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Abstract. An analysis of 542 moment tensor focal mecha-
nisms across the Iberian Peninsula was conducted to infer ac-
tive tectonic deformation and stress regimes. This study em-
ployed a suite of complementary methodologies, including
focal mechanism classification (FMC) of the rupture type,
composed focal mechanisms based on the average seismic
moment tensor, rotation angle between tensor estimates, right
dihedra composed focal mechanisms, slip model analysis to
determine the strain conditions, and classical stress inver-
sion methodology. Based on the slip model results and con-
sidering the tectonic constraints of Cenozoic deformation in
Iberia, the study region was subdivided into several tectoni-
cally coherent zones, where the different methods were ap-
plied independently to ensure robust regional interpretations.
The results indicate that thrust faulting stress regimes are ac-
tive in the Gorringe—Horseshoe (GH) area and the eastern-
most Tell Atlas. In the south, most of the zones are trans-
pressive, as is the southwestern corner of Iberia, south of
Lisbon. The exception is the Granada Basin (GB), which
exhibits a nearly radial normal faulting stress regime. Nor-
mal faulting stresses are dominant in the Pyrenees and the
Mediterranean rim, north of the Betic Mountains. In the cen-
tral part of the Pyrenees, the maximum horizontal extension
is oriented perpendicular to the mountain range, indicating
that local stresses related to post-orogenic collapse or iso-
static rebound dominate over regional ones. The maximum
horizontal compression along the Eurasia—Africa plate limit

is consistently oriented around N154° E, except in some parts
of the Betics that are probably influenced by a remnant ef-
fect of the Alboran Slab. In the Central Ranges and offshore
Atlantic, the maximum horizontal compression is slightly ro-
tated anticlockwise to N140° E.

1 Introduction and objectives

The Iberian Peninsula (the former Iberian microplate) shows
evidence of an intense and distributed Alpine deformation
that occurred over geologic timescales (de Vicente and Ve-
gas, 2009) (Fig. 1). After the Variscan orogeny and dur-
ing the Mesozoic, numerous extensional structures devel-
oped in which thick sedimentary deposits accumulated, with
one exception: on the Iberian Massif to the west. At the
northern edge of the Iberian microplate, this extension even
reached the stage of oceanic crust generation (Montadert et
al., 1971; Nirrengarten et al., 2018; Sibuet et al., 2004), al-
beit during a very short time (Aptian—Albian) (Srivastava et
al., 1990). Tectonic reconstructions indicate that the Iberian
microplate moved independently relative to Africa and Eura-
sia until its collision with Eurasia to form the Cantabrian—
Pyrenean orogen (Roca and Mufioz, 1996). A pronounced
change in the tectonic framework has been suggested to
have occurred around 84 Ma, when an incipient collision be-
tween the Iberian microplate and Africa may have begun
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(Reicherter and Pletsch, 2002). In any case, from the begin-
ning of the Eocene, the Iberian microplate underwent com-
pression, not only at its northern border, where an incipient
subduction zone was located (Gallastegui and Pulgar, 2002;
Fernandez-Viejo et al., 2012), but also in its interior, as doc-
umented in the sedimentary infill of the Madrid and Duero
basins (de Vicente et al., 2007).

Alpine compression in the interior of the Iberian mi-
croplate resulted in the inversion of the Mesozoic aulaco-
gen of the Iberian Basin (Iberian Chain, IC) and the develop-
ment of a series of ranges with crustal thickening along the
Iberian microplate (i.e. the Spanish—Portuguese Central Sys-
tem, SPCS). This set of intraplate ranges can also be regarded
as an incipient and aborted orogen (de Vicente et al., 2022b).
It has also been suggested that the Iberian block accommo-
dated shortening by forming lithospheric folds (Cloetingh
et al., 2002). Accompanying these significant thrusts, ma-
jor strike-slip fault deformation belts were activated at the
crustal scale, such as the southern (“Castilian”) and north-
ern (“Aragonese”) branches of the IC and the Messejana—
Plasencia Fault (more than 500 km long), which nucleated
on a Late Triassic basic dike related to the Central Atlantic
Magmatic Province (Cebrid et al., 2003; Villamor, 2002; de
Vicente et al., 2021). The age of the main deformation event
for these fault systems is Oligocene—Early Miocene. How-
ever, in the westernmost sector, the SPCS and the left-lateral
strike-slip faults of Régua and Vilarica display deformation
during the Middle to Late Miocene. They are still considered
active structures (Cabral, 2012).

Today, extensional structures dominate the easternmost
part of the Iberian Peninsula (since the Late Miocene) due
to back-arc extension related to a subduction zone below
Corsica and Sardinia (e.g. Faccenna et al., 2002), initially a
part of the Iberian microplate (van Hinsbergen et al., 2014).
A normal faulting stress regime, unrelated to plate tecton-
ics, also affects the Pyrenees, where a post-orogenic collapse
process has been suggested (Asensio et al., 2012). The active
plate boundary is considered to have progressively migrated
southward from its initial position to the north, when Iberia
acted as an independent, to its current configuration along the
southern margin of the Iberian Peninsula (Terceira Ridge—
Gloria Fault—Alboran Basin—Tell Atlas). This tectonic reor-
ganisation coincided with the integration of Iberia into the
Eurasian Plate. The resulting geodynamic setting is charac-
terised by a diffuse plate boundary encompassing the Betic
Cordillera, where coeval compressional and extensional tec-
tonic regimes are accommodated. These processes are pri-
marily governed by the westward migration and emplace-
ment of the Alboran Domain and the ongoing subduction of
the southern Iberian margin. In this complex Cenozoic and
neotectonic deformation setting, it is unsurprising that the
present tectonic stresses in Iberia exhibit significant varia-
tions in both the stress regime and the orientation of the prin-
cipal stress axes (de Vicente et al., 2008) over relatively small
areas.
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Recent determinations of earthquake focal mechanisms by
the Geophysical Institutes of Spain and Portugal have sig-
nificantly expanded the regional seismicity catalogues main-
tained by Instituto Geogrdfico Nacional, Instituto Andaluz
de Geofisica, and Instituto Portugués do Mar e da Atmos-
fera. These datasets, enriched by peer-reviewed publications
stemming from major research initiatives such as Topolberia
(e.g. Martin et al., 2015; Matos et al., 2018) and from the
analysis of notable seismic crises (e.g. Villasefior et al., 2020;
Cesca et al., 2021), provide a robust foundation for advanc-
ing our understanding of the seismotectonic framework of
the region).

In this study, we exclusively utilise well-fitted moment
tensor focal mechanisms to study the contemporary deforma-
tion pattern in the Iberian Peninsula. We analyse the rupture
characteristics of focal mechanism populations for defined
tectonic subareas by employing the slip model described by
Reches (1983) and de Vicente (1988) to ascertain the rup-
ture plane among the two nodal planes. This information,
along with the focal mechanism populations, is then used
to perform a stress inversion to determine the orientation of
the maximum horizontal stress axis (Sgmax) and the tectonic
stress regime. Additionally, we derive the Sgmax oOrienta-
tion from the individual focal mechanism and integrate these
results with those from the stress inversion into a revised
dataset for the World Stress Map project, based on borehole
logs, overcoring measurements, and geological stress indica-
tors.

2 Data from earthquake focal mechanism

In this study, we establish a new and comprehensive com-
pilation of robust focal mechanism solutions of onshore and
offshore Iberia, inferred from waveform moment tensor in-
versions, using the following catalogues:

— Global Centroid Moment Tensor (former Harvard Cen-
troid Moment Tensor, 2025, https://www.globalcmt.
org/; Dziewonski et al., 1981; Ekstrom et al., 2012)

— Instituto Geografico Nacional de Espafia (2025; https:
/Iwww.ign.es/web/ign/portal/tensor-momento-sismico/
-/tensor-momento-sismico/getExplotacion; Rueda and
Mezcua, 2005)

— Instituto Andaluz de Geofisica (2025; https://iagpds.
ugr.es/investigacion/informacion-general; Stich et al.,
2003, 2006, 2010).

— Istituto Nazionale di Geofisica e Vulcanologia
(https://doi.org/10.13127/TDMT; Scognamiglio et al.,
2006; Pondrelli et al., 2002, 2004)

— Geofon (GFZ-Postdam, 2025; https://geofon.
gfz-potsdam.de/old/eqinfo/list.php?mode=mt)
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Figure 1. Cenozoic Alpine tectonic map of Iberia, including continental and offshore domains and showing areas that have experienced
intense and distributed deformation. More recent normal faulting is shown by red lines. Q: Quaternary. Lourdes Fault (1); Bedous, Laruns,
Pierrefitte, and Pic de Midi du Bigorre faults (2); Tét Fault (3); Pamplona Fault (4); Amer and Emporda faults (5); El Camp Fault (6);
Montseny and Pla de Barcelona faults (7); Vilarica—Braganca fault system (8); Régua—Verin fault system (9); Monforte—Orense fault sys-
tem (10); Ventaniella—Ubierna faults (11); Gulf of Rosas Fault (12); Amposta Basin Fault (13); Cape Cullera Fault (14); Jiloca Graben (15);
Teruel Graben (16); Campos de Calatrava volcanism (17); Messejana—Plasencia Fault (18); Serra da Estrela Fault (19); Arraiolos and Evora
seismic zones (20); Gloria Fault (21); Navarrés and Tous grabens (22); Cabo de la Nao Fault (23); Sdo Marcos—Quarteira Fault (24);
Mazarrén Fault (25); Palomares Fault (26); Serrata—Carboneras Fault (27); Alhama Fault (28); Tiscar and Guadiana Menor faults (29);
Guadix Basin (30); Granada and Sierra Elvira-Dilar faults (31); Padul-Durcal Fault (32); Albordn Ridge (33); Idrissi Fault (34); Yusuf
Fault (35); Nekor Fault (36); Al Hoceima area (37); Kert and Nador faults (38); Fault propagation associated to El Asnam earthquake (39);
west-verging thrusts Gulf of Cadiz (40); NE-SW thrusts (41); Torcal Shear Zone (42).

— ETH-Swiss Seismological Service (Braunmiller et al., associated with projects such as Topolberia (Martin et al.,
2002). 2015), and datasets related to earthquake clusters (Morales

. et al., 2015; Matos et al., 2018). Additionally, it incorporates

— IPMA Portuguese Fnstltute for Sea' and Atmosphere results from specific seismic crisis events, most likely associ-
(2025; https://www.ipma.pt/en/geofisica/tensor). ated to induced seismicity (e.g. Villasefior et al., 2020; Cesca

et al., 2021). To further enhance the dataset, nine previously
unpublished moment tensor focal mechanisms were deter-
mined for events that occurred between 2003 and 2019 (Ta-

This dataset was expanded through the integration of vari-
ous regional studies (e.g. Carrefio et al., 2008; Chevrot et al.,
2011; Domingues et al., 2013; Custodio et al., 2016), datasets
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ble 1), and focal mechanisms for two historical events were
also included in our dataset (Stich et al., 2005). The events
are located at depths shallower than the Moho proposed by
Diaz et al. (2016), except for some events located in oceanic
crust, where the proposed crustal thickness is estimated at
approximately 18km and hypocentral depths are less than
30km, within a domain in which the rheology of the upper
mantle might be assumed to be similar to the crust. In cases
where multiple solutions existed for the same event across
different catalogues and appearances, the double-couple per-
centage (%DC) was used as a selection criterion, and the so-
lution with the highest %DC was retained.

Thus, the final database consists of 542 events. In terms
of temporal coverage, the first earthquake in our database is
that of Benavente (Portugal) in 1909, and the most recent one
occurred on 30 September 2023 (Fig. 2).

3 Methodology

To characterise the tensorial properties of seismicity, two
complementary analytical frameworks can be employed: a
stress-based approach and a deformation-based approach.
In this study, both methodologies are applied to provide a
comprehensive understanding of the seismotectonic regime.
For the deformation-based analysis, we use two approaches.
Firstly, a kinematic classification of rupture types is per-
formed, including the derivation of a combined focal mecha-
nism following the methodologies of Alvarez-Gémez (2019)
and Kiratzi and Papazachos (1995). This is complemented
by the application of the right dihedra method (Angelier and
Mechler, 1977) and the slip model (Reches, 1983), which fa-
cilitate the identification of the most probable rupture plane
to determine the stress tensor using classical inversion pro-
cedures. We also use the methodology proposed by Reches
et al. (1992). This approach enables iterative testing of vari-
ous friction coefficients, validated by angular criteria estab-
lished by the slip misfit (SLIP) and the principal angles mis-
fit (PAM), as detailed in this section. The methodology has
been recently revised and implemented in MATLAB (Busetti
et al., 2014; Wetzler et al., 2021).

Terminological precision is maintained throughout the
analysis. For individual focal mechanisms, we differentiate
between reverse, strike-slip, and normal earthquakes. When
referring to deformation, we use the terms shortening, shear,
and extension. Conversely, when discussing stresses, we use
the thrusting stress regime, strike-slip stress regime, and nor-
mal faulting stress regime.

3.1 Kinematic analysis: composite focal mechanism
To gain insight into the kinematics related to the brittle be-
haviour of the lithosphere, we binned the focal mechanisms

according to their rupture characteristics and stress—strain
orientations in tectonic subareas. We refer to these from here
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onwards as tectonic zones. These zones were delimited con-
sidering the tectonic regimes, using a methodology explained
in more detail in Sect. 4, which is a fundamental step in the
stress inversion analysis.

For each tectonic zone, we classified the focal mechanisms
by rupture type (reverse, strike-slip, normal) using the focal
mechanism classification (FMC) diagram (Alvarez-Gémez,
2019). Then, for each rupture type population, we obtained
a combined focal mechanism by averaging the moment ten-
sor components following the approximation of Kiratzi and
Papazachos (1995):

s XM 1
ik = Wa ( )
x=1""0o

where Fjj is the normalised moment tensor, My is the seis-
mic moment, and the sums are performed over the number
of events in each rupture population. If most of the released
seismic moment is controlled by one of the earthquakes, the
composite focal mechanism is very close to that of the larger
event (Kiratzi and Papazachos, 1995). To avoid this effect in
areas with moderate seismicity, an adequate approximation
is to use only the sum of the seismic moment tensor compo-
nents, disregarding the respective seismic moments. In this
case, all earthquakes will have the same weight in the sum.

Fie =30 Fie @
where RT is each of the rupture types, encompassing n
events, and 7 and k are the indices of the moment tensor com-
ponents.

As a result, we obtain a combined focal mechanism for
each rupture type reflecting the geometry of the correspond-
ing moment tensors and related deformation.

Following this reasoning, we can also obtain a composed
focal mechanism considering all the events in a tectonic
zone:

—zone n =) —Reverse =~ —Strike-slip . —=Normal
Fig :szlFik =Fy  +Fy +F . 0)

As can be seen in Eq. (3), the summation of the combined
rupture types is equivalent to the sum of all tensors. This en-
ables quantification of strain partitioning through the compu-
tation of the minimum rotation angle between rupture types,
following the method proposed by Kagan (1991).

A way to assess the character of a moment tensor is to
use its compensated linear vector dipole (clvd) component,
which quantifies the extent to which the deviatoric part of
the seismic moment tensor differs from a pure double cou-
ple. We used the clvd ratio (fclvd) from Frohlich and Apper-
son (1992):

|mp|

fclvd = “4)

max [|mr|, |mp|]’

where mr, mp, and mp are the largest, intermediate, and
smallest principal components of the summed moment ten-
sor. When the double-couple component is dominant, the

https://doi.org/10.5194/se-16-947-2025
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Table 1. Focal mechanisms calculated in this study
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Long Lat Depth StrikeA DipA RakeA StrikeB DipB RakeB My Date

©) ) (km) 0O © @O (YYYY/MM/DD)
—5.98 415 9 7 71 25 268 66 160 3.8 2003/01/12
—2.34 40.21 11 228 71 —157 130 69 —-20 3.3 2009/10/14
—7.62 38.96 15 288 75 180 18 90 15 3.5 2010/03/27
—8.546 37.35 8.5 84 85 168 175 78 6 33 2015/07/22
-2.29 41.61 12 179 46 —87 355 44 -93 3.6 2015/08/05
—8.524  37.237 20 216 50 88 39 40 92 32 2015/10/21
—4.62 42.86 14 134 75 —86 297 16 —106 3.6 2018/05/19
—9.552 37.73 28 35 62 52 275 62 52 3.6 2018/10/01
—8.013 36.37 30 175 42 —165 74 80 —49 3.8 2019/07/16

>70
44°

Depth (km)

42°

40°
38°
36°

34° :
10° 8 6°

140

120

40 20 0° 20 40

Figure 2. Distribution of the 542 focal mechanisms used in this study. The colour of each focal mechanism indicates hypocentral depth.

fclvd tends to be zero. Conversely, when the value ap-
proaches 0.5, the tensor is far from a double couple. The clvd
proportion of the summed moment tensor can also be used to
analyse the seismotectonics of a zone (e.g. Frohlich and Ap-
person, 1992; Jost et al., 1998; Buforn et al., 2004; Borges et
al., 2007; Bailey et al., 2012).

Let us consider the composed moment tensor to be a rep-
resentation of the seismic strain in a zone. We can use its
orientation and characteristics to obtain insight into the de-
formation pattern of the studied tectonic zones. A first ap-
proximation is to consider the orientation of the principal
strain axes. The T axis is equivalent to the extension axis,
the P axis is comparable to the shortening axis, and the B
axis is the intermediate axis, which can be neutral for a plane
strain deformation (a pure double-couple moment tensor), or

https://doi.org/10.5194/se-16-947-2025

it can be an extension or a shortening axis depending on the
tectonics of the zone.

It is of interest to quantify the amount of seismic deforma-
tion occurring in each zone using the various rupture types.
These different rupture processes within a zone cannot be
considered to reflect temporal changes in the regional de-
formation field, as the time interval of the catalogue is very
short; instead, they are likely due to local strain axis permu-
tations. To quantify these changes in the orientation of the
axes between rupture types, we resort to the minimum rota-
tion angle between tensors (or Kagan angle; Kagan, 1991).
The angle for a pure axis permutation maintaining the orien-
tation of all the axes would be 90°. In practice, if we consider
the angle between the focal mechanisms of different types of
rupture and given that they nucleate in faults with different
orientations, this angle may depart slightly from 90°.

Solid Earth, 16, 947-1024, 2025
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Finally, to analyse the shape of the seismic deformation
tensor, we can adapt the Flinn diagram for 3D strain tensor
shapes used in classic structural geology analysis. The Flinn
diagram represents the relation between the principal strain
axes, or principal extension (Flinn, 1958), where the abscissa
is the relation 5, /53 and the ordinate is the relation §1/5,. An
alternative to these values was proposed by Ramsay (1967),
who suggested the use of the natural logarithm of these rela-
tions so that

ln[§1/§2] =g —é&y, (5)
ln[§2/§3] =&y — €3, (6)

where €1, &>, and e3 are the natural strains of the largest, in-
termediate, and smallest principal strain axes of the deforma-
tion ellipsoid, i.e. the magnitude of the changes in the length
of the axes. Similarly, the principal strain axes of the com-
bined seismic moment tensors can be considered the amount
of seismic strain change induced by the earthquakes in a vol-
ume. Consequently, the logarithmic Flinn diagram can be
adapted to this purpose. Additionally, the shape of the el-
lipsoid can also be defined by the k value, which is defined
as

&1 — &2

k (N

e2—¢3
This parameter has values of 0 for oblate strain shape, 1 for
plane strain, and oo for prolate strain shapes. In the case of
seismic moment tensors, a pure double couple has the form

My O 0
0 O 0 , ®)
0 0 —My

with values of the principal axes of the same magnitude
although of opposite sign to conserve the volume. Strictly
speaking, a double couple corresponds to a plane strain ellip-
soid with no strain on the orthogonal plane to the maximum
and minimum moment axes mp = —mp, mpg = 0. If the in-
termediate moment axis is different from 0, then the com-
pensated linear vector dipole component appears as shown
in Eq. (3).

To represent the combined seismic moment tensors in
the Flinn diagram, we defined the ordinate and abscissa as
M1-M> (or mr-mp) and M>-M3 (or mp-m p), respectively,
where M| > M> > M3 (we used the logarithm of these val-
ues to improve the data presentation). The shape of the tensor
can then be defined in an equivalent way to Egs. (5) and (6):

_ My — M

k=—-—-.
M, — M3

©))

3.2 Kinematic analysis: slip model

Focal mechanisms provide valuable insights into earthquake
rupture kinematics, including the strike, dip, and rake of the
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two nodal planes. However, most of the time, the selection
of the true fault plane among the two possible ones is not
straightforward. The strain orientation derived from thrust or
normal faulting focal mechanisms may remain the same ir-
respective of the true fault plane, but the dip direction of the
fault would not be constrained. On the other hand, for strike-
slip faulting focal mechanisms, the strike of the fault plane is
crucial to define the strain field properly.

The slip model (Reches, 1983; de Vicente, 1988) identifies
which of the nodal planes is more prone to slip from a me-
chanical point of view, as it requires less energy to mobilise
(the neo-formed plane, not a reactivated one). The slip model
proposed by Capote et al. (1991), based on de Vicente (1988)
and Reches (1983), defines the maximum shortening trend
(Dey, Eumax) and the shape factor (k') of the deformation
ellipsoid for each focal mechanism. Thus, areas under sim-
ilar strain conditions can be readily defined, improving the
results of stress inversion, based on plane populations. In
this study, we apply the workflow suggested by de Vicente
et al. (2008), Olaiz et al. (2009), and Arcila and Muiioz-
Martin (2020). This method, based on the Navier—-Coulomb
fracture criterion, assumes that the brittle strain and stress
axes are parallel and that one of the axes is close to vertical.
According to the slip model, under the triaxial strain condi-
tions of brittle strain, fractures are arranged in orthorhombic
symmetry concerning the fundamental axes of the strain el-
lipsoid.

K =ey/e,, (10)

where e; is the axis of the vertical strain and ey, is the axis of
the maximum horizontal shortening.
Accordingly, we replace ey, and e, in Eq. (10):

kK = (sin2Dcos2B> / (1 - sinchoszB) , (1D

B = sin2Dcos2P, (12)

where D is the dip and P is the pitch of the slip vector on the
fault plane.

Two sequences of strain are established as a function of &/,
from reverse to normal through strike-slip faulting, and k' is
rescaled to plot values continuously (Table 2).

Additionally, based on the relationship between D and P
proposed by de Vicente (1988), when the nodal plane coin-
cides with the character of the focal mechanism, frictional
energy is dissipated more efficiently. Therefore, the selected
plane can be effectively utilised in stress inversion methods
that rely on fault plane orientations and their associated slip
directions (Angelier and Mechler, 1977). Hence, the qual-
ity of the stress inversion results is improved compared to
those obtained using both planes (neo-formed and reacti-
vated) (Michael, 1987; de Vicente, 1988; Giner-Robles et al.,
2006).

https://doi.org/10.5194/se-16-947-2025
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Table 2. k" values obtained from the slip model.

k' =00 Plane strain Pure strike-slip (pitch =0)
oo>k'>1 Shear with extension Strike-slip normal

K=1

1>k >0 Extension with shear Normal strike-slip

K'=0 Plane strain

0>k >—-0.5 Radial extension Pure normal (pitch = 90)
kK'=-05 Pure radial extension

kK'=-05 Pure radial shortening

—1>k">—0.5 Radial shortening Pure reverse (pitch = 90)
kK =-1 Plane strain

2 <k <-1 Shortening with shear ~ Reverse strike-slip
K=-2

—00 <k’ < —2  Shear with shortening ~ Strike-slip reverse
k'=—o0 Plane strain Pure strike-slip (pitch =0)

3.3 Dynamic analysis: stress inversion

For the stress inversion, we apply the method proposed by
Reches et al. (1992). The process incorporates two con-
straints: firstly, the stresses in the slip direction satisfy the
Coulomb yield criterion; secondly, the slip occurs in the di-
rection of maximum shear stress along the fault. The com-
putations yield the complete stress tensor, normalised by the
vertical stress, and evaluate the mean coefficient of friction
(u) and the mean cohesion (C) of the faults during the time
of faulting (Reches, 1987). Thus, for every selected popula-
tion, two angular quality criteria are obtained: the slip misfit
(SLIP), which is the mean angle between the observed and
calculated slip axes of all faults in the cluster, and the princi-
pal angles misfit (PAM), which is the angle between the ideal
stress axes of each nodal plane and the general stress axes of
the entire group according to the optimal mechanical condi-
tion for faulting (Reches, et al., 1992). In addition, the stress
ratio (R) is established as proposed by McKenzie (1969),
Etchecopar et al. (1981), Gephart and Forsyth (1984), and
Delvaux et al. (1997), among others (Eq. 13, Table 3).

R = (02 —03)/(01 —03) 13)

Here o1, 02 and o3 are the largest, intermediate and smallest
principal stress axes of the stress tensor. To assess the sta-
tistical representativeness of the population of focal mecha-
nisms within each tectonic zone, a Monte Carlo bootstrap-
ping approach was employed to determine the value of the
friction coefficient with the fewest errors. This technique en-
ables us to determine the potential variability in the principal
stress axes, particularly the possible permutations between
two principal stress axes when they have similar magnitudes.

4 Tectonic zonation for stress—strain analysis

To define the tectonic zones required for stress inversion and
strain analysis, we utilise the slip model (De Vicente, 1988).
This model provides unique values of the shape factor (k)

https://doi.org/10.5194/se-16-947-2025

Table 3. Relation between stress tensor (R shape factor ratio) and
the stress regime.

R Stress regime Vertical axis
R=1 o1 =0)p > 03 Radial thrusting 03
1>R>0 01 > o0p > 03 Triaxial thrusting 03
R=0 o1 > 07 =03 Uniaxial thrusting 03
05>R>0 o1>0p>03 Strike-slip thrusting oy
R=05 o1 =0 > 03 Pure strike-slip 09
1>R>05 o01>0p>03 Strike-slip normal o2
R=1 o1 =0 > 03 Uniaxial normal o1
1>R>0 01 >0y > 03 Triaxial normal o1
R=0 o1 > 07 > 03 Radial normal o]

and the orientation of the shortening (or minimum exten-
sion) axis (Dey) for each focal mechanism. Interpolation of
these values enables the generation of continuous maps that
show the variation of both parameters (e.g. de Vicente et al.,
2008; Olaiz et al., 2009; Arcila and Muifioz-Martin, 2020).
In this study, we built interpolated maps of the shape factor
(k') and the value for Dey using the blockmean module of
the Generic Mapping Tools (Wessel and Smith, 1995; Wes-
sel et al., 2013). The shape factor (k') is a scalar that varies
between 0 and 300. Therefore, the values are normalised to
the average for each node and subsequently interpolated onto
a continuous surface. These maps are a powerful tool for bet-
ter defining different strain regions based on homogeneous
shape factor values and similar Dey trends. Thus, the group-
ing of the focal mechanisms is straightforward, allowing the
optimisation of results for techniques designed for popula-
tions.

The three fundamental pieces of information that we con-
sidered for the delineation of the tectonic zones in the Iberian
Peninsula are (a) the available information on the neotectonic
(in this case, Alpine) structural deformational style (Fig. 1),
(b) the density of the available data (Fig. 2), and (c) the dom-
inant type of focal mechanism. The global and interpolated
analysis of the data using the slip model allows us to con-
sider these parameters simultaneously (Figs. 3 and 4). Dif-
ferent search radii have been tested to balance highly popu-
lated areas and those containing isolated information while
maximising the overall data representation.

Considering these criteria, we subdivided Iberia into sev-
eral zones (Fig. 5). In the Pyrenees, we identified three zones:
the Central Pyrenees (CP), characterised by mostly normal
faulting focal mechanisms, and two additional zones at the
eastern and western ends, where there are more focal mecha-
nisms, the Western Pyrenees (WP) and the Eastern Pyrenees—
Northern Catalan Coastal Range (EPCE). Further west, on
the northern edge, we grouped the earthquakes in Northwest-
ern Galicia (NWG), with numerous focal mechanisms in the
central area and offshore. In the east of the peninsula, off-
shore near the coast, we differentiated two tectonic zones:
the Western Valencia Trough (WVT) and the Southern Va-
lencia Trough (SVT). Onshore, we separated the focal mech-
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Figure 3. Style of active deformation (strain regime) for Iberia determined from focal mechanisms. The map shows the shape factor (k”)
determined using the slip model (Reches, 1983; de Vicente, 1988). Each dot represents a focal mechanism. Search radius of 150 km. Short:
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anisms in the Iberian Chain (IC) and south of the eastern
SPCS (Central Basins, CB), along with those in the tectonic
zone near Lisbon, which we refer to as the Western Central
System (WCS). Further south but not yet at the active plate
boundary, we defined the Algarve (AL) as a tectonic zone.
In the offshore Atlantic to the west, although the data are
very scattered, the focal mechanisms are similar, and several
correspond to earthquakes that occurred at mantle depths but
are not well constrained. Therefore, we grouped them in the
tectonic zone Offshore Atlantic (OA). Further south, primar-
ily offshore and along the plate boundary, we examined the
Gorringe—Horseshoe (GH) and Gulf of Cadiz (GC) tectonic
zones. The large number and variability of focal mechanisms
in the Betics require smaller tectonic zones. Thus, consid-
ering the predominance of normal faulting in the Granada
Basin (GB), we differentiated the Western Betics (WB) to its
west, the Betics Antequera (BA) to its north, and the Western
Alcaraz Arch (WAA) and the Eastern Betics (EB) to its east.
In the Alboran Sea, we considered the North Alboran (NA),
which also has onshore focal mechanisms, and the Alboran
Ridge (AR), located at the probable plate boundary. Further
south, on the African Plate, in the Rif, we considered the tec-
tonic zones of Al Hoceima (ALH) and Rif (RF). Finally, in
the Algerian Atlas, we analysed two populations: one located
further east, the Eastern Tell Atlas (ETA), and the other lo-
cated further west, the Western Tell Atlas (WTA). Figure 5
shows the focal mechanisms in different colours for each
area. We utilised the Rif (RF) focal mechanisms in the slip
model analysis (Figs. 3 and 4). However, any stress inversion
yielded a high-quality solution; therefore, we will not com-
ment on RF active tectonics (Fig. 5).

5 Results

The results obtained following the methodologies described
above are summarised in Tables 4 and 5 for all considered
tectonic zones. For additional information, see Appendices A
and B.

5.1 Central Pyrenees (CP)

The majority of the focal mechanisms in this area are pre-
dominantly normal, although some strike-slip faults are also
observed. The seismic moment release is controlled by the
normal fault events giving rise to a combined moment tensor
close to a double couple, with a k value of 1.39 and an fclvd
of 0.1. The Kagan angle between the combined moment ten-
sors of normal and strike-slip earthquakes has a value close
to 90°, indicating an almost pure permutation between the
B and P axes. The orientations of the principal strain axes
(T and B) are consistent with each other and orthogonal to
the strike of the mountain range. However, these axes show
some variability with two predominant families, one N020-
030° E and the other N040-050° E, which could indicate the
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activation of normal fault families with slightly different ori-
entations (see Appendix A).

The 28 focal mechanisms located in the central part of
the Pyrenees provide a very consistent stress inversion so-
Iution (Fig. 7 CP) that indicates a nearly uniaxial normal
faulting stress regime, with a o3 direction of N005-030°E,
sub-perpendicular to the topographic axis of the range. The
solution agrees with that obtained by de Vicente et al. (2008)
and Asensio et al. (2012). The latter authors also analysed
GPS data with similar results (extension perpendicular to the
range of 2.5 + 0.5 nanostrain yr—!), which they attributed to
post-orogenic collapse. This normal faulting stress regime
would account for the seismic activity of the main active nor-
mal faults present in the area, such as the Lourdes Fault (1,
Fig. 1), which has a 50km trace and a 50 m high fault scarp
(Alasset and Meghraoui, 2005; Lacan and Ortuiio, 2012), and
the Bedous, Laruns, Pierrefitte, and Pic de Midi du Bigorre
faults (Lacan, 2008) (2, Fig. 1). The latter author attributes
the seismicity in this part of the Pyrenees to a process of
isostatic adjustment. In this area, we also include the focal
mechanisms in the easternmost part of the area, obtained
close to the Tét Fault (3, Fig. 1), which is 120km long and
accommodated right-lateral movement from the Miocene to
the Upper Pliocene (Cabrera et al., 1988) and which seems to
have had mainly extensional movement during the Pliocene—
Quaternary (Briais et al., 1990). In any case, the three nearby
focal mechanisms show normal faulting, consistent with the
other mechanisms used for the inversion. Recent studies, cal-
culated with polarities and temporary seismic networks, pro-
vide very similar focal mechanisms (Ruiz et al., 2023).

5.2 Western Pyrenees (WP)

Seismicity in the Western Pyrenees is clustered in the south
of the mountain range, in the vicinity of the city of Pamplona.
This seismic activity is characterised on the one hand by nor-
mal faulting, with a strike-slip component, and on the other
by a series of oblique events with a significant strike-slip dis-
placement. This component is essential in the area, with the
combined moment tensor having mainly shearing character-
istics, although with fclvd values of 0.31 and a k of 3.52,
which indicates a prolate-type seismic deformation tensor
shape. The strain extensional axis of the combined mecha-
nism is NO11° E, and that of maximum horizontal shortening
(B- and P-permuting) is between N090° E-N110°E.

The stress inversion (Fig. 7 WP) also results in a nor-
mal faulting stress regime, as in CP (N098°E). However,
the stress tensor shows characteristics closer to strike-slip,
with o, at N103°E, which allows the activation of WNW-
ESE to E-W normal faults, such as those of Leiza, Aralar,
and Roncesvalles (Lacan and Ortuiio, 2012), but also NE—
SW strike-slip faults, such as the Pamplona Fault (4, Fig. 1),
which is 125 km long (Ruiz et al., 2006). This is a vertical
fault, inherited from the Late Variscan period, which also
controlled Mesozoic and Tertiary sedimentation (Ruiz et al.,
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Table 4. Summary of the combined seismic moment tensor results for all considered zones. Bold numbers represent the trend in the greatest horizontal shortening axis (Eygmax), and

italic numbers represent the trend in the greatest horizontal extensional axis.

Label  Population Combined seismic moment Rupture fclvd k& value Minimum rotation
tensor main axes type Angle (°)

Ptrend P plunge Btrend Bplunge T trend T plunge N-SS  SS-R R-N
CP Central Pyrenees 163 76 296 10 28 10 N —0.10 1.39  88.6 - -
WP Western Pyrenees 929 21 287 69 190 3 SS —0.31 352 821 74 72.7
EPCE  Eastern Pyrenees 344 17 129 70 251 11 SS —0.28 298  76.1 - -
NWG NW Galicia 328 14 138 76 237 2SS —0.34 409 785 438 98.4
WVT  Western Valencia Trough 2 29 143 54 262 19 SS-N 0.06 0.84 163 256 25.5
IC Iberian Chain 309 86 154 4 64 2 N 0.04 0.89 - - -
CB Central Basins 276 6 31 77 185 12 SS —0.26 258 703 - -
WCS  Western SPCS 323 3 229 60 55 30 SS-R 0.29 033 449 717 99.4
OA Offshore Atlantic 152 22 297 64 57 14 SS-N 0.03 0.92 - - -
GH Gorringe—Horseshoe 164 15 44 62 260 23 SS-R 0.33 026 49.6 68.7 90.2
SVT Southern Valencia Trough 18 73 157 13 249 11 N —0.25 256 741 - -
AL Algarve 143 6 31 75 234 14 SS 0.41 0.13 803 - -
EB Eastern Betics 352 15 119 67 258 18 SS-R 0.22 0.46 467 83.6 71.4
WAA W Alcaraz Arch 143 3 333 87 233 0 SS —-0.23 2.30 87 - -
GB Granada Basin 250 76 139 5 48 13 N 0.08 0.77 - - -
NA Northern Alboran 334 6 217 76 66 12 SS —0.15 1.63 883 497 100
AR Alboran Ridge 337 20 173 70 69 5 SS 0.19 052 648 764 984
AH Al Hoceima 329 24 157 65 60 3 SS-N —0.08 130 508 582 76.6
WTA  Western Tell Atlas 324 15 231 10 108 71 R 0.29 033 674 804 1055
ETA Eastern Tell Atlas 336 26 69 8 175 63 R 0.08 077 778 735 96.3
GC Gulf of Cadiz 161 15 291 67 66 17 SS-R 0.24 042 919 66.6 94.4
WB Western Betics 332 11 235 31 79 57 R-SS 0.20 050 359 58.6 59.9
Western Betics > 20 km 299 18 81 67 205 13 SS-N 0.22 044 804 90.1 105.8
BA Betics Antequera 305 30 101 58 209 11 SS-N —0.05 1.16 - - -
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Figure 5. Colour-coded focal mechanisms for every considered tectonic zone: Central Pyrenees (CP); Western Pyrenees (WP); Eastern
Pyrenees—Northern Catalan Coastal Range (EPCE); Northwestern Galicia (NWG); Western Valencia Trough (WVT); Iberian Chain (IC);
Central Basins (CB); Western Spanish—Portuguese Central System (WCS); Offshore Atlantic (OA); Gorringe—Horseshoe (GH); Southern
Valencia Trough (SVT); Algarve (AL); Eastern Betics (EB); Western Alcaraz Arch (WAA); Granada Basin (GB); Northern Alboran (NA);
Alboran Ridge (AR); Al Hoceima (ALH); Western Tell Atlas (WTA); Eastern Tell Atlas (ETA); Gulf of Cadiz (GC); Western Betics (WB);

Betics Antequera (BA).

2006) and was reactivated as an oblique ramp during the
Pyrenean shortening (Vergés, 2003).

5.3 Eastern Pyrenees—Northern Catalan Coastal Range
(EPCE)

This tectonic zone, which contains only six focal mecha-
nisms, was differentiated from the Central Pyrenees popu-
lation because, here, as in the westernmost part, there seem
to be more strike-slip faulting mechanisms (as opposed to
the easternmost ones). Half of the population, with epicen-
tres close to the axis of the mountain range, present pure nor-
mal faulting mechanisms, while the other half has a thrust
faulting component. The Kagan angle between the combined
normal and strike-slip faulting mechanisms is close to 80°,
suggesting a permutation between the P and B axes. The
combined moment tensor departs from a pure double couple,
with an fclvd of 0.28 and a k value of 2.98. The shape of
the ellipsoid is therefore of prolate type, with the extensional
strain axis oriented at N72°E and the maximum shortening
almost horizontal at N163° E.

The stress inversion (Fig. 6 EPCE) indicates a more nor-
mal faulting stress regime (o5 at N165°E) concerning CP,
similar to that obtained by Goula et al. (1999) with nor-
mal strike-slip stresses, which differs from the one provided
by these authors, which was more thrusting. The onshore
focal mechanisms would indicate that the structures asso-
ciated with the recent NW-SE Olot volcanism, the Amer
and Emporda faults (5, Fig. 1) (Souriau and Pauchet, 1998;
Lacan and Ortufio, 2012), present normal-type movements,

Solid Earth, 16, 947-1024, 2025

which would have been responsible for the seismic crisis be-
tween 1427 and 1428 that caused considerable damage (Oliv-
era et al., 2006). Active faults further south, in the Catalan
Coastal Range, such as El Camp (6, Fig. 1) (Masana, 1996),
Montseny, and Pla de Barcelona (7, Fig. 1) (Perea et al.,
2020), seem to be more closely related to the opening of the
Valencia Trough than to the Pyrenees. The El Camp Fault can
be regarded as part of the NVT. In any case, the stress solu-
tion is very similar to those found to the south in IC, WVT,
and SVT, so it seems to be less related to the local processes
affecting the Pyrenees.

5.4 Northwestern Galicia (NWG)

The Pyrenean orogen spans across northern Iberia to the
Cantabrian Mountains (Cantabrian Pyrenees), Galicia, and
offshore, as far as the Galicia Bank (Fig. 1). The southern
part of the Bay of Biscay, the closest to Iberia, also appears
to be affected by the deformation of the Pyrenees (e.g. Boillot
and Malod, 1988) where the shortening took place from the
Upper Eocene to the Middle Miocene (Gallastegui and Pul-
gar, 2002). After the Middle Miocene, much of the neotec-
tonic activity in Galicia and northern Portugal was concen-
trated in the left-lateral strike-slip NNE-SSW fault system of
Vilarica—Braganga (8, Fig. 1), Régua—Verin (9, Fig. 1), and
Monforte—Orense (10, Fig. 1) (Cabral, 1989; de Vicente and
Vegas, 2009; Martin-Gonzélez and Heredia, 2011), which,
although not strictly part of the Pyrenees, is closely related
to its evolution and to that of the SPCS.
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Figure 6. Results of the stress—strain analyses for different zones: (a) right dihedra solution, (b) rose diagram of the Deys obtained from
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The focal mechanisms in this zone can be grouped into
two families: one of normal faulting type, releasing most
of the seismic moment, and the other of oblique strike-slip
faults, some with normal components and others with re-
verse faulting components (see Appendices A and B). By us-
ing the Kiratzi and Papazachos (1995) approximation, which
gives equal weight to all combined events in the tensor, we
avoid the dominance of events with a much higher energy re-
lease than the others. The resulting combined moment tensor
shows a prolate form, with k values close to 7 and an fclvd of
0.39, dominated by ENE-WSE extension. The extensional
strain axes are very coherent in all focal mechanisms, with
the combined one having an orientation of NO57°E. In the
horizontal shortening axes (P- and B-permuting with a rota-
tion angle of 84°), there is more variability, with the P axis
showing an orientation of N147°E.

The 18 focal mechanisms included in the stress inversion
(Fig. 6 NWQ) are of strike-slip and normal-directional types,
resulting in a normal faulting stress regime, with a o, strike
between N147°E and N150°E. It should be noted that the
most normal faulting mechanisms are concentrated in the
area where small sedimentary basins developed during the
Miocene, specifically in the interior of Galicia (de Vicente et
al., 2011). In contrast, the offshore region is dominated by
strike-slip faulting.

We were only able to obtain one focal mechanism in the
Cantabrian Mountains (Cantabrian Pyrenees), which shows
NW-SE normal faulting. This focal mechanism could in-
dicate that critical faults in that orientation, such as the
Ventaniella—Ubierna faults (11, Fig. 1), accommodate nor-
mal faulting deformation today. A study using a local seismic
network (10 stations) on the Ventaniella Fault determined
focal mechanisms for earthquakes with M, < 2 but with-
out obtaining a consistent pattern (Lopez-Ferndndez et al.,
2018); therefore, the results in this area are not conclusive.
The two focal mechanisms with the highest double-couple
component (above 80 %) calculated by del Pie Perales (2016)
are normal faulting solutions, and the focal nodal planes are
compatible with the strike-slip fault system. Recently, on
30 September 2023, a M, = 3.6 thrusting focal mechanism
was reported by the IGN in Villamejil (Le6n).

5.5 Western Valencia Trough (WVT)

The Valencia Trough, between the Mediterranean margin of
Iberia and the Balearic Islands, shows a complex succes-
sion of partially inverted Mesozoic rifting events during the
Cenozoic (Etheve et al., 2018). During the last 30 Myr, the
emplacement of the Calabrian—Tyrrhenian subduction zone
with trench retraction and back-arc extension produced in-
tense extension in the Levantine sector of Iberia (Faccenna
et al., 2004) during the Neogene (Roca and Guimera, 1992),
forming a broad rifting zone with the development of many
horsts and grabens. This extension is moderately active today
(Perea et al., 2020).
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The Castor CO, storage project generated a sequence of
apparently triggered seismicity. In addition to the moment
tensors calculated by the IGN, several groups published fo-
cal mechanisms (Cesca et al., 2021; Villaseiior et al., 2020).
The moment tensors present mainly similar solutions in both
studies, in terms of plane orientations, although the depth and
epicentral location vary significantly. Due to the better epi-
central relationship with the previously identified NE-SW-
striking faults, the results used here were those by Villasefior
et al. (2020). These mechanisms exhibit strike-slip fault dis-
placements with a substantial normal component, very simi-
lar to those obtained by Goula et al. (1999) for the 1991 and
1995 events, based on P-wave polarities. The combined mo-
ment tensor shows an NO82° E-trending T axis and an im-
mersion of 19°. The P axes show somewhat more scatter;
still, the P axis of the combined moment tensor is oriented
NO002° E, with an immersion of 28°. The value of k obtained
is 0.8, which indicates an oblate-type tensor shape, with N—S
shortening and E-W extension.

The stress inversion of the 12 focal mechanisms (Fig. 6
WVT) yields a very consistent solution, indicating a nor-
mal faulting stress regime compatible with strike-slip and
oz-oriented N170° E. This stress regime activates moderately
dipping NE-SW and NW-SE faults, such as those of the Gulf
of Rosas (12, Fig. 1), the Amposta Basin (13, Fig. 1), Cape
Cullera (14, Fig. 1), and the Columbretes Basin (Perea et al.,
2020), which affect Pliocene—Quaternary sedimentary units
(Perea et al., 2012). Onshore, the EI Camp Fault (6, Fig. 1)
(Masana, 1996) can also be activated by this type of stress.
The stress solution for this zone is very similar to that of the
SVT.

5.6 Iberian Chain (IC)

The IC is part of the Iberian intraplate orogen, characterised
by a main Oligocene—Early Miocene age of deformation,
which involved the inversion of Permian—-Mesozoic rifts (Al-
varo et al., 1979). From the Late Miocene onwards, its activ-
ity is linked to the opening of the Valencia Trough (Roca
and Guimera, 1992) and therefore shows a similar evolu-
tion to the WVT. To the west, the extension deactivated the
thrusts that uplifted the SPCS north of Madrid. The recent
extensional process formed Neogene—Quaternary basins as-
sociated with N—S to NW-SSE normal fault activity (Simon,
1989). The related stress field, based on recent fault data, in-
dicates triaxial normal faulting, with o3 oriented ENE-WSW
(Arlegui et al., 2005). The most important active faults are
those bounding the Jiloca graben (15, Fig. 1) (Sierra Palom-
era, Calamocha, Daroca, Munébrega faults) and the Teruel
graben (16, Fig. 1) (Sierra del Pobo, Valdecebro, and Con-
cud) (Simén, 2020).

The eight focal mechanisms in this tectonic zone are nor-
mal faulting events, with a few showing a strike-slip com-
ponent, which combined give rise to a pure double-couple
tensor with a horizontal 7 axis oriented NO64°E and a B
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axis oriented N154°E. The individual moment tensors are
divided into two distinct families (see Appendices A and B),
with T- and B-axis rotations of about 30°, probably due to
the activation of complementary normal fault families.

The focal mechanisms used for the stress inversion, lo-
cated in the north and centre of the IC, yield a triaxial normal
faulting stress regime solution (Fig. 6 IC), with o3 oriented
NO58°E, similar to that of the WVT and compatible with
the results obtained from recent fault analyses (Arlegui et al.,
2005). Thus, the active stress field can activate the aforemen-
tioned normal faults (Simén, 2020).

5.7 Central Basins (CB)

In central Iberia, south of the SPCS and west of the IC, in
the Cenozoic basins of Madrid and La Mancha (CB), we find
six focal mechanisms, mainly showing strike-slip and normal
faulting. Most of the strike-slip solutions correspond to mi-
nor seismic moment releases. The combined moment tensor
shows an fclvd of 0.25 and a value of k of 2.58, correspond-
ing to a prolate-type tensor shape dominated by an exten-
sional strain axis oriented NOO5° E and an axis of maximum
shortening nearly E-W-oriented.

The stress inversion of the focal mechanisms (Fig. 6 CB)
indicates a normal faulting stress regime solution with a
small strike-slip component, with 03 almost perpendicular
to that obtained for the CI, at N173°E, which also dif-
fers from most of the considered areas. However, geodetic
velocities derived from GPS data in this region indicate a
clear westward displacement — assuming a fixed Eurasian
reference frame — at rates of 2 to 3mmyr~' (Cannavo and
Palano, 2016; Neres et al., 2018a). This motion contrasts
with the NW-SE trend observed farther south. The results
published by Khazaradze et al. (2019) further support a dom-
inant strike-slip faulting regime. On the other hand, and as a
differential element, the area is characterised by volcanism
(Campos de Calatrava volcanism), mainly sodic alkaline and
ultra-alkaline rocks, with radiometric ages between 4 Ma and
less than 0.7 Ma (Ancochea and Huertas, 2021) (17, Fig. 1),
which has been related to a gentle folding of the Iberian
lithosphere and the presence of an anomalous low-density
sub-crustal block below the volcanic zone (Granja Bruiia et
al., 2015). It is therefore possible that this recent volcanic
activity somehow influences the calculated stress tensor. An
edge effect related to large-radius extension and uplift in the
CI cannot be ruled out (Casas-Sainz and de Vicente, 2009),
even if it is an indentation effect about the Betics (Vegas and
Rincén-Calero, 1996).

5.8 Western Spanish—Portuguese Central System
(WCS)

As mentioned before, the central orogenic belt extends to the

west, reaching as far as Lisbon and offshore into the Es-
tremadura Spur. In its Portuguese stretch, the SPCS is an
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active mountain range (Cabral, 2012). Documented struc-
tural damage from seismic events and digitalised seismo-
grams have been used to convert observed effects into in-
tensity estimates and moment magnitude calculations, as in
the case of the 1909 Benavente earthquake, which reached
M,, = 6.0 and exhibited a significant thrust faulting compo-
nent. (Stich et al., 2005; Fonseca and Vilanova, 2010). The
thrust faults have predominantly NE-SW strikes with asso-
ciated NW-SE shortening (de Vicente et al., 2018). East of
Portugal, in the westernmost Spanish sector and along the
NE part of the Messejana—Plasencia Fault (18, Fig. 1), in-
strumental seismicity is scarce. However, there is evidence
of end-Cenozoic and Quaternary deformation (de Vicente et
al., 2022a).

The focal mechanisms in this tectonic zone are predomi-
nantly reverse or strike-slip faulting events, the former show-
ing a higher release of seismic energy. There are some normal
faulting events whose 7" and B axes are kinematically com-
patible with each other. Considering the combined mecha-
nisms of strike-slip and reverse faulting, we calculated the
value of the minimum rotation angle close to 70°, thus con-
stituting a 7 and B permutation. The orientation of the axis
of maximum shortening of the combined moment tensor is
N146°E, and the axis of maximum extension is oriented
NO056° E. The overall combined moment tensor, considering
all earthquakes in this zone, is of oblate type, with a low k
value of 0.325 and an fclvd of 0.29; thus, it is dominated by
NW-SE shortening.

The stress inversion for this tectonic zone (Fig. 6 WCS)
was computed using 20 focal mechanisms. It resulted in a
clear thrust faulting stress regime solution with a small strike-
slip component, with o oriented N134° E. This stress regime
activates NE-SW-striking thrust faults and left-lateral NNE-
striking and right-lateral ESE-striking strike-slip faults. Ex-
amples include the Vilarica—Braganca (8, Fig. 1) and Régua—
Verin (9, Fig. 1) faults, which exhibit left-lateral movement.
Additionally, there are faults from S Galicia (NWG, with
oy at N150°E) to the Serra da Estrela (19, Fig. 1) with a
thick-skinned tectonic style without tectonic inversion and
the SPCS (Cabral, 2012) with o7 at N134° E. The thrusts bor-
dering the Lusitanian Basin to the south and the Cenozoic
Lower Tagus Basin to the north are also active with kinemat-
ics that are directly related to the inferred stress tensor. Focal
mechanisms to the east show mainly strike-slip faulting in
the Arraiolos and Evora seismic zones (20, Fig. 1) within the
Ossa—Morena zone of the Variscan basement, consistent with
right-lateral motion on N065° E faults (Matos et al., 2018).

5.9 Offshore Atlantic (OA)

The focal mechanisms in the Atlantic offshore, to the north
of the active plate boundary, are spatially scattered over a
wide area, and some appear to be deeper than the Moho (al-
though the mainland seismic networks poorly constrain the
depth of these earthquakes). We grouped all these events
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based on their similar characteristics. Between the Tagus
and the Iberian abyssal plains, there is a structural high,
the Estremadura Spur, with E-W to NE-SW thrusts, which
is the offshore extension of the SPCS, affecting the inter-
mediate crust (Terrinha et al., 2009). Between this tectonic
uplift and the Galicia Bank to the north, NNE-SSW faults
seem to dominate, with kinematics similar to those onshore
(Vilarica—Braganga (8, Fig. 1) and Régua—Verin (9, Fig. 1)
fault systems). In the south, there are some focal mecha-
nisms close to the Hirondelle structural high, to the north of
the Gloria Fault (21, Fig. 1). In the Estremadura Spur, an
NNW-SSW-shortening regime dominated the main structur-
ing of the range during the Palacocene—Miocene (Pereira et
al., 2021). However, the most recent and active deformation
appears to be transpressional (Neves et al., 2009).

There are six strike-slip focal mechanisms in this zone,
some of which have a small normal component. These mo-
ment tensors show some variability in their principal axes, es-
pecially in the P axis. Therefore, the combined moment ten-
sor presents k values below 1, an fclvd greater than O (Fig. 7
OA), and a tendency to have an oblate shape, with the P axis
having a dominant N152° E orientation. The extension 7" axis
is in the NO57°E direction. The stress inversion indicates a
strike-slip stress regime with a normal component, charac-
terised by o1 at N131°E and o3 at N044° E, which activates
right-lateral ESE-WNW faults, such as the significant ma-
jor strike-slip Gloria Fault (21, Fig. 1) in the North Atlantic,
which defines the present-day plate boundary between Eura-
sia and Africa.

5.10 Gorringe-Horseshoe (GH)

At the active plate boundary and between the NE-SW struc-
tural highs (pop-ups and restraining steps with thick-skinned
tectonic styles) of Gorringe and Horseshoe, there are 13
reverse and strike-slip focal mechanisms, several of which
are below the Moho, that indicate a thrust faulting stress
regime (Fig. 7 GH) with o7 at N159° E. These focal mecha-
nisms are mainly strike-slip with a vertical component and
reverse faults with some horizontal component. There are
also normal-type mechanisms whose 7 axes are kinemati-
cally compatible with the 7' axes of the other events. The ori-
entations of the axes of maximum horizontal shortening and
extension exhibit considerable variability, with the 7 axes
giving rise to two well-differentiated families: one N040-
060°E and the other NO70-090°E (see Appendices A and
B). The more E-W-trending axes seem to be more associ-
ated with the strike-slip faults in the centre and south of the
region, while the reverse fault events in the northern part have
NE-SW B-axis orientations. The combined moment tensor
presents an oblate shape, dominated by shortening, with a k
value of 0.623 and an fclvd of 0.14, indicating a significant
distribution of deformation across different structures. The
orientations of the P and T axes are N155°E and N65°E,
respectively.
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Deformation along the Gloria Fault (21, Fig. 1) (zone
OA) is purely strike-slip and locally transtensional. In con-
trast, between the Gorringe and Horseshoe tectonic uplifts
(zone GH), it is compressional (Zitellini et al., 2009). The
most prominent structure, the Gorringe Bank, is bounded
by NE-SW crustal thrusts, the most significant one located
on its northern edge. This structure was the source of de-
structive landslides during the Miocene, with renewed ac-
tivity in the Pliocene—Quaternary period (Gamboa et al.,
2021). Several earthquakes have hypocentres at upper-mantle
depths (> 20 km), implying that the observed surface thrusts
must be linked to structure at mantle levels (Grevemeyer
et al.,, 2017). Active deformation has reactivated and in-
verted former Mesozoic normal faults (Garcia-Navarro et al.,
2005) and appears partitioned between NW-SE thrusts and
WNW-ESE to W-E strike-slip faults (Terrinha et al., 2009).
Further south, the Coral Patch Ridge shows a similar tec-
tonic structuring (Martinez-Loriente et al., 2013). The in-
ferred stress tensor activates pure NE-SW thrusts and right-
lateral NW-SW reverse-strike-slip and WNW-ESE strike-
slip faults, which may be the tear faults of the thrusts (Fer-
ranti et al., 2014).

5.11 Southern Valencia Trough (SVT)

In the easternmost onshore part of the Prebetic front, on
the undeformed foreland, Betic compression ceased approx-
imately 10 Myr ago. This area is structured in a series of
horsts and grabens, about 25 km long and 5 km wide (Navar-
rés, Tous) (22, Fig. 1), which triggered a diapirism of the Tri-
assic salt (Keuper facies) when the extension associated with
the opening of the Valencia Trough was imposed in the area
(De Ruig, 1995). The primary trend of the grabens is perpen-
dicular to the Betic front (NW-SE), although there are also
parallel grabens, indicating triaxial extension. Their position
explains why they are not plug-type diapirs, but rather linear
ones, which were controlled by multiple faulting episodes
(Jackson and Hudec, 2017). The diapirism is still active, af-
fecting Quaternary materials (Gutiérrez et al., 2019). The
coastline also changes in this sector to NW-SE, while, fur-
ther north, up to the Pyrenees, it has an NE-SW orientation,
which is the same as that of the primary faults in the Valencia
Trough, as in the WVT. This orientation, which is transverse
to the main trough, is likely influenced by the Betic front.
The offshore Cabo de la Nao Fault (23, Fig. 1) would be one
of the primary faults of this transverse fault system (Maillard
and Mauffret, 1999).

We have 10 focal mechanisms in this tectonic zone. Most
of them indicate normal faulting, but there are also strike-slip
focal mechanisms. The combined tensors present minimum
rotation angles of 74°, showing a permutation between the
B and P axes. The combined tensor has an fclvd value of
—0.25 and a prolate tensor shape with k = 2.56, showing the
predominance of the N069° E-oriented extension. The stress
tensor obtained from the inversion (Fig. 7 SVT) indicates a
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Figure 7. Results of the stress—strain analyses for different zones: (a) right dihedra solution, (b) rose diagram of the Deys obtained from the
slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained from the slip model, (d) stress inversion results, (e) variability in the
three main stress axes of the stress inversion. OA Offshore Atlantic; GH Gorringe—Horseshoe; SVT Southern Valencia Trough; AL Algarve;

EB Eastern Betics; WAA Western Alcaraz Arch; GB Granada Basin; NA Northern Alboran.
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normal faulting stress regime, with o3 at NO58° E, which can
activate the transverse fault system of the southernmost part
of the Valencia Trough, located in the foreland of the Betic
orogen. The stress tensor solution is very similar to those of
IC, WVT, and EPCE.

5.12 Algarve (AL)

The southwestern corner of the Iberian Massif, in the Por-
tuguese Algarve, also comprises a series of Mesozoic and
Cenozoic materials, known as the Algarve Basin, which was
inverted during the Cenozoic due to N-S to NW-SE short-
ening. The NW-SE shortening developed later, from the
Miocene to the present (Terrinha, 1998; Ramos et al., 2015),
and activated E-W- to NE-SW-striking thrust faults. Still in
this zone but north of the basin, there are significant strike-
slip faults, such as the southernmost part of the Messejana—
Plasencia Fault (18, Fig. 1) (NE-SW, left-lateral) and the
Sdo Marcos—Quarteira Fault (24, Fig. 1) (NW-SE, right-
lateral). According to GPS data, the southern block of this
fault exhibits notable movement to the northwest relative to
the northern block (Cabral et al., 2017). It displays appar-
ent activity during the Quaternary (Cabral et al., 2019). Off-
shore, the most relevant tectonic structure is the Portimao
Bank, bounded by E-W thrusts and co-located with a Creta-
ceous magmatic intrusion (Terrinha et al., 2009; Vazquez et
al., 2015; Neres et al, 2018b). Throughout the Algarve Basin,
there is active salt tectonics (Matias et al., 2011).

We can group the focal mechanisms in this zone into pure
and reverse strike-slip faulting. Although there is some scat-
ter in the orientation of the T axes, the P axes are very con-
sistent, with the combined strain tensor having an orientation
of the maximum shortening axis at N143° E. The combined
moment tensor, however, is far from a double couple, show-
ing a very high fclvd of 0.4 and an oblate tensor shape, with
a k value of 0.132. This k value is the lowest value of all
obtained solutions, showing the dominance of the shortening
deformation tensor.

The inversion of the 11 mechanisms indicates a thrust
faulting stress regime (Fig. 7 AL) with o7 at N140° E, which
activates NE-SW-striking thrust faults and left-lateral N-S-
and NW-SE-striking right-lateral strike-slip faults. The solu-
tion is very similar to that obtained for the WCS, showing
that this type of stress predominates throughout the SW cor-
ner of Iberia to the west of the Betic front. This observation,
together with the absence of thrust faulting stresses in the
Iberian Betic foreland, indicates that one of the effects of the
emplacement of the Alboran Domain to the west was the me-
chanical decoupling between Iberia and Africa (de Vicente
and Vegas, 2009).

5.13 Eastern Betics (EB)

The easternmost part of the Betics shows a significant level
of seismic activity. This area was affected by extensional
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tectonics during the opening of the Algero-Balearic Basin
throughout the Miocene, the most significant extensional
episode occurring in the Serravallian—Tortonian (Comas et
al., 1999). However, it may have maintained a specific tran-
scurrent character (Montenat and d’Estevou, 1999). Since
the Late Miocene, the dominant tectonics in the region has
been characterised by shortening, resulting in the tectonic
inversion of the Miocene basins (Sanz de Galdeano, 1990;
Martinez-Diaz, 1998). The active continental indentation of
the Aguilas Arc to the northwest is related to this shorten-
ing, which is linked to the collision of Africa and Eurasia,
in which the arc forms part of the African crust (Ercilla et
al., 2022; Tendero-Salmerdn et al., 2022). The overthrust-
ing arc is bounded to the east by the right-lateral strike-slip
Mazarrén Fault (25, Fig. 1) and to the west by the left-lateral
strike-slip Palomares Fault (26, Fig. 1). The latter extends
southwestwards on the Carboneras Fault (27, Fig. 1) to the
offshore Albordn Sea. The indentation implies a progres-
sive tilting towards the SE of the whole arc (Ercilla et al.,
2022; Tendero-Salmerén, 2022). In the frontal part of the
arc, once in the Iberian crust, the deformation is accommo-
dated in a left-lateral NE-SW transpressional corridor, the
Eastern Betic Shear Zone (EBSZ), specifically the Alhama
de Murcia Fault (28, Fig. 1), in continuity with the Trans-
Alboran Transpressional Shear Zone (TASZ). It is in this
shear zone that the most active faults of the Iberian Peninsula
are found, with deformation rates between 0.5—-1.5 mm yr_1
as indicated by palaeoseismological and geodetic methods
(Grécia et al., 2006; Herrero-Barbero et al., 2020; Gémez-
Novell et al., 2022; Moreno et al., 2015; Echeverria et al.,
2015; Martin-Banda et al., 2016). The simultaneous activity
of these two macrostructures implies the presence of a defor-
mation partitioning process (sensu stricto), potentially with a
certain degree of mechanical decoupling between the African
and Iberian crust.

The focal mechanisms in this tectonic zone are dominantly
strike-slip and reverse events, with the most frequent having
a specific oblique character. At the same time, some normal
faulting events with a strike-slip component are also present.
The minimum rotation angle between the strike-slip moment
tensor and the extensional moment tensor is about 47°, in-
dicating the predominance of a transcurrent character in the
normal mechanisms (see Appendices A and B). The com-
bination of all the mechanisms results in an oblate-shaped
strain tensor, dominated by shortening, with fclvd values of
0.21 and a k value of 0.46. The P axis has an N172°E ori-
entation, although the P axes of all mechanisms have a large
scatter, which is controlled by the location of the events (see
Appendices A and B). This variability in the shortening axes
may be influenced by the presence of large crustal struc-
tures that generate local block rotations (Martinez-Diaz et
al., 2012) or by local deformation distribution patterns in the
area (Alonso-Henar et al., 2019).

The inversion of the 47 focal mechanisms (Fig. 7 EB)
provides a thrust to strike-slip faulting stress regime with
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o1 at N171°E, which can activate NE-SW- to ENE-WSW-
striking thrust faults, as well as right-lateral NW-SE- and
left-lateral NNE-SSW-striking strike-slip faults. There are
also three NW-SE-striking normal fault mechanisms in the
area, which have a common o3 (NE). This stress tensor so-
lution explains the simultaneous movement of the Aguilas
Arch and Alhama de Murcia fault (28, Fig. 1).

5.14 Western Alcaraz Arch (WAA)

This tectonic zone includes the westernmost part of the Al-
caraz (or Prebetic) Arch and a sector of the Guadix Basin,
which has recorded intense seismic activity in recent years.
The structural morphology is similar to that of other arcs
in the Betics (Aguilas) and the Alboran Sea, which are in-
terpreted as resulting from tectonic indentation processes,
in this case, incipient (Tendero-Salmerén, 2022). The seis-
micity is concentrated along two NW-SE to ESE-WNW
right-lateral strike-slip faults, the Tiscar and Guadiana Menor
(29, Fig. 1) faults (Tendero-Salmerén et al., 2020), which
affect Quaternary materials and the Cenozoic sediments of
the Cenozoic Guadalquivir Basin. The Torreperogil-Sabiote
seismic series, characterised by strike-slip focal mechanisms,
also appears to be related to faults possibly rooted in the
basement (Pedrera et al., 2013). To the south, the intramoun-
tain Guadix Basin (30, Fig. 1), with a general NW-SE trend,
is filled with Tortonian to Pleistocene sediments (Pla-Pueyo
et al., 2009) bounded by NW-SE normal faults (Alfaro et al.,
2008; Sanz de Galdeano et al., 2012).

Of the 14 focal mechanisms, 2 are normal faulting events
(in the Guadix Basin) and the rest are strike-slip events (also
one in Guadix). The orientation of the 7" axes in both types
of mechanisms is consistent with the minimum rotation angle
between strike-slip and normal events being close to 90°. The
combined strain tensor has a prolate shape, dominated by the
T axis, with an fclvd value of —0.23 and a k of 2.3. The
orientation of the 7 axis is N052° E, while the P axis has an
orientation of N142°E.

The stress tensor obtained by inversion (Fig. 7 WAA)
indicates a strike-slip stress regime with a normal compo-
nent, characterised by o1 at N153°E. This stress regime ac-
tivates left-lateral N—S and right-lateral ESE-WNW strike-
slip faults, as well as NW-SE normal faults. The inferred
stress tensor is like that obtained by Tendero-Salmerén et
al. (2020) from five mechanisms in the Tiscar and Guadiana
Menor faults (strike-slip stress regime with o7 at N143°E).

5.15 Granada Basin

Within the tectonic context of NW-SE convergence between
Africa and Eurasia (Iberia) and the westward emplacement
of the Alboran Domain, accompanied by the rollback of the
southern Iberian slab, the presence of NW-SE extensional
basins within the orogen appears to be kinematically neces-
sary. The easternmost part of the Betic Orogen is dominated

https://doi.org/10.5194/se-16-947-2025

by processes of thrust arc indentation with tectonic transport
to the northwest (Tendero-Salmerdn, 2022), while the west-
ernmost arc formed by the Betic and Rif arcs surrounding
the Strait of Gibraltar is located to the west. This kinematic
pattern is supported by the presence of an NW-SE exten-
sional basin within the orogen, which is dominated by the
presence of NW-SE normal faults related to radial exten-
sion (Reicherter and Peters, 2005). This kinematics is con-
firmed by GPS data (Cannavo and Palano, 2016; Neres et al.,
2018a, 2019). The boundary between these two zones within
the Betic Orogen is marked by extensional basins aligned
and bounded by NW-SE normal faults, such as the Guadix
Fault in WAA, and by the Granada Basin. The age of defor-
mation in the Granada Basin ranges from Late Miocene to
present, defining a seismicity corridor approximately 300 km
wide (Galindo-Zaldivar et al., 1999). The most prominent
faults here are the Granada (31, Fig. 1), Sierra Elvira-Dilar
(31, Fig. 1), and Padul-Durcal (32, Fig. 1) faults (Sanz de
Galdeano et al., 2012).

The focal mechanisms in the Granada Basin are exten-
sional and cluster into two families, whose 7 -axis orienta-
tions form an angle of 30—40° with each other. The combined
moment tensor is of oblate type, dominated by vertical short-
ening and with fclvd values of 0.08 and k of 0.768. The T
axis has an orientation of NO48° E, and the B axis has an ori-
entation of N139°E, which is consistent with the dominant
stress regimes in the surrounding zones.

The seismic sequence that occurred in 2021 enabled the
determination of the stress tensor from five focal mecha-
nisms of normal faulting stress regime (R = 0.28), with o3
at N049° E (Madarieta-Txurruka et al., 2022). In our stress
inversion (Fig. 7 GB), we utilised 16 focal mechanisms
that yield a highly consistent triaxial normal faulting stress
regime with o3 striking at NO33° E. Therefore, this stress ori-
entation is congruent with that obtained from the east (WAA
and EB), facilitating the emplacement of WB to the west. The
most recent calculated palaeostress, o1 subvertical and o3
subhorizontal trending NE-SW, activates normal faults but
coevally, while that of o subhorizontal NW-directed and o3
NE-SW subhorizontal has a strike-slip faulting regime that
has been interpreted as periodic strike-slip and normal fault-
ing events due to a permutation of the principal stress axes
(Reicherter and Peters, 2005).

5.16 Northern Alboran (NA)

The offshore deformation of the northern margin of the Al-
boran Sea has been explained because of the ongoing slab
rollback in the Albordn Domain, in the Gibraltar Arc (Betics—
Rif), and of the indentation tectonics that predominates to
the east and south, giving rise to a complex faulting pat-
tern (Galindo-Zaldivar et al., 2022). On the other hand, in
the easternmost part of this zone, the most important tec-
tonic structure is the Carboneras Fault (27, Fig. 1), with the
same kinematics as the Palomares Fault (26, Fig. 1) (EB).
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This structure has an NE-SW strike, extends offshore, and
has been active since the Late Miocene. This fault shows
a left-lateral strike-slip movement that occurs at a rate of
1.3mm yr_1 (Moreno et al., 2015) and an offset of more than
15 km (Gracia et al., 2006; Rutter et al., 2012): four palaeo-
seismic events have been identified (Masana et al., 2018).
Among the 42 focal mechanisms analysed, we find reverse
and normal solutions but mainly strike-slip ones. Except for
three normal faulting focal mechanisms indicating N-S ex-
tension, the others show a T (or B) axis towards NE-SW.
The shortening axes in the focal mechanisms are very con-
sistent, with orientations between N130° E and N180° E. The
minimum rotation angles between the normal faulting mech-
anisms and the strike-slip and thrust mechanisms are high,
ranging from 90-100°; in contrast, the minimum rotation an-
gle between the reverse and strike-slip mechanisms is ap-
proximately 50°, indicating a strong strike-slip component in
the thrust earthquakes (see Appendices A and B). The com-
bined moment tensor is a slightly prolate strike-slip deforma-
tion tensor, with a k value of 1.63 and an fclvd of —0.14. The
extensional stress axis, which would be dominant in the de-
formation of the zone, has an N0O65° E trend, while the short-
ening axis has an N154°E trend. The stress inversion result
is similar to those of WAA and EB. The obtained solution
(Fig. 7 NA) does not seem to reflect the structural complexity
indicated by the field and GPS data (Galindo-Zaldivar et al.,
2022). The solution exhibits a strike-slip stress regime with
a normal component, characterised by o1 in N149°E and o3
in N064° E. Therefore, in this zone, the indentation process
would predominate over the rollback process.

5.17 Alboran Ridge (AR)

The most prominent structures in the Alboran Sea, in the
central part of the Albordn Domain, are the Albordn Ridge
(33, Fig. 1), a crustal pop-up with the main tectonic trans-
port to the NW and outcropping Neogene volcanic materials;
the left-lateral Al Idrissi Fault (34, Fig. 1); and the right-
lateral Yusuf Fault (35, Fig. 1). The three structures draw
an indentor with similar kinematics to those of Aguilas and
Cazorla (in EB and WAA) (e.g. Tendero-Salmerén, 2022).
Since the Late Miocene, magmatic intrusions in the Albordn
Ridge seem to have acted as a backstop that favoured its up-
lift relative to the indentation (Tendero-Salmerén, 2022). The
continental crust to the south of the structures above appears
to belong to the African Plate, so these faults are considered
to constitute the active plate boundary between Africa and
Eurasia (Iberia), with the Yusuf Fault (35, Fig. 1) extending
to the Tell Mountains orogen in Algeria (Martinez-Garcia,
2012; Gomez de la Peiia, 2017). The seismic crisis of 2016,
which included an M, 6.4 earthquake located at the south-
ern limit of the Al Idrissi fault system (34, Fig. 1), enabled
the definition of its trace by connecting it with the Bokkoya
and Trougout faults, which enter Africa onshore and connect
with the Nekor Fault (36, Fig. 1). It is therefore a very recent
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plate boundary (Gracia et al., 2019). The seismic sequence
indicates the presence of restraining steps along the strike-
slip fault (Stich et al., 2020).

The focal mechanisms in this tectonic zone include pure
reverse faulting, oblique faulting with a mainly normal com-
ponent, and normal faulting with a strike-slip component.
The minimum rotation angles between the three fault types
are high, showing the activation of different structures in re-
sponse to a consistent strain tensor. The orientation of the
T axes is very congruent in all mechanisms, with directions
between NO50°E and NO80°E. The shortening axes show
somewhat more variability. The combined moment tensor
has an oblate shape, with £ 0.519 and fclvd 0.19, and is dom-
inated by shortening with an N157°E orientation. The mean
T strain axis is N0O69° E.

The inversion of the 63 focal mechanisms (Fig. 8 AR) in-
dicates a transpressive strike-slip faulting stress regime, with
o1 at N161°E, which activates mainly N-S to NNE-SSW
left-lateral faults, NW—SW right-lateral strike-slip faults, and
E-W to ENE-WSW thrust faults. There are also five normal
faulting mechanisms with nodal planes sub-parallel to the in-
ferred o orientation, indicating the presence of secondary
normal faulting steps along faults in the principal direction.
The stress solution is intermediate to that of the Aguilas (EB)
and Alcaraz (WAA) indentors.

5.18 Al Hoceima (ALH)

The southern sector of the Alboran Domain, on the northern
coast of Morocco, shows significant seismic activity (2004
My 6.4 and 1994 M,, 5.9 earthquakes) in the Al Hoceima
area (37, Fig. 1) with ruptures up to 20 km, which allowed us
to infer an associated strike-slip stress regime (R = 0.5) with
o1 at N161°E and o3 at NO71° E (van der Woerd et al., 2014).
However, the Trougout (N171°E) and Bokkoya (N0O30°E)
faults, which continue offshore in AR, together with the
Bousekkour—Aghbal (N020° E) Fault, bound the Pliocene—
Quaternary Nekor Basin and define a transtensional area be-
tween the Nekor (36, Fig. 1) and Al-Idrissi (34, Fig. 1) faults
(d’ Acremont et al., 2014). Backstripping analyses of the sed-
iments of Al Hoceima Bay during the last 280 Kyr indicate
a westward migration of deformation with vertical throw
rates of 0.47 mm yr~! because of the interaction between the
northwestward movement of the Alboran indentor and the
southwestward displacement of the Rif (Tendero-Salmerén
et al., 2021). Further to the east, the NE-SW Kert and Nador
faults (38, Fig. 1) appear to have a normal component (Am-
mar et al., 2007), although the considered focal mechanisms
are mainly strike-slip faults like those of Al Hoceima. There-
fore, we grouped them into a single population.

The focal mechanisms indicate mainly strike-slip and nor-
mal faulting, with a significant population of oblique faults
with both components. Reverse-type events with strike-slip
components are also present. All focal mechanisms exhibit
highly consistent axes of maximum shortening and horizon-
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tal extension, with minimal variability. The combined mo-
ment tensor indicates a strike-slip deformation with an ex-
tension component close to a double couple, with an fclvd
value of —0.08 and a k value of 1.3. The P axis of the com-
bined moment tensor has an orientation N143°E, and the T
axis has an orientation of N060° E.

As there are more normal fault-type focal mechanisms in
this population than in AR, the stress tensor shows a strike-
slip faulting solution (Fig. 8 ALH) with a normal component,
with o1 at N152° E and o3 at N064° E. Therefore, the tecton-
ics in this zone is presently transtensional.

5.19 Western—-Eastern Tell Atlas (WTA-ETA)

The Algerian Tell Atlas is the most seismically active area
in the western Mediterranean, including, among others, the
1980 El Asnam earthquake, My, 7.3, which occurred on
a 36km long thrust linked to an NE-SW fault propaga-
tion anticline (39, Fig. 1). The focal mechanism of this
earthquake indicated the presence of an NW-dipping thrust
plane (Meghraoui et al., 1986). In general, this is in good
agreement with the tectonics of the range, characterised by
dipping faults related to fault adaptation—propagation anti-
clines. These main neotectonic structures correspond to E—
W-striking to NE-SW-striking thrusts that cut Quaternary
rocks. The main intramountain basins are the Cheliff, Mi-
tidja, Soummam, Hodna, and Constantine basins (Maouche
et al., 2019, and references therein). The coast shows evi-
dence of folding and uplift, with marine terraces uplifted dur-
ing the Pleistocene and Holocene (Maouche et al., 2011).

In the WTA, the most frequent focal mechanisms are re-
verse, coexisting with strike-slip and some normal faulting,
all of them kinematically compatible with NW-SE horizon-
tal shortening axes. The combined moment tensor is oblate
reverse, with k = 0.328 and fclvd 0.28, showing the predom-
inance of horizontal shortening. The P axis has an orien-
tation N143°E, and the B axis has an orientation NO50° E.
Further east, the population of focal mechanisms is similar,
primarily characterised by thrusting events. The combined
moment tensor is therefore of a shortening type and oblate,
although it is closer to the double couple, with kK = 0.767
and fclvd =0.08. The P axis is oriented N155°E, and the
B axis is oriented N069° E; therefore, the shortening is more
northerly in this area than it is further to the west.

Because the inferred moment tensor vectors and shorten-
ing directions are not coaxial, it has recently been suggested
that, from the Alboran Domain to the east, transpressional
tectonics predominates, activating E-W-striking right-lateral
strike-slip faults and NE-SW-striking thrusts (Meghraoui
and Pondrelli, 2012). Stress inversions based on earthquake
focal mechanisms indicate that the deformation is accommo-
dated by E-W-striking reverse-strike-slip faults in the East-
ern Tell. In contrast, the Western Tell is dominated by strike-
slip faults (Soumaya et al., 2018). The stress inversions ob-
tained in this study (Fig. 8 WTA, ETA) show a very similar
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o orientation for the eastern and western parts of the Tell-
Atlas, N149° E (west) and N145° E (east), with a thrust fault-
ing stress regime to the east and with a larger strike-slip com-
ponent in the west, contrary to Soumaya et al. (2018). Both
solutions activate NE-SW-striking thrust faults and NW-SE
right-lateral and N-S left-lateral strike-slip faults.

5.20 Gulf of Cadiz (GC)

The Gulf of Cadiz appears to be dominated by the southwest-
ward movement of the Betic—Rif orogen, which has built up
a sediment stack that is up to 12 km thick in an accretionary
prism characterised by west-verging thrust-spreading anti-
clines (40, Fig. 1). The prism is related to the subduction of
the southern margin of Iberia below the Rif-Betic—Alboran
microplate. Subduction appears to have slowed down signif-
icantly during the last 5 Myr, although deformation in the ac-
cretionary prism still affects recent sediments (Gutscher et
al., 2012). Thermo-mechanical modelling indicates that, al-
though the subduction process has ceased, deep slab motion
still induces a mantle flow that produces a west-directed basal
drag of the Alboran Domain lithosphere (Gea et al., 2023;
Neres et al., 2019). Some of the selected focal mechanisms
are located in the southern margin of the Algarve Basin,
south of the Portimao Bank (AL) (Ramos et al., 2015; Neres
et al., 2018b), providing a relatively homogeneous popula-
tion.

The focal mechanisms in this tectonic zone are mainly
strike-slip, although normal and reverse faulting events are
also present. The combination of the mechanisms results in
a strike-slip seismic moment tensor but with an oblate shape,
characterised by k = 0.417 and fclvd = 0.24. The P axis has
an orientation of N161°E, and the T axis has an orientation
of N066° E. The inversion provides a strike-slip stress regime
(Fig. 8 GC) with o at N150°E, with less thrusting compo-
nent than that obtained for AL, GH, and WCS. Therefore, it
does not seem that there is significant seismicity related to
thrusting with tectonic transport to the west, but rather to the
southeast or northwest.

5.21 Western Betics (WB)

The emplacement of the Rif-Betic—Alboran Domain to the
west during the Early to Middle Miocene, together with the
NW-SE oblique convergence between Eurasia and Africa,
has influenced the structuring of the Betic Orogen. How-
ever, since the Late Miocene, it is the latter process that
seems to have dominated (Ruiz-Constan et al., 2011). The
NW Betic Mountain front is the seismically most active sec-
tor. Although seismogenic structures do not outcrop at the
surface, moderate-depth earthquakes indicate the presence
of NE-SW thrusts with some related tear faults (41, Fig. 1)
(Ruiz Constan, 2009).
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In our analysis, we only used earthquakes at crustal depths.
The population of focal mechanisms is dominated by strike-
slip faulting, with several of these mechanisms exhibiting an
oblique orientation and a reverse component. However, a sig-
nificant number of thrust faulting events are also observed.
The orientations of the axes of maximum shortening and hor-
izontal extension are scattered, characterised by two families:
a major one with a shortening direction N120-150°E and a
minor one with an N-S-shortening direction. The combina-
tion of the focal mechanisms gives rise to a shortening strike-
slip seismic moment tensor with an oblate shape, exhibiting
a k value of 0.376 and an fclvd of 0.26. The shortening axis
P has an orientation of N143°E, and the B axis has an ori-
entation of N046° E, although with a 28° plunge.

The total population of 32 mechanisms provides a well-
constrained stress inversion result (Fig. 8 WB). The in-
ferred stress tensor indicates a strike-slip stress regime with
o1 at N139°E, which activates NE-SW-striking thrusts and
strike-slip faults. These faults exhibit right-lateral displace-
ment when striking east-northeast to west-southwest (ENE—
WSW) and left-lateral displacement when striking north-
northeast to south-southwest (NNE-SSW).

Stress inversions in this area are considered in terms of
the hypocentral depth, as the deepest stresses/deformations
could be related to the Iberian slab under the Alboran Do-
main. Ruiz-Constan et al. (2011) obtained o trends for shal-
low seismicity at N166° E (4 mechanisms) and NO18°E (4
mechanisms). For the intermediate earthquakes, we received
a o1 trend between N113°E and N126° E, encompassing 29
mechanisms. The o trend is located more towards the ESE—
WSW concerning the surrounding areas, likely influenced
by ongoing motion of the deeper portion of the slab which
induces a mantle flow that causes basal drag of the litho-
sphere (Gea et al., 2023), which is more evident at depth
(Ruiz-Constan et al., 2011). To test this effect, we inverted
the 7 focal mechanisms corresponding to earthquakes with
hypocentral depths of more than 20 km in this zone (WBD),
obtaining a o1 of N114° E trend, more E-W than the shallow
ones (Fig. 8 WB > 20). Therefore, our results confirm that
the slab effect is more pronounced at greater depths, being
negligible in shallow earthquakes.

5.22 Betics Antequera (BA)

Between the Granada Basin (GB) and the thrusts at the NW
edge of the Betics (WB), there is a 70 km long right-lateral
transpressional brittle-ductile shear zone. The Torcal Shear
Zone (42, Fig. 1) has been active from the Late Miocene
(Barcos et al., 2015). In 1989, a seismic series (117 earth-
quakes) was reported between Loja and Palenciana, which
indicated that the fault zone had a strike of N070-080°E
(Posadas et al., 1993). From the focal mechanisms obtained
for this crisis, a strike-slip stress regime with o1 at N135°E
was previously determined by Vadillo Mufioz (1999).
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The focal mechanisms in this tectonic zone are of strike-
slip type with an extensional component, as observed in five
events. The combination of these events results in a strain
tensor very close to a double couple, with a value of k = 1.16
and fclvd = —0.04. The orientation of the P axisis N125°E,
and the orientation of the 7 axis is N028° E. The inversion
of the five focal mechanisms (Fig. 8 BA) reveals a strike-
slip stress regime with a normal component, characterised
by o1 at N105°E, which activates ESE-WNW right-lateral
strike-slip-normal (transtensional) faults. This o orientation
is more likely to be that of the WB than that of the other
adjacent areas and could indicate a greater effect of the roll-
back process of the Iberian slab, from here to the west. The
extension—normal faulting in the Granada Basin (GB) may
therefore be explained by the greater effect of the westward
remanent movement of the Alboran Domain, which is par-
tially decoupled from the indentation zone of the Betic arcs
further to the east.

6 Stress map of Iberia

The new compilation of earthquake focal mechanisms and
the results from the stress inversions can be used to update
the stress map of Iberia using the quality-ranking scheme
of the World Stress Map (WSM) project. The WSM is the
global resource for stress information on the present-day
stress field of the Earth’s crust (Heidbach et al., 2016a; Heid-
bach et al., 2018; Zoback, 1992) and compiles the orientation
of maximum horizontal stress (SHmax) from a wide range of
stress indicators, such as earthquake focal mechanism solu-
tions (FMS), drilling-induced tensile fractures (DIF), bore-
hole breakouts (BO), hydraulic fracturing tests (HF), over-
coring (OC), and geologic data from seismogenic fault-slip
analysis (GFI, GFS) and volcanic vent alignments (GVA)
(Amadei and Stephansson, 1997; Ljunggren et al., 2003;
Sperner et al., 2003). The stress information is compiled in
a standardised data format and quality-ranked to make data
from very different methods comparable (Heidbach et al.,
2010).

The various stress indicators reflect the in situ stress of
different rock volumes ranging from 10° to 10° m?. Further-
more, except for the earthquake focal mechanisms and a few
very deep boreholes, all stress indicators sample only the
stress patterns within the upper 6 km of the Earth’s crust,
with deep boreholes as a major contributor. The most com-
mon visualisation of stress data is through stress maps, where
data from depths between 0 and 40 km are integrated (Hei-
dbach et al., 2004; Heidbach and Hohne, 2008), assuming
that the Sgmax orientation does not change significantly with
depth. This assumption was initially tested qualitatively at
the beginning of the WSM project (Zoback, 1992) and sub-
sequently confirmed with significantly higher data density on
both global (Heidbach et al., 2018) and regional scales (Pier-
dominici and Heidbach, 2012; Rajabi et al., 2017a).
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Table 6. Overview of data quality and stress indicators in the new
compilation of stress in Iberia shown in Fig. 10. Note that most of
the down-ranking of data records from borehole breakouts (BO),
hydraulic fracturing (HF), overcoring (OC), and geological indica-
tor (GFI, GFS) is due to missing information in the papers and re-
ports where data are presented. The other abbreviations are FMS for
single focal mechanisms, FMF for stress inversion from population
of focal mechanisms, and FMA for composite focal mechanisms.

Type/quality A B CcC D E X Total
FMS 0 0 45 O 86 0 542
FMF 5 15 0 0 11 18 49
FMA 0 0 0 24 0 1 25
BO 8 30 36 38 5 5 122
HF 1 0 1 1 0 0 3
oC 0 0 0o 2 0 14 16
GFS 0 0 0 12 0 0 12
GFI 0 8 48 10 22 30 118
Total 14 53 541 53 148 68 887

For the new stress map of Iberia, we re-evaluate all data
records from geological data (n = 141), borehole break-
outs (n = 129), overcoring (n = 16), and hydraulic fractur-
ing (n =5) and combine these with the Symax Orientations
derived from the new compilation of earthquake focal mech-
anisms (FMS) and stress inversion results (FMF) obtained in
this study. Given that the majority of the WSM data records
have not been revisited for almost 30 years, our re-evaluation
resulted in a reduction in data records due to double entries
and typos (from n =295 to n =271) and down-ranking in
quality due to a stricter data assessment. Therefore, the num-
ber of stress data records with A—C quality decreased from
n =172 to n = 132. A-C quality means that the Sgmax Ori-
entation is reliable within &£ 25°. D-quality data records are
only reliable within & 40° and should thus be used with cau-
tion (Rajabi et al., 2024; Tingay et al., 2006, 2005). E-quality
data are of poor quality, and X-quality data have insufficient
or missing information to assign a quality. The latter is a new
assignment class that is already used in the new WSM qual-
ity ranking for stress magnitude data records (Morawietz et
al., 2020) and will also be used in the next WSM database
release for stress orientation data records (Table 6).

The resulting stress map shows that, at first order, the data
records from boreholes agree with earthquake focal mecha-
nism data from greater depths. An exception is the borehole
data in the Aquitaine Basin north of the Pyrenees, where
some Sgmax orientations from borehole breakouts confirm
the prevailing WNW-ESE strike but others show different
orientations. These data result from a comprehensive study
of 55 wells by Bell et al. (1992). The authors discuss in detail
the somewhat controversial result of varying Sgmax Orienta-
tions on local scales, which has not been observed in other
foreland basins (Reinecker et al., 2010; Reiter et al., 2014).
However, for the remaining areas, there is an overall agree-

Solid Earth, 16, 947-1024, 2025

ment between the Symax orientations inferred from borehole
data and those from earthquake focal mechanism results.

To analyse the prevailing Sgymax Orientation pattern, we es-
timate the mean Symax Orientation on a 0.5° grid using the
tool stress2grid from Ziegler and Heidbach (2019) with a
150 km search radius. For the estimation, a minimum of five
data records is required within the search radius. Weights
are applied considering data quality and distance to the grid
point. The distance weight is cut off when the data record is
within 15 km of the grid point to avoid an overrepresentation
of data records close to the grid point. Furthermore, we dis-
tinguish the resulting mean Symax orientations according to
their standard deviation (SD). Dark-grey bars in Fig. 9 de-
note mean Symax Orientations with SD < 25°, and light-grey
ones denote mean Symax orientations with SD > 25°. The re-
sulting mean Spmax orientation in Fig. 9 shows that, in the
centre of Iberia in particular, the stress pattern does not show
a clear trend, in contrast to almost all the other regions, ex-
cept the Pyrenees. This is reflected in the rotations of the
mean SHmax Orientation and the significantly higher standard
deviation (SD) values in the centre of Spain. The changes
in the mean Symax orientation on short scales could be due
either to low data density, which allows a single outlier or
local deviation from the stress pattern to have a high impact
on the mean trend, or to the stress pattern being indeed quite
variable, for example, due to low anisotropy of the horizontal
stresses, which results in less stable horizontal stress orien-
tations (Heidbach et al., 2007; Lundstern and Zoback, 2020;
Rajabi et al., 2017b).

7 Discussion

Our analysis focuses on the Iberian Peninsula, excluding the
Gloria Fault, which lies between the Terceira Ridge in the
Azores Islands and the Gorringe Bank. Along the Gloria
Fault, tectonic stresses responsible for seismicity are primar-
ily associated with strike-slip faulting, with localised thrust
components at restraining bends to the east (e.g. de Vicente
et al., 2008).

As illustrated in Fig. 10a, the combined focal mechanism
tensors exhibit distinct characteristics depending on their tec-
tonic setting. Thus, in the plate boundary zone, the tensors
typically reflect reverse or reverse strike-slip faults with pos-
itive fclvd values. In contrast, the tensors from the Pyrenees
and the central eastern Iberian Peninsula display normal or
normal-directional focal mechanisms, characterised by neg-
ative fclvd values. An exception is observed in the Granada
Basin, where the combined tensor indicates a nearly pure
normal faulting regime.

When analysing the combined moment tensor by rupture
type, the reverse component (Fig. 10b) reveals a predominant
NW-SE-shortening orientation across the area, with nodal
planes striking approximately N040° E to NO70° E. This gen-
eral NE-ENE orientation is consistently observed in all com-
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Figure 9. Stress map of Iberia based on A—C-quality data records from this study and from re-evaluated data of the WSM database release
2016 (Heidbach et al., 2016b). Plotted is the orientation of maximum horizontal stress Sgmax for depths between 0—40km. See the inset
legend for details on data types and stress regime (NF = normal faulting, SS = strike-slip, TF = thrust faulting, U = unknown). Data symbols
indicate the type of stress indicator and line length are proportional to data quality. Grey bars on a 0.5° grid show the mean Sgmax Orientation
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show mean Symax orientations with a standard deviation < 25°, and light-grey bars show mean Symax Orientations with a standard deviation
> 25°. Topography and bathymetry are taken from SRTM15+ (Tozer et al., 2019).

bined plate boundary tensors from northern Algeria to the
Gulf of Cadiz. An exception is found at the easternmost tip
of the Betic Cordillera (EB), where the nodal planes exhibit a
more E-W orientation, indicative of N-S shortening. These
fault orientations are characteristic of the northern sector of
the Aguilas Arch and the Alhama Fault system. In contrast,
reverse faulting in the northern Iberian Peninsula contributes
significantly less to the overall seismic moment release. In
this area, the tensors are predominantly oblique, with P axes
aligned with the regional shortening directions — more clearly
expressed in the combined strike-slip faulting tensors. The
combined strike-slip tensors (Fig. 10c) present nodal planes
oriented from NOOO° E to NO50°E for the left-lateral kine-
matics, which is compatible with the NW-SE-shortening ori-
entation described above. All the strike-slip tensors share
these characteristics, except the tensors from the Western
Pyrenees (WP) and Central Basins (CB), which display right-
lateral kinematics along NE-SW-striking planes. These two
cases are also distinguished by E-W-shortening axis orienta-
tions and prolate tensor shapes (k values > 1, fclvd < 0), hav-
ing the highest k values alongside the tensor from the north-
west of the Iberian Peninsula (NWG). While strike-slip ten-
sors are dominant throughout the peninsula (Fig. 10e), they
are particularly prevalent within the Alboran domains.

https://doi.org/10.5194/se-16-947-2025

The combined normal faulting tensors can be grouped into
two distinct categories. The first includes tensors with exten-
sion axes oriented E-W to NE-SW, while the second com-
prises those with N—S-oriented extension axes. The latter are
observed in the Central and Western Pyrenees (CP, WP) and
in the Central Basins (CB). Across the rest of the Iberian
Peninsula, normal faulting tensors present nodal planes that
are approximately parallel to the axes of maximum horizon-
tal shortening. The normal tensors are particularly promi-
nent along a band that connects the Al Hoceima (ALH) area
in northern Africa to the Central Pyrenees (CP), passing
through the Iberian chain (IC) (Figs. 10d and 11b). Also, in
the northwest of the Iberian Peninsula (NWG), normal fault-
ing mechanisms play a dominant role in the combined tensor
(Fig. 12b).

When the combined tensors are projected onto the classifi-
cation diagram (Fig. 10e), most are located within the fields
corresponding to pure rupture types, with a predominance
of strike-slip mechanisms — often accompanied by compres-
sional or extensional components. When the tensors are fur-
ther categorised by rupture type for each zone (Fig. 10f),
pure mechanisms remain dominant. This suggests that the
coexistence of different rupture styles arises from permu-
tations of principal stress axes that are mechanically com-
patible, thereby reflecting a regime of distributed deforma-
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Figure 10. (a) Combined strain focal mechanisms for each of the tectonic zones. The colour of each beach ball represents the compensated
linear vector dipole factor fclvd. (b) Combined focal mechanism for reverse faulting earthquakes in each zone. (¢) Combined focal mech-
anism for strike-slip earthquakes in each zone. (d) Combined focal mechanism for normal earthquakes in each zone. (e) Focal mechanism
classification diagram for the combined mechanisms shown in panel (a). (f) Focal mechanism classification diagram for the different rupture

type combined mechanisms shown in panels (b), (¢), and (d).

tion. The orientations of the principal axes for each zone
are shown in Fig. 11a. NW-SE shortening is predominant in
northern Africa, the Alboran Sea, and the western half of the
Iberian Peninsula. In contrast, in the eastern part, the short-
ening trends tend to be NS, except in the areas where exten-
sional regimes dominate (Fig. 11b), i.e. in the Pyrenees and
the Central Basins, where extension is oriented N-S, imply-
ing maximum horizontal shortening in the E-W direction.
For each zone where focal mechanisms have determined
across different faulting types, we computed the minimum
rotation angle between pairs of tensors (Fig. 11c). Most of the

Solid Earth, 16, 947-1024, 2025

rotation angles fall between 60 and 110°, suggesting the ac-
tivation of a fault system governed by a common strain field,
where the permutation of principal stress axes, particularly
90° rotations, reflects a coherent tectonic framework. A typ-
ical example is the permutation between the shortening axis
of reverse faults and the intermediate axis of normal faults.
The results for the WVT zone warrant special mention. It in-
cludes focal mechanisms related to the Castor Project seismic
crisis, a natural gas submarine storage project (Villasefor et
al., 2020; Cesca et al., 2021). In this case, the rotation angle
between the tensors of the different rupture types is minimal,
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Figure 11. (a) Strain principal directions derived from the combined moment tensors. Black shows the orientation of the shortening (P)
axis, white shown the stretching axis (7'), and grey shows the intermediate axis. The orientations are simplified, showing only the trend
in the principal axes and omitting the plunge. Note that the intermediate axis (in grey) can be a shortening or a stretching axis; when it is
the vertical axis, it is represented by a circle with a cross or with a dot, respectively. (b) Pie diagram showing the proportion of seismic
moment released by strike-slip (red), reverse (yellow), and normal (blue) events on each zone. (¢) Representation of the minimum rotation
angle (Kagan angle) between combined focal mechanisms for the different rupture types in each zone. A 90° angle represents a pure axis
permutation. (d) Flinn diagram adapted to the combined seismic strain tensor. Each circle represents the position on the diagram of each
zone considered in the study. The colour is proportional to the £ value as is shown in the colour scale. The grey tensors represent the seismic
strain tensors for prolate, double-couple (plane strain), and oblate ellipsoids. The diagonal line represents the plane strain shapes, pure double
couple in seismic tensor terminology. Note that the scales used for colour and graph axes are logarithmic.

indicating a consistent rupture type across all events. These
are characterised by oblique focal mechanisms located near
the centre of the classification diagram (Fig. 10f).

In Fig. 11d, the combined tensors are plotted on a Flinn-
type diagram for moment tensors, with the colour showing
the k value. Zones characterised by prolate ellipsoids (k > 1),
located above the plane strain diagonal, correspond to areas
with a significant normal faulting component, namely Pyre-
nean zones (EPCE, WP, NWGQG), the Valencia Trough (SVT),
and the Central Basins (CB). These results evidence the re-
lationship of these prolate ellipsoids with extensional and
transtensional tectonic settings. Conversely, regions exhibit-
ing oblate ellipsoids are linked to transpressional tectonic
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settings, particularly along the southwestern margin of the
Iberian Peninsula (AL, GH, WB, GC, WCS). This relation-
ship between strain tensor shape and proximity to the plate
boundary becomes more evident when plotting the k value as
a function of latitude (Fig. 12). Near the plate boundary, the
shapes of the strain tensors are predominantly oblate, with
k < 1, whereas, farther north, beyond the Betics, k values in-
crease, indicating a prevalence of prolate strain tensors.

The results of the slip model analysis regarding active de-
formation types are presented in Fig. 3. Variations in data
density lead to poorly constrained interpolations in areas
with sparse coverage. Nevertheless, the inferred Egmax (Dey,
maximum horizontal shortening/minimum horizontal exten-
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Figure 12. Relationship between the k value of the strain tensor
and the latitude of the zone. The colours are related to the tectonic
setting as shown on the map. The coloured dashed lines show the
trend in each population, while the grey dashed line shows the gen-
eral trend in k-value increment with latitude.

sion) for each analysed zone (Fig. 13a) provided a coherent
image of the progressive rotations of Epmax in Iberia. Com-
posed right dihedra plots yield qualitatively similar patterns
(Fig. 13b).

The stress inversion solutions (Figs. 13c, d, and 14) in-
dicate that the most clearly defined thrust faulting stress
regimes occur at the margins of the study area, specifically
in the Gorringe and Eastern Atlas, characterised by a verti-
cal o3 and a stress ratio (R) around 0.4. In between, much
of southern Iberia is dominated by strike-slip faulting stress
regimes with a thrusting component (transpression), marked
by vertical oo and 0.5 < R > 0. This pattern also extends into
WCS and AL. An exception is the Granada Basin, where the
stress regime is nearly radial, dominated by normal faulting.
This extensional regime influences nearby areas to the east
and west, namely Western Alcaraz (WAA) and Antequera
(BA), where transtensional stress fields prevail (vertical o3
and 0.5 < R < 1) (Fig. 14). Similar transtensional regimes
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are also observed in Al Hoceima (AL) and the Offshore At-
lantic (OA). The remaining inversions in the northern and
northeastern sectors yield normal faulting stress regimes,
with vertical o7 and R close to 0.5. Along the plate boundary
(yellow in Fig. 14), the o orientation remains remarkably
consistent, trending close to N154° E. In the Betic Cordillera
(blue in Fig. 14), some variability is observed, although the
mean o orientation remains near N155°E, except in the
Granada Basin, Antequera (BA), and the deeper seismicity
of the Western Betics, where o trends shift toward N114°E,
likely reflecting the residual influence of the Alboran Slab.

In the Central Ranges and Offshore Atlantic (red in
Fig. 14), o1 rotates slightly anticlockwise to approximately
N140°E, aligning with the Euler pole of Africa—Eurasia plate
motion. In the Pyrenees, the eastern and western flanks of the
range exhibit o orientations similar to those of the broader
Iberian domain (around N154° E). However, in the Central
Pyrenees (CO and WPCP), o3 is oriented perpendicular to
the mountain belt, suggesting that local stress sources, such
as post-orogenic collapse or isostatic rebound, dominate over
the regional stress field. The Central Basins deviate from
this overall pattern. The stress solution in the Eastern Pyre-
nees closely resembles those of the Valencia Trough and the
Iberian Chain (EPCE, WVT, SVT, and IC), defining a co-
herent cluster of extensional stress regime in eastern Iberia
(Fig. 14). Notably, in these solutions, o> is oriented NW-SE
rather than NE-SW, suggesting that the present-day normal
faulting stress regime is likely to be more affected by the
Africa—Eurasia convergence than by the back-arc extension
of the easternmost subduction zones.

The presence of thrusting focal mechanisms along the
leading edge of the Alboran Domain supports the hypothe-
sis that its westward emplacement facilitated the mechanical
decoupling of Iberia from Africa. Similarly, the SPCS has
progressively lost its thrust faulting stress regime from east
to west, with thrusts activity north of Madrid ceasing since
the Late Miocene. However, in its Portuguese sector, SPCS
remains an active intraplate orogen. Consequently, across
central Iberia, from east to west, the stress regime transi-
tions from a well-defined normal faulting stress regime in
the IC, where o7 is vertical and R = 0.43, through contin-
ued normal faulting in the Central Basins, to a thrust faulting
stress regime in the WCS, and finally to a strike-slip faulting
stress regime in the offshore (OA). This progression is ac-
companied by a gradual clockwise rotation of o7 or o7 from
N148°E to N131°E (with the exception of CB), consistent
with the expected stress orientation imposed by the Euler
pole of Africa—Eurasia plate motion. Accordingly, the off-
shore continuation of the SPCS is expected to be governed
by a transtensional tectonic regime.

Figure 15 summarises the results of the stress inversion.
In regions where normal faulting stress regimes are inferred
(blue arrows in Fig. 15), Cenozoic thrusts are no longer ac-
tive, such as in northern, central, and northeastern Iberia.
However, normal faulting stress regimes are active in ar-
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Figure 13. (a) Deduced Eymax (Dey, maximum horizontal shortening/minimum horizontal extension) in every considered zone from the
slip model. (b) Combined right dihedra plots. (¢) Stress inversions from focal mechanism populations in all the zones. (d) Scaled sizes of the

stress horizontal axes: o (black), oo (grey), and o3 (white).

eas that previously experienced compressional deformation,
such as in the IC. Transtensional areas (green arrows in
Fig. 15) are also likely responsible for the deactivation of
thrusts in the Estremadura Spur (OC) and in areas adjacent
to the Granada Basin (WAA and BA), where active nor-
mal faulting is observed. Mapped thrusts are predominant
in the Gorringe Bank and eastern Algeria (red arrows in
Fig. 15). In the remaining areas, including the easternmost
and westernmost Betics and southwestern Iberia, transpres-
sional regimes dominate. Therefore, both mapped thrusts and
strike-slip faults in these areas should be considered tectoni-
cally active structures.

8 Conclusions

Based on the combination of methods used to establish the
characteristics of the type of active deformation and the as-
sociated stresses, it should be noted that they are all com-
plementary, providing compatible results that highlight dif-
ferent tectonic features. Thus, the direct application of the
slip model yields results that are easy to obtain and useful
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when establishing a tectonic zoning framework for applying
the set of methodologies. The right dihedra method provides
handy visual information for understanding the results of the
composite analysis of focal mechanisms and stress inversion.
These last two methods are the most comprehensive, with nu-
merical results that can be used to compare the tectonic char-
acteristics of the different analysed areas. In any case, the use
of diverse methods provides a more comprehensive overview
of the characteristics of active tectonics in Iberia.

From the slip model results and the available informa-
tion on the neotectonic structural deformation, we have sub-
divided Iberia. In the Pyrenees, we identified three zones:
the Central Pyrenees (CP), with normal faulting focal mech-
anisms, and two more zones at the eastern and western
ends, the Western Pyrenees (WP) and the Eastern Pyrenees—
Northern Catalan Coastal Range (EPCE). On the northern
edge, we grouped the earthquakes in Northwestern Galicia
(NWG). In the east of the peninsula, offshore near the coast,
we differentiated two tectonic zones: the Northern Valen-
cia Trough (NVT) and the Southern Valencia Trough (SVT).
In central Iberia, we separated the focal mechanisms in the
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Iberian Chain (IC) and south of the eastern SPCS (Central
Basins, CB) and those in the tectonic zone near Lisbon,
which we refer to as the Western Central System (WCS).
Further south but not yet at the active plate boundary, we
defined the Algarve (AL) as a tectonic zone in SW Iberia.
In the offshore Atlantic to the west, we grouped them in the
tectonic zone Offshore Atlantic (OA). Further south, primar-
ily offshore and along the plate boundary, we examined the
Gorringe—Horseshoe (GH) and Gulf of Cadiz (GC) tectonic
zones. Considering the predominance of normal faulting in
the Granada Basin (GB), we differentiated the Western Bet-
ics (WB) to its west, the Betics Antequera (BA) to its north,
and the Eastern Betics (EB) to its east. In the Alboran Sea, we
considered the North Alboran (NA), which also has onshore
focal mechanisms, and the Alboran Ridge (AR), located at
the probable plate boundary. Further south, on the African
Plate, in the Rif, we considered the tectonic zones of Al Ho-
ceima (ALH) and Rif (RF). Finally, in the Algerian Atlas, we
analysed two populations: one located further east, the East-
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ern Tell Atlas (ETA), and the other located further west, the
Western Tell Atlas (WTA).

In CP, the combined moment tensor is close to a double
couple with an almost pure permutation between the B and
P axes. Meanwhile, the stress inversion indicates a nearly
uniaxial normal faulting stress regime, with a o3 direction of
NO005° E-N030° E, sub-perpendicular to the topographic axis
of the range. In WP, the combined moment tensor mainly has
sheared characteristics, with a prolate tensor with the exten-
sional axis in NO11°E and permutation between the B and
P axes. The stress inversion also results in a normal fault-
ing stress regime, similar to that in CP. However, the stress
tensor shows characteristics closer to strike-slip, with o, at
N103°E. EPCE has a combined moment tensor that departs
from a pure double couple with permutation between the P
and B axes and a prolate ellipsoid with the maximum short-
ening almost horizontal at N163° E. The stress inversion in-
dicates a more normal faulting stress regime (o> at N165° E)
concerning CP and very similar to those found to the south
in IC, WVT, and SVT, so it seems to be less related to the
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Figure 15. Summarised state of stress of Iberia based on focal mechanism stress inversion from this study.

local processes affecting the Pyrenees. The NWG combined
moment tensor shows a prolate form, dominated by ENE-
WSE extension, with the P (or B) axis showing an orien-
tation of N147°E. The stress inversion provides a normal
faulting stress regime, with a oy strike between N147°E and
N150° E. The most normal faulting mechanisms are concen-
trated in the area where small sedimentary basins developed
during the Miocene. In contrast, the offshore region is domi-
nated by strike-slip faulting. The Castor CO, storage project
generated a sequence of apparently triggered seismicity in
the NVT. The combined moment tensor shows an N082° E-
trending T axis and an immersion of 19°, whereas the P axis
is oriented NO02° E, with an immersion of 28°. The stress in-
version is a very consistent solution, revealing a normal fault-
ing stress regime compatible with strike-slip and o7 oriented
N170°E. The eight focal mechanisms in the IC indicate nor-
mal faulting, with some events exhibiting strike-slip compo-
nents, which, when combined, give rise to a pure double-
couple tensor characterised by a horizontal 7' axis oriented
NO64°E and a B axis oriented N154° E. The stress inver-
sion yields a triaxial normal faulting stress regime solution,
with o3 oriented NO58° E, closely resembling the stress field
observed in the WVT. In CB, the combined moment ten-
sor displays a prolate-type shape dominated by a strain axis
oriented NOO5°E and a maximum shortening axis oriented
approximately E-W. The stress inversion indicates a normal
faulting stress regime solution with a minor strike-slip com-
ponent, characterised by o3 oriented N173°E, nearly orthog-
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onal to that inferred for the CI and distinct from most other
analysed areas. In WCS, the focal mechanisms are predom-
inantly reverse or strike-slip faulting events, with some nor-
mal faulting events whose 7" and B axes are kinematically
compatible. The combined mechanisms have a 7 and B per-
mutation. The axis of maximum shortening trends N146°E,
while the axis of maximum extension is oriented N0O56° E.
The stress inversion yields a well-constrained thrust fault-
ing stress regime solution with a minor strike-slip compo-
nent, with o oriented N134° E. This stress regime activates
NE-SW-striking thrust faults and left-lateral NNE-striking
and right-lateral ESE-striking strike-slip faults. In OA, with
dispersed focal mechanisms, strike-slip displacements with
a minor normal component predominate. The combined mo-
ment tensor exhibits an oblate shape, with a P-axis orien-
tation of N152°E. The extension T axis is in the NO57°E
direction. The stress inversion indicates a strike-slip stress
regime with a normal component, characterised by o7 trend-
ing N131°E and o3 at N044°E. At the active plate bound-
ary, the GH zone has 13 reverse and strike-slip focal mecha-
nisms, several of which are below the Moho, that indicate a
thrust faulting stress regime with o7 at N159°E. The com-
bined moment tensor presents an oblate shape, dominated
by shortening. The orientations of the P and T axes are
N155°E and NO65°E, respectively. In the eastern SVT, the
combined tensor reveals a permutation between the B and P
axes, with extension predominantly oriented N069° E. The
corresponding stress tensor yields a normal faulting stress
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regime with o3 at NO58°E, which is very similar to those
of IC, WVT, and EPCE. The AL zone has a combined strain
tensor with an orientation of the maximum shortening axis
at N143°E but is far from a double couple, with an oblate
tensor shape. The inversion indicates a thrust faulting stress
with o1 at N140° E, which activates NE-SW-striking thrust
faults and left-lateral N—S- and NW-SE-striking right-lateral
strike-slip faults. The solution is very similar to that ob-
tained for the WCS, showing that this type of stress pre-
dominates throughout the SW corner of Iberia, to the west
of the Betic front. Results from the Betics have a higher vari-
ability. The EB zone has a combined mechanism that gives
rise to an oblate-shaped strain tensor, dominated by shorten-
ing. The P axis has an N172°E orientation, although the P
axes of all mechanisms have a large scatter. The stress inver-
sion provides a thrust to strike-slip faulting stress regime with
o1 at N171°E, which can activate NE-SW- to ENE-WSW-
striking thrust faults, along with right-lateral NW-SE- and
left-lateral NNE-SSW-striking strike-slip faults. The WAA
zone has a combined strain tensor with a prolate shape,
with the orientation of the T axis at NO52°E, while the P
axis has an orientation of N142°E. The stress tensor ob-
tained by inversion indicates a strike-slip stress regime with
a normal component, characterised by o at N153°E. This
stress regime activates left-lateral N-S and right-lateral ESE—
WNW strike-slip faults, as well as NW-SE normal faults.
The GB zone has normal focal mechanisms and clusters into
two families, whose T-axis orientations form an angle of
30—40° with each other. The combined moment tensor is of
oblate type, with a T-axis orientation of NO48°E and a B-
axis orientation of N139° E. Our stress inversion provides a
highly consistent triaxial normal faulting stress regime with
o3 striking at NO33° E. Therefore, this stress orientation is
congruent with that obtained from the £ (WAA and EB). In
the NA zone, the combined moment tensor is a slightly pro-
late strike-slip deformation tensor, with an extensional stress
axis at NO65°E, while the shortening axis has an N154°E
trend. The stress inversion result is similar to those of WAA
and EB, with a strike-slip stress regime with a normal compo-
nent, characterised by o1 in N149°E and o3 in N064° E. The
AR zone is characterised by a combined moment tensor that
has an oblate shape, with shortening at N157° E. The mean
T strain axis is N069° E. The inversion indicates a transpres-
sive strike-slip faulting stress regime, with o at N161°E,
which activates mainly N—S to NNE-SSW left-lateral faults,
NW-SW right-lateral strike-slip faults, and E-W to ENE—
WSW thrust faults. The stress solution lies between that of
the EB and WAA. The ALH zone exhibits focal mecha-
nisms with highly consistent axes of maximum shortening
and horizontal extension, showing minimal variability. The
combined moment tensor indicates a strike-slip deformation
with an extension component close to a double couple, with
the P axis at N143°E and the T axis at NO60° E. The WTA
zone has an oblate reverse combined moment tensor with a
P-axis orientation of N143°E and a B-axis orientation of
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NO50°E. In contrast, the ETA zone is also of a shortening
type and oblate, although it is closer to the double couple,
with the P axis oriented N155°E and the B axis oriented
NO69°E. The stress inversions show a very similar oy ori-
entation for both zones, N149° E (west) and N145°E (east),
with a thrust faulting stress regime to the east and with a
larger strike-slip component in the west. Both solutions ac-
tivate NE-SW-striking thrust faults and NW-SE right-lateral
and N-S left-lateral strike-slip faults. In GC, there is a strike-
slip seismic moment tensor but with an oblate shape, with
a P-axis orientation of N161°E and a T -axis orientation of
NO066° E. The inversion provides a strike-slip stress regime
with o1 at N150° E, with less thrusting component than that
obtained for AL, GH, and WCS. We have separated the WB
zone focal mechanisms according to their hypocentral depth
(20 km). For the intermediate earthquakes, we have received
a o] trend between N113°E and N126° E. In contrast, earth-
quakes with hypocentral depths of more than 20 km provide
a o1 of N114°E trend, more E-W than the shallow ones,
confirming that the Alboran slab effect is more pronounced
at greater depths. The combination of the focal mechanisms
gives rise to a shortening strike-slip seismic moment tensor
with an oblate shape, with a P axis oriented at N143°E and
a B axis oriented at NO46°E, although with a 28° plunge.
Finally, the BA zone results in a combined strain tensor very
close to a double couple, with a P axis of N125°E and a T
axis of N028°E. The inversion of the five focal mechanisms
reveals a strike-slip stress regime with a normal component,
characterised by o1 at N105° E, which activates right-lateral
strike-slip-normal (transtensional) faults.

The overall interpretation of the results indicates that, in
general, the shape of the combined seismic moment ten-
sors at the plate boundary is oblate (k < 1), indicative of
a predominance of transpressive deformation. As we move
away from the plate boundary, the tensors become prolate
in shape (k > 1), consistent with extensional context of the
Pyrenees, the Valencia Trough, and the Central Basins. An
exception to this rule is the combined tensor of the Granada
Basin, which yielded a pure normal faulting tensor close to
the plate boundary. Similar tendencies are observed from
the rescaled shape factor of the slip model (k). Northern
Algeria and southwestern Portugal represent the areas of
maximum compression, closely associated with the plate
boundary, whereas the Pyrenees and the Iberian Chain are
characterised by extension. Individual calculations obtained
from the slip model allow us to distinguish local variations.
The proposed methodology optimises the selection of fo-
cal mechanism populations for both kinematic and dynamic
analyses. Although most of the defined tectonic zones exhibit
focal mechanisms of different faulting types, the minimum
rotation angle between their combined mechanisms indicates
that they are compatible with each other, considering the axis
permutation, in a context of distributed deformation. The ori-
entations of the shortening and extension axes derived from
the combined deformation tensors are generally consistent
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with the principal stress axes obtained from stress inversion,
although notable discrepancies exist in certain regions
Stress inversion results indicate that, outside of the Iberian
Peninsula, thrust faulting stress regimes dominate in the Gor-
ringe and Eastern Atlas zones, characterised by a vertical
o3 and R around 0.4. In southern Iberia, a transpressional
regime predominates, defined by strike-slip faulting stress
regimes with a thrusting component, where vertical o, and
0.5 > R > 0. This stress configuration also extends into the
southwestern corner of the Iberian Peninsula, particularly in
the Western Spanish—Portuguese Central System and the Al-
garve. Transtensional strike-slip faulting stress regimes with
a normal faulting component, vertical o2, and 1 > R > 0.5
surround the normal faulting stress regime inferred for the
Granada Basin (Western Alcaraz and Antequera) and are also
present in northern Morocco (Al Hoceima) and Offshore At-
lantic. Towards the Betics foreland and to the east of the
westernmost sector of the Spanish—Portuguese Central Sys-
tem, including the Pyrenees, a normal faulting stress regime
predominates. Within these zones, a slight strike-slip compo-
nent is observed west of the Central Pyrenees, in the Western
Pyrenees, and in Northwestern Galicia. Regardless, R val-
ues in these zones are close to 0.5, except in the Granada
Basin, where an almost radial normal faulting stress regime
is found. The Sgmax mean values range from N105°E to
N155°E (except for the Central Basins solution). The Symax

https://doi.org/10.5194/se-16-947-2025

orientation derived from this study, based on both individ-
ual focal mechanisms and stress inversion, is broadly con-
sistent with data records from other stress indicators, partic-
ularly from the numerous borehole logging data previously
published as part of the World Stress Map (Heidbach et al.,
2018). The central part of Iberia is an exception, likely due
to sparse data coverage resulting in large rotations of Sgmax
from the regional trend or due to horizontal stress magnitudes
being close to each other, allowing local stress variability
due to stiffness and density contrasts. Regionally anomalous
ESE-WNW Spmax orientations are found in the Granada
Basin and the Pyrenees, where local stress fields dominate.
Elsewhere, the Central Ranges (IC, WCS, OA, and AL) ex-
hibit a consistent Spymax trend around N140° E. Although the
Betic Cordillera (excluding the Granada Basin) shows some
variability, it generally follows a mean Sgmax of N155°E,
similar to the trends observed in the NW and NE corners of
Iberia (EPCS and NWG). Solutions along the plate bound-
ary also align with this Spgmax trend of N155° E, which likely
reflects the convergence direction of the Africa and Iberia
plates. The 15° anticlockwise rotation to the north is inter-
preted as a consequence of the Euler pole location between
the two plates. This general tectonic context seems to be
overprinting the back-arc subduction-related extension in the
east of Iberia and the Alboran Sea.
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Figure Al. Al Hoceima tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.
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Figure A2. Algarve tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum hori-
zontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (complete
in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal axis

orientation.
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Figure A3. Alboran Ridge tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-

plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.
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Figure A4. Betics Antequera tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.
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Figure AS. Central Basins tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.

Solid Earth, 16, 947-1024, 2025 https://doi.org/10.5194/se-16-947-2025



A. Olaiz et al.: Onshore and offshore seismotectonics of Iberia 985

43°30'

(a)

43°00' 1

42°30'

Central Pyrenees
-0°30' 0°00' 0°30' 1°00 1°30' 2°00'
Mean tensors and Kagan angles

(b) Strike-slip . (C) folvd = 0.1 @

90 e O

42°00'

88.6°
k=1.39

P axis plunge

Central Pyrenees

Axes trends

Figure A6. Central Pyrenees tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.
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Figure A7. Eastern Betics tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal

axis orientation.
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Figure A8. Eastern Pyrenees tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal

axis orientation.
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Figure A9. Eastern Tell Atlas tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.
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Figure A10. Granada Basin tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal

axis orientation.
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Figure A11. Gulf of Cadiz tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal

axis orientation.
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Figure A12. Gorringe—Horseshoe tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7' or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure A13. Iberian Chain tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.

Solid Earth, 16, 947-1024, 2025 https://doi.org/10.5194/se-16-947-2025



A. Olaiz et al.: Onshore and offshore seismotectonics of Iberia 993

(a) g
37°00'
36°30' 1
36°00' Northern All?oran X . . :
-3°30' -3°00' -2°30' -2°00' -1°30'

Mean tensors and Kagan angles

(b) Strgi(!<e;s|ip o (c) m@t @

k=1.63
100.0° @
N
(d)
P axis plunge
Northern Alboran
Axes trends

Figure A14. Northern Alboran tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7" or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure A15. NW Galicia tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal

axis orientation.
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Figure A16. Offshore Atlantic tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7" or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum

horizontal axis orientation.
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Figure A17. Southern Valencia tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7" or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure A18. Western Alcaraz Arch tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures)
and minimum horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure A19. Western Betics tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and minimum
horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average tensors (com-
plete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum horizontal
axis orientation.

Solid Earth, 16, 947-1024, 2025 https://doi.org/10.5194/se-16-947-2025



A. Olaiz et al.: Onshore and offshore seismotectonics of Iberia

999

37°10' 1

(a)

37°00' 1

36°50' 1

36°40' 1

36°30' 1

36°20' 1

-5°40' -5°30' -5°20'

(b) Strike-slip

90 0

60 50 40 30
P axis plunge

WBD

=-5°10' -5°00' —4°50'

Mean tensors and Kagan angles

42 Mw (C) fclvd =0.22 @

80.4° 90.1°
k =0.442

BrerlS

Axes tfrends

Figure A20. Western Betics > 20km tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures)
and minimum horizontal axis (T’ or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (¢) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum

horizontal axis orientation.
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Figure A21. Western Spanish—Portuguese Central System tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for
normal ruptures) and minimum horizontal axis (T or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture
types. (c) Average tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of
maximum and minimum horizontal axis orientation.
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Figure A22. Western Pyrenees tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure A23. Western Tell Atlas tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7 or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum

horizontal axis orientation.
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Figure A24. Western Valencia tectonic zone. (a) Focal mechanisms with maximum horizontal axis (P or B for normal ruptures) and
minimum horizontal axis (7' or B for reverse ruptures) orientation. (b) Classification diagram for earthquake rupture types. (c) Average
tensors (complete in grey) and Kagan angles between the average tensors for each rupture type. (d) Rose diagram of maximum and minimum
horizontal axis orientation.
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Figure B1. Al Hoceima tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose diagram
of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained from
the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B2. Algarve tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose diagram of
the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained from the
slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B3. Alboran Ridge tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B4. Betics Antequera tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B5. Central Basins tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.

EXTENSION " CD!-IIFRESSIDN . 01 . 02 A 03
oA e e Pitch ‘ (e )

o0 2 A 40 ST 60 T ar

= o

181

DEYM: 119° £12.19"
WUniaxial Ext.  MExt.-SS  USS-Ext  [gg

( b ) (C ) B Uniaxial Comp. B Comp. - $§ (158 - Comp.

Figure B6. Central Pyrenees tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B7. Eastern Betics tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B8. Eastern Pyrenees tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, () variability in the three principal stress axes of the stress inversion.
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Figure B9. Eastern Tell Atlas tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.

8 /.'{ f
@f

®cl1 HEo2 Ao3

Pitch : (e)

L -

O

18
DEYM: 135° £ 13.04"

MUniaxial Ext. MEXt.-55 BSS-Ext g
C M Uniaxial Comp. BComp. - $§ [ISS - Comp.

Figure B10. Granada Basin tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B11. Gulf of Cadiz tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B12. Gorringe—Horseshoe tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution,
(b) rose diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes
obtained from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B13. Iberian Chain tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose

diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B14. Northern Alboran tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B15. NW Galicia tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose diagram
of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained from
the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B16. Offshore Atlantic tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B17. Southern Valencia tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.

m@

EXTENSION m"' o k COMPRESSION . 01 . 02 A 03

S R T
. X | Pitch ( e )
= ] . W2 o ar S0 80t 7O AU 8p
210 ®
B i e
r i i 2 ? S o |
: . AN
TN AN
g % 3 s N\~ Rl
- 2. \ e =
=T
, : " ] o
&3 —
= |
o 2 23 4
I ; 3
DEYM: 160° £ 13.10°
BUniaxial Ext. MExt.-SS WSS-Ext. gg
(b) (C) B Uniaxial Comp. lComp. - §§ TISS - Comp.

Figure B18. Western Alcaraz Arch tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution,
(b) rose diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes
obtained from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B19. Western Betics tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, () variability in the three principal stress axes of the stress inversion.
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Figure B20. Western Betics > 20 km tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution,
(b) rose diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-formed nodal planes
obtained from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B21. Western Spanish—Portuguese Central System tectonic zone. Results of the stress and strain analyses for different zones: (a) right
dihedra solution, (b) Rose diagram of the Dey (horizontal shortening direction) obtained from the slip model, (¢) pitch/dip plot for the neo-
formed nodal planes obtained from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress
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Figure B22. Western Pyrenees tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B23. Western Tell Atlas tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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Figure B24. Western Valencia tectonic zone. Results of the stress and strain analyses for different zones: (a) right dihedra solution, (b) rose
diagram of the Dey (horizontal shortening direction) obtained from the slip model, (c) pitch/dip plot for the neo-formed nodal planes obtained
from the slip model, (d) stress inversion results, (e) variability in the three principal stress axes of the stress inversion.
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