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Abstract. The quantification of 3D structural shapes is a
central goal across multiple scientific disciplines, serving
purposes such as image analysis and the precise geometric
characterization of objects. This study proposes a methodol-
ogy for the shape quantification based on a set of geometri-
cal parameters in 2D sections of 3D geological shapes and
establishes a set of synthetic regular geometries as bench-
mark models in 3D geomodeling approaches. The proposed
methodology is demonstrated on a number of simple geo-
metric bodies and the benchmark models to assess their ge-
ometrical dis-/similarity. The dimensions of the structures
are measured perpendicular and vertically to their horizon-
tal main axes on a fixed amount of cross sections. Further-
more, gradient and curvature measurements on these cross
sections are conducted. A subsequent multi-step data anal-
ysis provides insight into the main geometrical characteris-
tics of the structures and visualizes differences between vari-
ous datasets: Analysis of extension measurements reveals the
anisotropy of structures, the existence of overhangs and the
character of the top surface of an investigated structure. Ana-
lyzing the gradients and curvatures offers information on the
slopes of the lateral walls of the structure and its sphericity
as well as top surface. Kullback-Leibler divergence is uti-
lized to quantitatively compare individual parameter distri-
butions. Dimensionally reduced cluster analysis groups and

systematizes input structures based on the combined statisti-
cal parameters and serves for the identification of benchmark
models showing large geometrical similarity. It is expected
that the methodology and set of benchmark models will aid
in advances to model, analyse and compare subsurface struc-
tures based on sparse data, as our framework can be used for
an initial structural approximation prior to modeling, for the
setup of the interpolation method and for the falsification of
probabilistic model realizations after interpolation.

1 Introduction

1.1 Shape quantification and comparison — previous
studies and gaps in current research

The quantitative comparison of three-dimensional (3D) ob-
jects plays a crucial role in various scientific fields, includ-
ing geology, computer science and engineering (see e.g. Car-
done et al., 2003; Celenk, 1995; Wellmann and Caumon,
2018). Shape quantification aims at the numerical character-
ization of the geometry of objects, with their dis-/similarity
not solely being a mathematical metric but also being de-
pendent on the specific context (Laga et al., 2019). Accu-
rate shape quantification independent of the objects’ orien-
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tation is essential for applications such as geological model-
ing, resource management and structural analysis, where un-
derstanding the geometric properties of objects can inform
decision making and enhance predictive capabilities.

Shape quantification can be complex when dealing with
static 2D images of 3D bodies (see Laga et al., 2019), but
when rotatable objects in 2D or 3D are available, basic ge-
ometrical parameters can be applied. This is commonly pro-
posed in material science, where studies often focus on sand
grain analysis. In these studies, the range of shape param-
eters in 2D and 3D include (but are not restricted to) prin-
cipal dimensions, volumes, aspect ratios, radii, sphericities,
convexity, circularity, roundness and compactness (Altuhafi
et al., 2013; Cox and Budhu, 2008; Zhao and Wang, 2016),
that partially describe similar structural characteristics. Fur-
thermore, the shapes of aggregate particles in building ma-
terials have been analyzed using parameters like sphericity,
angularity, aspect ratios, gradients and radius indices (Al-
Rousan et al., 2007), and volcanic cinders have been as-
sessed looking at elongation, roundness, and roughness (Nie
et al., 2023). Similar analytical approaches can be valuable
to study the geometry of subsurface structures, although at
much larger scales and a higher structural complexity: The
shape of individual geo-bodies can be of interest for resource
exploration and storage of materials like for instance nuclear
waste. However, geoscientific studies applying similar pa-
rameters as used in the mentioned material-scientific stud-
ies are rare: Gardoll et al. (2000), for instance, determine
the aspect ratio, blockiness, elongation, compactness, com-
plexity, roundness, spreadness and squareness of geological
bodies from map data to assess the exploration potential for
orogenic ore deposits. This is a highly specialized applica-
tion though, usable for shallow horizontal data, but being
inapplicable to (sub-)vertical input data. Instead of relying
on geometrical parameters for the shape quantification of
a single geo-object, in geosciences advances for the shape
comparison of structural models are more common. These
are mainly related to uncertainty assessment and quantifi-
cation within geological models and often approached with
distance metrics. For instance, Schweizer et al. (2017) ap-
ply the Jaccard distance and the normalized city-block dis-
tance as measures for model dissimilarity, while Suzuki et
al. (2008) propose the usage of the Hausdorff distance for
the same purpose. In contrast, Lindsay et al. (2013) devel-
oped an approach for model comparison not relying on such
distance metrics: To determine the similarities between 101
realizations of a 3D composite geomodel based on the same
perturbed input dataset, a set of geometrical “geodiversity”
parameters (e.g. formation depth, volume, contact surface
curvature) are calculated on all stratigraphic units. The re-
sulting datasets are analyzed in their ranges to determine
endmember model realizations. Furthermore, principal com-
ponent analysis is employed to determine which geometri-
cal characteristics contribute most to spatial uncertainty and
to detect realization outliers for the combined geodiversity
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metrics. Despite the lack of geoscientific studies approach-
ing shape quantification with simple geometrical parameters,
the necessity of basic shape assessment in geomodeling is
recognized as most commonly used geomodeling software
are capable of obtaining simple geometrical properties like
surface areas, aspect ratios and volumes from modeled 3D
elements. However, these functionalities are error-prone de-
termining basic geometrical properties in varying directions,
like the extent along the horizontal main axes of a given ir-
regular structure — a property of interest for the exploration
of geo-bodies for storage purposes. An example of such an
application can be found in the storage of high-level nuclear
waste: In Germany, currently, intrusive salt bodies with vary-
ing internal structures as well as crystalline intrusives poten-
tially exhibiting lateral zonation are considered as potential
storage sites (BGE, 2020).

In addition to these limitations in the analysis of 3D geo-
bodies, geometrical characteristics of structures are hard to
quantify prior to geomodelling as well, when input data is
most commonly available in 1D (i.e. boreholes) and/or 2D
(e.g. seismic sections). At this early stage within a modeling
workflow, conceptual models are established based on sparse
data, local geological knowledge like the regional geological
history and universal geological knowledge such as common
laws and principles (Parquer et al., 2025) but also defined
spatial factors known to be related to certain variables of in-
terest like resources (Gardoll et al., 2000). The identification
of important geometrical features and the establishment or
selection of an appropriate conceptual model can have a con-
siderable impact on how realistic/reasonable model realiza-
tions are, thus influencing decision-making and the accuracy
of predictions (Bond et al., 2007). Therefore, approaches to
geometrically quantify available input data and to compare
datasets to established conceptual models are valuable.

Given this identified current lack of analytical capabili-
ties for the geometrical assessment of both unmodelled in-
put data as well as modeled structures whose evaluation shall
be direction-dependent, this study proposes a novel method-
ology for the quantitative description, comparison and sys-
tematization of datasets using a set of geometrical parame-
ters. While the method development will be visualized based
on explicitly modelled 3D geometries, it can be applied to
lower dimensional data as well. In the present study, the al-
gorithm is applied to a set of 36 3D geometries approxi-
mating subsurface structures of varying rock types, intended
to act as benchmark models in geomodeling approaches.
By demonstrating the quantification algorithm on these 3D
bodies called “standard geometries”, their geometrical dis-
/similarity is analyzed. Furthermore, the methodology has
been applied to a small set of basic 3D geometries (a cube,
an ellipsoid, a prism, a pyramid and a sphere) with distinc-
tive and expected divergence of geometrical properties. In
what follows, the concept of “standard geometries” initially
described by Carl et al. (2023) as a geometrical systemati-
zation to collect and catalogue subsurface geometries of the
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potential host rocks in the German site selection for a nu-
clear waste repository (halite rock, claystone and crystalline
rocks) is reviewed, adapted and extended. Please note that
the classification is purely geometric, even though the termi-
nology of subdividing categories can also be found in topo-
logical considerations (see for instance Thiele et al., 2016a,
b). For more details on the classification, please refer to Carl
et al. (2023). For real word examples of the standardized ge-
ometries, we refer to the publications mentioned in the re-
spective parts of the following paragraph.

Claystones and shales are clastic sedimentary rocks which
are commonly deposited conformably onto the underlying
strata (Selley, 2000; see also Fig. 1, upper section). The ap-
pearance of these conformable layers can vary considerably:
tilting and folding of a flat-lying structure can result in a
range of geometries varying from a flat layered appearance
that remain generally conformable (see Fig. 2, 4th and 9th
row for potential visual representation). By contrast, faulting,
erosion and folding can produce unconformable geometries
(see Fig. 2, 3rd and 4th row). Lateral stratigraphic pinchout is
conformable proximally but results in an unconformity at its
tip (see Fig. 2, 4th row). Salt rock (i.e., halite) is initially de-
posited conformably as an evaporitic sediment. Beyond the
undeformed, concordant, flat-layer geometry, halite struc-
tures are mainly categorized according to two principles: The
most common classification is based on the question whether
a structure remained concordant in respect to its overlying
rocks or intruded into its overburden (Hudec and Jackson,
2007; see Fig. 1, middle section). Following this system-
atization, salt anticlines, pillows and rollers are categorized
as concordant (see Fig. 2, 1st, Sth and 6th row), while salt
stocks, sheets and walls are intrusive bodies (see Fig. 2, 7th
to 11th row). In addition, a supplementary subdivision based
on the length-to-width ratio of salt bodies is discussed by
some authors (e.g., Hudec et al., 2011): Structures showing
a length-to-width ratio higher than 2 in map view (thus be-
ing considerably anisotropic) are being defined as anticlines
or walls, respectively. In contrast, rather isotropic geometries
with a length-to-width ratio smaller than 2 are the pillows,
stocks and, at least in their early evolutionary stages, sheets.
An additional aspect to consider when classifying salt struc-
tures is whether the halite is allochthonous or autochthonous.
Sheets are the only structural type categorizable as the for-
mer: If the bulb of a stock or wall is subhorizontally oriented
or moderately dipping above the autochthonous salt source
layer, this rock body can be defined as a salt sheet (Hudec and
Jackson, 2006). Crystalline rocks considered in the context of
the German site selection are plutonic rocks as well as high-
grade metamorphic rocks (migmatites and gneisses). As the
high-grade metamorphic rocks originate from a wide array of
protoliths, resulting in diverse geometries, the establishment
of a single, coherent classification for both groups is difficult.
For instance, orthogneisses and some migmatites originate
from plutonic protoliths such as granitoids and exhibit struc-
tural characteristics similar to their igneous predecessors. By
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contrast, paragneisses and the remaining migmatites derive
from various sedimentary sources. Their current shape de-
pends not only on the geometry of the original rock body but
also on the specific deformation history experienced during
metamorphism. Overall, most high-grade metamorphic rock
bodies in the German subsurface are laterally bounded by ei-
ther plutonic intrusions or fault zones and their top is either
bound by unconformities or represents the present-day to-
pography in most cases. Consequently, for the purposes of
our geometric approximation, we treat them as discordant
rock volumes of varying shape and size (see Fig. 1, lower
section and Fig. 2, 2nd, 6th and 8th to 9th row). For plutonic
rocks, our classification combines the shape of the bodies
with their relationship to the overlying strata (concordance
or discordance) (Philpotts and Ague, 2009; see Fig. 1, lower
section). Among discordant bodies with varying shape, two
size-based categories are distinguished (Fig. 2, 2nd, 6th and
8th to 9th row): batholiths (exceeding 100km? in areal ex-
tent) and stocks (smaller than 100 km?). Additionally, cylin-
drical discordant bodies, mainly representing feeder pipes for
ascending magma, are recognized (Fig. 2, 10th row). More-
over, two kinds of tabular geometries can be distinguished:
discordant dikes and predominantly concordant sills (Fig. 2,
3rd and 8th row). Beyond these, three concordant geometries
are noted: laccoliths (characterized by a roughly flat base and
a convex roof), lopoliths (defined by a roughly flat top and
a shallow convex base), and phacoliths (lens-shaped bodies
lacking any flat boundaries; Fig. 2, Sth row).

Building on these classifications, a collection of geomet-
rical end members (standard geometries) that approximate
the shape variations of the rock types was set up by Carl
et al. (2023). The geometries are intended to act as open
source benchmark models for structural geomodeling, as re-
alistic geological models depend on a clear definition of the
rock type and the 3D geometries of evaluated rocks. In its
initial form, each of the geometrical end members per po-
tential host rock type was represented by a single version
of a 3D body. However, as a large share of these initial
end members can be represented by a multitude of possi-
ble regular geometrical representations, we designed alter-
native realizations after reviewing literature: Subsurface salt
structures have been created after Hudec and Jackson (2007),
Hudec et al. (2011) and Jackson and Talbot (1991), clay-
stone geometries have been inspired by Selley (2000) and
Nichols (2009), and crystalline rock geometries are based on
Markl (2015) and Winter (2013). Additional inspiration was
drawn from studying open source 3D models of real subsur-
face structures (Dutch subsurface models from TNO, avail-
able at https://www.dinoloket.nl/en/subsurface-models/map,
last access: 21 April 2025, and Australian subsurface mod-
els from Geoscience Australia, available at https://portal.ga.
gov.au/3d, last access: 21 April 2025). The standard geome-
tries were created in blender (https://www.blender.org/, last
access: 16 March 2025) and are visible in Fig. 2. Some stan-
dard geometries are non-unique for rock types but can be
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used in different environments, e.g. stocks/batholiths for salt
and crystalline intrusions. This is indicated in the model ti-
tles, as in these cases, the names of different structures are
separated by an underscore. Blanks in model names are re-
placed with a period, and in brackets, additional geometrical
information are given in some cases, such as the lateral char-
acter of the top of a structure (e.g. hourglass-shape) or the
roundness of the top surface (rounded or flattened).

1.2 Geological description of the example model
“Altenbruch-Beverstedt”

The methodology presented herein is illustrated exemplar-
ily on the mesh of the intrusive salt structure Altenbruch-
Beverstedt (Lower Saxony, Germany; see Fig. 3). Tectoni-
cally, it is located within the roughly N-S striking Gliickstadt
Graben, developing since the Triassic (Scheck-Wenderoth et
al., 2008). The considerably anisotropic salt wall is the re-
sult of a complex evolutionary history especially through-
out the Mesozoic, as variations in the tectonic regime re-
peatedly led to shifts from subsidence to uplift in the sub-
basins and grabens of the North German Basin (Maystrenko
et al., 2008; Scheck-Wenderoth et al., 2008; Stollhofen et al.,
2008). Within the Gliickstadt Graben, the largest salt walls of
the German subsurface can be found (Scheck-Wenderoth et
al., 2008). The structure Altenbruch-Beverstedt represents a
fitting example model for the methodology presented herein,
due to its anisotropic, yet complex shape. The anisotropy vi-
sualizes well the cross sections created in the first part of the
segmentation approach, while the sinusoidal shape illustrates
well the segmented nature of the second set of sections (see
Sect. 2.1).

1.3 Content, motivation and distinction of this study

The proposed methodology allows for the quantitative de-
scription, comparison and systematization of explicitly mod-
elled structures and lower dimensional input data using a set
of geometrical parameters. The horizontal and vertical di-
mensions as well as gradients and curvatures of 3D geome-
tries are measured on vertical cross sections oriented perpen-
dicular to the two horizontal main axes of the structures. For
2D inputs (such as 2D geophysical cross sections), alignment
of sections is omitted. The resulting datasets are analyzed sta-
tistically, providing insight into the main geometrical charac-
teristics of the input structures: the data analysis yields infor-
mation about the anisotropy of structures, the potential ex-
istence of overhangs, the sphericity and the character of the
lateral walls as well as top surface of evaluated structures.
Furthermore, K-means clustering is used to systematize the
datasets based on the measured parameters. Given 3D input,
the setup of cross sections perpendicular to the main axes en-
sures, that the input structures are covered thoroughly with
regular-spaced measurements that follow the 3D contours of
the respective geometry. The method is applied to the stan-
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dard geometries serving as benchmark geometries for struc-
tural modeling of geo-bodies. Applying the method to these
models serves two purposes: While the functionality of the
approach is validated, we also assess quantitatively, whether
the developed benchmark models are geometrically dissim-
ilar or whether some of them can be consolidated for their
purpose. Our quantification method represents a rather sim-
plistic approximation approach for the quantitative compar-
ison of 3D structures and lower dimensional datasets that
can reproduce the main geometrical characteristics of input
datasets fast but also enhances the interpretability of results,
making them accessible to a broader audience. Our method
cannot be used to quantitatively compare implicit represen-
tations of structures directly from a scalar field, though.

As recognized in Sect. 1.1, similar approaches are rare in
general and particularly in geosciences as quantitative ap-
proaches commonly aim at uncertainty assessment. In com-
puter sciences, however, Celenk (1995) describes a method
involving the alignment of equally-spaced cross sections in
two objects via the computation of their respective horizontal
main axes and subsequent section comparison. However, this
method is more approximating compared to the proposed ap-
proach, as sections are not segmented to align with the con-
tours of the structures.

The proposed method is intended to be utilized in a ge-
omodeling workflow at different stages. (1) Given a sparse
dataset including for instance borehole data and 2D seis-
mics of limited quantity, the method can be initially used
for a first structural approximation of a targeted geo-body.
In the specific example of the German site selection, where
most structurally complex bodies have already been excluded
from the considerations (BGE, 2020), this approximation can
be achieved using the set of standard geometries that is es-
tablished in this study. (2) Structural conceptualization and
model approximation can also facilitate hyper parameter se-
lection for subsequent interpolation (Wellmann and Caumon,
2018). (3) After the creation of a set of stochastic model real-
izations, our quantification method and the benchmark mod-
els can be applied again in combination with the input data
to limit the realizations to the geometrically reasonable ones.
However, it has to be noted that this step would be rather
time-consuming for large amounts of realizations. Here, the
framework for automatic consistency checking of 3D geo-
logical models recently introduced by Parquer et al. (2025)
represents a more sophisticated approach. Still, the proposed
framework could reveal model realizations not respecting the
conceptual model, which could prompt questions about the
assumed geological situation and/or subjective bias, as stud-
ied for instance by Bond et al. (2007, 2015). (4) Lastly, the
proposed framework can be used for the direction-dependent
quantification of modeled structures to assess their potential
capacity for material storage (BGE, 2023).

The paper is structured as follows: Section 2 outlines the
methodology employed in this study, detailing the developed
segmentation and measurement algorithm. Section 3 presents
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claystone/shale
|
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batholith [ phacolith | [Taccolith | lopolith

Figure 1. Geometrical systematization of the rock types considered for the establishment of the catalogue of benchmark models (“standard

geometries”). Adapted after Carl et al. (2023).

the results of applying the methodology to the benchmark
models and a single subsurface dataset, while Sect. 4 dis-
cusses the implications of these findings in the context of
existing research. Finally, Sect. 5 concludes with future re-
search directions.

2  Methods
2.1 Segmentation and measurement algorithm

For our approach, we aimed at a high grade of automation
and easy integration in a model analysis process. The method
requires the dataset to either be a mesh with extractable ver-
tices or a data frame of vertex coordinates themselves (the
system currently only supports .vtk file formats). In what
follows, the functionality of the method is explained given
a 3D input mesh, but skipping the cross-section generation,
the algorithm is also usable for existing cross-sectional data
(e.g. geophysical data).

To retrieve characteristic statistics, a geometrical segmen-
tation algorithm (see e.g. Shamir, 2008) has been established,
which first discretizes the 3D model into 22 equidistant cross
sections with the normal direction parallel to the longer hor-
izontal axis of the mesh’s bounding box. As measurements
are conducted perpendicular to the two horizontal main axes
of the structures, two sets of cross sections need to be de-
termined separately. Orientation of sections normal to the
longitudinal axis of the structure (first direction) have been
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determined by a minimization of the cross-sectional area, as
sections are sequentially rotated (Stephenson, 2018; Fig. 4,
Part 1). The cross sections normal to the first set are set up by
discretizing the established sections vertically, then first con-
necting raster lines of consecutive sections and lastly the re-
sulting segments (Fig. 4, Part 3). After their respective setup,
the cross sections of both directions are corrected automat-
ically and/or manually for artifacts (Fig. 4, Part 2). Exten-
sional measurements are conducted on each cross section at
5 equidistant transects (Fig. 4, Part 4). Since the very first
and last cross section of both directions are excluded from
the measurements as they would (undesirably) slice irregular
polygons several times, 20 intervals are considered for every
input structure. This results in 100 measurements being con-
ducted respectively for each of the two horizontal parameters
as well as 200 values for the vertical extent. Please note, that
the assumption that a cross section of the first set is perpen-
dicular to the longitudinal horizontal main axis only applies
to the center point of the given section. The same limitation
applies to a given cross sectional segment (trapezoidal seg-
ment) of an orthogonal section and the secondary horizontal
main axis.

In addition to the extensional measurements, gradient and
curvature calculations are carried out (see Fig. 4, Part 4).
Both parameters are determined on all cross sections between
consecutive vertices of a cross section. The curvature in 2D
is defined as the reciprocal of the circumradius of a trian-
gle. Therefore, it is calculated between three consecutive ver-
tices in either the xz or yz plane, by first determining the
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Figure 2. Overview of regular synthetic models used in this study. The structures (apart from the cube, ellipsoid, prism, pyramid and sphere)

are meant to represent geometrical end members of different rock types (“standard geometries”). For information on the naming convention,
please refer to the end of Sect. 1.1. The size of the models was chosen arbitrarily.
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Figure 3. 3D model of Altenbruch-Beverstedt, taken from BGR et al. (2022). Coordinate system: EPSG:4647.

side lengths (a, b and c) of the triangle between the points,
then the semiperimeter of the triangle and the area through
Heron’s formula, before calculating the curvature as the re-
ciprocal of the circumradius of the triangle through:

4 x area
curvature = ————— ()

axbxc
The selected method measuring the lateral extents of input
meshes normal to their horizontal main axes (see Fig. Ala
in Appendix A) is advantageous over approaches analyz-
ing an input body using parallel sections as applied in vari-
ous medical imaging techniques like for instance MRI (see
e.g. Meyer-Baese and Schmid, 2014). Such an approach
would have resulted in a dissimilar amount of output mea-
surements for the two horizontal extents for many input
structures as well as for different structures overall, both in
case of a uniform regular grid for all datasets (Fig. A1b and
e) as well as an individual regular grid per dataset (Fig. Alc
and f). Only the usage of an anisotropic grid, depending on
the bounds of the input mesh, would have resulted in an equal
amount of measurements per horizontal direction (Fig. Ald
and g). However, using a supplementary grid would have
generally resulted in the problem, that irregular structures
would have often been cut several times along a horizontal
measuring line. This would have created subordinate poly-
gons that are completely disconnected from each other (see
red lines in Fig. Alb).

In contrast, covering every input structure with a constant
number of measurements as also applied similarly by Celenk
(1995) comes with an advantage and a disadvantage: while
it ensures that the quantification of input datasets with our
method is scale-independent as datasets of different struc-
tures have the same amount of data, the geometrical spatial
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variability of larger bodies might not be captured equally
well as the shape of smaller ones. The potential impact of
this matter is currently being analyzed in a follow-up study
that applies the methodology to a database of over 300 struc-
tural models of subsurface structures from various geological
settings. The question whether structures shall be represented
by equal or dissimilar data quantities also concerns the gradi-
ent and curvature data: Orthogonal sections are created from
a set of 19 trapezoidal segments (i.e. 40 vertices), while cross
sections in the first direction are based on a varying, most of-
ten higher number of vertices. As gradients and curvatures
are being calculated between neighboring vertices, the po-
tentially larger edges between vertices in the orthogonal sec-
tions lead to a less-rounded appearance of the cross sections,
directly affecting the values of both parameters.

2.2 Data analysis

The geometrical measurements were combined into a
database, analyzed by the first three statistical moments,
standard deviation and median and visualized as histograms
and cumulative distribution functions (CDF’s). Comparative
analyses of data distributions and a cluster analysis were car-
ried out on the measured data, to demonstrate that the tested
3D bodies can be quantitatively compared based on the sta-
tistical distributions of geometrical properties and to assess
their dis-/similarity.

Semi-quantitative comparison of histograms was done for
the statistical data, analyzing the vertical extension measures,
combined horizontal extension measurements, the gradients
and curvatures. For gradient data, the frequency of infinite
values was counted separately, since they represent vertical
segments between two consecutive vertices. As those values
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tial cross sections
3: Output: cross sections rotated perpendicular to longer horizontal main axis by minimization of cross section area
4: for each initial section do

5 for each of 38 rotation steps (0° to 180° in 5° increments) do

6 Compute rotation angle (theta)

7: Apply rotation matrix to original normal ([1,0,0] or [0,1,0]) to get rotated normal
8 end for

9 for each rotated normal do

10: Slice mesh using rotated normal and center point of section

11: Retrieve vertices from rotated slice

12: Project cross section into YZ plane to calculate area

13: Compute centroid of this projected section

14: Sort points by angle relative to centroid

15: Compute area of polygon using sorted points and shoelace formula
16: end for

17: end for

18:

19: Part 2:

20: Input: rotated cross sections
21: Output: rotated cross sections after artifact correction

22: Step 1:

23: for each rotated cross section do

24: set vertex with lowest z-value as vertex index=0

25: perform normalized nearest neighbour algorithm

26: end for

27:

28: Step 2:

29: for each section after normalized nearest neighbour algorithm do
30: apply correction criterion

31: if correction criterion = True then

32: initialize manual vertex order correction in plotly.dash

33: for each section with artifacts do

34: correct vertex order by clicking on previous (correct) vertex then incorrect vertex
35: end for

36: end if

37: end for

38:

39: Part 3:

40: Input: corrected cross sections of 1st direction

41: Output: corrected cross sections of orthogonal direction
42: for each section of 1st direction do

43: raster section vertically into 22 vertical lines

44: for each vertical line do

45: retrieve X, Y and Zmin+Zmax - coordinates
46: end for

47: end for

48:

49: for 2 consecutive sections of 1st direction do
50: for all vertical lines in both sections do

51: extract X, Y and Zmin+Zmax (=2 points per section)
52: combine 4 points into trapezoidal segment

53: end for

54: end for

55:

56: for every index of vertical lines do
57: combine trapezoidal segments to assemble uncorrected orthogonal section
58: end for

60: for uncorrected cross sections of orthogonal direction
61: repeat Part 2

63: Part 4:

64: Input: all cross sections

65: Output: horizontal and vertical dimensional measurements

66: for each cross section of 1st direction except index 0 & 21 do

67: rotate & project section onto YZ plane

68: create 5 horizontal and vertical measurement transects

69: measure horizontal and vertical dimensions between intersections of transect and polygon
70: end for

72: for each cross section of orthogonal direction except index 0 & 21 do

73: rescale sections (corresponds to rotation & projection onto YZ plane)

74: create 5 horizontal and vertical measurement transects

75: measure horizontal and vertical dimensions between intersections of transect and polygon
76: end for

78: for all cross sections do
79: compute gradients
80: compute curvatures
81: end for

Figure 4. Pseudocode of the algorithm that creates the cross sections of both directions and measures the dimensional extents, gradients and
curvatures on these sections. For further information, see Sect. 2.
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cannot be plotted together with the remaining data as a sep-
arate bin, their frequency was visualized as a horizontal line.
For gradients and curvatures, overflow bins were established:
for the gradient data at the 5th and 95th percentile and for the
curvatures only at the 95th percentile. This aimed at facili-
tating the interpretability of the histograms, since for most
datasets, a small percentage of values (< 5 %) was consid-
erably larger than the rest, thereby spreading the measure-
ments to a large number of additional histogram bins. The
Kullback-Leibler divergence (Kullback and Leibler, 1951)
was calculated on normalized data between the individual
distributions of the geometrical parameters of the input mod-
els, for quantification of the similarity between the structures.
Cluster analysis followed data normalization to a range of
—1 to 1 and principal component analysis (PCA; see Jolliffe,
2002). As variables (“features”) for PCA, 20 percentiles of
the probability density functions (PDF’s) of the combined
horizontal data, vertical data, gradients and curvatures were
chosen. As the first two principle components only explained
40 % of the variance, a matrix plot for the principal com-
ponents 1 to 12 was assessed initially, to cover 90 % of the
variance. A feature angle matrix was then used to reduce the
number of principal components in the cluster matrix plot.
The number of clusters used in the K-means clustering algo-
rithm was determined using an elbow plot and the silhouette
score.

3 Results

Results of the segmentation and measurement algorithm as
well as the data analysis are demonstrated using a sphere and
the intrusive structure “Altenbruch-Beverstedt” (model taken
from BGR et al., 2022). Subsequently, the results of the clus-
ter analysis are presented.

3.1 Segmentation and measurement algorithm

The initial subdivision of the input mesh (Fig. 5a and b) is
followed by the stepwise rotation of the initial cross sections.
The respective rotation step showing the minimal cross-
sectional area is optimally oriented normal to the longitudi-
nal main axis of the structure (first direction). Optimal orien-
tation of all sections of the first direction of the sphere cor-
responds to 0° rotation, unlike when running the algorithm
on an irregular mesh like Altenbruch-Beverstedt. This is the
case due to the regularity and symmetry of all test models
of this study. After subsequent artifact correction (Fig. Sc
and d), the second set of cross sections is assembled from
trapezoidal segments (for illustration, a subset of sections is
shown in Fig. 5e and f).

Following potential artifact corrections of the orthogonal
sections, both sets of cross sections are finalized (Fig. 5g and
h) and extensional measurements as well as gradient and cur-
vature calculations are carried out (Fig. 5i and j). The com-
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putational power required by the algorithm is low (runtime
without varying artifact corrections: ca. 60s, using as the
CPU an AMD Ryzen 7 PRO 5850U at max. 50 % capacity
at 3.5 GHz speed and the integrated GPU at 0.6 GB usage).

3.2 Data analysis

The results of the first analysis step, the first three statis-
tical moments, standard deviation and median per param-
eter and the data visualized as histograms and CDF’s, are
seen in Table 1 and Fig. 6, respectively. The size of the
sphere was chosen arbitrarily, as the subsequent Kullback-
Leibler divergence and cluster analysis are based on normal-
ized data. Both the statistical moments for the sphere and
the distributions in Fig. 6 (left column) reveal differences
for the three parameters, although individual extents should
be the same in all three dimensions, if a sphere would be
measured equally in all directions. This is due to compro-
mises of the algorithm ensuring its universal applicability.
For Altenbruch-Beverstedt, the large variance and standard
deviation of the combined horizontal data and the difference
between the mean values of both individual horizontal pa-
rameters reflect the strong anisotropy of the structure, while
the statistics for the vertical data indicate a moderate varia-
tion in vertical measurements.

Gradient and curvature histograms of the example cases
are visible in Fig. 7. For the sphere, the distribution of the
gradient histogram is symmetric (Fig. 7a). The curvature his-
togram (Fig. 7¢) shows a prevalence of very small values and
subordinate maxima around 0.1, 0.2 and in the overflow bin
that contains 394 values (5 % of all data) above 0.37. For
Altenbruch-Beverstedt, the gradient distribution is asymmet-
ric and the number of infinite gradients is higher (Fig. 7b).
In comparison to the curvature distribution of the sphere, the
curvature data (Fig. 7d) is monomodal apart from the over-
flow bin.

In general, analyzing the data distributions of a structure
visually already reproduces distinct geometrical character-
istics of an input dataset. The distribution of the combined
horizontal data indicates whether a pronounced anisotropy
is present for an analyzed structure: if the data is sepa-
rated into two clearly distinguishable subordinate distribu-
tions (see Fig. 8a), the geometry is considerably anisotropic
(the farther apart the two maxima, the more anisotropic a
body is). Caution is advised for a distribution with two close
maxima (Fig. 8b): this could be the consequence of the in-
flated extent in the orthogonal direction (see Sect. 4.2). An-
alyzing the combined horizontal data and the vertical data
together reveals whether a structure shows substantial vari-
ations in its horizontal extent over its vertical range. Such
a shape, in the subsurface more often present as overhangs
rather than as upward tapering, is indicated by the simultane-
ous presence of multimodal distributions for both parameters
(Fig. 8c and d). The vertical data distribution also charac-
terizes the top surface of a geometry: if the distribution is
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Figure 5. Visual representation of the segmentation and measurement algorithm for a sphere model (left column) and the German intrusive
salt structure “Altenbruch-Beverstedt” (right). (a, b) initial segmentation of the input meshes. (¢, d) Plotly.dash app for vertex-order correc-

tion. (e, f) Subset of orthogonal cross sections. (g, h) Coverage of input structure with cross sections (top view). (i, j) Example of extensional
measurement results.
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Table 1. (a) First three statistical moments, standard deviation and median per parameter for the sphere model (note: the dimensions of the
sphere are chosen arbitrarily). (b) First three statistical moments, standard deviation and median per parameter for the model of the real
subsurface structure (Altenbruch-Beverstedt). Statistics for Altenbruch-Beverstedt reflect the strong anisotropy of the structure.

(a) sphere mean [m]  variance [mz] std_dev [m] skew median [m]
Horizontal length 14 13 4 04 14
Horizontal length orthogonal 18 4 2 0 18
Vertical length 14 13 4 —05 15
Horizontal data combined 16 13 4 -0.8 17
(b) Altenbruch-Beverstedt mean [m] variance [m2] std_dev [m] skew median [m]
Horizontal length 3825 635352 797 0.2 3795
Horizontal length orthogonal 48 644 8956682 2993 22 49 845
Vertical length 4766 486 158 697 -29 4856
Horizontal data combined 26235 5.07 x 108 22516  0.02 21696
monomodal, with (a) the maximum being the bin represent- horizontal data, “wall(highly.anisotropic_hourglass-

ing the highest measurements, and (b) the frequency in lower
bins being substantially smaller, then the presence of a flat
top surface is indicated. The existence of a flat top surface
can be verified by analyzing the gradient and curvature data:
a high frequency of very small measurements for both pa-
rameters supports such an analysis (Fig. 8e—g). Gradient data
also indicates the steepness of lateral surfaces of a body: as
high and infinite gradient data stem from steep to vertical
faces of a structure, the presence of steep-dipping lateral sur-
faces can be recognized (Fig. 8h). Combining the inferences
from analyzing top and lateral surfaces therefore provides in-
sight into the overall sphericity of an input dataset: a more
spherical structure is represented by larger quantities of in-
termediate gradient measurements and of moderate to high
curvature data (Fig. 8i and j).

The Kullback-Leibler (KL-)divergence (Kullback and
Leibler, 1951) was calculated to quantitatively determine the
similarity between the tested geometries. The distributions
of the six parameters (the individual horizontal extents along
both horizontal main axes, the combined horizontal data,
the vertical data, gradients and curvatures) were compared
between the models. The similarity of two distributions
is larger, the smaller the KL divergence is, with a value
of 0 indicating equality of the distributions (obtained for
instance when comparing a structure with itself). The result
of the calculation of the individual KL divergences for the
example cases is visualized in Fig. 9. For the sphere, the
most similar models regarding the respective distributions of
the six parameters are the “sheet(cylindric_rounded)” for the
horizontal data of the first direction, the “prism” for the or-
thogonal horizontal data, the “batholithV3” for the combined
horizontal data, the “anticline_wall(rounded)_batholithV1”
for the vertical data, the “phacolith” model for the gradients
and the “ellipsoid” for the curvatures (compare Fig. 2
for the model appearances). For Altenbruch-Beverstedt,
“batholithV6” is most similar regarding the horizontal
data of the first direction, “roller” for the orthogonal
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shape_flattened)” for the combined horizontal data,
“wall(highly.anisotropic_hourglass-shape_rounded)” for the
vertical data, “pillow_flattened” for the gradients and “roller”
for the curvatures. In addition to KL divergences of individ-
ual parameters, an averaged KL divergence was calculated:
by taking the mean of the values between two models, the
overall dis-/similarity between models was assessed. Ac-
cording to the averaged KL divergence, the sphere is closest
to the standard geometry “pillow(rounded)_batholithV4”,
while Altenbruch-Beverstedt is best approximated by the
“wall(highly.anisotropic_hourglass-shape_rounded)”. How-
ever, informational content of this parameter is limited, as
there is no indication regarding which parameters two com-
pared structures are most similar or differ more. Therefore,
principal component analysis and K -means clustering have
been employed as well, providing this information based on
all combined parameters.

In general, values of KL divergence show an error for the
gradient distributions: infinite values had to be converted to
the highest finite gradient value of a given dataset to enable
the computation, inflating the highest bin. Furthermore, the
large variance of curvature data for most input models (see
for example Fig. 9f and I and Sect. 4.2) decreases the applica-
bility of the KL divergence for that parameter, as most mod-
els show very similar normalized distributions. To assess the
impact of the large variance on individual KL divergences of
curvature data and smallest averaged KL divergences, they
were also calculated using a 95th percentile overflow bin
(see Table 2). Smallest KL divergences for the curvatures of
the two example models are notably higher, especially for
the sphere, reflecting the dissimilarity of data distributions
when applying the filter (columns 1 and 2). The impact on
the smallest averaged KL divergence (columns 3 and 4) is
smaller, yet still considerable.
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Figure 6. Data distributions and cumulative distribution functions (CDF’s) for the extensional parameters. Left column: sphere, right column:
Altenbruch-Beverstedt. (a, b) Horizontal data from the first direction. (¢, d) Horizontal data from the orthogonal direction. (e, f) Combined

horizontal data. (g, h) Vertical data.
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Figure 7. Gradient and curvature data for the sphere (a, ¢) and Altenbruch-Beverstedt (b, d). Amount of data in overflow bins: Gradient
diagram (sphere) 384 values (4.8 % of all data), Curvature diagram (sphere) 394 values (5 %); Gradient diagram (Altenbruch-Beverstedt)

112 values (4.6 %); Curvature diagram 101 values (4.1 %).

Table 2. Comparison of KL divergences with and without the usage of a 95th percentile overflow bin for the curvature distributions.

structure smallest KL divergence  smallest KL divergence  smallest averaged KL smallest averaged KL
for curvature without for curvature with divergence for all divergence for all
overflow bin overflow bin properties without overflow  properties with
in curvature overflow in curvature
sphere 0.0054 (“ellipsoid”) 0.16 0.45 (“pillow(rounded) 0.56 (“batholithV3”)
(“wall(highly.anisotropic _batholithV4”)
_cylindric_rounded)”)
Altenbruch-Beverstedt  0.036 (’roller”) 0.05 (“batholithV5™) 1.2 1.3
(“wall(highly.anisotropic (“wall(highly.anisotropic
_hourglass- _hourglass-

shape_rounded)”) shape_rounded)”)

3.3 Cluster analysis

Cluster analysis on all measured data of the regular geome-
tries resulted in 7 clusters considering the combined analysis
of the elbow plot and silhouette score (Fig. 10b). With the
first two principle components (PC’s) only explaining 40 %
of the variance (see Fig. 10a), the number of PC’s necessary
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to cover more than 90 % of the variance was determined to be
12. A feature angle matrix (Fig. A2) was computed to check
the dependencies between the percentiles of the PDF’s. As
a strong dependency was identified within several groups of
features, the principal component matrix plot (Fig. 11) was
limited to the first six PC’s. The feature contribution ma-
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Figure 8. Analysis of data distributions to reproduce geometric characteristics of input models. Please compare with model appearances in
Fig. 2. (a) Combined horizontal data of “wall(highly.anisotropic_hourglass-shape_rounded)”, reflecting strong anisotropy. (b) Combined hor-
izontal data of “batholithV3”, incorrectly indicating slight anisotropy. (¢, d) Combined horizontal data and vertical data of “sheet(hourglass-
shape_rounded)”, indicating presence of overhangs. (e—-g) Vertical data, gradients and curvatures of “batholithV5”, revealing the presence of
a flat top surface. (h) Gradient data of “volcanic.pipe”, reflecting the prominence of vertical lateral walls. (i, j) Gradient and curvature data
of “pillow(rounded)_batholithV4”, showing the spherical character of the input model.
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Figure 9. Visualized Kullback-Leibler divergences. (a—f) sphere, (g-1) Altenbruch-Beverstedt. Visualized is the most similar data distribution
(orange) compared to the respective distribution of the two example models (blue). The calculated Kullback-Leibler divergences are noted

in the headlines of individual figures.

trix (Fig. 10c) reveals the contribution (“loadings”) of the
binned PDF’s to the principal components, with bright yel-
lowish colors indicating a strong positive contribution and
dark blue colors a substantial negative contribution. In the
contribution matrix, percentiles 0 to 19 represent the PDF of
the combined horizontal data, followed by the vertical data
(20 to 39), gradients (40 to 59) and curvatures (60 to 79).
The PC1 vs. PC2 cluster plot is visible in Fig. 11a. Positive
contributions to PC1 are dominated by the 50 % to 55 % bins
of the vertical data and gradient data, while there is no per-
centile with a strong negative contribution to PC1. This effec-
tively separates the bluish-green cluster at high positive PC1
scores from the rest of the data. All four models (“flat.1ayer”,
“sill”, “cube” and “prism”), share a distinct geometrical sim-
ilarity: When segmenting them with our algorithm, cross sec-
tions are always flat at the top and of exactly the same vertical
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extent throughout the entire structure. This results in a step-
wise appearance of the respective PDF’s, with the step being
in the middle of the functions. For PC2, the 45 % to 50 %
gradient bin has the highest positive loading, while there are
stronger negative loadings for the 0 % to 5 % as well as 95 %
to 100 % gradient bins. This separates the models of the black
cluster at highest positive PC2 scores and mainly the blue
cluster at high negative PC2 scores. Therefore, models of
the black cluster are characterized by the presence of many
low to moderately inclined surfaces in a geometry (depend-
ing on the variance in a data distribution) and an overall more
rounded appearance (see e.g. the highlighted black example
model “pillow(rounded)_batholithV4” in Fig. 11a). Mean-
while, the blue models and other models at high negative PC2
scores are characterized by the abundance of steep-dipping
to vertical surfaces. Thus, PC2 is an indicator for the overall
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steepness of the lateral parts of a structure or, on the other
hand, its sphericity.

The PC3 vs. PC4 cluster plot is shown in Fig. 11b. For
PC3, large positive contributions are spread among the 0 %
to 5 % and 95 % to 100 % horizontal bins as well as the 95 %
to 100 % vertical bin and the 0% to 5 % and 45 % to 50 %
gradient bins, while the only considerable negative loading is
exhibited by the 10 % to 15 % gradient bin. Datasets at very
positive PC3 scores belong to the vermilion and blue clus-
ters. The largest negative PC3 scores are seen for the reddish-
purple cluster. Very positive PC3 scores indicate anisotropy,
rather flat top surfaces and steep-dipping to vertical lateral
walls (see e.g. the highlighted vermilion “dyke”). In contrast,
however, datasets at largest negative PC3 scores, cannot be
linked to very high data percentages in that 10% to 15 %
gradient bin; its loading (—0.27) not being the main cause of
the observed negative PC3 scores. PC4 shows considerable
positive loadings for the 50 % to 55 % bin of the vertical data
and the 0% to 5 % and 95 % to 100 % gradient bins. Mean-
while, large negative loadings are seen for the 0 % to 5 % and
95 % to 100 % horizontal bins, the 95 % to 100 % vertical
bin and the 80 % to 85 % gradient bin. These contributions
mainly drive the differentiation of the reddish-purple and ver-
milion clusters (negative PC4 scores) from the other clusters
apart from some sky-blue models. Since the horizontal and
vertical bins contributing very negatively are the same hor-
izontal and vertical bins contributing particularly positively
to PC3, it can be deduced that the overall position of the ver-
milion models in the PC3 vs. PC4 diagram is more driven by
these horizontal and vertical bins. Meanwhile, the datasets
from the reddish-purple and sky-blue models are compara-
tively influenced more by the 80 % to 85 % gradient bin also
showing a considerable negative loading. Still, most datasets
from these clusters at negative PC4 scores can be consid-
ered as rather anisotropic geometries with mainly steeper
(but not vertical) lateral walls, while models at higher pos-
itive PC4 scores exhibit uniform vertical extents and steep-
dipping to vertical lateral walls. This explains the position of
the isolated blue model at highest positive PC4 scores (“vol-
canic.pipe”; highlighted in Fig. 11b; see also Fig. 8h for the
gradient distribution), completing the separation of the blue
cluster from the rest of the data.

The cluster plot of PC5 vs. PC6 can be seen in Fig. 11c.
PC5 shows strong positive contributions for the 0% to 5 %
vertical bin and the 50 % to 55 % and 95 % to 100 % gradient
bins, while stronger negative loadings are given by the 50 %
to 55 % vertical bin and the 0% to 5 % gradient bin. This
separates the majority of the sky-blue cluster (highest posi-
tive PC5 scores) from the rest of the datasets. As this corre-
sponds to the first appearance of the 0 % to 5 % vertical bin
among considerable contributing bins, most of the associated
models are characterized by widespread low vertical extents
and few much larger ones, as seen in overhang configura-
tions (for example, see the model “laccolith” in Fig. 2). PC6
is mainly influenced by the gradient data, where the 10 %
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to 15 % bin contributes the most negatively and the 80 % to
85 % bin contributes positively. Once again (as for PC3), the
10 % to 15 % gradient bin, however, does not seem to be the
main reason for the separation of the reddish-purple cluster
at very negative PC6 scores. Similarly, the sky-blue models
at higher positive PC6 scores do not exhibit particularly large
high percentages in the respective bin.

The overall cluster results validate that the flat and/or
cuboidal geometries (vertical extent <horizontal extent
and/or exclusively straight lateral surfaces) mostly differ
considerably from the other structures designed to rep-
resent intrusive subsurface bodies: the flat/cuboidal ge-
ometries are mainly distributed among the bluish-green,
blue and vermilion clusters (see Fig. 11). As recognized
above, these three clusters can be differentiated from the
other models within the first four PC’s. Only the “later-
ally.eroded.layer_pinchout” is located outside, in the sky-
blue cluster, although representing a flat geometry. The K-
means cluster analysis furthermore indicates that some stan-
dard geometries are similar across all parameters. Therefore,
it was assessed whether certain standard geometries are re-
dundant to simplify the benchmark selection process. The
pairs of flattened and rounded versions show high similari-
ties, leading to the exclusion of the flattened models while re-
taining the “uneroded” structures. The models “batholithV3”
and “pillow(rounded)_batholithV4” cluster closely, differing
only in vertical elongation; thus, “batholithV3” is excluded.
Although similarities exist between models with varying lat-
eral characteristics, both “cylindric” and “hourglass™ shape
variations are retained. This also applies to various “sheets”
and the “anticline_wall(hourglass-shape_rounded)”, which
exhibit similar PC scores in some, but not all cluster plots.
Lastly, some of the flat and cuboidal bodies in the bluish-
green cluster (“flat.layer”, “sill” and “cube’) are nearly iden-
tical in position. The “cube” is excluded from the benchmark
collection, while the other two geometries are merged, keep-
ing the shape of the “sill”.

Given these exclusions based on structural similarity, the
collection is condensed from 36 to 25 standard geometries
(see Fig. 12). Decreasing the database by validating the bod-
ies’ geometrical dissimilarity facilitates the decision making
on the best suitable benchmark for a case study. Despite our
reduction efforts, this list is not expected to be exhaustive:
we would like to encourage users to suggest additional ge-
ometries based on their expertise and/or literature, to ensure
that suitable benchmark models are available for as many ge-
omodeling applications as possible.

4 Discussion

By applying a set of defined geometrical descriptors to sys-
tematically generated 3D benchmark models, this study es-
tablishes a framework for the quantitative comparison of
shape properties. The analysis highlights how key attributes
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such as anisotropy, surface morphology, and sphericity vary
across models, offering a structured perspective on their geo-
metric dis-/similarities. These outcomes prompt a deeper dis-
cussion of how well the proposed descriptors capture mean-
ingful shape differences and how this quantitative framework
advances the analysis of unmodeled data and 3D geological
structures.
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4.1 Comparison of existing methods for 3D shape
characterization with the proposed workflow

The workflow of this study differs considerably — both in the
scale of the test subjects as well as the purpose of the meth-
ods — from the quantitative comparative approaches used in
material sciences (Sect. 1.1). The material-scientific studies
mainly operate on millimeter- to centimeter-scales and have
a higher emphasis on parameters exploring the sphericity/an-
gularity (or similar metrics) of objects, as these characteris-
tics are fundamental in this field, where properties and appli-
cability of composite building materials heavily depend on
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Figure 12. Condensed collection of standard geometries after application of the quantification method.

mechanical interactions between individual particles (Kakani
and Kakani, 2004).

Meanwhile, the proposed approach aims at characterizing
3D structures and 2D sections at the meter- to kilometer-
scale (although the applicability is scale-independent in the-
ory), through direction-dependent measurements of geomet-
rical parameters, thereby providing datasets suited for quan-
titative comparison.

Studies presenting approaches that show similarities to
ours are Celenk (1995), Schweizer et al. (2017) and Lindsay
et al. (2013). Celenk (1995) determines the horizontal main
axes of equally-spaced cross sections as well, but does so to
align sections of two different objects. Comparison is then
achieved by computing the averaged shape difference of sec-
tions between the objects in four directions along the main
axes. Key differences of our approach therefore involve the
segmented assemblage of cross sections in the orthogonal di-
rection (following the respective segmented horizontal main
axis) and the exact measurement of the dimensional extents
on the sections. Hence, our method opts for the determina-
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tion of larger datasets of absolute measurements on a single
object, that are compared to other bodies in subsequent steps.
Meanwhile, Celenk (1995) computes the relative measure
that is the averaged shape difference, representing a faster,
but more approximate approach of object comparison, as the
author does not segment the horizontal main axis along the
larger extent. Schweizer et al. (2017) do not try to compare
the dimensions of individual 3D structures, but use the Jac-
card distance and the normalized city-block distance as mea-
sures for model dissimilarity instead. The two parameters
are being applied as measures for the similarity in position
of certain geological units between two model realizations
of the same study site. In a similar fashion, the Hausdorff
distance has been used before (see e.g. Suzuki et al., 2008).
These dissimilarity distances were not applied in our study,
as they could only act as size indicators rather than shape
descriptors and would not give any indication on where two
structures differ spatially. Meanwhile, our approach provides
insight into both shape and size differences of objects, which
is crucial for geological modeling. Lindsay et al. (2013) ex-
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plore geometric uncertainty across multiple realizations of a
study site, evaluating parameters like depth, volume and cur-
vature, which parallel those in our study. However, their pa-
rameters are often tied to stratigraphic units and may not ap-
ply directly to individual 3D structures. Both studies utilize
PCA to analyze geometric variability and model differences,
although executed differently.

Despite these existing methodologies, we opted for a
straightforward approach, allowing us to efficiently repli-
cate the main geometric characteristics of input datasets. Our
algorithm is computationally efficient, easily interpretable
with basic geological knowledge, and accessible to a non-
specialist audience.

4.2 Assumptions and compromises of the algorithm
ensuring its universal applicability

Despite the strengths of our methodology, certain limitations
must be acknowledged. The reliance on discrete differen-
tial geometries (Bobenko et al., 2008) means that the in-
put dataset must represent a single, compact, and topologi-
cally connected structure (Thiele et al., 2016a). For objects
separating from one to the next cross section into multiple
strands, split algorithms are available. However, this comes at
the cost of interpretability of the statistics of geometric prop-
erties. Moreover, the method functions optimally for convex
hulls (Rockafellar, 1970), although a follow-up study will
show, that the full geometric diversity of intrusive salt struc-
tures and crystalline bodies from the German subsurface can
be quantitatively compared without major limitations. These
assumptions should be considered when interpreting results
in other domains.

The focus of this study was to establish a generalized al-
gorithm to quantitatively describe the shape of objects and
to infer dis-/similarity between geometries. Given the wide
range of potential and available models, the algorithm re-
quires some trade-offs to be universally applicable. Discus-
sion of the data distributions for the geometrical parameters
(see Fig. 6) focuses on the results from measuring the sphere,
representing a comprehensible case with distinct expected
data distributions: The nature of a sphere is a similar shape
of any section through the center, eventually resulting in a
normal distribution of the levelled distance measurements in
both horizontal and vertical directions. This expected distri-
bution is not produced in our case due to the generation ap-
proach of the orthogonal cross sections: The assembled sec-
tions follow the contour of the structure (see Fig. 5g and
h), which results in larger measurements for the orthogo-
nal horizontal data and a slightly tailed distribution of the
combined horizontal data, similar to an ellipsoid with a low
contrast in the main axes. As this situation is rarely seen in
geological modeling, the impact is small since anisotropic
geometries are measured accurately with our segmentation
algorithm. The gradient and curvature data reflect the effects
of our approach as well: While the gradient diagram of the
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sphere shows a symmetric distribution as expected, the rela-
tive elongation of the orthogonal sections increases the fre-
quency of lower gradient measurements. Due to this accumu-
lating effect, the presence of low-dipping surfaces of a struc-
ture is overestimated by the data. Furthermore, the exclusion
of marginal cross sections leads to vertical clipping that intro-
duces infinite gradient measurements (representing two con-
secutive vertices being exactly vertical) that would not exist
when measuring the sections in a rounded, unclipped state.
The curvature data is influenced by this clipping as well, that
results in few large values where the three consecutive ver-
tices form a large angle. These measurements increase the
variance of curvature data considerably, with the majority of
data for most datasets being located within the 0% to 5 %
and 5 % to 10 % bins.

However, the discriminability of the standard geometries
and basic 3D objects in the cluster analysis is ensured despite
these compromises made in the methodology: structures of
varying anisotropy plot in different parts of cluster diagrams
showing contribution of the combined horizontal data, as the
highest contribution of horizontal data comes from the first
and last distribution bins (see Fig. 10c). Similarly, as vertical
and gradient data distributions of flattened geometries show
the discussed characteristic properties, they differ in their PC
scores from their rounded counterparts. Furthermore, the dis-
cussed increased frequency of gradient measurements around
0 does not change cluster patterns as it applies to all datasets.
The same is true for the artifact-influenced curvature data and
its impact on the general clustering of similar structures. Still,
its squeezed nature shows an effect on the overall clustering
results, as the curvature data does not show any considerable
contribution in PC dimensions.

4.3 Intended direct application and potential further
usage of the quantification method and the
standard geometries

The methodology will be a part of a larger framework to
model and compare geological structures based on sparse
data in the context of the German site selection. For most re-
gions of interest for nuclear waste disposal, seismic 2D data
are available frequently with a few boreholes. This is simi-
lar to the cross sections established through the benchmark
models here, allowing for a fast model selection based on
the geometrical properties and potentially further constrain-
ing hyper parameter selection for interpolation. However, for
the integration of unmodeled sparse input data in the ini-
tial conceptualization of geological models, some adoptions
of the workflow are needed. Obviously, the creation of seg-
mented sections is omitted as the starting point are cross
sections, which can be analyzed as described. The number
of geometrical data is restricted by the number of available
cross sections, thus a comparison will be conducted on a less
complete statistical basis. Consequently, a user likely has
to solely rely on the Kullback-Leibler divergence and clus-
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ter analysis to assess the reasonableness of various shapes.
In case these analyses do not limit the range of standard
geometries sufficiently, additional experience-based bench-
marks could be created and clustered among the available
models to test whether a closer fit applies. Here, more com-
plex structural configurations could easily be approached by
superposition of basic benchmarks. Thus, the choice of the
conceptual model is based on the quantification and does not
rely on the expert knowledge only. After interpolation re-
sulted in a series of stochastic prior realizations, the method
will be used for falsification by data (e.g. boreholes). Further-
more, the application of the framework to purely quantify
the shape of a modeled 3D body can be very useful in the
context of the site selection. Here, the comparative parts of
our proposed analysis (i.e. Kullback-Leibler divergence and
cluster analysis) might be of little value and thus be omitted.
Additionally, applying our methodology also supports test-
ing for the minimum amount of data necessary for geolog-
ical modeling, as different data densities and configurations
can be inserted into the algorithm. The open-access collec-
tion of benchmarks for geomodeling is also a convenient tool
to visualize the range of three-dimensional geometries of the
different rock types to a broader audience, which aids in the
communication of uncertainties and decisions for geoscien-
tists and stakeholders in various settings (see Zehner, 2021).

5 Conclusion

In our publication, we presented a methodology to quan-
titatively describe, compare and systematize 2D and 3D
datasets, and proposed a set of regular standard geometries
as benchmark models in geomodeling approaches. Demon-
strating the quantification method on the 3D standard ge-
ometries, their geometrical dis-/similarity is assessed. The
combined evaluation of data distributions and a cluster anal-
ysis reproduces the main geometrical characteristics of input
meshes and visualizes differences between various datasets.
While distributions of combined horizontal extensional mea-
surements provide insight into the anisotropy of datasets and
the potential existence of overhangs, distributions of the ver-
tical extent indicate the character of the top surface of struc-
tures and support or falsify the presence of overhangs. Dis-
tributions of gradient and curvature data (1) indicate the pre-
vailing character of the slope of the lateral surfaces of struc-
tures, (2) further emphasize potentially present flat top sur-
faces and (3) give a general indicator on the sphericity of a
structure. Cluster analysis of normalized, dimensionally re-
duced data groups and systematizes input structures based on
the combined measured statistical parameters. In our appli-
cation to synthetic datasets, clustering also serves to identify
and exclude or merge benchmark models showing large ge-
ometrical similarity. Apart from cluster analysis and assess-
ment of data distributions, comparison of parameter distri-
butions is furthermore achieved using the Kullback-Leibler
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divergence. The proposed method and standard geometries
are intended to be used at several stages within a workflow
for structural geomodeling, both for initial conceptualization,
potential adjustment of the interpolation method and exami-
nation of structural reasonableness of resulting models. Fur-
thermore, general shape quantification for exploration/stor-
age estimates can be realized.

As indicated earlier, the first follow-up study aims at ap-
plying the method to a large database of structural geological
models. Afterwards, the method will be applied to datasets
of sparse, unmodeled input data and coupled with a spatial
interpolation algorithm in a study focusing on geomodeling
based on progressively reduced datasets.
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Figure Al. Visualization of the advantages of measuring the extents of input meshes on sections normal to their horizontal main axes.
model “Seefeld” from BGR et al. (2022) for comparative purposes. (a) Sections using the proposed method on “Altenbruch-
(top view). (b, ) hypothetical measurement of the horizontal extent along a regular grid (grey lines) of constant size for all
datasets (example: 5000 m grid size for both). (¢, f) measurement along a mesh-specific regular grid based on the extent of the longer axis
of the mesh’s bounding box. (d, g) Measurement along an anisotropic grid to have an equal amount of sections per direction. Multiple cuts
along a horizontal measuring line for an irregular structure are visualized in (b).
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Beverstedt”
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Figure A2. Matrix plot for the angles between feature axes in PC space. The plot is used to assess the dependencies among the features
(percentiles of the parameter PDF’s) in the cluster analysis. Small angles (dark blue) and large angles (bright yellowish) indicate strong
dependency between individual features. This can be seen for instance between F3-F6; F32-F39 and F61-F69, with the exception of F67
(F61 is inversely dependant from F62-F64). The strong inter-feature dependencies result in a weak cluster separation beyond PC6. Thus,
PC7 to 12 are not shown in Fig. 11.
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Code and data availability. Method development was carried out
in Python. The method mostly relies on the capabilities of the li-
braries Shapely (https://shapely.readthedocs.io/en/stable/, last ac-
cess: 26 February 2025), PyVista (https://pyvista.org/, last ac-
cess: 26 February 2025) and Plotly (https://plotly.com/, last
access: 26 February 2025). The python code, the condensed
database of standard geometries (as .vtk-files) and the datasets
of raw extensional, gradient and curvature data are stored at
https://doi.org/10.5281/zenodo.15795852 (Carl, 2025).
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