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Abstract. This research presents the implementation of a
semi-structured hexahedral mesh for the edge-based finite el-
ement method, which is utilized in solving 3D magnetotel-
luric (MT) modeling. The semi-unstructured conformal hex-
ahedral mesh comprises an unstructured quadrilateral mesh
for the horizontal directions and an automatically generated
non-uniform mesh for the vertical direction. The edge-based
finite element approach, utilizing this mesh pattern, has been
developed. We present, compare, and discuss the accuracy,
efficiency, and flexibility of our MT forward modeling codes
for various 3D models. Numerical experiments indicate that
our approach provides good accuracy when local mesh re-
finement is applied around sites and within the focus zone,
yielding superior results compared to the conventional edge-
based finite element method with a standard structured hexa-
hedral mesh. The reliability of the developed codes was con-
firmed through comparisons with analytical solutions, bench-
mark COMMEMI3D, and topographic models. Furthermore,
our developed codes, which incorporate a semi-unstructured
conformal hexahedral mesh, exhibit valuable features, such
as managing topographic and complex zones, and refining
the local mesh for a 3D domain over a structured hexahedral
mesh. However, they require fewer mesh data points, such as
nodes and elements, within the mesh.

1 Introduction

3D Magnetotelluric (MT) forward modeling, the heart of
3D MT inversion, can be solved by many variant numeri-
cal techniques such as the integral equation (IE) approaches
(Wannamaker, 1991; Avdeeyv et al., 1997; Avdeev, 2005), the
staggered grid finite difference (SGFD) method (Mackie and
Madden, 1994; Smith, 1996; Siripunvaraporn et al., 2002;
Baba and Seama, 2002; Han et al., 2009), the edge-based fi-
nite element (EBFE) methods (Mitsuhata and Uchida, 2004;
Nam et al., 2007; Liu et al., 2008; Han et al., 2009; Farquhar-
son and Miensopust, 2011; Ren et al., 2013; Usui, 2015;
Grayver and Kolev, 2015; Kordy et al., 2016; Zhang et al.,
2021), the staggered-grid finite volume (SGFV) approaches
(Haber et al., 2000; Haber and Ascher, 2001), and the hybrid
finite difference-finite element (HFDFE) approach (Varil-
sitha, 2024). Their accuracy, efficiency, and validity have
been presented, compared, and discussed. In the early era, the
IE method using Green’s function and the SGFD, which en-
forces current continuity (Yee, 1966; Siripunvaraporn et al.,
2002), was accurate and efficient for simple 3D domains.
For a more complex computational domain with topography,
bathymetry, or irregular subdomains, computational loads in-
crease dramatically because they rely more on the discretiza-
tion or mesh to maintain the desired accuracy. Neverthe-
less, both IE and SGFD methods can, in theory, accurately
model complex geometries like real-world ore bodies. The
perceived restriction to rectangular discretizations is due to
implementation decisions, not inherent mathematical limita-
tions.
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For such complex 3D models, the modeling problems can
be mitigated by utilizing the EBFE, SGFV, or HFDFE meth-
ods due to the flexibility of mesh type. These methods can
effectively handle domains, including those with irregular in-
terior structures. These characteristics render the latter two
techniques similar and powerful for implementation in real
geophysical domains. The SGFV method, a numerical ap-
proach for various conservation laws, is particularly appeal-
ing when the numerical flux is significant (Eymard et al.,
2000). However, research advancements in electromagnetic
(EM) modeling for the SGFV approach still need to catch up
to those of the variant EBFE method. For the HFDFE scheme
(Varilsiiha, 2020), implementing MT inversion still requires
numerous additional verifications.

As mentioned, the flexibility and advantages of the EBFE
method rely on the type of mesh used. The choice of mesh
type for the EBFE approach has a significant impact on both
the quality and cost of the solution (Tadepalli et al., 2011;
Schneider et al., 2022). Tetrahedral meshes are advantageous
due to their automated generation capabilities for even the
most complex geometries. In rectangular meshes with brick
elements, a common issue in simple rectilinear meshes is
poor mesh quality, leading to system ill-conditioning. This
problem occurs when padding zones extend to the domain
boundary, creating very pizza-box-like cells. Hexahedral
meshes are often regarded as the gold standard due to their
significant improvements in accuracy and computational effi-
ciency. This benefit comes from the structure of the brick el-
ement, which provides more precise results with fewer nodes
and is less susceptible to numerical errors, such as shear
and volumetric locking, that can affect simulations involving
bending or incompressible materials. This improved accu-
racy per element offers a clear advantage, as simulations can
use fewer elements to achieve the desired precision, resulting
in smaller models, reduced memory usage, and faster solu-
tions. Such efficiency is particularly crucial in various mod-
eling applications. However, this high performance comes
with a significant challenge, as creating high-quality hexahe-
dral mesh is still a difficult and often manual process, high-
lighting a fundamental trade-off between optimal simulation
performance and the ease of automating tetrahedral mesh-
ing. Presently, implementations of structured and unstruc-
tured hexahedral meshes have garnered significant attention,
and numerous surveys and discussions have been presented
(Owen, 1998). For MT, EBFE approaches using a structured
hexahedral mesh have been given, and their performance
has been investigated (Mitsuhata and Uchida, 2004; Nam
et al., 2007; Kordy et al., 2016; Zhang et al., 2021). The
variant EBFE method with adaptive non-conformal unstruc-
tured hexahedral mesh has also been presented (Grayver and
Kolev, 2015; Grayver, 2015). However, the EBFE approach,
incorporating a variant conformal hexahedral mesh, remains
both interesting and challenging for achieving better perfor-
mance in 3D inversion.
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In this study, we present 3D MT forward modeling using
an alternative EBFE approach that employs a semi-structured
hexahedral mesh. The semi-structured mesh algorithm con-
sists of two subprocesses. The mesh in the two horizontal di-
rections is generated with an automatic unstructured quadri-
lateral mesh algorithm, while the vertical dimension is cre-
ated using an automatic nonuniform mesh algorithm. The
variational principle is then applied to the EEBFE approx-
imation. Consequently, a direct solver from the Scipy library
in Python is used to solve the resulting system of equations,
and the responses are estimated. Finally, we evaluate and dis-
cuss the efficiency and accuracy of our approach across vari-
ous models, including half-space, COMMEMI3D, and topo-
graphic models.

2 Governing equations

In MT modeling, the displacement currents are negligible,
and the electric current source is free. Assuming a time
dependence e~'“’, the electromagnetic phenomena are de-
scribed by the first-order Maxwell’s equations:

VxE=iowuH, (D
VxH=0E, ()

where E and H are the electric and magnetic fields, respec-
tively, @ is the angular frequency, p is the magnetic per-
meability of free space, and o is the conductivity. Solv-
ing the above-coupled system requires large memory storage
(Mackie and Madden, 1994; Siripunvaraporn et al., 2002).
The memory storage can be reduced significantly by solv-
ing the second-order equations. A decoupled second-order
Maxwell’s equation for E is expressed as

VxVxE=iouoEin Q, 3)

where Q2 denotes the computing domain, including the air
and earth layers.

At the boundaries of the computational domain, the tan-
gential components of the electric field (Harrington, 2001;
Liu et al., 2008) are required to satisfy

nxE=nxEgonT, (@)

where I" denotes the boundary of the computational domain,
n represents the unit outward normal vector to the bound-
ary, and Eq denotes the primary electric field. In the present
study, inhomogeneous Dirichlet boundary conditions are im-
posed by prescribing the tangential electric field components
at I' to be equal to the analytical magnetotelluric solution
for a homogeneous or horizontally layered halfspace (Far-
quharson and Miensopust, 2011). This formulation is valid
provided that the computational domain boundaries are suf-
ficiently far from regions containing three-dimensional con-
ductivity heterogeneities, so that the geoelectrical structure is
effectively one-dimensional at the boundaries.
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For magnetotelluric forward modeling, two orthogonal po-
larizations of the incident plane electromagnetic wave are
considered. In the XY -polarization mode, the electric field
is oriented parallel to the x-axis. Conversely, in the Y X-
polarization mode, the electric field is directed parallel to
the y-axis. The complete magnetotelluric impedance tensor
is subsequently obtained by solving the forward problem for
both polarization modes independently and combining the
resulting electromagnetic field solutions. The graphical rep-
resentation is illustrated in Fig. 1.

3 Edge-based finite element method

3.1 Mesh algorithm: semi-unstructured conformal
hexahedral mesh

The mesh generation or discretization of the computational
domain is the first step in the EBFE approach to solve
Eq. (3), subject to the boundary condition as in Eq. (4),
which includes the EBFE approach. A continuous 3D model,
2, was meshed into multiple subdomains or elements, i.e.,
Q= Ué”z 182¢, where Q is the eth element and M is the total
number of elements. For this work, all elements are hexahe-
dra.

Generally, the MT domain €2 naturally composes air, irreg-
ular air-earth interfaces such as topography or bathymetry,
and irregular subsurface with anomalies embedded within
them. The structured hexahedral mesh can handle those by
using a refinement mesh (Mitsuhata and Uchida, 2004; Nam
etal., 2007; Kordy et al., 2016; Zhang et al., 2021). However,
the refinement effects on the further subregions, i.e., the sur-
plus small elements, appeared in the mesh. This also results
in an excess of elements, and the distribution of the elements
in the mesh does not smooth out as it should. This may result
in a lower-quality mesh. Typically, producing high-quality
mesh is essential for achieving optimal performance and ac-
curacy in the FE Method when applied to the MT problem, as
well-formed elements are crucial for stable numerical results
and precise field representation (Jin, 2015).

In this work, we construct a semi-unstructured confor-
mal hexahedral mesh for the 3D MT domain, comprising
two main processes: an unstructured quadrilateral mesh gen-
eration for the surface and extrusion for the 3D volumet-
ric domain. For the first process, the unstructured quadri-
lateral mesh can be generated by using direct and indirect
approaches. An example of a direct approach, such as the
paving algorithm and its application (Blacker and Stephen-
son, 1991), is the recent application of the paving algo-
rithm to 2D MT domains presented in Sarakorn (2017). In
contrast, the indirect approach is a well-established two-
stage methodology that first generates a triangular mesh us-
ing robust algorithms such as Delaunay triangulation or ad-
vancing front methods, followed by systematic recombina-
tion of adjacent triangle pairs into quadrilateral elements
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(Bommes et al., 2013). This strategy decouples the geomet-
ric complexity of mesh generation from the topological op-
timization of element shape, leveraging the mathematical
maturity and proven robustness of triangulation algorithms
(Borouchaki et al., 1997) while achieving high-quality all-
quad meshes through post-processing. Modern implementa-
tions employ sophisticated graph-theoretic recombination al-
gorithms, most notably the Blossom-Quad method (Remacle
et al., 2012), which formulates the triangle-pairing problem
as a maximum-weighted perfect matching on the mesh dual
graph and solves it optimally using Edmonds’ blossom al-
gorithm (Edmonds, 1965). This approach typically achieves
95 %—100 % quadrilateral coverage with superior element
quality compared to simple greedy recombination heuris-
tics (Owen et al., 1999), and has been successfully imple-
mented in major mesh generation software, including Gmsh
(Geuzaine and Remacle, 2009). Recent advances include the
frontal-Delaunay method with an L°°-norm Delaunay crite-
rion (Remacle et al., 2013), which integrates advancing-front
control with quad-oriented triangulation to improve mesh
quality further and reduce the number of triangles requir-
ing recombination. The indirect approach remains the dom-
inant methodology for automatic quadrilateral mesh genera-
tion due to its robustness on complex geometries, excellent
mesh-size control through background sizing fields (Frey and
George, 2008), and its ability to handle arbitrary domain
boundaries with minimal user intervention.

As discussed above, we introduce an adaptive unstructured
quadrilateral surface-mesh generation algorithm specifically
designed for MT modeling across large-scale geological do-
mains with complex subsurface structures. The algorithm
implements a hybrid indirect meshing approach that com-
bines Delaunay triangulation with Blossom-Quad recombi-
nation (Remacle et al., 2012; Geuzaine and Remacle, 2009),
enhanced by a unified multi-scale background mesh sizing
field to address the unique challenges of MT forward mod-
eling. The core methodology employs two refinement strate-
gies operating simultaneously: edge-based refinement zones
along geological layer boundaries and conductivity disconti-
nuities, where acceptable mesh resolution is critical for ac-
curate electromagnetic field computation, and point-based
refinement zones centered at MT station locations and el-
evation refinement zones for existing terrain, ensuring ade-
quate discretization near measurement sites while maintain-
ing computational efficiency in the far field. A key innovation
of our implementation is the use of smooth power-law transi-
tion functions with extended transition zones (controlled by
an adjustable transition factor), which gradually vary element
size from fine-scale regions to coarse far-field zones. This
smooth gradation prevents abrupt changes in element size
that would otherwise degrade mesh quality and introduce nu-
merical errors in the finite element solution. The algorithm
enforces a pure quadrilateral mesh requirement via aggres-
sive topology optimization and iterative Laplacian smooth-
ing (Bommes et al., 2013). After planar mesh generation, all
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Figure 1. The boundary condition specifying on 3D domain for XY- and Y X-polariztions. For XY -polarization, the tangential fields are
specified on the front (I'3), back (I'4), top (I'5), and bottom sides (I'g). Otherwise, tangential fields are zeros. In contrast, for ¥ X -polarization,
the tangential fields are specified on the left (I'1), right (I'y), top (I'5), and bottom sides (I'g). Otherwise, tangential fields are zeros.

nodes are projected onto the topographic surface z = f(x, y)
while preserving the mesh topology, enabling accurate rep-
resentation of terrain effects on electromagnetic field prop-
agation. The advantages of this approach for MT model-
ing include automatic handling of complex geological ge-
ometries across regional scales without manual intervention,
more efficient multi-scale discretization with fewer elements
compared to fine uniform meshes while preserving accuracy
at key locations, guaranteed pure quadrilateral mesh output,
smooth transitions in element size that reduce numerical dis-
persion and help maintain solution accuracy, and firm perfor-
mance on domains with extreme aspect ratios and multiple
refinement zones.

In summary, our mesh generation process of surface mesh
can be composed as five main phases: geometry definition
and topological construction, multi-scale mesh sizing field
formulation, unstructured quadrilateral mesh generation with
multiple strategies, surface projection to topography, and
quality analysis and validation. The details of the algorithm
for each phase are summarized in Appendix A. Remarkably,
the unstructured quadrilateral mesh is generated by Gmsh
(Geuzaine and Remacle, 2009), the open-source mesh gen-
erator, integrated with the Python environment. The obtained
mesh data, including node coordinates and element connec-
tivity, are then used in the second process, which extrudes
the surface mesh into a 3D volumetric mesh for MT forward
modeling in a Fortran 90/95 environment.

Starting from a surface mesh on Earth’s surface (or Earth’s
seafloor if it exists), a 3D volumetric mesh with hexahe-
dral elements is generated by vertically extruding the quadri-
lateral elements. Importantly, to accurately capture the sig-
nificant resistivity contrasts and rapidly changing electro-
magnetic fields near the highly irregular topography and
bathymetry, this extrusion uses an automatic, non-uniform
layer thickness controlled by a fixed geometric transition
rate. This adaptive vertical layering concentrates mesh res-
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olution where it is most needed — near the complex air-earth
interface and in other regions with expected high field gradi-
ents and penetration-depth effects (Simpson and Bahr, 2005)
— without excessively increasing the total element count
across the large-scale domain.

Combining a flexible our algorithm for the horizontal
plane with adaptive vertical layering enhances 3D MT mod-
eling via the EBFE approach. It improves accuracy and
efficiency by better handling electromagnetic fields within
highly contrasting geophysical structures, which are crucial
for accurate MT response simulation. The proposed concept
of a semi-unstructured conformal hexahedral mesh with lin-
ear elements for the 3D MT domain is illustrated in Fig. 2.

3.2 Variational method

Once the meshing process is complete, the mesh information
is used for the EBFE approximation in the next step. To con-
struct the formula, the boundary value problems in Eq. (3)
are expressed as the variational formula

FE,V)=g(V),V e H(curl; Q2), (5)

where F is the bilinear form, H(curl; €2) is the Sobolev space
defined by H(curl; Q) ={V e L>(Q)?:V xV e L2(Q))}
(Monk, 2003) and V is the test function. Applying the al-
gebraic vector properties and Green’s theorem (Nam et al.,
2007; Liu et al., 2008), the Eq. (5) can be deduced as

F(E,V):/[(VxE)-(VxV)—iwuaE-V]dQ. (6)

Q

The Dirichlet boundary condition is regarded as the source
term given by

gV)= /V - EodT, (7

r
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Figure 2. Example of meshing a 3D domain as a semi-unstructured conformal hexahedral mesh with linear elements.

where I' is specified as the outer boundary of the domain.
To solve the variational problem in Eq. (5), we discretize the
domain €2 into distorted hexahedra, i.e.

M
Q=|J<.. (8)
e=1

where Q¢ is the eth hexahedral element and M is the total
number of elements. The expression in Egs. (6) and (7) can
be expressed, respectively, as

M
FE.V)=) FE.V), ©9)
e=1
M
gV)=) gv), (10)
e=1
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where

F“’(E,V):/[(VxE)-(VxV)—iwuaeE~V]dQ, (1D)
Qe

g°(V) = /V-Eodr‘. (12)
1"8

are defined over the Q€. For each Q°¢, the electric field is
approximated by a linear combination of the basis functions
given by

Ne
E(x,y,2) =2Wf(x,y,z)uf, (13)

i=1

where WY (x,y,z) and u{ denote the vector basis function
and the tangential electric field, respectively, on the ith edge
of the eth element, and N° is the number of edge per element
(here, N¢ = 12). The construction and expression of the vec-
tor basis functions for the hexahedral shape have been stated
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in several works (Volakis et al., 1998; Jin, 2015; Nam et al.,
2007). Note that the construction of higher-order elements
can be found in Grayver and Kolev (2015), and this can be
applied to our mesh concept presented in this work. For this
initiative, a first-order or linear element, as shown in Fig. 2
(right), is used.

The expression for each vector basis function is more com-
plicated when expressed in Cartesian coordinates (x, y,z).
For simplicity, its expression will be expressed in the refer-
ence coordinate (#, v, w) by using a coordinate transforma-
tion between the distorted hexahedron and a 2-unit cubic. To
continue the procedure, we substitute Eq. (13) into Eq. (11)
and then select the test function as a vector basis function.
Rearranging terms, the final expression of the coefficients in
Egs. (11) and (12) is given by

Fy = [ [(72W)- (7 W;) oo w;- w]

Q'

x 714, (14)
g = / W¢ - Eodr, (15)

r'

respectively. The appeared integrations are defined on refer-
ence coordinate, Qe represents the 2-unit cubic, and r'e rep-
resents the corresponding face of the cubic. The notation |J|
is denoted as the determinant of the Jacobian matrix of trans-
formation. The numerical integration technique is used to ap-
proximate those formulas. Here, we use the Gauss quadrature
rule, as in Nam et al. (Nam et al., 2007). To complete the
FE procedure, we assembled all elements to obtain the linear
system of equations

Ku =g, (16)

where K is a large, sparse, symmetric, and complex ma-
trix but not Hermitian, u is the unknown vector, and g is
the source vector corresponding to the Dirichlet boundary
conditions. If the structured hexahedral is incorporated, the
raised coefficient matrix K has at most 33 nonzero elements
per equation. However, the maximum nonzero value is un-
predictable when the semi-unstructured mesh is imposed. It
depends on the mesh generation and density in some focus
zones. The example of the sparse matrices for the EBFE with
a structured and semi-unstructured mesh is shown in Fig. 3.
In practice, only nonzero elements are stored. The nonzero
elements are stored by the Compressed Sparse Row (CSR)
algorithm for our algorithm.

The system of equations in Eq. (16) can be solved using
either Krylov subspace solvers with preconditioning (Nam
et al., 2007; Smith, 1996; Mitsuhata and Uchida, 2004; Liu
et al., 2008; Farquharson and Miensopust, 2011) or direct
solvers (Kordy et al., 2016). Currently, efficient direct solvers
for large, sparse linear systems from electromagnetic model-
ing are well established (Kordy et al., 2016; Shantsev et al.,

Solid Earth, 17, 13-33, 2026

2017) . Examples include the PARDISO (Schenk et al., 2001)
and MUMPS (Amestoy et al., 2000; Shantsev et al., 2017)
libraries. In this work, the MUMPS direct solver with an
OpenMP interface is used instead of an iterative solver to
prevent instability. Note that our coefficient matrix K in
Eq. (16), stored in CSR format, is converted to COO for-
mat, which is standard for the MUMPS solver. The CPU time
for the CSR-to-COO conversion is minimal and has no sig-
nificant impact compared to the main factorization and sub-
stitution steps in the MUMPS solver (with observation, less
than 0.05 %).

Once the solution to the linear system of equations is ob-
tained, the electric field at each MT site can be approximated
using Eq. (13). In contrast, the magnetic field can be approx-
imated using Eq. (3). The impedance, the ratio of the elec-
tric to the perpendicular magnetic field, is then calculated for
each station. The relationship of this quantity for 3D cases is
defined by
[Ei‘y Ey" } _ [Zxx Zxy ] [ny H;" ] (17)

- ol P | e
where the superscripts xy and yx are MT polarizations
and the subscripts xx and yy are the horizontal compo-
nents. The apparent resistivity and phase corresponding to
the impedance can be calculated, respectively, by

1 2
piajzm|zij| ; (18)
and
¢ij = arg(Zij), (19)

where i, j = x, y, respectively.

4 Numerical results

This section will investigate the accuracy and efficiency
of our EBFE approach with a semi-structured hexahe-
dral mesh. The 3D models used here are the two-layered
COMMEMI3D-2 model (Zhdanov et al., 1997), the trape-
zoidal hill model (Nam et al., 2007), and the Khorat Plateau
model. The resistivity structures of the three models are
shown in Fig. 4. Note that the air layer is always needed for
all models and is included in each selected model. The thick-
ness of the air layer is set as 100 km, and its resistivity is set
as 1010 Qm.

4.1 Two-layered model

As shown in Fig. 4, this model assumes that the Earth’s
subsurface is flat, consisting of two layers. The thickness
of the top and bottom layers is Skm, and the half-space
is Skm thick. The corresponding resistivities are 100 and
10 Qm, respectively. Therefore, the model’s structure can

https://doi.org/10.5194/se-17-13-2026
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Figure 4. The 3D models used to validate and investigate the efficiency of our EBFE algorithm: two-layered model (top left), COMMEMI3D-
2 model (top right), trapezoidal hill model (bottom left), and Khorat Plateau model (Source: Map data ©Google, Image© 2023 CNES/Airbus)

(bottom right).

be simplified to one dimension, allowing comparison of the
numerical results with those of existing analytical solutions
(Constable et al., 1987). To simulate the responses, the com-
putational domain is set to 100 km x 100 km x 200 km (in-
cluding the air layer). The 7 stations are designed to scatter
from x— to x+ around the model’s center, with a distance of
5 km between each (See Fig. 5). The EM wave periods used
in this case are 0.1, 1.0, 10, and 100s.

https://doi.org/10.5194/se-17-13-2026

For the meshing model, the smallest element size, defined
as the minimum edge length, is set to 30 m. The transition
rate of element size in the z direction for the Earth’s subsur-
face, the approximate ratio between adjacent element sizes,
is set to 1.5 for both algorithms. In contrast, the transition
rate for element size in the Air layer is set to 3 because the
EM wave’s skin depth is too considerable in air. These pa-
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Figure 5. Comparison of structured (top row) and semi-unstructured (bottom row) hexahedral meshes for a two-layered model: 3D view
(left), vertical cross-section view along the center (middle), and plan view (right) for the top and bottom of the domains. Note that the cross-
section mesh of the two mesh types is set to be the same. The green line marks the interface between Earth’s top and bottom layers, and the

red cross indicates the locations of the stations.

rameters played a crucial role in the methods’ accuracy. The
comparison between the two mesh types is shown in Fig. 5.
For the XY plane, both meshes around each station are
refined to improve accuracy. As a result, the element density
around and near each station is higher than in more distant re-
gions. However, in the case of a semi-unstructured mesh cre-
ated by a paving algorithm, the mesh’s consistency is more
flexible than that of a structured mesh generated by an auto-
matic rectangular pattern. The mesh in the depth (z-direction)
for both algorithms is identical for this research. The refine-
ment is focused on the Earth’s surface and the layer interface,
similar to the case of the XY plane. The number of mesh
sections from the top air layer to the bottom of the earth
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is 32 sections. The summary of the mesh information and
EBFE data for each type is shown in Table 1.

With this condition, the density of elements in a struc-
tured hexahedral mesh is more significant than in a semi-
unstructured conformal hexahedral mesh. Furthermore, the
edge-based FEM with a structured mesh consumes more
memory storage than the one with a semi-unstructured mesh.

The accuracy of the obtained apparent resistivity and
phase at each edge-based finite element method period with
structured and semi-unstructured mesh algorithms is mea-
sured as the Mean absolute percentage error (MAPE) . For
this model, the errors obtained by the two approaches are
identical because the model’s structure is 1-D, as mentioned,
and both algorithms use the same mesh in depth. The mesh
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Table 1. Comparison of mesh information and EBFE data generated by structured and semi-unstructured conformal hexahedral mesh algo-

rithms for the two-layered model.

Semi-unstructured mesh

Mesh and FE data Structured mesh
Num. of nodes 176715
Num. of elements 165376
Num. of unknowns 518 586

Size of matrix

Num. of nonzeros 15132546

518586 x 518586
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Figure 6. The comparison between the apparent resistivity and phase calculated by the EBFE with structured and unstructured hexahedral
meshes and those by the analytical method. The maximum percentage of errors is less than 1 %.

in all horizontal directions does not affect the errors. Fur-
thermore, the mistakes in responses and polarizations remain
consistent throughout each period. Figure 6 shows the errors
for each period. The MAPE at each period is less than 1 %.

Note that the apparent resistivity and phase of XY — and
Y X —polarizations and all vertical magnetic transfer function
components are less than 10~2!. Theoretically, these compo-
nents are identical to zero for a 1-D structure (Simpson and
Bahr, 2005). With the same level of accuracy, we observe
that the EBFE approach with a semi-unstructured conformal
hexahedral mesh uses significantly fewer computational re-
sources, such as storage of nonzero entries in the coefficient
matrix, as shown in Table 1, compared to the structured hex-
ahedral mesh case, which is less than 22.34 %.

4.2 COMMEMI3D-2 model

The COMMEMI3D-2 model is one of several 3D models
created by the COMMEMI projects (Zhdanov et al., 1997).
As shown in Fig. 4, the COMMEMI3D-2 model assumes that
the earth is flat and three-layered, with two anomalies em-
bedded with different resistivities. The resistivity values for
the top to bottom layers are 10, 100, and 0.1 2m, respec-
tively. The thicknesses of the top and middle layers are 10
and 20km, respectively. The bottom layer is semi-infinite.
Two anomalies appeared embedded in the top layer with the
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exact sizes of 20km x 40km x 10km. The resistivities for
these two anomalies are 1 and 100 Qm, respectively.

To perform the forward calculation, the computing domain
size is set as 200 km x 200 km x 200 km (air included). As
with COMMEMI3D projects, the locations of 15 stations
with meshing domain by two approaches are shown in Fig. 7.

The mesh design still follows the same concept as the
previous model, meaning that mesh refinement is applied
around stations and interfaces, such as the air-earth inter-
face and the anomaly-background interface. Additionally, lo-
cal refinement is also implemented along the edges of the
anomaly boundaries and around the station’s location. In this
case, the number of vertical mesh sections or layers is 39 in
both the structured and semi-unstructured cases. The sum-
mary of the mesh information and EBFE data is shown in
Table 2.

According to Table 2, the computational resources used
by EBFE with a semi-unstructured mesh are still designed
to be less than those used by EBFE with a structured mesh
by about 16.11 %, to prove that the same accuracy level can
be maintained for this model. Additionally, we present the
CPU time required by each of our algorithms. The EBFE
approach with a structured mesh takes 565s for each po-
larization, which is longer than that of the EBFE approach
with a semi-unstructured mesh, which takes 247 s. Note that
this computation is performed on a MacBook Pro with Apple
M1 Pro and 16 GB of RAM.

Solid Earth, 17, 13-33, 2026



22 W. Sarakorn and P. Mukwachi: 3D MT modeling using an EBFEM with semi-unstructured hexahedral mesh

Structured
hexahedral mesh

Semi-unstructured -,
hexahedral mesh

Figure 7. Meshing COMMEMI3D-2 model: Structured the hexahedral mesh is shown with a 3D view (top left), vertical cross-section at
y = 0 (top middle), and plan view (top right). The semi-structured mesh is displayed with a 3D view (bottom left), vertical cross-section at
y = 0 (bottom middle), and plan view (bottom right). The 15 red cross indicate the locations of stations.

Table 2. Comparison of mesh information and EBFE data generated by structured and semi-unstructured conformal hexahedral mesh algo-

rithms for the COMMEMI3D-2model.

Semi-unstructured mesh

Mesh and FE data Structured mesh
Num. of nodes 232200
Num. of elements 219 648
Num. of unknowns 683 835

Size of matrix

Num. of nonzeros 20365491

683 835 x 683 835

176 840

170820

605 859

605 859 x 605 859
17085371

The comparison of apparent resistivity at period 7 =
1,000 seconds estimated by our two approaches and the
COMMEMI project is shown in Fig. 8. The graph of the
MAPE is shown in Fig. 9. The MAPE from the two ap-
proaches for XY-polarization is higher than that for Y X-
polarization. For each polarization, the MAPE of the EBFE
approach with a structured mesh is lower than that of the
EBFE approach with a semi-unstructured mesh, with less
significance.

For the phase, the comparison of the apparent phase at
a period of 7 =1000s, estimated by our two approaches,
is shown in Fig. 10, while the COMMEMI projects do not
present the phase in their experiments and are not shown in
such a figure. When we compute the MAPE of the phases
calculated by the EBFE approach using a semi-unstructured
mesh, with the results from the structured mesh case as refer-
ence values, the obtained MAPESs are 0.60 % and 0.45 % for
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XY- and Y X-polarizations, respectively, which are too low
and show no significant difference.

With these metrics, the accuracy of our two approaches
remains comparable, and their levels are nearly identical.
However, the approach with a semi-unstructured mesh shows
significantly better performance in terms of lower computa-
tional resource usage.

4.3 Trapezoidal hill model

The 3D Trapezoidal hill model (Nam et al., 2007) is an ex-
tension of the 2-D case (Wannamaker et al., 1986). As shown
in Fig. 4, the hill with a symmetric trapezoidal shape or trun-
cated pyramid is designed at the center of the Earth’s sur-
face, whereas elsewhere it is flat. It has a rectangular base
with 2 km x 2 km, top side with 0.45 km x 0.45 km, and with
height 0.45 km. The resistivity structure is 100 2m halfspace.

https://doi.org/10.5194/se-17-13-2026
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Figure 9. The calculated MAPE of apparent resistivity using the
EBFE approach with structured and semi-unstructured data meshes.

The meshing model using a semi-unstructured mesh is shown
in Fig. 11. The refinement is imposed around size and topo-
graphic zone. Semi-structured mesh handles the topographic
zone very well, and the mesh density around this zone is also
relaxed. Note that the z-coordinate of each mesh point lo-
cated beneath and above the topographic zone is adjusted to
preserve the mesh projection at about depth [—5, 5]km and
the mesh refinement is similar to that on the boundary.

To perform the computing, the domain is set as
40km x 40km x 150 km (air included). The responses from
41 stations are computed at 0.5s and compared to those of
Nam et al. (2007). The responses are plotted, compared, and
displayed in Fig. 12.

The results, the apparent resistivities and phase, indicate
that the EBFE approach with a semi-structured mesh pro-
vides comparable responses to those calculated by the EBFE
methods with a structured mesh (Nam et al., 2007).
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4.4 Khorat Plateau model

As shown in Fig. 4, this model is set in 14.5-17.5°N and
101.3-104.5° E, encompassing the Khorat Plateau, a saucer-
shaped tableland in the Isan region of northeastern Thailand.
The estimated elevation of the model with sample 150 x 150
points is shown in Fig. 13.

The domain covers 118 303.5 kmz, and the plateau ex-
hibits considerable elevation variability depending on loca-
tion and measurement method. The elevation range is ap-
proximately from 48 to 1583 m. The central part of the
plateau consists of relatively monotonous plains, broken by
gently rolling hills at approximately 150 m in altitude. How-
ever, the broader plateau region is generally situated between
90 and 200 m above sea level (z =0km). The terrain shows a
topographic gradient from higher elevations in the northwest
toward lower elevations in the southeast near the Mekong
River. The Phu Phan Mountains divide the plateau into the
northern Sakhon Nakhon Basin and the southern Khorat
Basin. The Phetchabun bounds it, and Phang Hoei ranges to
the west, the Phanom Dong Rak Range to the south, and the
Mekong River along the northern and eastern borders with
Laos. The Mun and Chi Rivers drain the plateau, both trib-
utaries of the Mekong. The area has impermeable soils that
flood seasonally from April to November and dry out after-
ward.

Currently, there is no published deep MT data for crustal
structures in this region; we therefore have simplified it
to a two-layer resistivity model to simulate the MT re-
sponses. The size of the computing domain is set as
355.8km x 332.5km x 600 km (air layer included). Note
that the Easting and Northing are set to the x and y di-
rections, respectively. To assign the resistivity structure,
the top layer consists of a 2km-thick sedimentary layer
with p; = 100 Qm, representing the Mesozoic Khorat Group,
comprising sandstone, siltstone, and mudstone formations.
The bottom layer, starting at depth z =2km, is set to a crys-
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Figure 10. The comparison of phase for XY —polarization (left) and Y X —polarization (right) at period 7 = 1000s.

talline basement half-space with p» = 1500 Qm, represent-
ing the felsic crust of the Indochina terrane. The sedimen-
tary layer resistivity is constrained by near-surface electri-
cal resistivity tomography surveys, which show values of 0—
20 2m for clay-rich deposits and higher values for consoli-
dated sediments (Nimnate et al., 2017). The crystalline base-
ment resistivity is consistent with a felsic crustal composi-
tion, as indicated by receiver function studies showing Vp/Vs
ratios of 1.74 +0.04 and a crustal thickness of 36.9 +3 km
beneath the plateau (Noisagool et al., 2014; Yu et al., 2017).
The location of six MT sites is shown in Fig. 13 (bottom left).
Sites A, B, and D are located along the western margin with
significant elevation relief, Site D in the northern highlands,
and Sites E and F in the central basin.

The mesh of this domain with 256 127 nodes, 242 720 el-
ements, and 749 902 unknowns is shown in Fig. 14. The top
panels show the topographic surface as a 3D elevation view
(left) and a plan-view mesh with adaptive refinement that
responds to terrain complexity (right), where finer elements
capture mountainous regions and coarser elements cover flat
areas. The bottom panels display the complete 3D mesh ex-
tending to 500 km depth (left) and an enlarged cross-section
(right) highlighting how hexahedral elements conform to the
undulating terrain surface, demonstrating the integration of
real topography into a structured mesh suitable for the EBFE
method for EM modeling.

The comparison of the estimated apparent resistivities and
phase for sites A—F at T =0.01-100s is shown in Fig. 15.
The trend of MT responses computed across the Khorat
Plateau region matches the one-dimensional analytical so-
lutions for both XY and Y X polarizations during the test
periods. Six measurement sites were strategically positioned
across diverse topographic settings: Despite substantial to-
pographic variations, all sites exhibit remarkably consis-
tent with apparent resistivity increasing systematically from
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~ 100 Q2m at short periods to ~ 1000 Q2m at long periods
while phase responses display characteristic behavior with
values near 45° at short periods, an inductive dip to ~ 25° at
intermediate periods (7' = 1-10s), and recovery toward 35—
40° at more extended periods. The highest distortion appears
at Site D (about 21 %), located in the highland, while the
lowest distortion occurs at Site F (about 2 %), situated in the
basin. This uniformity across geographically and topograph-
ically diverse locations indicates a relatively homogeneous
regional electrical structure and validates the accuracy of our
EBFE implementation, establishing a robust computational
framework for subsequent magnetotelluric inversion studies
in complex geological terrains.

5 Discussion

In this study, we presented and carefully evaluated an alterna-
tive edge-based finite element (EBFE) method for 3D mag-
netotelluric (MT) forward modeling, characterized by its in-
novative use of a semi-unstructured conformal hexahedral
mesh. Our primary goal was to address ongoing challenges
in 3D MT modeling, specifically balancing geometric flexi-
bility, solution accuracy, and computational efficiency, espe-
cially when working with complex geological structures and
the need for localized mesh refinement.

The proposed semi-unstructured conformal hexahedral
mesh, which combines an unstructured quadrilateral mesh
for the horizontal directions (created using the paving algo-
rithm) with an automatically generated non-uniform mesh
for the vertical direction, showed significant benefits. This
hybrid meshing approach was crucial for achieving better
mesh quality and adaptability compared to traditional struc-
tured hexahedral meshes. As shown by numerical experi-
ments on the two-layered and COMMEMI3D-2 models, our
method consistently used a notably lower number of nodes
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Figure 11. Meshing trapezoidal hill model: 3D view (top left), cross-section view at y = 0km (top right), Earth’s subsurface mesh (bottom
left), and mesh around topographic zone (bottom right). The 41 red dots indicate the locations of stations.

and elements, and consequently, fewer non-zero entries in the
resulting coefficient matrix. Specifically, for the two-layered
model, we observed about 22.34 % fewer nonzero data, and
for the COMMEMI3D-2 model, roughly 16.11 % fewer,
compared to the structured mesh versions (Tables 1 and 2).
This reduction in mesh data directly decreases memory usage
and accelerates computations, as further evidenced by the re-
duced CPU time for the COMMEMI3D-2 model (247 s with
the semi-unstructured mesh versus 565 s with the structured
mesh). The efficiency gains are primarily due to the targeted
refinement capabilities of the semi-unstructured mesh, which
limits the creation of “surplus small elements” in regions that
do not require high resolution — an issue familiar with purely
structured refinement methods.
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Crucially, these efficiency improvements were achieved
without compromising accuracy. For the 1D two-layered
model, our approach yielded results with MAPE of less
than 1% (Fig. 6), identical to that of the structured mesh
and in excellent agreement with analytical solutions. This
confirms the fundamental correctness of the implementa-
tion even with reduced mesh density. For the more complex
3D model, COMMEMI3D-2 benchmark, the accuracy of
our semi-unstructured EBFE method remained highly com-
parable to both the structured EBFE approach and estab-
lished COMMEMI project results (Fig. 8). The computed
MAPEs for phase, when referenced against the structured
mesh case (0.60 % for XY-polarization and 0.45 % for YX-
polarization), further underscore the negligible difference
in accuracy between the two meshing strategies (Fig. 9).
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The successful validation against these well-known bench-
marks confirms the reliability and robustness of our devel-
oped codes.

Furthermore, the flexibility of the semi-unstructured con-
formal hexahedral mesh was clearly demonstrated by its
ability to effectively manage and conform to complex to-
pographic features, as shown with the trapezoidal hill and
Khorate Plateau models. As depicted in Figs. 11 and 14, our
method efficiently handles irregular air-earth interfaces, of-
fering a more relaxed and optimized mesh density around
these critical areas. Unlike IE or SGFD methods, which
are often implemented on rectangular discretization, our ap-
proach’s adaptability makes it especially useful for realistic
geophysical applications involving complex subsurface and
surface geometries.
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6 Conclusion

This research successfully developed and validated a 3D MT
forward modeling approach utilizing an edge-based fi-
nite element (EBFE) method coupled with a novel semi-
unstructured conformal hexahedral mesh. This meshing
strategy, which combines unstructured quadrilaterals in the
horizontal plane with non-uniform vertical layering, proved
to be highly effective. Our numerical experiments consis-
tently demonstrated that this approach maintains high ac-
curacy, yielding results in excellent agreement with analyt-
ical solutions, established benchmark models, and compara-
tive studies against topographic models. The EBFE approach
achieves superior computational efficiency, notably by re-
quiring fewer nodes, elements, and non-zero entries in the
system matrix compared to conventional structured hexahe-
dral meshes, leading to reduced memory consumption and
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faster computation times. Additionally, our EBFE method
exhibits enhanced flexibility in handling complex geologi-
cal features, including topographic variations and localized
anomalous zones, through its adaptive mesh refinement ca-
pabilities without introducing unnecessary mesh density.

The reliability and performance demonstrated by our de-
veloped codes position this EBFE approach, featuring a
semi-unstructured conformal hexahedral mesh, as a power-
ful and practical tool for advanced 3D MT forward mod-
eling. Its ability to accurately and efficiently simulate MT
responses in complex geological environments makes it an
up-and-coming new option for future applications in 3D MT
inversion, facilitating a more realistic and cost-effective in-
terpretation of field data.

Solid Earth, 17, 13-33, 2026

Appendix A: Adaptive unstructured quadrilateral
surface Mesh algorithm with multi-scale refinement for
MT Modeling

The adaptive unstructured quadrilateral surface Mesh algo-
rithm with multi-scale refinement for MT modeling consists
of five main phases as follows.

Phase 1: Geometry definition and topological construc-
tion.

Phase 2: Multi-scale mesh sizing field formulation.

Phase 3: Unstructured quadrilateral mesh generation
with multiple strategies.

Phase 4: Surface projection to topography.

Phase 5: Quality analysis and validation.
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Al Phase 1: Geometry definition and topological
construction

This phase builds the geometry and topology within the do-
main.

Algorithm A1 Algorithm of geometry construction.

Require: Rectangular domain dimensions L, Ly, polygon
set P={Py,..., P}
Ensure: Geometric model with topological entities
1: Create domain boundary:
B= {(_Lx» _Ly)s (L, _Ly)a (L, Ly)s (—Lx, Ly)}
Create points {b1, by, b3, bg} from B
Create lines {l1, [», [3, 4} connecting boundary points
Create outer curve loop I'gyer from boundary lines
Process embedded polygons:
for each polygon P; € P do
Vi={vi1,...,vim} {Vertices of P;}
for each vertex v; ; € V; do
Round coordinates: vlf’j =round(v;,j/€) X €
Check vertex map for duplicates
if v; j hot in vertex map then
Create geometric point p; ;
Store v;’j — pj,j in vertex map
end if
end for
Create lines connecting polygon vertices
Create curve loop I'; from polygon lines
Create surface S; from I';
Store polygon curves for refinement field
: end for
: Create domain surface:
. Souter = PlaneSurface(Toyter, {—T1, - -
: Synchronize geometric model
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Note that the tolerance € is typically set to 10~> to han-
dle numerical precision in vertex coordinates while avoiding
unnecessary duplication.

A2 Phase 2: Multi-scale mesh sizing field formulation
This phase employs a unified background mesh sizing

field 2 (x) that combines the edge-based and point-based re-
finement strategies, defined by

h(x) = min(hedge ®), hpoint(x))’ (AD)

where hedge and hpoine are the combined edge-based and
point-based refinement fields, respectively.

A2.1 Edge-based refinement

For each polygon P; with target edge size h;.“i“ and transition
distance D;, the edge-based refinement at the polygon i is
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defined by

h?dge(x) — h;nin + (hmax _ h;nin)

X min (1, (@)1’> , (A2)
D;

where d; (x) is the distance from point x to polygon bound-
ary d P;, h™®* is the far-field mesh size, D; = « - h;ni“ is the
transition distance (« &~ 10-30), and p is the power parame-
ter controlling transition curvature (p = 1.5 for default). The
combined edge refinement field is defined by

hegge(x) = min nhfdge(x). (A3)

A2.2 Point-based refinement

For each refinement zone R; centered at ¢; with fine
size h?“"’, coarse size hjoarse, and radius r;, the point-based
refinement at point j is defined by

point _ .fine coarse fine
B o) = il (kS —h.,.)

X min <1, <—||x—cj||)”> ) (A4)
rj

The combined point refinement field is defined by

hpoingX) = min AP (x). (A5)
J m

,,,,,

Algorithm A2 Algorithm of background mesh field con-
struction.

Require: Polygon curves with target sizes, refinement zones

Ensure: Background sizing field /(x)

1: F = @ {Field list}

2: Edge refinement fields:

3: for each polygon P; with target size h;ni“ do

4 Di=a- h;nin { Transition distance }

5:  Create distance field d; = Distance(d P;)

6.  Create MathEval field:

7o fi =AM 4 (AMX — M) x min(1, (d;/D;)P)
8 F=FU{fi}

9: end for
10: Point refinement fields:
11: for each refinement zone R; at ¢; do
12:  Create distance field d; = Distance(c;)
13:  Create MathEval field:
14 fj= h?ne + (RS — h?ne) x min(1, (d;/r;)?)
15:  F=FU{f;}
16: end for
17: h(x) = min{f € F} {Combine all fields}
18: Set h(x) as background mesh
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A3 Phase 3: Unstructured quadrilateral mesh
generation with multiple strategies

Phase 3 attempts multiple meshing strategies sequentially
until a pure quadrilateral mesh is achieved. Each strategy
combines a base triangulation algorithm with quad recom-
bination.

Algorithm A3 Algorithm of multi-strategy unstructured
quadrilateral mesh generation.

Require: Geometric model, background field £ (x)
Ensure: Pure quadrilateral mesh M
1: Define strategy set S:
2: S1: Delaunay + Aggressive Optimization (algo=5, re-
comb=1, smooth=20, optimize=true)
3: S7: Frontal-Delaunay (algo=6, recomb=1, smooth=15,
optimize=true)
4: S3: Automatic (algo=2, recomb=1, smooth=10, opti-
mize=true)
for each strategy S; € S do
Clear existing mesh
Set mesh algorithm parameters from Sy
Set recombination options:
RecombineAll = 1
10:  RecombinationAlgorithm = 1 {Blossom algorithm}
11:  SubdivisionAlgorithm = 1 {All-quad}
12:  RecombineOptimizeTopology = 5
13:  RecombineNodeRepositioning = 1
14:  Set smoothing iterations from Sy
15:  Disable boundary/point/curvature sizing:
16:  CharacteristicLengthExtendFromBoundary = 0
17:  CharacteristicLengthFromPoints = 0
18:  CharacteristicLengthFromCurvature = 0
19:  Set element size bounds:
20:  CharacteristicLengthMin = min,-h?flin
21:  CharacteristicLengthMax = ™%
22:  Generate 2D mesh
23:  if mesh generation fails then
24: continue to next strategy
25:  endif
26:  Count elements: nquad, Ri» Riotal
27: g = nquad/Ntotal {Quad percentage}
28: if g = 1.0 then

R A

29: return mesh M {Success: 100 % quads}
30: else

31: continue to next strategy

32:  endif

33: end for

34: return failure {No strategy succeeded}
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A3.1 Mesh quality settings

The quality of the mesh depends on key parameters. The
main parameters for high-quality quad meshes are listed be-
low:

1. Recombination Algorithm: Blossom-quad algorithm
(Remacle et al., 2013) uses graph-matching theory to
pair triangles into quadrilaterals optimally.

2. Topology Optimization Level 5: Aggressive reconnec-
tion and node relocation.

3. Node Repositioning: This parameter enables nodes to
move to improve element quality.

4. Smoothing Iterations: Used for Laplacian smoothing.

5. Netgen Optimization: An additional optimization pass
for element quality.

A4 Phase 4: Surface projection to topography

Once the planar mesh is generated in phase 3, all nodes
are projected onto the topographic surface defined by z =
f(x,y). This approach preserves the mesh topology and el-
ement connectivity while adapting to varying terrain. In real
scenarios where elevation data is available, a standard inter-
polation method is used to estimate f(x,y) before projec-
tion.

Algorithm A4 Algorithm of surface projection.

Require: Planar mesh M, surface function f(x,y)
Ensure: Surface-conforming mesh M’

1: Get all node tags and coordinates

2: for each node i with coordinates (x;, y;, z;) do

3: 7, = f(x;i,y) {Compute surface elevation}
4:  if |z —z;| > € then

5 Update node coordinates to (x;, y;, Z;)

6: end if

7: end for

https://doi.org/10.5194/se-17-13-2026
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A5 Phase 5: Quality analysis and validation

Algorithm AS Algorithm of mesh quality analysis.

Require: Mesh M
Ensure: Quality metrics
1: Extract element connectivity and node coordinates
2: Initialize element size array H = []

3: for each quadrilateral element e do

4:  Get vertices {vq, v2, v3, U4}

5:  Compute edge lengths:
6.
7
8
9

£ =|lvjs1—vjll for j =1,2,3,4 (cyclic)
he = %Z?:le,/’ {Average edge length}
H=HU/{h,)
: Compute element center (x,, y.)
10: end for
11: Compute mesh statistics:
12: hpin = min(H), hmax = max(H), h= mean(H), o, =
std(H)
13: Size ratio (indicates the refinement effectiveness): y =
hmax/hmin
14: Report:
15: Element count, size range, mean, standard deviation
16: Size ratio

A size ratio y > 2 typically indicates successful multi-
scale refinement, while y > 10 demonstrates significant
adaptive refinement.
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