provided in Table 1. These snapshots are
combinations of different geometries, rock properties, and
boundary conditions, as shown in Fig. 2.

In the first step (Fig. 2) of the offline stage, the basis
functions of the surrogate model are calculated by perform-
ing a proper orthogonal decomposition (POD). They capture
the characteristic physical behavior of the model by regard-
ing the models response to different properties provided by
the snapshots. In order to ensure an efficient execution of

both the POD and machine learning stage, we scale the in-
put parameters as well as the data sets. The input parame-
ters are transformed using z score normalization, resulting
in a mean of 0 and a standard deviation of 1. The training
data are scaled with a min–max scaling, taking the maximum
and minimum values, which yields a data set distributed be-
tween 0 and 1. The basis functions correspond to the most
influential singular vectors (Hesthaven and Ubbiali, 2018).
For defining this, the energy criterion is used (Guo and Hes-
thaven, 2019; Swischuk et al., 2019):∑r

i=1λ
2
i∑N

i=1λ
2
i

≤ ε, (5)

where r corresponds to the dimension of the reduced model,
λ to the singular value,N to the total number of samples, and
ε to the desired accuracy of the surrogate. Since ε is a user-
defined value, the quality of the surrogate is adjustable to
the application. In our case studies, we set the tolerance ε to
maintain 10−4 % of the information content to ensure surro-
gate models that represent the full-order solutions well. This
tolerance is application-specific and based on the experience
of previous studies (Degen et al., 2023, 2022a, 2020a).

The resulting surrogate model urb is a linear combination
of basis function ψ determined in step 1 and reduced coeffi-
cients θrb.

urb (µ)=

r∑
i=1

ψiθ
(i)
rb (µ) ∈ Vrb (6)

Here, µ refers to the model parameters and Vrb to the re-
duced space. The determination of these coefficients is the
second step of the offline phase, which is classically per-
formed by a Galerkin projection (Benner et al., 2015; Hes-
thaven et al., 2016; Quarteroni et al., 2015). However, to al-
low also for a later extension to nonlinear applications, we
use in this study machine learning methods to determine the
coefficients instead (step 2 in Fig. 2). This possible exten-
sion to the nonlinear setting is shown in several studies (De-
gen et al., 2022a; Hesthaven and Ubbiali, 2018; Swischuk
et al., 2019). In the present study, we use Gaussian process
regression (GPR; Schulz et al., 2018) as the machine learning
method, which works better than neural networks in a linear
setting since fewer hyperparameters need to be determined.
We use anisotropic radial basis function kernels with an ini-
tial length scale of 1, which is optimized for each normalized
model parameter µ within the ranges of 10−5 and 105. The
GPR computations are executed with scikit-learn (Pedregosa
et al., 2011). The input for the GPR machine learning al-
gorithm is the product of the basis functions and the train-
ing snapshots. The basis functions ψ provide the character-
istic behavior of the model. The training snapshots are a con-
trolled environment with known µ. This allows the GPR to
derive the reduced coefficients θrb that complete the mapping
between the input and output space since both are known for
the training data.
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Figure 2. Schematic representation of the offline and online procedure for the NI-RB method, including the different steps required for the
model construction in the offline phase. Note that urb denotes the reduced solution, µ the model parameters, r the reduced dimension, ψ the
basis functions, θrb the reduced coefficients, N the total number of samples, and n the number of basis functions.

2.3.2 Online stage

Once the surrogate model is constructed, we have a flex-
ible and fast-performing replacement of the original high-
dimensional problem, which can be used in subsequent anal-
yses. Hence, new solutions for any desired combination of
model parameters µ can be computed within the predefined
parameter ranges (Fig. 2). To achieve this, we need to de-
termine the corresponding reduced coefficients over the ma-
chine learning model and compute the associated solution by
multiplying the coefficients and basis functions, as shown in
Eq. (6). Note that only the coefficients have to be calculated
for new combinations of model parameters. The basis func-
tions remain the same throughout all realizations. This yields
a great computational gain, allowing for rapid evaluations in,
for instance, global sensitivity analyses or uncertainty quan-
tification methods.

2.4 Global sensitivity analysis

The purpose of a sensitivity analysis (SA) is to investigate to
which extent the model parameters influence the model re-
sponse. This is helpful in determining which parameters to
focus on in an in-depth study. In this study, the model pa-
rameters of interest are the value of the boundary conditions,
the material properties, and the depth of the layer interfaces.
The model response that we evaluate is the subsurface stress
distribution.

In general two types of sensitivity analyses are distin-
guished: local and global analyses (e.g., Degen et al., 2021b;
Degen and Wellmann, 2024; Sobol, 2001; Razavi and Gupta,
2015; Sarrazin et al., 2016; Song et al., 2015; Wainwright
et al., 2014). The local SA has the advantage of requiring
only a very few model evaluations but the disadvantages of
not considering parameter correlations and investigating the
influence of the model parameters only in the vicinity of a
reference parameter. In contrast, a global SA investigates the
entire parameter space and can determine parameter corre-
lations if, for instance, a variance-based method is chosen.
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482 D. Degen et al.: About the trustworthiness of physics-based machine learning

Table 1. Variation ranges of the input parameters for all five cases. Note that ‖ x and ‖ y denote the displacement for the boundary condition
on the x and y axes, respectively. Furthermore, “upper” denotes the interface between the limestone and clay layer and “lower” the interface
between the clay and crystalline layer. The parameter ranges have been chosen to be representative of nuclear waste disposal applications
(Crisci et al., 2022a, b; Gonus et al., 2022a, b, 2023; Spillmann et al., 2022), and the thickness data are from Crisci et al. (2022a). The Young
modulus of the crystalline layers was extended beyond that range to account also for other subsurface engineering applications.

Layer E [GPa] ν [–] ρ [kgm−3] ‖ x [m] ‖ y [m] Upper [m] Lower [m]

Case 1: changing boundary conditions

Limestone 25 0.21 2600
Clay 15 0.34 2400 0.2–0.6 4.0–6.0 −2000 −4000
Crystalline (basement) 60 0.25 2800

Case 2: changing material properties

Limestone 20–40 0.18–0.23 2500–2700
Clay 10–25 0.30–0.38 2300–2500 0.5 5.0 −2000 −4000
Crystalline (basement) 30–80 0.20–0.30 2700–2900

Case 3: changing geometry

Limestone 25 0.21 2600
Clay 15 0.34 2400 0.5 5.0 −1800 to −2200 −3800 to −4200
Crystalline (basement) 60 0.25 2800

Case 4: changing boundary conditions and material properties

Limestone 20–40 0.18–0.23 2500–2700
Clay 10–25 0.30–0.38 2300–2500 0.2–0.6 4.0–6.0 −2000 −4000
Crystalline (basement) 30–80 0.20–0.30 2700–2900

Case 5: changing boundary conditions and material properties and geometry

Limestone 20–40 0.18–0.23 2500–2700
Clay 10–25 0.30–0.38 2300–2500 0.2–0.6 4.0–6.0 −1800 to −2200 −3800 to −4200
Crystalline (basement) 30–80 0.20–0.30 2700–2900

However, this comes at the cost of requiring numerous model
evaluations, which makes the method computationally costly
(Degen et al., 2021b; Degen and Wellmann, 2024; Saltelli
et al., 2019; Sobol, 2001; Wainwright et al., 2014). This is
the reason why we propose the use of surrogate models for
global sensitivity analyses.

We use the variance-based Sobol sensitivity analysis with
a Saltelli sampler (Saltelli, 2002; Saltelli et al., 2010; Sobol,
2001). For the analyses of the benchmark example, we inves-
tigate the influence of up to 13 parameters (Young’s modu-
lus, density, Poisson’s ratio of all three layers, the values of
the two displacement boundary conditions, and the two inter-
face positions; see Fig. 3). In the case of the simplified case
study of Nördlich Lägern, we investigate the Young modulus
of each layer yielding 15 parameters. For each of these up to
15 parameters, we generate 217 samples, which is equal to
131 072. Note that we always need 2n samples per parameter
to ensure the convergence of the sampler. n can be any posi-
tive number and is as mentioned before for this study equal to
17. This number was determined through convergence tests.
Because of the sampler used, the total number of forward
evaluations per SA is (n · (2D+ 2)), where D is the number

of parameters. Since we perform 21 global SAs for up to 15
parameters, we require a total of 50 069 504 model evalua-
tions for all analyses combined. Further details regarding the
SAs are presented in the individual result sections.

For the different global SAs, we present first-order and
total-order sensitivity indices. First-order indices describe
the influence arising from the model parameters themselves,
which are determined by the variance of the model parameter
divided by the total variance that regards all model parameter
variability. Total-order contributions contain the influence of
the model parameters and their correlations to other parame-
ters. For the sensitivity analysis, we need to define a thresh-
old above which parameters are deemed influential. There is
no general way of determining this threshold. For the pur-
pose of this study, we set it to 10−2 since values below this
threshold would be difficult to validate against typical in situ
stress measurement accuracies (Desroches et al., 2021; Mar-
tin, 2007; Morawietz et al., 2020). This value is also in accor-
dance with threshold values typically employed in the litera-
ture (Cosenza et al., 2013; Degen et al., 2021a, b; Degen and
Wellmann, 2024; Sin et al., 2011; Tang et al., 2007; Vanrol-
leghem et al., 2015). The threshold is a dimensionless num-
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Figure 3. Schematic representation of synthetic model and all variations investigated in this study. The model (10km× 10km× 6km)
consists of three different lithological units having purely elastic material properties, which are variable. Mechanical parameters are the
Young modulus (E), the Poisson ratio (ν), and the density (ρ). The horizontal stratigraphic boundaries can be varied by±200 m. The applied
lateral boundary conditions range between 4 and 6 m shortening in the y direction driving SHmax magnitude and orientation and 0.2 to 0.6 m
shortening driving the Shmin magnitude and orientation.

ber, which is determined by the division of two variances; for
further details regarding the threshold itself and its determi-
nation, we refer to Degen and Wellmann (2024).

3 Synthetic model

We consider a three-layer model to investigate systematically
the potential of the NI-RB method to construct reliable sur-
rogate models for representing the subsurface stress distri-
bution. The model has an extent of 10 km in both the x and
y directions and 6 km in the z direction (Fig. 3). For the dis-
cretization, we consider hexahedral elements. In both the x
and y directions, we have a model resolution of 400 m and in
the z direction a resolution of 10 m. The much higher resolu-
tion of the vertical component is chosen to allow the consid-
eration of geometrical uncertainties, i.e., uncertainties in the
depth of geological horizons. The three layers are lateral ho-
mogenous and equally spaced, where the top layer consists
of limestone, the middle layer is clay, and the lowest layer is
a crystalline unit. Thus, Sv, SHmax, and Shmin are indeed the
principal stresses of the modeled total stress.

Throughout the study, we allow variations for the bound-
ary conditions, the material properties, and the interface
depths. For the displacement in the y direction (northern
boundary), we apply a Dirichlet boundary condition with
values varying between 4–6 m shortening, whereas the vari-
ations for the x direction range from 0.2 to 0.6 m (eastern
boundary). Different boundary conditions are needed to en-
sure reasonable variations in the stress magnitudes as ob-
served in data records. The top boundary is assigned with a
zero Neumann boundary condition, and all remaining bound-
aries are subjected to zero Dirichlet boundary conditions nor-
mal to the boundary (roller boundary conditions). The mate-
rial properties are varied according to the expected uncertain-

ties for the corresponding lithology. The depth of geological
horizons can be varied by ±200 m.

We consider five cases: (i) changing boundary conditions,
(ii) changing material properties, (iii) changing interface po-
sitions, (iv) simultaneously changing boundary conditions
and material properties, and (iv) changing all three sources
of uncertainty. The different scenarios including their input
parameters are listed in Table 1. The uncertainties of the pa-
rameters are chosen in a way comparable to those encoun-
tered in data sets or case studies (e.g., Bär et al., 2020; Bond
et al., 2015; Ziegler and Heidbach, 2024).

4 Results

In the following, we present the construction of a geome-
chanical surrogate model. To understand the different re-
quirements and impacts of the different sources of uncertain-
ties, we first vary them individually and then investigate the
combined effects. In order to validate the NI-RB results, for
each test case randomly chosen parameters are used in sev-
eral full-order model runs which are then compared to the
NI-RB results.

4.1 Case 1: changing boundary conditions

We first investigate the potential of using surrogate mod-
els to determine the influence of uncertainties in the stress
magnitude data records that are available. This is achieved
by changing the displacement boundary conditions in a way
that corresponds to uncertainties in the stress magnitude data.
Therefore, we use the model displayed in Fig. 3 and construct
a training set of 100 simulations, where we allow a variation
in the boundary condition but keep all the material properties
and the interface positions fixed.
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Since we only vary the Dirichlet boundary conditions
along the x and y axes, we evaluate the surrogates only for
the horizontal components of the stress tensor, which are dis-
played in Fig. 4a and b. We observe that both the Shmin and
SHmax contributions of the stress tensor are represented by the
surrogate model well. The global model errors for the scaled
training and validation data set are for the Shmin component
of the order of 10−15 (about 10−12 MPa2) and for the SHmax
component of the order of 10−8 (about 10−4 MPa2), which
means that visually no difference between the full and re-
duced solutions is detectable (Fig. 4). To calculate the global
model errors, we use the mean squared error (MSE):

MSE(ufe,urb)=
1
N

N−1∑
i=0

(ufe− urb)
2, (7)

where ufe refers to the finite element solution.
The results for the surrogates are obtained with only a

few basis functions: two and three for the SHmax and Shmin
contributions, respectively. This demonstrated a general low
complexity induced by the changes in model parameters and
serves as a good illustration of how the NI-RB method op-
erates. In contrast to other machine learning techniques, the
method does not try to learn the state behavior of the stress
directly. Instead, it investigates the changes in the state distri-
bution because of different model parameters. In this exam-
ple, this change yields a simple shift in the response, where
the amount of shift varies for the different geological layers.
This is also the reason why the abrupt shift in stress mag-
nitude at interfaces is perfectly captured in all reduced solu-
tions since only the magnitude of the shift but not the position
changes.

In general, we observe the highest variability in the stress
response for the SHmax component. This is caused by the
boundary conditions since we assigned higher displacement
values parallel to the x axis than parallel to the y axis. The
global SA, displayed in Fig. 4c and d, confirms these find-
ings.

In Fig. 4c, we observe a significantly higher influence of
the boundary condition applying a displacement parallel to
the x axis for both stress components. In the case of the
SHmax component the boundary condition along the y axis
does not impact the response notably. To offer a final proof,
we repeated the surrogate model construction and the sen-
sitivity analysis, considering equal parameter ranges of 4–
6 m for both boundaries. This analysis with equal parameter
ranges is referred to as “equal strains”, whereas the origi-
nal setup is denoted as “non-equal strains”. The results of
the corresponding SA are seen in Fig. 4d. In comparison to
the previous analysis, we obtain increasing influences of the
boundary conditions along the y axis. This yields precisely
mirrored behavior for the SHmax and Shmin components.

4.2 Case 2: changing material properties

We now investigate the variation in material properties. In
this geomechanical study, we consider the variations in the
Young modulus, the Poisson ratio, and the density for each
layer individually. This results in nine parameters that can
change, whereas for the previous example of the boundary
conditions, we only had two parameters. Therefore, we in-
crease the size of the training data set from 100 to 200 full-
order solutions to compensate for the expected increase in
complexity.

Although we have an increase in the number of parame-
ters that we consider, we still fit the full solution very well
with the reduced order model. Note that we investigate the
stress distribution for the Shmin, SHmax, and Sv components,
which are displayed in Fig. 5a to c. The Shmin and SHmax
contributions show similar behavior regarding the global er-
rors, where we obtain errors of the order of 10−9 for the
scaled validation set (corresponding to 10−5 MPa2) and up
to 10−17 for the scaled training data set (corresponding to
10−14 MPa2). The global errors for the Sv component are of
the order of 10−15 (about 10−10 MPa2) for both the scaled
training and validation data sets. However, we observe an in-
crease in the number of basis functions from two or three to
six for the horizontal stress responses. This increase in the
number of basis functions is caused by the increased com-
plexity, which shows the general scaling behavior of the NI-
RB method. The dimension of the surrogate model is scaling
with the complexity induced by the variability in the param-
eters. But this does not mean that an increase in the number
of variable parameters automatically yields reduced dimen-
sions. Relevant for the dimension is the number of variable
parameters that lead to a change in the model response, so in
our case the stress distribution.

This is nicely demonstrated by comparing the number of
basis functions of the Shmin or SHmax contribution with the Sv
component. For the vertical stress response, we only obtain
four basis functions, which is the first indication that fewer
parameters influence the stress response. This is later also
confirmed by the SA. Still, six basis functions of the hori-
zontal components are also a low number, taking into account
that we vary nine parameters in total. So, as for the vertical
component, this yields the assumption that not all parame-
ters are influential with respect to the stress. As for the case
of the changing boundary conditions, we obtain the highest
variability for the SHmax component of the stress distribu-
tion. This is again caused by the higher boundary value of
the displacement parallel to the x axis. The results regarding
the variability in both the stress distribution and the number
of basis functions are confirmed by the sensitivity analysis,
which we present in the following.

The results of the SA are shown in Fig. 5d and e. Here, we
investigate again two possible scenarios. The first scenario
chooses the variation range of the material properties de-
pending on the typically physically plausible variation range
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Figure 4. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions. Comparison of the
surrogate model accuracy for five randomly chosen realizations of the validation data set for (a) the Shmin and (b) the SHmax components of
the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (Sect. 2.4), and ‖ x and ‖ y denote displacements parallel
to the xaxis and y axis, respectively. The full-order solutions are denoted by colored solid lines and the reduced solutions by colored dashed
lines. The different colors represent the stress response for different boundary condition values. The training data set consisting of 100
samples is indicated with light gray lines. Furthermore, we show the global SA results for (c) non-equal x and y strains and (d) equal x and
y strains.

(Fig. 5d). This has the consequence that certain parameters
have a wider relative variation range than others. To recover
the underlying process behavior, we conduct the same anal-
ysis with a variation range of 3 % for all parameters and a
displacement value of 5 m for both boundaries (Fig. 5e).

Focusing first on the results of the SA in Fig. 5d for the
SHmax component of the stress (orange bars), we obtain the
highest influences for the Young modulus of the crystalline
layer, as it is the stiffest unit. This is followed by the Poisson
ratios of the crystalline and clay layers and then by the Young
moduli of the limestone and clay layers. All other model pa-

rameters are non-influential. Consequently, we have a high
impact of the Young modulus and Poisson ratio but no in-
fluence of the density. This low influence is the cause of the
in relation much lower variation range of the density. As-
suming equal variation ranges for all model parameters, as
seen in Fig. 5e, we obtain the increased influence of the den-
sity especially for the limestone and clay layers. At the same
time, we retrieve decreasing importance for the Young mod-
ulus such that the density is ranked in between the Poisson
ratio and the Young modulus.
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Figure 5. Investigation of the potential of surrogate models to determine the influence of varying material properties. Comparison of the
surrogate model accuracy for five randomly chosen realizations of the validation data set for (a) the Shmin, (b) the SHmax, and (c) the Sv
components of the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (Sect. 2.4). The full-order solutions are
denoted by colored solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress response for
different material property values. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show
the global SA results for (d) non-equal x and y strains and material parameter ranges and (e) equal x and y strains and material parameter
ranges.
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Continuing with the Shmin component (blue bars in
Fig. 5d), we observe a higher influence of the Poisson ratios
and a significantly decreased impact of the Young moduli in
contrast to the SHmax component. The reason is again the dif-
ferent boundary values for the displacement. The differences
between the two horizontal stress responses nearly vanish for
the analysis with equal boundary conditions (Fig. 5e).

For the Sv component, we obtain in both scenarios only in-
fluences of the density, which demonstrates that the vertical
stress component is predominantly driven by gravity, which
corresponds to the definition. Furthermore, we have increas-
ing influences of the density with decreasing depth values.
Hence, we get the highest influence for the limestone layer,
followed by the clay and crystalline layers, which is in agree-
ment with a previous model study (Ziegler, 2022).

4.3 Case 3: changing geometry

For the scenario of a changing geometry, we consider two
parameters, which are the interface depths between the lime-
stone and clay layer (denoted as upper interface) and the in-
terface between the clay and crystalline layer (denoted as
lower interface). The upper interface is by default at a depth
of 2 km, and the lower interface is at a depth of 4 km. For
both interfaces a variation range of ±200 m is considered.
As before, the training data set is constructed using a Latin
hypercube sampling, but for the geometry, we have a training
data set size of again 200 full-order solutions instead of the
initial 100 due to the expected higher complexity compared
to Case 1.

In addition to a higher complexity comparable to Case 2
a change in interface depths means that the geometry of the
model is changed, which is different from the material prop-
erties or boundary condition changes. The challenges for the
surrogate modeling approach become apparent from Fig. 6a.
The surrogate model behaves differently in approximating
the stress tensor compared to the previous two cases. The
stress components (Shmin component visualized in Fig. 6) are
approximated well within the three layers such that again no
visible differences are notable. However, at the transition be-
tween layers, the approximation quality is significantly de-
creased (marked with black ellipses). So, the surrogate has
major issues resolving the position of the stress shift due to
the changes in geological horizon depth. The difference to
the previous examples is that the shift is no longer stationary
and the number of elements per unit changes. In the case of
changing boundary conditions and material properties, only
the magnitude of the shift changes. But for the geometrical
parameters, the magnitude stays roughly the same but the po-
sition of the shift can vary by ±200 m.

To overcome this issue, the number of elements needs
to remain the same for each lithology. This is achieved us-
ing Gmsh (Geuzaine and Remacle, 2009) for discretization,
which allows for a higher flexibility during the construction
of the structured meshes. Most importantly it allows for a

fixed number of elements per lithology too, which is in our
case 200. That means that the maximum vertical length of
each element is 10 m but that also elements with smaller ver-
tical length are produced depending on the interface location.
This results in a better quality at the interface (Fig. 6b).

These two representations of the geometry result in the
same depth vs. stress relationship (Fig. 6c), but for the sur-
rogate model construction, we provide the information about
the relationship of the number of elements vs. the stress dis-
tribution (Fig. 6d). This relationship is different for the two
scenarios. For scenario 1 (Fig. 6a), we obtain the changing
position of the shift. However, for scenario 2 (Fig. 6b), we
have the shift again stationary since we always have 200 ele-
ments per subdomain independent of the interface positions.
Consequently, the challenge associated with the geometrical
characterization can be addressed by reformulating the orig-
inal problem.

The difference in behavior is also clearly visible in the
number of basis functions required to approximate the solu-
tion. We obtain 79 basis functions for the Shmin component of
the stress tensor, whereas the version with a fixed number of
elements per subdomain only requires three basis functions.
This means that we obtain 25 times more basis functions for
the version with a changing number of elements per subdo-
main. Since the scaling behavior of the reduced model is tied
to the complexity of the parameter space and not to the num-
ber of changing parameters, this demonstrates the change in
complexity between the two model versions.

We now move to demonstrate the physical effects of
changing the geometry, as presented in Fig. 7a–c. Regarding
the horizontal component, we obtain no difference within the
layer, which is in accordance with our expectations since nei-
ther the material properties nor the boundary condition val-
ues are changed throughout the simulations. Differences oc-
cur at the interface positions, which vary from realization to
realization. Consequently, the transition in the stress values
between one unit to the other is changing depending on the
corresponding interface depth. Furthermore, we observe as
in the previous example nearly no variations in the vertical
component.

Regarding, the sensitivity analysis (Fig. 7c), we observe
identical behavior for changes in both interface depths for the
horizontal stress tensor components. For the vertical contri-
bution, we observe a slightly higher influence of the location
of the lower interface on the stress response. This higher in-
fluence is caused by the higher-density contrast of the clay
and crystalline layer with respect to the limestone and clay
layers. Note that the lack of parameter correlations observ-
able throughout all three scenarios is induced by the linearity
of the application; this image significantly changes once non-
linear problems are considered.
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Figure 6. Challenge of accurately predicting the solution because of varying geometrical parameters. Comparison of the surrogate model
accuracy for five randomly chosen realizations of the validation data set for the Shmin component of the stress tensor for (a) the Gmsh model
with a varying number of elements per layer and (b) the Gmsh model with a fixed number of elements per layer. Furthermore, we display a
few realizations from the validation data set over (c) the depth and (d) the number of elements of the mesh.

4.4 Case 4: simultaneously changing boundary
conditions and material properties

In the previous three scenarios (Case 1–3), we investigated
the behavior of the surrogate model individually for the three
sources of variability considered in this paper. However, in
a real-case application, it is unlikely that only one source of
uncertainty is present. Typically all sources of uncertainty
occur and can differ in their degree of variability. To evaluate
which consequences this poses in terms of the surrogate, we
consider two additional cases. In this section, we account for
a simultaneous variation in both the boundary conditions and
the material properties. The case of varying all three sources
of uncertainty at the same time is presented in the next sec-
tion.

Analyzing the combined effect of varying the boundary
condition and the material properties is of interest for two
main reasons: (i) does it yield an increase in complexity and
consequently an increase in the dimension of the surrogate

and (ii) how is the SA affected by the increase in variable
parameters?

Starting with the first aspect of complexity, we obtain for
all three components of the stress tensor the same number
of basis functions (Fig. 8a–c) as for the case of changing
only the material properties (Case 2). So considering addi-
tionally the boundary conditions next to the material prop-
erties does not increase the complexity notably. This might
seem counter-intuitive at first glance since we consider 2 ad-
ditional parameters yielding a total number of 11 parameters.
The reason for this behavior is two-fold: (i) the simplicity
of the geological model, and (ii) the threshold behavior of
the POD. We use a relatively simple benchmark with hori-
zontal horizons to enable a better understanding of the sur-
rogate construction method. However, this also means that
the model has an underlying less complex behavior which is
mirrored in the low number of basis functions obtained. For
more complex models at least a slight increase in the num-
ber of basis functions is expected if the additional parame-
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Figure 7. Investigation of the potential of surrogate models to determine the influence of varying interface depths. Comparison of the
surrogate model accuracy for (a) the Shmin, (b) the SHmax, and (c) the Sv components of the stress tensor. Note that “Sensitivity” denotes
the value of the sensitivity index (Sect. 2.4). The full-order solutions are denoted by colored solid lines and the reduced solutions by colored
dashed lines. The different colors represent the stress response for different interface depths. The training data set is indicated with light gray
lines. Furthermore, we show in (d) the global SA results.

ters influence the model response. That this is the case, we
see later on in the SA. The second aspect is about the POD
threshold. We defined an error tolerance of 10−4 % for the
POD. This means that the POD can disregard at most 10−4 %
of information content. So, it could happen that for the less
complex scenario, the error decreases with the addition of
the sixth basis function to 10−5 %, whereas it decreases only
to 2× 10−4 % for the more complex scenario. In that case,
both scenarios would have the same number of basis func-
tions, although the complexity impacts the accuracy of the
model. Note that this is not occurring in our example. Both
the scenario of changing material properties and the scenario
of varying material and boundary conditions have compara-
ble accuracies. This means that here, the complexity is not

increased by considering in addition to the material proper-
ties also the boundary conditions. However, this is caused by
the simplicity of the model and will not occur for more com-
plex studies. The reduced solution captures the full-order re-
sponse well for all three stress tensor components, and we
retrieve similar global errors in the case of changing only the
material properties.

Switching focus to the sensitivity analysis (Fig. 8d), we
see no correlations between the boundary values and the dif-
ferent material properties. This is expected since we con-
sider a linear physical process. This would in general jus-
tify a separate consideration of the two sources of uncertain-
ties. Still, a joint consideration has several advantages. The
first benefit concerns generalizability. Only for linear appli-
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Figure 8. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions and material properties.
Comparison of the surrogate model accuracy for five randomly chosen realizations of the validation data set for (a) the Shmin, (b) the SHmax,
and (c) the Sv components of the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (Sect. 2.4). The full-order
solutions are denoted by colored solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress
response for different boundary conditions and material properties. The training data set consisting of 200 samples is indicated with light
gray lines. Furthermore, we show in (d) the global SA results.

cations are no correlations expected; for nonlinear problems
correlations are likely to occur. So, introducing the joint ap-
proach allows for a straightforward extension to nonlinear
applications. Furthermore, even for the linear case, the joint
approach has the benefit of being able to determine which
relative impact the boundary conditions have with regard to
the different material properties.

This is seen in the SA results of Fig. 8d, where we ob-
tain a very similar result to the analysis considering only ma-
terial properties. However, we can now determine the rank
of the boundary condition values with respect to the Young
modulus, the Poisson ratio, and the density. The boundary
condition along the x axis has a similar importance to the
Young modulus of the crystalline layer for both horizontal

components of the stress tensor. The same is true of the other
boundary condition in the case of the SHmax component of
the stress. For the Shmin component the boundary condition
along the y axis is non-influential with regard to the stress re-
sponse. This matches the previously observed behavior of the
scenarios changing only the boundary conditions or the ma-
terial properties. The Sv component remains entirely gravity-
driven, and hence no influence of changes in the boundary
conditions is detectable.
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4.5 Case 5: simultaneously changing boundary
conditions, material properties, and geometry

Considering the case of simultaneously changing the bound-
ary conditions (using the setup presented in Fig. 6b), material
properties, and the depth of the interfaces, we first observe a
slight increase in the number of basis functions compared to
the case of only changing the geometry (Case 3) and the same
number of basis functions as for the case of changing both the
material properties and boundary conditions (Case 4). Also,
the global errors are about 10−18 for the training data set and
10−7 for the validation data set for the horizontal compo-
nents of the stress tensor of similar orders of magnitude to the
previous case (Fig. 9a–c). Only the global error of the vali-
dation data set for the vertical stress component is at 10−12

slightly increased because of the higher complexity of the
response. This higher complexity arises from the combined
influence of the density and interface position as shown in
the SA (Fig. 9d).

Furthermore, the SA demonstrates that for Shmin, we ob-
tain only minor influences of the interface positions, and for
SHmax we obtain negligible impacts. So for the given varia-
tion ranges and model geometry, the material properties and
boundary conditions have a higher impact than the geometri-
cal parameters.

4.6 Case study – Nördlich Lägern

So far, we focused on a benchmark problem to better illus-
trate the concepts of surrogate modeling for geomechanical
applications. To demonstrate that the methodology is also ap-
plicable to a more realistic setting, we extend our considera-
tions to a model based on the lithological variability in a po-
tential siting region for radioactive waste, Nördlich Lägern
in northern Switzerland. The model is a simplified version
of the model of Hergert et al. (2015) with the stratigraphy
and their depth inspired by the well Stadel-3-1 (Crisci et al.,
2022a). The model does not have any lateral variation in the
topography or layer thickness, nor do the units have an incli-
nation, as observed in that region. Therefore, we construct a
model (Fig. 10) with an extent of 2500m×2500m×1400m
with five elements in each horizontal direction (x and y direc-
tions) and 140 elements in the vertical direction for each of
the 15 layers to ensure a vertical resolution of minimum 3 m.
We on purpose use the same number of elements for each
layer to avoid a bias in the sensitivity analysis caused by the
layer thickness. To elaborate, consider a model consisting of
two layers, where the top layer has a thickness of 500 m and
the base layer has a thickness of 200 m. If we discretize the
model with a vertical resolution of 100 m, we require five el-
ements for the first layer and two elements for the second
layer. Calculating the sensitivity indices takes the variation
in the stress distribution in each element into consideration.
Consequently, the top layer will have more elements con-
tributing and, because of that, likely a higher impact. By dis-

cretizing the model with an equal number of elements per
layer (e.g., five elements for both the top and base layer), we
can avoid this effect. For further information regarding po-
tential biases, we refer to Degen and Wellmann (2024). For
this model, we consider only variations in the Young mod-
ulus. We do not consider the variability in the other elas-
tic material properties since the density is well-known from
density logs of boreholes, and both the density and the Pois-
son ratio demonstrated little impact in previous studies (e.g.,
Gölke and Coblentz, 1996; Reiter, 2021; Ziegler, 2022). All
linear elastic input parameters are listed in Table 2. Regard-
ing the boundary conditions, we follow a similar approach
to the previous models. The eastern boundary has a Dirich-
let boundary condition of 0.14 m extension, and the southern
boundary has a Dirichlet boundary condition of 1.8 m short-
ening. The top boundary is associated with a zero Neumann
boundary condition, and all other boundaries are subjected to
zero Dirichlet boundary conditions normal to the boundary.

The stratigraphic column is inspired by the well Stadel-3-
1, and the material properties are based on data from the four
boreholes Bachs-1-1, Bülach-1-1, Stadel-2-1, and Stadel-3-
1 that are presented in Dossiers VI and IX, which can be
downloaded from NAGRA (download at https://nagra.ch/
downloads, last access: 17 February 2025). These are in par-
ticular the NAGRA Working Reports NAB 22-04 (Bachs-1;
Gonus et al., 2023), NAB 22-26 (Bülach-1; Spillmann et al.,
2022), NAB 22-02 (Stadel-2; Crisci et al., 2022b; Gonus
et al., 2022b), and NAB 22-01 (Stadel-3; Crisci et al., 2022a;
Gonus et al., 2022a). Consequently, also the geometrical rep-
resentation is subjected to low uncertainties, meaning that we
do not vary the interface positions for this case study. Lastly,
the boundary conditions are derived from a previous study
by Hergert et al. (2015) and remain the same throughout all
realizations.

As for the previous section, we first present the approxima-
tion quality and other characteristics of the surrogate mod-
els themselves. For the surrogate model of both the Shmin
(Fig. 11a) and SHmax components (Fig. 11b), we observe
overall a similar approximation quality as for the benchmark
study demonstrating the ability of the approach to be ex-
tended to more complex settings. The highest inaccuracies
in the predictions are observed for realizations yielding max-
imum stress values.

Another interesting aspect is the number of basis func-
tions, indicating the complexity of the parameter space. For
both contributions of the stress tensor, we require 15 basis
functions to achieve a POD tolerance of 10−4 %. Taking into
account that we vary in total 15 Young modulus values, this
demonstrates generally a low complexity of the models and
holds promise for the extension to higher-dimensional pa-
rameter spaces. Note that we did not construct a surrogate
model for the vertical stress component since we do not vary
the density, and hence we obtain no variations in the vertical
stress for all realizations.
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Figure 9. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions, material properties,
and the interface depths. The figure shows a comparison of the surrogate model accuracy for five randomly chosen realizations of the vali-
dation data set for (a) the Shmin component, (b) the SHmax component, and (c) the Sv component of the stress tensor. Note that “Sensitivity”
denotes the value of the sensitivity index (Sect. 2.4). The full-order solutions are denoted by colored solid lines and the reduced solutions by
colored dashed lines. The different colors represent the stress response for different boundary conditions, material properties, and interface
depths. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show in (d) the results of the global
SA.

Shifting to the results of the global SA, presented in
Fig. 11c, we note that the Young modulus values of all 15
layers impact the responses of both horizontal stress compo-
nents.

Consequently, for all of the following analyses, we would
need to take all parameters into account. Although all pa-
rameters are deemed influential, we still observe differences
in the amount of influence they have on the model response.
For the Shmin component, the Young modulus of the Bänker-
joch formation has the highest impact, followed by the Young
modulus of the Kaiseraugust formation. Also, for the SHmax
component these two formations yield the highest impact on
the stress distribution, although their influences are reversed

with respect to the Shmin component. The main reason for the
significant influence of these two layers is the large variation
range in the Young modulus value. Another minor reason is
the possible high contrast in the Young modulus to the adja-
cent layers partly because of this variation range. To better
illustrate the impact of the variation range, the variability is
shown in Table 2.

The significant influences of the Bänkerjoch and Kaiserau-
gust formations are followed by the significant influences of
the Staffelegg, Klettgau, and Zeglingen formations. All three
formations are characterized by variation ranges of about
30 GPa, so slightly lower variation ranges than the previ-
ously mentioned formations but higher variation ranges than
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Figure 10. Schematic representation of the simplified model based on the well Stadel-3-1, representing the case study of Nördlich Lägern
in Switzerland. The geomechanical units are the Cenozoic sediments (CS), Felsenkalke (FK), Schwarzbach Fm. (formation) (SB), Villigen
Fm. (V), Wildegg Fm. (WD), Herrenwis Fm. (H), Wedelsandstein Fm. (WS), Opalinus clay (O), Staffelegg Fm. (SE), Klettgau Fm. (KG),
Bänkerjoch Fm. (BJ), Schinznach Fm. (SN), Zeglingen Fm. (Z), Kaiseraugust Fm. (K), and the basement including Buntsandstein and
Rotliegend (B). The lateral boundary conditions of the model are a shortening of 1.6 m from the south and an extension of 0.14 m in an
eastern direction.

Table 2. Variation ranges of the Young modulus (E) and values for the other elastic material properties, as well as the layer thicknesses, for
the case study of Nördlich Lägern. The parameter ranges are publicly available in the technical report by NAGRA (2024). Note that Fm.
signifies formation. The data on the Young modules are based on information jointly inferred from four boreholes: Bachs-1-1, Bülach-1-1,
Stadel-2-1, and Stadel-3-1 (Crisci et al., 2021, 2022a, b). The thickness data are derived from well Stadel-3-1 (Crisci et al., 2022a).

Layer E [GPa] Emean [GPa] Variability in E [GPa] ν [–] ρ [kgm−3] Layer thickness [m]

Cenozoic sediments (CS) 10–20 15 10 0.30 2500 406
Felsenkalke (FK) 19–40 35 21 0.19 2686 127
Schwarzbach Fm. (SB) 15–36 24 21 0.25 2656 25
Villigen Fm. (V) 27–51 39 24 0.21 2685 67
Wildegg Fm. (WD) 14–31 20 17 0.25 2625 71
Herrenwis Fm. (H) 10–23 19 13 0.26 2676 46
Wedelsandstein Fm. (WS) 6–20 10 14 0.29 2306 23
Opalinus clay (O) 10–23 12 13 0.35 2544 123
Staffelegg Fm. (SE) 11–41 23 30 0.24 2573 34
Klettgau Fm. (KG) 11–39 17 28 0.23 2544 30
Bänkerjoch Fm. (BJ) 13–57 23 44 0.20 2625 75
Schinznach Fm. (SN) 18–38 27 20 0.23 2683 73
Zeglingen Fm. (Z) 15–46 26 31 0.20 2800 79
Kaiseraugust Fm. (K) 13–55 19 42 0.27 2664 37
Basement (B) 15–35 25 20 0.23 2479 184

for the units. This pattern is also observable for the remain-
ing parameters within the global SA. So, within this global
SA, the level of impact is mainly determined by the variation
ranges of the Young modulus values. Consequently, the SA
results are highly impacted by our prior knowledge since the
different variation ranges are a result of heterogeneities or
uncertainties within the layers. However, naturally, a wrong
estimate of these parameter ranges yields a bias in the global
SA. To investigate the potential differences in the SA, as-
suming similar heterogeneities and levels of knowledge for

the individual layers, we repeated the SA with equal vari-
ation ranges for the Young moduli. Therefore, we used the
mean values provided in Table 2 and applied variation of
±10 %. This yields a shift in the relevance of the different
layers for the stress distributions. For both horizontal stress
components, the Villigen formation has the highest impact,
followed by the Felsenkalke and Schwarzbach formations.
The lowest influences arise from the Wedelsandstein forma-
tion. Furthermore, low influences of the Opalinus clay are
observed for the Shmin component. Overall the influence of
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Figure 11. Investigation of the potential of surrogate models for the case study of Nördlich Lägern in Switzerland. Comparison of the
surrogate model accuracy for five randomly chosen realizations of the validation data set for (a) the Shmin and (b) the SHmax components of
the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (Sect. 2.4). The full-order solutions are denoted by colored
solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress response for different Young modulus
values. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show the global SA results in (c)
as non-equal and in (d) as equal parameter ranges.

the individual layers in this configuration is mainly deter-
mined by the contrast in the Young modulus of the current
layer and its adjacent layers.

5 Discussion

Within this study, we present how physics-based machine
learning can be used to construct reliable surrogate mod-
els to predict the full stress tensor for a geomechanical
model, e.g., for a nuclear waste disposal application. We
start the discussion with general implications and challenges
of surrogate modeling. Afterwards, we provide a compari-

son of physics-based vs. data-driven machine learning meth-
ods to emphasize the importance of appropriately choosing a
surrogate model technique. Finally, we present application-
specific aspects.

5.1 General implications and challenges for surrogate
modeling

An important aspect is the explainability of the generated
surrogate models. In the case of the NI-RB method, we per-
form first the POD which produces a number of basis func-
tions. These basis functions are singular vectors characteriz-
ing the dominant physical behavior of the system. The ma-
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chine learning part is only responsible for determining the
weights of these basis functions. This has several implica-
tions. First, the non-provable part of the model and conse-
quently the non-provable part of the error are solely restricted
to the calculation of the reduced coefficients and are cap-
tured by a combination of scalar values. In addition, the er-
rors that occur are explainable by considering both the phys-
ical relationship and the model geometry. As an example, in
Fig. 11b, we observe very small visible deviations between
the reduced and full-order models (e.g., for the orange lines
at a depth of 1200 m). Still, these deviations occur in the form
of shifts, yield smooth error distributions, and are not very
pronounced. On the other hand, the errors in the neural net-
work (NN) models (as we present in the next section) do not
appear in the entirety of the model and introduce a noisy be-
havior in the error distribution. This means that they do not
follow any physical relationship, which has been discussed
in further detail in Degen et al. (2023).

In the literature (e.g., Degen et al., 2023; Faroughi et al.,
2022; Raissi et al., 2019; Willard et al., 2022) physics-based
machine learning is often used to reduce the amount of train-
ing data. The idea is that through introducing physical knowl-
edge the number of admissible solutions can be decreased
and hence less data would be required to train the surrogate
models. Due to the simplicity of the presented example, this
is a phenomenon that we do not observe. But note that this
will become important for real-case studies.

In this paper, we investigate three sources of variability:
(i) the boundary conditions, (ii) the material properties, and
(iii) the geometry. As demonstrated the NI-RB method per-
forms very well in constructing physically consistent sur-
rogate models for considering variations in boundary con-
ditions and material properties. The variability in the layer
depth proves to be more challenging. This is especially pro-
nounced for the presented linear elastic models since the
high contrast in the material properties yields shifts in the
stress distribution. However, this phenomenon occurs also
for other applications, for instance, for hydrological stud-
ies, where the permeability contrast is large. So, this demon-
strates the importance of reformulating the problem as pre-
sented in Sect. 4.3.

Reduced-basis methods using proper orthogonal decom-
position and support vector machines (Zhao, 2021), recurrent
neural networks (Kumar et al., 2021), or the empirical cuba-
ture method (Guo et al., 2024) as the projection method have
already been used for mechanical applications, even consid-
ering the stress distribution. However, in the example pre-
sented in this paper, the high contrast in the linear elastic ma-
terial properties (mainly Young’s modulus but also Poisson’s
ratio and density) yields non-smooth distributions which re-
sult in consequences not discussed before. Furthermore, we
also consider the variation in the geometrical parameters,
which with the exception of Guo et al. (2024) have not been
taken into account before. Note that Guo et al. (2024) con-
sider geometrical variations for the context of two-scale sim-

ulations yielding very different requirements in terms of the
stress conditions.

Another aspect we want to highlight is the global error. As
seen for the case of changing geometrical parameters with
changing number of elements per layer (Fig. 6a), the global
errors are still low at 10−7 for the scaled training and 10−4

for the validation data set of the Shmin component despite the
inaccuracies at the interface location. This demonstrated the
general problem of global error estimators. If there is a small
region that has large deviations and the rest of the model re-
gions are well fitted, this does not become apparent in the
global error since this error considers an average over all re-
alizations and the entire model domain. The other question
is why the problem is more pronounced at the upper than the
lower interface. Looking at the stress distributions, we see
larger gaps between the different stress realizations at the up-
per interface than at the lower interface. Hence, in the case of
the lower interface, better distributed information is available
to determine the reduced solutions.

A major advantage of the RB method is the computational
gain by using surrogate models instead of full-order model
evaluations. Therefore, we briefly want to discuss the as-
pect of computational costs. The computational cost for all
five scenarios is comparable with an execution time of about
3 min for a single finite element solution; in contrast, an eval-
uation of the surrogate required 0.1 ms, yielding a speed-up
of 6 orders of magnitude. The speed-up does not consider
the computational time during the offline stage. So, we want
to extend the discussion by providing the computational cost
for the construction of the surrogate. In this work, we used
between 100–200 realizations for the training data set and up
to 20 realizations for the validation data set. Hence, the most
expensive surrogate model construction requires 220 realiza-
tions; with 3 min per realization this yields of cost of about
11 h. In addition to this cost comes the cost of performing the
POD and the GPR, which are of the order of seconds. Since
this is negligible with respect to the computational cost of
constructing the data sets, we will discard this cost in the fol-
lowing. Consequently, the total construction cost of the sur-
rogate model is equal to the cost of about 220 model evalua-
tions. Comparing this to the over 50×106 model evaluations
required for the sensitivity analyses combined, the surrogate
quickly pays off. It is also worth noting that the construction
of the data sets is “embarrassingly” parallel, meaning that all
model runs are completely independent. Therefore, parallel
computing can be used to reduce the time. This is impor-
tant because methods such as Markov chain Monte Carlo,
used to quantify uncertainties, are not fully parallelizable.
So, we not only save computation time but also shift the ex-
pensive computation to a stage where we can fully exploit
parallel hardware infrastructures. This aspect, as well as how
we can exploit graphics processing units, has already been
discussed in detail (Degen et al., 2023). Another advantage
is the non-intrusive nature of the algorithm, which allows for
the straightforward inclusion of varying forward solvers.
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The geometry considered in this study is simple: to fo-
cus on the surrogate model construction itself and its impli-
cations for geomechanical modeling. Both the non-intrusive
and intrusive versions of the reduced-basis method have been
applied to geothermal real-case studies with a complex geo-
metrical setup, demonstrating a similar performance to that
presented in this study (Degen and Cacace, 2021; Degen
et al., 2021a, b, 2022a, b, c). This implies that especially for
fixed geometries, no degradation in the surrogate model qual-
ity or performance is expected. Also, considering variations
for complex geometries is possible. However, one should
keep in mind that the base assumption for the method is the
existence of a low-dimensional parameter space. Hence, if
too many geometrical parameters are varied at once, this as-
sumption breaks down, and the approach will become in-
efficient. As mentioned before, the non-intrusive reduced-
basis method has been developed in order to provide an ef-
ficient extension of the RB method for nonlinear applica-
tions (Hesthaven and Ubbiali, 2018). In contrast to this study,
Degen et al. (2022a) consider fully coupled thermo-hydro-
mechanical simulations, demonstrating that the current ap-
proach is also extendable to nonlinear and coupled relation-
ships. The implications for nonlinear applications are fur-
ther detailed in Degen et al. (2023) for different subsurface
applications, including the highly nonlinear Richard’s equa-
tions. The results of these studies demonstrate great promise
also for nonlinear geomechanical applications, which is es-
pecially important when considering potential extensions to
elasto-plasticity.

5.2 Physics-based vs. data-driven machine learning
techniques

To illustrate the differences between the data-driven and the
presented physics-based machine learning method, we con-
structed another surrogate model for the case of simultane-
ously changing boundary conditions and material properties
(Case 4) using a NN. The results are shown in Fig. 12 and
yield several observations. First, the global errors in both ap-
proaches differ by orders of magnitude for both the train-
ing and the validation data sets. For the training data set, we
achieve an error of the order of 10−18 for the non-intrusive
RB method and 10−6 for the NN. We set for the POD a toler-
ance of 10−4 %. Since we use the root mean square error for
the evaluation of the surrogate, that means the NN approach
is 2 orders of magnitude less accurate than originally desired.
This behavior is – albeit not as extreme – also observable for
the validation data set, where we have errors of the order of
10−7 for the NI-RB method and 10−6 for the NN.

The difference in the error behavior is especially promi-
nent when focusing not on the global errors but on the local
distributions. Therefore, we plot in Fig. 12b the reduced so-
lutions of the data-driven surrogate and the full solutions. At
first glance, the approximation quality seems to be similar be-
tween the two surrogate models. However, by having a closer

look major differences are observable. For the NI-RB surro-
gates the solutions are exactly on top of the full-order solu-
tions, making them non-distinguishable by eye. In contrast,
for the NN surrogate differences are directly visible. This can
be best observed in the base layer for the red and blue lines.
For the blue line, we obtain an underestimation of the stress
response in the base layer, whereas for the red case the stress
response is overestimated. This becomes more prominent by
observing the differences between the full-order realizations
and the NN solutions in Fig. 12d. But more interesting are the
different overall responses of both surrogate models. The NI-
RB reduced solutions are straight lines corresponding to the
physical response. For the NN surrogate, we obtain mostly
straight lines but with superimposed oscillations. To better
highlight the differences, we plot in addition the differences
between the non-intrusive RB and the full-order solutions in
Fig. 12c and the differences between the NN and full-order
solutions in Fig. 12d. The oscillations caused by the NN are
not explainable from a physical perspective and are a result of
treating the solutions in a purely data-driven manner within
a statistical method. This demonstrates the fundamental dif-
ference between both approaches even without considering
aspects such as the amount of available data. The NI-RB
method produces solutions that follow the physical behavior,
whereas the NN model produces results that statistically vary
around this general physical response. In a presented trivial
case, this does not matter. However, in more complex cases,
these differences can be significant and crucial.

A comparison between the different physics-based ma-
chine learning methods, for instance, between the non-
intrusive reduced-basis method and physics-informed neural
networks (PINNs), is also interesting. In their original for-
mulation, PINNs are designed for state estimation problems
(Raissi et al., 2019). This makes a direct comparison of both
approaches challenging since our study focuses on parame-
ter estimation applications. Nonetheless, the error behavior
of the PINN is expected to be similar to the one of the NN
because of the architectural design of PINNs, as discussed
in detail in Degen et al. (2023). A detailed comparison of
the NI-RB method with other surrogate modeling approaches
has been detailed in previous studies (Degen et al., 2023;
Santoso et al., 2022), and since no conceptual changes are
expected, they are not repeated in this study.

5.3 Implications for nuclear waste disposal
applications

The subsurface stress distribution is of major importance in
applications such as nuclear waste disposal, geothermal en-
ergy production, or subsurface (interim) storage of H2 or
CO2. For these applications not only the cost of the numerical
simulations but also their trustworthiness are essential since
predictions have to be made over long periods of time and –
in particular in the case of nuclear waste storage – false pre-
dictions can have major environmental impacts. The sparsity
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Figure 12. Comparison of the surrogate models constructed with (a) the non-intrusive RB method, (b) a neural network, (c) the difference
between the non-intrusive RB solutions and the full-order solutions, and (d) the difference between the NN solutions and the full-order
solutions for five randomly chosen realizations of the validation data set for the case of changing simultaneously the boundary conditions
and material properties. The full-order solutions are denoted by colored solid lines and the reduced solutions by colored dashed lines. The
different colors represent the stress response for different boundary conditions and material properties.

and uncertainty of available stress magnitude data, geologi-
cal structures, and rock properties are a major challenge for
the in situ stress prediction (e.g., Hergert et al., 2015; Moraw-
ietz et al., 2020; Ziegler and Heidbach, 2020). The uncertain-
ties in the in situ stress state will then be transmitted to the re-
sults of forward models that predict the evolution of the stress
state during, e.g., the excavation stage of the repository. In
particular, long-term subsurface usage such as nuclear waste
storage has to account for a broad range of different future
scenarios which in turn drive the uncertainties. Therefore, the
uncertainties of the initial stress prediction should be as small
as possible.

We demonstrated the possibility of extending the method-
ology to more complex settings through the case study of
Nördlich Lägern. An interesting aspect of the global SAs for
this case study is the relative low impact of the Opalinus
clay for the SHmax component, which is the target horizon
for the future nuclear waste disposal site. This low impact
means that within the tested variation ranges, changes in the
Young modulus of the Opalinus clay do impact the maximum
stress contribution less than most other layers. The largest
impact arises from the stiff units. This is an important find-
ing since it provides information about the impact of uncer-
tainties on the planning phase of the nuclear waste disposal
site. In the current study, we focus on the conceptual anal-
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yses of dominant physical processes and parameters in the
form of sensitivity analyses. We do not consider real data on
the stress magnitudes originating, for instance, from down-
hole measurements. This presents an interesting extension
for future studies, where these measurements can be incor-
porated in the form of probabilistic uncertainty quantification
methods, such as Markov chain Monte Carlo. This is inter-
esting because many current studies consider best-case and
worst-case scenarios only. A probabilistic uncertainty quan-
tification approach allows not only the most likely scenario
to be provided but also the associated range of uncertainties
and their probability of being encountered. This is important
for the planning of nuclear waste disposal sites since best-
and worst-case analyses tend to estimate extreme values that
have a low probability of being encountered. With a revised
estimate of the uncertainties, the planning and construction
might be improved, for instance, in terms of resource usage.
Other potential future extensions include the incorporation
of both global sensitivity analyses and uncertainty quantifi-
cation into decision-making processes.

The last aspect we want to discuss concerns the sensitivity
analysis. We investigate two scenarios, sensitivity analysis
using (i) non-equal parameter ranges and (ii) equal parame-
ter ranges. To understand why these different analyses were
conducted it is important to note that as with every model,
sensitivity analyses are designed with a specific purpose in
mind. This purpose is defined in the quantity of interest and
means that an SA is not easily reusable if the scientific ques-
tion changes. In a typical application, we are interested in
which model parameters impact the responses the most, so in
our case, whether the Young modulus, the Poisson ratio, or
the density has the highest impact on the stress distribution.
In a realistic case study, the relative variation ranges of these
various material properties may differ. That is the case be-
cause some properties can be determined with greater accu-
racy than others and properties such as the density have lower
physically plausible variation ranges than, for instance, the
Young modulus. This is a naturally occurring phenomenon,
and we want to incorporate these into the SA. Therefore, typ-
ically the possible variation ranges are determined with re-
spect to this prior knowledge yielding an SA with unequal
parameter ranges.

Still, we are not always aiming to perform an SA to explain
the behavior of a specific test site. In some cases, we are in-
terested in what physical processes are driving the system. In
this case, we would like to change the setup of the SA. To
understand the driving forces independent of a specific site it
might be beneficial to consider equal parameter ranges. This
removes the bias that is introduced by the unequal parame-
ter distributions. However, note that in most cases this bias is
desired since it reflects the effects encountered in nature.

6 Conclusions

To conclude, we presented a physics-based machine learn-
ing model that can efficiently construct trustworthy surro-
gate models. The non-intrusive RB method enables evalua-
tions that take less than a millisecond, whereas the full-order
solves are in the range of minutes. This yields a speed-up
of 6 orders of magnitude, demonstrating the use of these
surrogate models for probabilistic uncertainty quantification,
global sensitivity analysis, and parameter estimation studies
in general.

In contrast to data-driven surrogates, the model follows the
physical relationship and is physically explainable. This is of
great importance for predictions and decision-making pro-
cesses, as demonstrated in the highly sensitive case of nu-
clear waste disposal.

The surrogate models allow a simultaneous evaluation of
both the boundary conditions and the material properties
without losing relevant precision with respect to the full-
order solutions. In addition, the incorporation of geometri-
cal variations is possible without degrading the quality of the
surrogate model. Therefore, this work lays the foundation for
a joint consideration of all three sources of uncertainty for ro-
bust stress predictions.

Code and data availability. The training and validation data sets,
their associated model parameters, and the non-intrusive RB
and neural network code for the construction of all surro-
gate models are published in the following Zenodo reposi-
tory: https://doi.org/10.5281/zenodo.13767010 (Degen et al., 2024).
For the construction of the data sets the software package
GOLEM (https://doi.org/10.5281/zenodo.999401; Jacquey and Ca-
cace, 2017; Cacace and Jacquey, 2017) has been used. This
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