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Abstract. Unravelling the tectonic setting and evolution of
cratons during the late Paleoproterozoic has long been a ma-
jor focus of geological research. As one of Earth’s major cra-
tonic blocks, the North China Craton (NCC) preserves ex-
tensive magmatism during this period. Recent investigations
have identified numerous 1.78 Ga dioritic intrusions along
the southern margin and the center of the NCC. The NCC
experienced widespread magmatism at ~ 1.78 Ga, and the
tectonic setting of this period remains unclear and needs bet-
ter understanding. Diorites of the NCC can help to constrain
the late Paleoproterozoic tectonic setting in this region. In
this paper we report zircon U-Pb ages of ~ 1.78 Ga and geo-
chemical data of the Jiguanshan diorite. The diorites in the
Trans-North China Orogen and the southern margin of the
NCC, including the Jiguanshan diorite, have similar element
and isotopic characteristics. The average initial 87Sr / 36Sr
and eng(¢) values are 0.7052 +0.0003 and —6.54+0.2, re-
spectively. The initial Pb isotope compositions of the dior-
ite samples do not show significant enrichment of radiogenic
lead. In terms of Sr-Nd-Pb isotope compositions and Nb / Ta,
Ba / Th, and Sr / Th ratios, the diorites differ from the coeval
Xiong’er volcanic rocks and mafic dike swarms. Our results
suggest that the diorites originated from basaltic lower crust,
rather than from enriched subcontinental lithospheric man-
tle. Whole-rock and zircon trace element features indicate
that the diorites formed in a rift-related environment. The
formation of the diorites reveals a potential transition from
late Paleoproterozoic orogenic-related magmatism towards
intraplate magmatism.

1 Introduction

North China Ctaton (NCC) was stabilized by the collision
and amalgamation of several continental blocks in the late
Paleoproterozoic (Fig. 1a; e.g., Zhao and Zhai, 2013; Zhao
et al., 2000a, b). Subsequent widespread magmatic activ-
ity across the NCC records the cratonization process, pro-
viding critical insights into its stabilization and maturation
(e.g., Zhai, 2011). The petrogenesis of the Paleoproterozoic
magmatic rocks preserves key information about regional
tectonic evolution and has been linked to the assembly or
breakup of the Columbia supercontinent (e.g., Peng et al.,
2007, 2008; Zhao et al., 2009). Among these events, the
~ 1.78 Ga magmatic event is particularly distinctive due to
its large scale, leading to the production of numerous rock
types including the Xiong’er volcanic rocks, A-type granites
and mafic dykes (e.g., Cui et al., 2010; Hu et al., 2010; Peng
et al., 2007, 2008; Wang et al., 2004; Wang et al., 2014).
These rocks are extensively distributed across both the south-
ern margin and Trans-North China Orogen of the NCC. How-
ever, the petrogenesis and tectonic setting of these rocks is
debated, which revolves around post-collisional/orogenic ex-
tension (e.g., Wang et al., 2004, 2008, 2014), continental arc
magmatism (e.g., He et al., 2009; Zhao et al., 2009), rifting
(e.g., Cui et al., 2010; Zhao et al., 2007), and the involve-
ment of mantle plumes (e.g., Hou et al., 2008; Peng et al.,
2007, 2008). Clarifying the tectonic setting during this pe-
riod is essential for understanding the geological evolution
that followed the late Paleoproterozoic amalgamation of the
NCC.
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Figure 1. (a) Tectonic sketch of the North China Craton (after Zhao et al., 2001); (b) geological map of the southern margin of the North
China Craton (after Diwu et al., 2014; diorites from Cui et al., 2011; Ma et al., 2023a, b; Wang et al., 2016; Zhao et al., 2004); (c) geological

map of the Jiguanshan diorite (after HIGS, 2001).

In recent years, numerous diorites with ages of
ca. 1780Ma along the southern margin of the NCC and
Shanxi region (Fig. 1b) have attracted significant attention,
potentially offering new perspectives for understanding the
tectonic evolution of the craton during the late Paleoprotero-
zoic. These rocks include diorites intruding into Xushan For-
mation (at ca. 1789 Ma; Zhao et al., 2004), East-West Group
dykes (ca. 1780 Ma; Peng et al., 2007), Shizhaigou diorite
(ca. 1780 Ma; Cui et al., 2011), Wafang diorite (ca. 1750 Ma;
Wang et al., 2016), Gushicun diorite (ca. 1780 Ma; Ma et
al., 2023a), Muzhijie diorite (ca. 1780 Ma; Ma et al., 2023b),
Fudian diorite (ca. 1780 Ma; Ma et al., 2023b), and Jiguan-
shan diorite (ca. 1780 Ma; this study). The diorites are widely
distributed in an approximate east-west trending and possess
similar zircon ages. Peng et al. (2007) and Cui et al. (2011)
proposed that some of them share identical mantle source
regions with the Xiong’er Group volcanic rocks or dyke
swarms. Other authors interpret some of them resulting from
fractional crystallization (Ma et al., 2023a, b) or from crustal
melting with limited mantle influence (Wang et al., 2016).
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Systematic research of their genesis is crucial for clarifying
their formation and constraining the regional geological evo-
lution.

The present study focuses on the Jiguanshan diorite and
other diorites with ages between 1.78 and 1.75 Ga from the
NCC. These diorites have similar geochemical characteris-
tics, suggesting their formation during a single magmatic
episode. By evaluating whole rock geochemical and Sr-Nd-
Pb isotopic compositions, as well as Hf isotopic composi-
tions of zircons, a better understanding of the tectonic envi-
ronment and evolution of the NCC during the late Paleopro-
terozoic is provided.

2 Geological background and sample description

The NCC records geological evolution since 3.8 Ga ago
(e.g., Geng et al., 2012; Liu et al., 1992). It consists of an
Archean to Paleoproterozoic metamorphic basement litholo-
gies overlain by Mesoproterozoic unmetamorphosed sedi-
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mentary cover (e.g., Lu et al., 2008; Zhao and Zhai, 2013).
The crystalline basement is composed of serval microcon-
tinental blocks (Fig. la; Zhao et al., 2005). Between 1.95
and 1.92 Ga, the Yinshan and Ordos blocks collided along
the Khondalite belt to form the Western Block (e.g., Li et
al., 2011; Lu et al., 2008; Zhao et al., 2005). Around 1.9 Ga,
the Longgang and Nangrim blocks amalgamated along the
Jiao-Liao-Ji belt, forming the Eastern Block (e.g., Luo et al.,
2004; Zhao et al., 2005). The NCC ultimately formed by the
assembly of the Eastern and Western Blocks along the cen-
tral orogenic belt at ca. 1.85 Ga (e.g., Zhao and Zhai, 2013;
Zhao et al., 2000a, b, 2005). The southern margin of the NCC
is separated from the North Qinling Orogen by the Luonan-
Luanchuan Fault (Fig. 1b). Prior to the Mesozoic, the south-
ern margin of the NCC has been the locus of tectonic ac-
tivity. Therefore, this region is outstanding for studying the
Precambrian geological evolution (e.g., Zhai, 2010).

The study area is located within the eastern part of the
southern margin of the NCC (Fig. 1b). The most frequent
rocks in this area are metamorphic basement rocks of the
Archean Taihua Group. The Taihua Group extends in an east-
west direction from Lantian in the west to Wuyang in the
east (e.g., Diwu et al., 2014, 2018; Wang et al., 2020). It
is primarily composed of medium- to high-grade metamor-
phic rocks and has been divided into the Lower and Up-
per Taihua Complex (e.g., Kroner et al., 1988; Shen, 1994;
Wan et al., 2006; Xue et al., 1995; Zhang et al., 1985). The
Lower Taihua Complex is dominated by metamorphic mafic
rocks and TTG gneisses (e.g., Kroner et al., 1988; Zhang et
al., 1985), whereas the Upper Taihua Complex is character-
ized by supracrustal sequences and metamorphic mafic rocks
(e.g., Wan et al., 2006; Xue et al., 1995). Rocks of the Tai-
hua Group record two significant stages of Archean crustal
growth (e.g., Diwu et al., 2014, 2018). During the late Pa-
leoproterozoic (1.97-1.80 Ga), the Taihua Group underwent
widespread amphibolite to granulite facies metamorphism
and intense deformation, reflecting collisional processes in
the NCC (e.g., Diwu et al., 2018; Sun et al., 2017).

The upper part of the basement contains 1780-million-
year-old volcanic rocks of the Xiong’er Group (e.g., Zhao et
al., 2004, 2007). The Xiong’er volcanic rocks consist mainly
of basalts and andesites that are widely distributed along
the southern margin of the NCC, and extend as far north
as Taiyuan City in Shanxi Province (Zhao et al., 2007). The
Xiong’er Group represents the largest magmatic unit of the
NCC since the Neoarchean period. At the same time, a large
mafic dyke swarm intruded into the NCC. These mafic rocks
are interpreted as products of crustal extension during the
Colombia supercontinent era (e.g., Hou et al., 2008; Peng
et al., 2008).

During fieldwork, seven diorite samples were collected
from the Jiguanshan diorite on the eastern side of the Jiguan-
shan hill (or the Jiguan Mountain), about 30 km south of
Ruyang County, Henan Province (Fig. lc and Table S1).
The Jiguanshan diorite forms several east-west striking bod-
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ies that are cut by the Mesozoic Taishanmiao A-type gran-
ite to the west. The Taishanmiao intrusion covers an area of
ca. 290 km? (e.g., He et al., 2021). The northern and east-
ern part of the Taishanmiao intrusion penetrates the volcanic
rocks of the Xiong’er Group (Fig. 1c).

The collected rock samples of the Jiguanshan diorite are
fresh and greyish with massive textures (Fig. 2a). They are
fine-grained with grain sizes between 0.1-2mm (Fig. 2b).
The main mineral is plagioclase (~ 60 vol %), with lamel-
lar or euhedral shape and variable grain size. Under the
microscope, the partially sericitized crystals show simple
contact twinning and polysynthetic twinning. Some plagio-
clase crystals show zonal and resorption textures (Fig. 2c—
e) and Carlsbad-albite twinning (Fig. 2d). Clinopyroxene
(~15vol %) formed earlier than plagioclase. Most of the
clinopyroxenes have zonal texture (Fig. 2f). Euhedral opaque
minerals (~ 3 vol %), such as ilmenite, are often enclosed
in clinopyroxene. Alkali-feldspar (~ 10 vol %) shows hypid-
iomorphic to xenomorphic texture with imprints of kaolin-
ization (Fig. 2c, e). The mineral occurs as K-feldspar and
perthite. Quartz (~5vol %) occurs as an anhedral crys-
tal. Biotite (~ 3 vol %) shows xenomorphic texture or is al-
tered into chloride (Fig. 2c, e). In addition, accessory min-
erals such as zircon and ilmenite account for about 3 vol %

(Fig. 2f).

3 Analytical methods

Whole rock major and elements: Seven fresh rock samples
were grinded into powders to less than 200 mesh size. Major
element composition of whole-rock samples was analyzed by
X-ray fluorescence (XRF) at ALS Chemex (Guangzhou) by
using PANalytical PW2424 instrument. Trace element con-
centrations were determined using Agilent 7700 inductively
coupled plasma mass spectrometry (ICP-MS) at the Univer-
sity of Science and Technology of China (USTC). Measured
concentrations of the reference materials (GSR-1, BCR-2,
and AGV-2) are within 10 % of their recommended values
and the analytical uncertainties are better than 5 %.
Whole-rock Sr-Nd-Pb isotopes: Whole-rock Sr-Nd-Pb iso-
tope analysis was performed in the Laboratory of Ra-
diogenic Isotope Geochemistry, USTC. ca. 100 mg whole-
rock powders were decomposed in purified HF and HNO3
acid solution for Pb isotopic analysis and purified HF and
HCIO4 acid solution for Sr-Nd isotopic analysis. Sr and Nd
were separated by an AG 50W-X12 resin (200-400 mesh
size) and purified using the Sr-Spec® ion-exchange resin
for Sr and LN-Spec® resin for Nd. All isotopic measure-
ments were measured on a Triton Plus mass spectrometer
of Thermo Scientific™. Sr and Nd ratios were normalized
to 80Sr /38Sr=10.1194 and *3Nd / '**Nd =0.7219, respec-
tively. Pb isotope ratios were corrected for mass fractiona-
tion using a fractionation factor of 0.1 % per atomic mass
unit based on repeated measurements of reference material

Solid Earth, 17, 203-224, 2026
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Figure 2. (a-b) Field photographs and representative hand specimens of the Jiguanshan diorite; (c—f) Microphotographs under plane-
polarized light of the Jiguanshan diorite. Mineral abbreviations: Afs, alkali feldspar; Bi, biotite; Cpx, Clinopyroxene; Pl, plagioclase; Qz,

quartz.

NIST NBS 981 (Wang et al., 2023b). Total procedure blanks
for Sr, Nd, and Pb were less than 200 pg. Detailed analyti-
cal procedures were described in Chen et al. (2000, 2007).
Errors for the initial Sr and Nd isotope ratios were obtained
by the error transfer formula, which is shown in Table 2 for
Sr and Table 3 for Nd. Detailed formulas can be found in
Siebel et al. (2005). A 5 % age error, a 2 %o 87Rb / 80Sr mea-
surement error, and a 0.3 %o 37Sr / 86Sr measurement error
were used as uncertainties for the initial Sr value calcula-
tion. A 5% age error, a 0.3 %o '¥’Sm / ¥*Nd error, and the
143Nd / **Nd measurement error were used for calculating
the initial Nd isotope uncertainty.

Zircon U-Pb geochronology and trace element composi-
tion: Zircon crystals were separated from the rock samples
by standard mineral separation procedures. Grains with in-
tact crystal shape and no obvious inclusions were selected
and embedded in epoxy resin under a binocular microscope.
Most of the zircon gains were polished to half to two thirds of
their original thickness and then cleaned in ultra-pure water
by ultrasonic waves. Cathodoluminescence (CL) image anal-
ysis was done on a scanning electron microscope (SEM) at
the USTC. Zircon U-Pb isotopic and trace element compo-
sitions were obtained by laser-ablation inductively-coupled
plasma mass spectrometry (LA-ICP-MS) at the USTC. The
beam spot diameter was 32 um, operating at a repetition rate
of 10 Hz. Helium served as the carrier gas. Zircon 91500 was
used as a standard for age calculation. The NIST SRM 610
and 612 were utilized as reference materials for element con-
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tent adjustment. U-Pb ratios and uranium and lead concen-
tration data were calculated by the ICPMSDataCal software
(Liu et al., 2010). Concordia and weighted mean age plots
were made using IsoplotR (Vermeesch, 2018).

4 Analytical results

Whole-rock compositions of the Jiguanshan diorite are given
in Table 1, and Sr-Nd-Pb isotope compositions and error cal-
culations are shown in Tables 2 to 4. Age results of zircon
grains from four samples are given in Table S1, zircon trace
element composition in Table S2.

4.1 Zircon U-Pb isotopic ages

Zircon grains from the Jiguanshan diorite are transparent to
pale yellow with subhedral to euhedral habitus. They mea-
sure ca. 100-300 um in length and have aspect ratios between
1:1 and 3: 1. Most of them show oscillatory zoning in the
CL images (Fig. 3), which suggests a magmatic origin.
Twenty-nine zircon grains from sample ZY2202
yield 207Pb /2%Pb ages varying from 1885+44Ma to
1643 £42 Ma giving a weighted mean age of 1772 + 16 Ma
2o, n=29, MSWD =2.2, Fig. 4a). Thirty-two zircon
grains from sample ZY2204 yield 207Pb / 29°Pb ages vary-
ing from 1902 £54Ma to 1635+47Ma with a weighted
mean age of 1742+ 15Ma (20, n =32, MSWD=1.6,
Fig. 4b). Twenty-six out of twenty-seven zircon grains
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Table 1. Major (wt %) and trace element contents (ppm) of the Jiguanshan diorite.

Sample No. ZY2201 ZY2202 ZY2203 ZY2204 ZY2205 ZY2206 ZY2207
(Wt %)

SiO, 58.18 59.44 59.13 58.24 56.26 56.01 55.57
TiO, 1.87 1.37 1.36 1.82 2.01 1.87 2.05
AlyO3 14.38 14.37 14.24 14.11 14.18 15.00 14.41
TFe,05 10.38 9.04 9.17 10.00 10.35 10.18 10.50
MnO 0.15 0.14 0.14 0.14 0.17 0.14 0.15
MgO 2.73 2.81 2.96 2.59 2.70 2.92 2.94
CaO 5.85 5.29 5.33 5.60 5.61 6.06 5.81
Na,O 2.76 2.85 2.87 2.79 2.56 2.60 2.56
K,0 2.98 3.15 3.16 3.11 321 2.97 3.01
P,05 0.71 0.46 0.45 0.65 0.73 0.68 0.76
LOI 0.48 1.31 0.67 0.36 1.53 1.60 1.67
Total 100.47  100.23 99.48 99.41 99.31 100.03 99.43
(ppm)

Li 11.2 19.8 19.9 14.8 18.6 20.7 182
Be 2.66 2.80 2.76 2.94 3.06 2.70 2.97
Sc 22.7 20.1 20.4 23.3 243 24.0 23.8
\Y% 163 141 147 168 179 165 164
Cr 72.1 91.3 101.3 69.5 68.6 78.6 83.5
Ni 21.3 22.3 24.0 20.7 19.2 20.2 21.6
Cu 20.8 19.8 19.9 20.9 27.0 222 233
Zn 131 128 122 133 148 139 141
Ga 21.9 21.9 21.8 22.9 23.3 23.8 22.7
Rb 80.3 95.2 97.8 88.4 88.0 89.5 88.9
Sr 412 374 384 406 403 542 490
Y 475 44.4 43.8 48.4 493 448 46.7
Zr 402 478 474 435 428 400 407
Nb 20.2 21.2 21.0 21.2 22.7 20.3 21.8
Cs 0.60 0.77 0.74 0.95 2.98 3.63 4.44
Ba 1543 1515 1504 1544 1814 1714 1737
La 72.2 79.0 79.5 75.0 77.3 71.7 752
Ce 149 161 161 154 163 150 159
Pr 17.6 18.3 18.1 182 19.4 18.0 18.9
Nd 72.3 71.2 70.9 73.2 80.0 72.9 77.1
Sm 12.7 12.1 12.0 12.7 14.0 12.8 13.4
Eu 2.63 221 2.18 2.59 2.93 278 2.87
Gd 12.1 11.2 11.2 12.1 13.0 11.7 12.5
Tb 1.53 1.39 1.40 1.51 1.63 1.47 1.56
Dy 8.99 8.32 8.11 8.92 9.50 8.53 9.00
Ho 1.67 1.54 1.53 1.67 1.75 1.53 1.65
Er 4.97 4.56 4.54 4.95 5.09 455 4.87
Tm 0.62 0.55 0.55 0.60 0.63 0.55 0.58
Yb 4.26 3.79 3.84 4.18 433 3.82 3.99
Lu 0.61 0.55 0.56 0.60 0.63 0.55 0.58
Hf 7.97 9.09 9.15 8.20 8.46 7.59 7.98
Ta 1.03 0.98 0.99 1.01 1.10 0.96 1.07
Pb 16.4 21.2 18.0 16.3 18.9 152 142
Th 428 6.43 6.71 427 3.87 3.22 3.55
U 0.70 0.98 0.88 0.71 0.75 0.61 0.68
K,0 /NayO 1.08 1.11 1.10 1.11 1.25 1.14 1.18
K50 + NayO (wt %) 5.74 6.00 6.03 5.90 5.77 5.57 5.57
Mg# 345 38.3 39.2 34.1 34.3 36.5 35.9
A /CNK 0.78 0.81 0.80 0.78 0.79 0.81 0.80
A /NK 1.85 1.77 1.75 1.77 1.84 2.00 1.93
SREE 361.5 375.8 375.1 370.4 3932 361.2 381.3
Eu / Eu* 0.64 0.57 0.57 0.63 0.65 0.68 0.66
(La/Yb)N 12.2 15.0 14.8 12.9 12.8 13.5 13.5

Mg" = (MgO + FeOyyqa1) / MgO x 100
Eu / Eu* =2Euyn/ (Smy+ Gdy); (La / Yb)N = chondrite-normalized La / Yb ratio.
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Figure 3. Cathodoluminescence (CL) images of representative zircon grains from the Jiguanshan diorite.

from sample ZY2205 yield 2°’Pb / 29Pb ages varying from
1933 +52Ma to 1692 +44Ma and a weighted mean age
of 1760+ 18Ma (20, n =26, MSWD =0.66, Fig. 4c).
One zircon with a 2%’Pb / 20°Pb age of 1639 + 46 Ma (96 %
concordance) was excluded from the calculation after being
identified as a statistical outlier by the IsoplotR program
(Fig. 4c). The limited number of zircon grains of this age
precludes a robust geological interpretation. Thirty zircon
grains of sample ZY2207 yield 2°7Pb /2%°Pb ages ranging
from 1900 £ 54 Ma to 1700 &= 36 Ma with a weighted mean
age of 1771 £17Ma (20, n =30, MSWD = 1, Fig. 4d).

Most zircon grains have Th / U ratios > 1, supporting their
magmatic origin (Table S1). Some grains deviate from the
Concordia curve, which is related to lead loss events or ra-
diation damage (Fig. 4a—d). The weighted mean age of the
Jiguanshan diorite of ca. 1780 Ma suggests that the diorite
body formed in the late Paleoproterozoic.

4.2 Whole-rock geochemical composition

SiO; contents of the Jiguanshan diorite vary between
55.57wt% and 59.44wt% and the sum of K,O + NayO
from 5.57 wt % to 6.03 wt %, corresponding to gabbroic dior-
ite to diorite composition according to the TAS diagram
(Fig. 5a). K>O contents range from 2.97 wt % to 3.21 wt %
and fall within the high-K calc-alkaline fields (Fig. 5b).
The samples from the Jiguanshan diorite have consistent
A /CNK ratios ranging from 0.78 to 0.81 and A /NK > 1,
which classify them as metaluminous rocks (Fig. 5¢). Mg#

Solid Earth, 17, 203-224, 2026

(Mg* = (MgO + FeOyoa) / MgO x 100) values range from
34 to 39 (Fig. 5d).

The Jiguanshan diorite depicts enrichment in large ion
lithophile elements (LILE), such as Rb, Ba, and K, and
negative anomalies of Sr, Ti, Nb, and Ta (Fig. 6a). >_REE
contents range from 361 to 393 ppm. Light rare earth el-
ements (LREE) exhibit stronger enrichment, while heavy
rare earth elements (HREE) are relatively depleted (Fig. 6b).
(La/Yb)n ratios range from 12.2 to 15.0 (subscript N de-
notes normalization against chondrite La and Yb contents)
with Eu / Eu* (Eu / Eu* = 2Euy / (Smy+ Gdy), subscript N
denotes normalization against chondrite Sm and Gd con-
tents) ratios ranging from 0.57 to 0.68 (Table 1).

4.3 Whole-rock Sr-Nd-Pb isotope compositions

All initial radiogenic isotope values and the errors
of the initial Sr, Nd and Pb isotope ratios reported
herein are calculated back to an age of 1780Ma. The
measured 37Sr/80Sr ratios for the Jiguanshan diorites
vary from 0.715177 +£0.000011 to 0.724714 4+0.000012
(20). Initial Sr ratios range from 0.70204£0.0007 to
0.7058 £ 0.0010 (20, Fig. 7a). Measured '**Nd / '**Nd val-
ues vary from 0.511129 &+ 0.000008 to 0.511329 £ 0.000007
(20). Initial '“3Nd/!#*Nd isotope compositions range
from 0.509924 4+ 0.000061 to 0.510090 % 0.000063 (20),
corresponding to initial eng values of —8.04£1.20 to
—4.80£1.23 (20, Fig. 7b) and two-stage Nd model
ages (Tppyz) of 294 to 2.68Ga. Pb isotopic com-
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Figure 4. (a—d) Zircon U-Pb Concordia diagrams for the Jiguanshan diorite.

positions are as follows: 29°Pb /204Pb=15.832-16.167,
207pp / 204Pb = 15.170-15.243, and 28Pb / 204Pb = 36.046—
37.324. Initial Pb isotope ratios are significantly lower:
206pp /204Pb; ratios ranging from 14.965 to 15.295,
207pp ) 204Pb; ratios ranging from 15.090 to 15.150,
208pp /204pp; ratios ranging from 34.398 to 35.825, with
238U /2%Pb and 232Th / 238U ratios ranging from 2.3 to 2.9
and 5.3 to 7.8, respectively (Fig. 8).

5 Discussion

5.1 Composition of late-Paleoproterozoic diorites of the
NCC

On a regional scale, the late Paleoproterozoic diorites of the
NCC are distributed in a roughly east to west direction, un-
like the north-northwest (NNW) strike, that characterizes the
contemporaneous mafic dykes (Hou et al., 2008; Peng et al.,
2007, 2008). Intrusion ages of the diorites are concentrated

https://doi.org/10.5194/se-17-203-2026

between 1780 and 1750 Ma. All diorites have similar geo-
chemical and isotopic compositions and can be regarded as a
compositional homogeneous rock group.

Most of the late-Paleoproterozoic diorites of the NCC have
silica contents in the range of 52 wt %—62 wt % (Fig. 5a). To-
tal alkali content (K20 4 NayO) of 5wt %—7 wt % suggests
a subalkaline character (Fig. 5a). K;O contents range from
2 wt %—-5 wt % in accordance with a high-K calc-alkaline to
shoshonite composition (Fig. 5b). The ASI and Mg# values
of the samples, except for a few data points that deviate sig-
nificantly, are mostly homogeneous, with weighted average
values of 0.81 and 37, respectively (Fig. 5c, d). In primi-
tive mantle normalization multi-element diagrams, all dior-
ites display enrichment of LILEs, such as Rb, Ba, and K, and
depletion of high field strength elements (HFSEs), such as
Na, Ta, Th, U, and Ti (Fig. 6). On the rare earth element
normalization diagrams, they display negative Eu anoma-
lies with enrichment in LREEs and a flat pattern of HREEs
(Fig. 6).

Solid Earth, 17, 203-224, 2026
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Table 2. Whole-rock Sr isotopic compositions of the late Paleoproterozoic diorites in the NCC.

Sample Age Rb Sr Rb/Sr 8Rb/80sr 87sr/86sr  +£2SE  87sr/86s: Error  Data source
(Ma)  (ppm) (ppm) () (abs.)
Jiguanshan diorite
7Y2201 1780 80.3 412 0.20 0.5648 0.71931  0.000010 0.70485  0.00077
7Y2202 1780 95.2 374 0.25 0.7371 0.72471  0.000012 0.70584  0.00099
7Y2203 1780 97.8 384 0.25 0.7377 0.72434  0.000011 0.70546  0.00099
7Y2204 1780 88.4 406 0.22 0.6307 0.72111  0.000011 0.70496  0.00085  This study
7Y2205 1780 88.0 403 0.22 0.6334 0.71856  0.000011 0.70235  0.00086
7Y2206 1780 89.5 542 0.17 0.4780 0.71518  0.000011 0.70294  0.00066
7Y2207 1780 88.9 490 0.18 0.5252 0.71542  0.000013 0.70198  0.00072
Wafang diorote
WF1307-3 1780  107.0 389 0.28 0.7969 0.72131  0.000013 0.70091  0.00106
WF1307-4 1780  109.0 400 0.27 0.7895 0.72144  0.000014 0.70123  0.00105
WF1307-5 1780 84.0 411 0.20 0.5921 0.72024  0.000016 0.70508  0.00080 Wang et al. (2016)
WF1307-8 1780 113.0 343 0.33 0.9548 0.72479  0.000016 0.70035 0.00127
WF1307-9 1780 110.0 373 0.29 0.8545 0.72236  0.000014 0.70048 0.00114
Shizhaigou diorite
Ln-1 1780  103.7 272 0.38 1.1040 0.72874  0.000012 0.70048  0.00146
Ln-2 1780  101.5 322 0.31 0.9125 0.72868  0.000015 0.70532  0.00121
Ln-3 1780 136.4 200 0.68 1.9758 0.72509 0.00001 0.67452  0.00259 Cuietal. (2011)
Ln-4 1780 116.6 295 0.40 1.1479 0.73149  0.000015 0.70210  0.00152
Ln-5 1780  112.5 300 0.38 1.0885 0.72997  0.000014 0.70211  0.00144
E-W Group dyke
02SX001 1780  154.8 470 0.33 0.9542 0.72970  0.000014 0.70528  0.00127
02SX007 1780 81.2 450 0.18 0.5231 0.71858  0.000014 0.70519  0.00072
03LFO01 1780 74.4 449 0.17 0.4801 0.71619  0.000013 0.70390  0.00066  Peng et al. (2007)
03FS04 1780  131.8 229 0.58 1.6748 0.74399  0.000012 0.70112  0.00220
03FS07 1780  106.0 539 0.20 0.5699 0.71852  0.000013 0.70393  0.00078
Weight mean value 0.70519 0.00031 (n = 8, calculated by IsoplotR)

(87sr /808r)s = (87Sr /30Sr)) + (37Rb / 80Sr)g x (M — 1)
A7y =142 10711271

Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated concentration error and the age error. The decay constant is considered to be a fixed value.

2 (3 2 2t 8TRb )2
oSe(r) = \/aszr +ogy (e” - 1) + 0,2 (ke"’(i%l;? ))

OS1(r) is mean-square deviation of (87sr/808r),
ORp is mean-square deviation of (87Rb/ 86Sr)x
oy is mean-square deviation of age.

All diorites have similar Nd isotopic compositions with a
mean initial eng value of —6.5+0.2 (20, n =41, Fig. 7b) .
The overall range of initial eng values is from —10.2 £ 1.2 to
—4.8+1.2 (20, Fig. 7b). Some samples from the Wafang
diorite (or Muzhijie diorite, Ma et al, 2023b; Wang et al,
2016) have enriched Nd isotope composition, which can be
explained by assimilation or contamination of continental
crust due to their higher zirconium content (Fig. 7b; Table 3).
Overall, the initial eng values and the corresponding two-
stage Nd model ages (Tppp) of the diorites are consistent
with each other except for the Wafang diorite (Table 3).

Initial ey values of zircons from the diorites in the NCC
show a wide but consistent range of variations, i.e., from —17
to —2.5 in the Gushicun diorite (Ma et al, 2023a; Fig. 7c),
from —14 to 0.55 in the Muzhijie diorite (Ma et al, 2023b;
Fig. 7c), and from —17 to 0.95 in the Fudian diorite (Ma et

Solid Earth, 17, 203-224, 2026

al., 2023b; Fig. 7c). The diorites have similar Nd-Hf isotopic
compositions and form a coherent group in geochemical di-
agrams, indicating a close relationship.

5.2 Initial Sr isotope composition and magma source
characteristics

The late Paleoproterozoic diorites of the NCC show a large
range in whole-rock initial Sr isotope composition (Fig. 7a).
Determining magma sources for rocks with widely varying
initial Sr ratios is complex, as Sr isotopes can be affected
by magma mixing, assimilation, contamination, and melting
degrees (e.g., Gao et al., 2015; Wolf et al., 2019; Zeng et al.,
2005).

The whole-rock Nd and Sr isotope compositions of the
diorites suggest a heterogeneous magma source (Fig. 7d). It
might be argued that this could be the effect of mixing be-
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Table 3. Whole-rock Nd isotopic compositions of the late Paleoproterozoic diorites in the NCC.

Sample Age Nd Sm 147Sm/ l44Ng 143Nd/ l44Ng Error 143Nd/ l44Ng Error  eng(r)  Error  Tpyz  Data source
(Ma)  (ppm)  (ppm) (2s) (O] (abs.) (eNd)  (Ga)

Jiguanshan diorite

7Y2201 1780 72.3 12.7 0.1063 0.511238  0.000007 0.509994  0.000063  —6.69 1.24 2.83

7Y2202 1780 71.2 12.1 0.1029 0.511129  0.000008 0.509924  0.000061 —8.04 1.20 2.94

7Y2203 1780 70.9 12.0 0.1022 0.511131  0.000005 0.509934  0.000060 —7.85 1.19 2.93

7Y2204 1780 73.2 12.7 0.1049 0.511240  0.000007 0.510011  0.000062  —6.35 1.22 2.80  This study

7Y2205 1780 80.0 14.0 0.1058 0.511329  0.000007 0.510090  0.000063  —4.80 1.23 2.68

7Y2206 1780 72.9 12.8 0.1058 0.511317  0.000005 0.510078  0.000063  —5.03 1.23 2.70

7Y2207 1780 77.1 134 0.1054 0.511320  0.000006 0.510086  0.000062 —4.88 1.22 2.68

E-W Group dyke

02SX001 1780 113 20.3 0.1084 0.511287  0.000009 0.510018  0.000065  —6.21 1.27 2.79
0258X007 1780 62.6 11.3 0.1093 0.511285  0.000010 0.510005  0.000065  —6.47 1.28 2.81
03LFO01 1780 45.1 8.36 0.1120 0.511358  0.000017 0.510047  0.000068  —5.64 1.34 275 Pengetal. (2007)
03FS04 1780 102 17.5 0.1039 0.511270  0.000010 0.510053  0.000062  —5.53 1.22 2.74
03FS07 1780 62.7 11.1 0.1068 0.511297  0.000013 0.510047  0.000064  —5.65 1.26 275

Shizhaigou diorite

Ln-1 1780 69.0 12.3 0.1075 0.511280  0.000012 0.510021  0.000065  —6.15 1.26 2.79

Ln-2 1780 66.4 11.7 0.1065 0.511270  0.000011 0.510023  0.000064  —6.10 1.25 2.78

Ln-3 1780 61.9 11.2 0.1090 0.511280  0.000011 0.510003  0.000065  —6.50 1.28 2.82  Cuietal. (2011)
Ln-4 1780 71.1 12.6 0.1072 0.511260  0.000011 0.510005  0.000064  —6.46 1.26 2.81

Ln-5 1780 69.4 12.3 0.1072 0.511260  0.000012 0.510005  0.000064  —6.46 1.26 2.81

Wafang diorote

WF1307-3 1780 78.4 13.7 0.1056 0.511169  0.000008 0.509953  0.000062  —7.90 1.23 2.93

WF1307-4 1780 78.5 14.1 0.1086 0.511215  0.000008 0.509965  0.000063  —7.67 1.26 291

WF1307-5 1780 759 137 0.1091 0.511192  0.000008 0.509936  0.000064  —8.24 1.27 2.96  Wang et al. (2016)
WF1307-8 1780 71.6 13.4 0.1044 0.511039  0.000007 0.509837  0.000061  —10.2 1.21 3.11

WF1307-9 1780 71.5 13.9 0.1084 0.511193  0.000005 0.509945  0.000063  —8.07 1.26 2.94

Gushicun diorite

20XR4-1 1780 58.0 10.9 0.1134 0.511327  0.000004 0.509999  0.000067 —6.58 1.31 2.82

20XR3-3 1780 63.3 11.7 0.1118 0.511334  0.000006 0.510025  0.000066 —6.08 1.30 2.78 Ma et al. (20232)
20XR$-4 1780 59.1 10.9 0.1118 0.511341  0.000006 0.510032  0.000066  —5.94 1.30 2.77 ’ -
20XR4-5 1780 53.1 9.9 0.1122 0.511354  0.000006 0.510041  0.000066  —5.77 1.30 2.76

The Muzhijie diorites

208Pt2-1 1780 63.5 11.5 0.1090 0.511297  0.000004 0.510021  0.000064  —6.15 1.26 2.79

208Pt2-3 1780 64.2 11.7 0.1100 0.511300  0.000004 0.510012  0.000065 —6.33 1.27 2.80

208Pt2-5 1780 66.4 12.3 0.1122 0.511295  0.000007 0.509982  0.000067 —6.92 1.30 2.85

208Pt2-7 1780 72.1 13.1 0.1101 0.511297  0.000008 0.510007  0.000065 —6.42 1.28 2.81 Ma et al. (2023b)
205Pt2-9 1780 54.2 9.6 0.1076 0.511181  0.000006 0.509922  0.000064  —8.09 1.25 2.95 ’
208Pt2-11 1780 64.5 11.4 0.1073 0.511199  0.000006 0.509943  0.000064  —7.69 1.25 291

208Pt2-13 1780 62.9 11.2 0.1076 0.511196  0.000008 0.509937  0.000064 -7.80 1.25 2.92

208Pt2-16 1780 67.9 12.3 0.1098 0.511270  0.000007 0.509984  0.000065 —6.87 1.28 2.85

Fudian diorite

20XRSC-1 1780 65.8 12.1 0.1110 0.511309  0.000006 0.510009  0.000066 —6.39 1.29 2.81

20XRSC-2 1780 67.1 12.3 0.1111 0.511315  0.000006 0.510014  0.000066 —6.30 1.29 2.80

20XRSC-3 1780 69.5 12.8 0.1113 0.511314  0.000004 0.510011  0.000066  —6.35 1.29 2.80

20XRSC-4 1780 67.5 12.5 0.1117 0.511311  0.000007 0.510002  0.000066 —6.52 1.30 2.82 Ma et al. (2023b)

20XRSC-5 1780 70.1 12.9 0.1111 0.511311  0.000006 0.510010  0.000066  —6.37 1.29 2.81 ’

20XRSC-6 1780 68.9 12.7 0.1112 0.511324  0.000005 0.510022  0.000066 —6.14 1.29 2.79

20XRSC-8 1780 71.7 12.9 0.1089 0.511331  0.000006 0.510056  0.000065 —5.46 1.26 2.75

20XRSC-9 1780 76.6 13.9 0.1096 0.511325  0.000005 0.510042  0.000065 —5.74 1.27 2.75

Weight mean value —6.51 0.20 (n =41, calculated by IsoplotR)

(43Nd / 44Ny, = (3Nd / 94Ny + (47Sm ) H4ANd) x (M — 1)
exa() = [("FNd/ 144Ny, /(BNd /14 Nd) ey ) — 1110000

Tpyz = 1/2 % L (14 [(9Nd / 14N py — (FNd / 4N s+ ((47Sm 7 H4Nd)s (147 Sm / H4Nd)ce) x (@ = D1/ (478m / 14¥Nd)py = (1478m / 1¥4Nd)ee))

Ma7gy, =0.654x 10711 a~!

(M3Nd / " Nd)py = 0.51315

(147sm / 144Nd)pp = 0.2137

(1478m / 14 Nd)cc = 0.12

Error of initial ratio is calculated from the measurement error of the isotope ratio, the estimated concentration error and the age error. The decay constant is considered to be a fixed value.

2 A 2 2 147,
oNd(r) = \/"rﬁu +od (e = 1)+ 0P (2 Tl )
ONd(r) is mean-square deviation of(]43Nd/ 144Nd),

0Sm is mean-square deviation 01'(143Sm/ l“"Nd)A
o7 is mean-square deviation of age

7
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tween crustal and mantle sources. However, mantle-derived
rocks often have high MgO contents and elevated compatible
element concentrations such as Ni and Cr, which is inconsis-
tent with the element characteristics of the diorites (Table 1,
see previous references). Variability in Sr isotope ratios can
result from different degrees of source melting. However, a
mica- or feldspar-rich source with high Rb /Sr ratios can
produce melts with more radiogenic 87Sr / 36Sr ratios (e.g.,
Hu et al., 2018). Melts affected by dehydration of amphibole
typically have low 37Sr / 80Sr ratios and adakitic characteris-
tics (e.g., Rapp and Watson, 1995; Wolf and Wyllie, 1993).
Thus, different degrees of source melting are unlikely to be
the main cause for the isotopic composition of the diorites.
Initial 87Sr / 80Sr ratios < 0.704 are negatively correlated
with the 8’Rb / 36Sr ratios (Fig. 7a). For initial 8’Sr / 80Sr ra-
tios > 0.704, such correlation does no longer exist. A reason
for this could be the large uncertainty propagation of the ini-
tial whole-rock St isotope ratios especially for old samples.
Among all diorites there are samples with initial 3Sr / 80Sr
ratios > 0.704. Excluding outliers, the mean average initial

Solid Earth, 17, 203-224, 2026

87Sr / 86Sr ratio is 0.7052 & 0.0003 (20, n = 8), which might
represent the initial Sr isotope composition of the magma
source (Fig. 7a).

The initial Sr ratios of the Xiong’er Group rocks vary
widely and tend to be more radiogenic compared to the
diorites (Fig. 7d). The initial Sr ratios of the diorites are
more similar to lower crustal Archean xenoliths from the
southeastern NCC (initial 87Sr / 80Sr ratios: 0.7039-0.7068,
t = 1780Ma, e.g., Huang et al., 2004), suggesting that they
are more likely associated with lower crustal rocks of the
NCC rather than an enriched mantle source like the volcanic
rocks of the Xiong’er Group.

5.3 Petrogenesis of the dioritic rocks

Several models have been proposed for the petrogenesis of
intermediate dioritic rocks including partial melting of meta-
somatized mantle (e.g., Chen et al., 2021), partial melting of
subducted oceanic crust and subsequent melt-peridotite re-
action (e.g., Kelemen, 1995; Stern and Kilian, 1996), magma

https://doi.org/10.5194/se-17-203-2026
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mixing/mingling (e.g., Reubi and Blundy, 2009; Streck et al.,
2007), melting of basaltic rocks (e.g., Jackson et al., 2003;
Petford and Atherton, 1996), as well as fractional crystalliza-
tion of basaltic magmas (e.g., Castillo et al., 1999).

The diorites from the NCC have low compatible element
concentrations, suggesting that they were not derived directly
from a mantle source (Fig. 9a). Larger contribution of mantle
material can also be excluded due to their initial Nd isotope
features (Fig. 7b), silica and Mg# values (Fig. 5d).

Partial melting of subducting oceanic crust can also form
rocks of intermediate composition, such as adakites, which
often exhibit high Sr/Y ratios (> 20) and low Y contents
(< 18 ppm) (e.g., Defant and Drummond, 1990; Peacock et
al., 1994). The Jiguanshan and other diorites from the NCC
have relatively high Y and Sr contents with Sr/Y ratios
< 15. Thus, partial melting of oceanic crust does not appear
to have played a role during the genesis of the diorites.

Cr contents decrease with decreasing MgO, indicating
fractionation of clinopyroxene (Fig. 9a). CaO contents de-
crease with increasing SiO;, suggesting crystallization of
minerals, such as plagioclase or clinopyroxene (Fig. 9b).
However, Al03 and Na;O contents do not significantly
decrease with increasing SiOj, indicating that plagioclase
and clinopyroxene were not significant fractionation phases
(Fig. 9c—d). The increase in K>O contents with increasing
Si0O, suggests no biotite and/or K-feldspar fractionation dur-
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ing magmatic evolution (Fig. 9e). Increasing SiO, with de-
creasing TiO; indicate crystallization and fractionation of Ti-
bearing minerals, such as ilmenite (Fig. 9f). Eu / Eu* values
of the diorites do not show significant changes with Sr con-
tents, which provides evidence that fractionation of plagio-
clase from the melt was not significant (Fig. 9g).

From the above discussion, it can be concluded that the
petrogenesis of the diorites in the NCC was associated
with minor fractional crystallization processes. Whole-rock
La/ YD versus La and Zr / Sm versus Zr correlations are as
expected for a partial melting process (Fig. 9h—i). This im-
plies that the formation of the diorites may be closely related
to the partial melting of a basaltic protolith.

Basement rocks of the lower Taihua Group at the south-
ern margin of the NCC consist of amphibolite (e.g., Diwu et
al., 2014, 2018; Wang et al., 2020). Partial melting of am-
phibolite can lead to the production of intermediate to acidic
magmas (e.g., Beard and Lofgren, 1991; Rapp and Watson,
1995). The amphibolites of the Taihua Group are character-
ized by low K content and low K>O /NayO ratios (< 0.5,
Wang et al., 2019), making it difficult to generate high-
K50 rocks (Beard and Lofgren, 1991; Roberts and Clemens,
1993). Partial melting of amphibolite typically results in the
formation of peraluminous melts (e.g., Beard and Lofgren,
1991; Rapp and Watson, 1995), whereas the diorites in the
NCC have low Al,O3 content and metaluminous character

Solid Earth, 17, 203-224, 2026
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(Fig. 5c; Weighted average A / NCK values of 0.81). Addi-
tionally, the eng values of the Taihua Group amphibolites at
t = 1780 Ma vary widely from —6.7 to 0.4, different from
those of the diorites (Wang et al., 2019). Therefore, it seems
unlikely that the diorites formed by the partial melting of Tai-
hua Group amphibolites.

Mafic rocks of the Xiong’er Group and mafic dyke swarms
were argued to be the source of the diorites (Cui et al., 2011;
Ma et al., 2023b; Peng et al., 2007). Such rocks possess a
relatively large range of initial Sr and Nd isotopic compo-
sitions (Fig. 7d), while the initial Nd isotopic compositions
of the diorites are relatively homogeneous (Fig. 7b). Whole-
rock initial Nd ratios and zircon initial Hf isotope ratios of
the Xiong’er Group rocks are also enriched (Fig. 7¢). Initial
Pb isotopic compositions of the mafic dykes and Xiong’er
Group rocks are very radiogenic and variable (Fig. 8a, b),
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which is due to the high U and Th contents of the protolith,
indicating the presence of an enriched subcontinental litho-
spheric mantle source (e.g., Hou et al., 2008; Peng et al.,
2004, 2007; Wang et al., 2004, 2010; Zhao et al., 2007).
Based on the previous discussion, the geochemical charac-
teristics of the diorites are more compatible with a crustal
origin and the isotopic compositions of the diorites indicate
that they were not derived from an enriched mantle source.
Additionally, the Xiong’er volcanic rocks have lower
Nb / Ta ratios and Nb contents compared to the diorites
(Fig. 10a). Nb and Ta share a similar valence state and atomic
radii, but they can undergo fractionation during the sub-
duction process (Jochum et al., 1986; Shannon, 1976). The
Xiong’er volcanic rocks, with higher and positively corre-
lated Ba / Th and Sr/Th ratios (Fig. 10a-b), likely origi-
nated from a source influenced by an early subduction com-
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ponent, whereas the diorites appear to be less affected by
early subduction-related materials. Therefore, it seems likely
that the diorites were formed by partial melting of a mafic
lower crustal protolith on top of an enriched subcontinental
lithospheric mantle beneath the NCC.

5.4 Tectonic implications

After Paleoproterozoic collision and amalgamation, the NCC
was intruded by diverse magmatic rocks, which have been
interpreted as products of continental arc magmatism, post-
collisional extension, or continental rift/mantle plume mag-
matism.

The volcanic rocks of the Xiong’er Group along the south-
ern margin of the NCC are dominated by andesites, ex-
hibiting calc-alkaline characteristics and negative Nb-Ta-Ti
anomalies (Jia, 1985; He et al., 2009; Zhao et al., 2009).
These signatures together with Nd isotope evidence for an-
cient crustal assimilation and multiphase volcanic activities,
support a continental arc environment for the formation of
the Xiong’er Group (He et al., 2009; Zhao et al., 2009).

The radially distributed mafic dike swarms, accompanied
by A-type granite intrusions and rift-related sedimentary se-
quences, are indicative of a continental rift setting (e.g., Fan
et al., 2024; Xu et al., 2008; Zhao et al., 2002, 2007). The
Xiong’er Group is dominated by andesites, dacites, and rhy-
olites with minor basaltic andesites, which some researchers
interpret as an atypical bimodal suite suggestive of a con-
tinental rift setting (Zhao et al., 2002, 2007). Furthermore,
the 1.80 to 1.75 Ga old mafic dike swarms are distributed in
a radial or concentric pattern centered on the Xiong’er Rift
and extending northward (Peng et al., 2007). They share geo-
chemical characteristics, such as high TiO, and MgO con-
tents, enrichment in LREEs, Ba, and K, and depletion in Nb-

https://doi.org/10.5194/se-17-203-2026

Ta which is interpreted as evidence for lithospheric extension
induced by mantle plume upwelling (e.g., Hou et al., 2008;
Peng et al., 2007, 2008).

The post-collisional extension model emphasizes that the
late Paleoproterozoic magmatism occurred during litho-
spheric delamination and possibly slab detachment (e.g.,
Wang et al., 2004, 2008, 2014, 2023a). The mafic dikes are
enriched in LILEs and LREEs but depleted in HFSEs, and
show negative eng(#) and ege(r) values. This suggests deriva-
tion from an enriched lithospheric mantle previously meta-
somatized by subduction zone fluids (e.g., Hu et al., 2010;
Wang et al., 2004, 2008, 2014). The dikes are concentrated in
the Trans-North China Orogen and nearby areas, consistent
with extensional fractures caused by a rising asthenosphere
(Wang et al., 2004, 2008, 2014). Their geochemical features,
lacking OIB or asthenospheric mantle affinities, do not sup-
port a mantle plume origin (Wang et al., 2014).

Calk-alkaline diorites are important intermediate rock that
typically form at island arcs, subduction zones, and conti-
nental collision orogenic belts along convergent plate bound-
aries. Island arc intermediate rocks, such as boninites and
andesites are generally characterized by high MgO, Cr, and
Ni contents (Hickey and Frey, 1982; Rapp and Watson,
1995), whereas continental arc intermediate rocks typically
show high Al,03 content with a wider range of 87Sr / 80Sr
and '*3Nd / '#Nd isotope compositions, reflecting an obvi-
ous influence of continental crust or more enriched sources
(Hawkesworth et al., 1979; Peacock et al., 1994). The Pa-
leoproterozoic diorites of the NCC lack the compositional
features of arc-related rocks, meanwhile, their trace element
distributions differ from those of island arc and continental
arc intermediate rocks. For example, the diorites do not show
significant enrichment in Sr, Th, and U compared to arc-
related rocks (Fig. 6a). The diorites also exhibit a negative
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Eu anomaly in the REE diagram, which is different from arc-
related rocks (Fig. 6b). Diorites in collisional orogenic belts
have high MgO and K;O contents and adakite-like character-
istics with high Sr /Y and La / Yb ratios (Yang et al., 2015).
However, Paleoproterozoic diorites of the NCC do not show
typical arc-related element and isotopic signatures, suggest-
ing formation in a non-subduction environment.

Diorites can also form during crustal extension (Asmerom
et al., 1990; Liu et al., 2024). The NCC was in a post-
collisional extensional setting after its final amalgamation
(e.g., Zhai, 2010). During this stage, magmatism becomes
more complex (Bonin, 2004). Zircon is a very stable mineral
and its trace elements offer significant potential for distin-
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guishing between different tectonic settings. For the follow-
ing discussion, zircon samples with La contents (< 1 ppm)
were selected to ensure accurate information from zircon
trace element contents without interference from the inclu-
sion of other accessory phases (Zou et al., 2019). All zir-
cons from the diorites plot within the continental area in the
U/ Yb versus Y diagram (Fig. 11a), and most of them fall
into a rift-controlled tectonic environment in tectonic dis-
crimination diagrams (Fig. 11b, c; Carly et al., 2014).
Furthermore, HFSE elements, such as Zr, Nb, Ta, Hf,
and Th, are important tectonic indices. The distinctive Th
content in arc magmas is primarily due to its low solubil-
ity in subduction zone fluids and its contribution from sed-
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imentary components (e.g., Bailey and Ragnasdottir, 1994;
Pearce and Peate, 1995). Arc-related/orogenic magmas usu-
ally have less Nb than those of within-plate settings (e.g.,
Pearce and Peate, 1995; Sun and McDonough, 1989). Nb in
zircon is thought to be incorporated through xenotime-type
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substitution (Schulz et al., 2006) and is suggested to reflect
the magma composition with minimal influence of magmatic
fractionation (Hoskin et al., 2000; Schulz et al., 2006). In
the Nb / Hf versus Th /U and Hf / Th versus Th /Nb dia-
grams, zircons from the Fudian and Gushicun diorites plot
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within or close to the arc-related/orogenic area (Fig. 11d,
e). The Jiuganshan and Muzhijie diorites plot in the arc-
related/orogenic and within-plate/anorogenic areas (Fig. 11d,
e). Whole-rock Ta/Yb and Th/Yb ratios of the diorites
are uniform (Fig. 11f), all falling within the overlapping
area of the ACM (active continental margins) and WPVZ
(within-plate volcanic zone). This may indicate that the post-
collisional extension during this period proceeded continu-
ously and progressively into a rift evolution. Thus, the dior-
ites preserve a record of superposition of components from
multiple tectonic settings.

After the ~ 1.85Ga collisional event, the NCC entered
into a prolonged post-collisional extensional stage (Fig. 12).
During this stage, magmatism was primarily controlled by
crustal thickening and remelting, leading to the widespread
formation of various crust-derived granites (e.g., Geng et al.,
2006; Zhao et al., 2008, 2018). Subsequent slab breakoff and
gravitational collapse of the thickened crust triggered exten-
sion in the mid-upper crust and emplacement of felsic mag-
mas (Deng et al., 2016a; Wang et al., 2023a; Xu et al., 2024).
At ca. 1.78 Ga, lithospheric thinning induced upwelling of
the asthenosphere, causing further partial melting of pre-
viously subduction-fluid-metasomatized lithospheric mantle
(e.g., Peng et al., 2007, 2008; Wang et al., 2010, 2014; Zhao
et al., 2002, 2007). Following this event, the magmatic ac-

Solid Earth, 17, 203-224, 2026

tivity in this region became dominated by A-type granites
and alkaline rocks, marking a transition to an anorogenic in-
tracontinental extensional setting (e.g., Deng et al., 2016b;
Wang et al., 2024). The 1.78 Ga old crust-derived diorites
show transitional geochemical features, retaining some rem-
nant effects of orogenic magmatism while gradually evolving
toward intraplate magmatism. It reflects the ongoing exten-
sion of the NCC after its amalgamation.

6 Conclusions

The Jiguanshan diorite yields a U-Pb zircon age of
ca. 1.78 Ga. The intrusion displays geochemical features in
common with other Paleoproterozoic diorite intrusions of
the NCC. The diorite emplaced contemporaneous with the
Xiong’er volcanic rocks and the mafic dyke swarms, repre-
senting a significant period of magmatism in the NCC.

The diorites were produced by partial melting of a mafic
protolith. The Sr-Nd-Pb-Hf isotopic characteristics indicate
that the source was not the same as that for the Xiong’er vol-
canic rocks or the mafic dyke swarms. Instead, the diorites
were likely derived from the lower crust of the NCC.

The formation of Paleoproterozoic diorites in the NCC
was not connected with arc magmatism. Instead, it was asso-
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Initial Pb isotopic ratios are calculated back to 1780 Ma.

ciated with a rift setting. The formation of diorite records the
transition of crustal origin rocks from orogenic-related mag-
matism to intraplate magmatism during the post-collision ex-
tensional stage. It therefore reflects the ongoing extension of
the NCC after its amalgamation.
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