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Abstract. Subbasalt imaging can be improved by carefully
applying pre-stack depth migration. Pre-stack depth migra-
tion requires a detailed velocity model and an accurate trav-
eltime calculation. Ray tracing methods are fast but, often
fail in calculating traveltimes in complex models, specially,
when they feature high velocity contrasts. Finitte difference
solutions of the eikonal are more stable and can produce a
traveltime field for the whole model avoiding shadow zones.
A synthetic test was carried out to check the performance of
a new pre-stack depth migration algorithm in a model that
features a high velocity layer surrounded by lower veloci-
ties. The results reasonably reproduce the original model.
The same scheme was used to process long-offset reflec-
tion data from the Faroe Shelf where conventional techniques
(stack) were insufficient to assess the structure under a basalt
layer. Pre-stack depth migration produced an improved im-
age which recovered the main features in the stacked section
and allowed to identify some subbasalt coherent events.

1 Introduction

Seismic imaging comprises a wide range of methodologies.
Among these techniques, the most common in geophysical
prospecting is seismic reflection, which has provided valu-
able data to infer the subsurface structure. Seismic reflec-
tion principles are based on approximations that simplify the
imaging problem, two of the most restrictive are: the Earth is
considered as a sequence of homogeneous subhorizontal lay-
ers and interfaces between layers consist in a vertically sharp
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and laterally smooth discontinuity (Yilmaz, 1987). Process-
ing flows deduced from these premises generate detailed im-
ages in layered and laterally homogeneous media. However,
in nature, there are often geological settings where these as-
sumptions fail dramatically, and the methodology based on
them is going to be insufficient. This is the case in basalt
covered areas and beneath salt instrusions. The presence of
a high-velocity and highly heterogeneous layer (basalt) em-
bedded in low-velocity sediments, has a detrimental effect
on imaging beneath this structure (Martini and Bean, 2002).
The basalt acts as a barrier for seismic signal. Most of the en-
ergy reflects or travels along this layer, therefore little energy
goes through the basalt layer. In addition, the backscattered
energy that returns to the surface from basalt and subbasalt
structures features a lack of coherence caused by the irregular
interfaces of the basaltic body and the heterogeneities within
the basalt itself. Hence, in this cases a more sophisticated
approach, such as pre-stack depth migration, is needed.

The North Atlantic province has been widely studied by
the oil industry. Standard seismic imaging techniques have
been succesfully applied for many years in the sedimentary
basins located in this area. The Faroe-Shetland Basin repre-
sents a potential hydrocarbon reservoir ready for exploration.
To the center of the basin, geology is well known but, in the
NW region, sequences of basalt cover underlying structures
and make exploration both challenging and risky (Sørensen,
2003). In the present study, a new pre-stack depth migration
scheme was implemented to address the subbasalt imaging
problem. This manuscript shows the improvements obtained
by this pre-stack depth migration approach applied to data
acquired over the Faroe Shelf.
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2 Geological and geophysical setting

In the Faroe-Shetland Basin, huge amounts of basaltic rock
were erupted during the Paleocene-Eocene. Previous studies
suggest this basalt is covering relatively low velocity materi-
als which may be sediments (Hughes et al., 1998; Richardson
et al., 1999; Fliedner and White, 2003; Raum et al., 2005).
Topography before the emplacement of the basalt was dom-
inated by normal faults as a consequence of extension and
subsidence during the Cretaceous and Paleocene (Richard-
son et al., 1999). Basaltic flows extended over long dis-
tances in the basin after filling the lows between fault blocks.
This causes an irregular bottom basalt interface. Basalt was
erupted in different episodes. Three major basalt units have
been identified: Lower, Middle and Upper Series. Their
thicknesses and compositions differ from one unit to an-
other (Noe-Nygaard and Rasmussen, 1968). Although, the
basalt flow stratigraphy in this area is mainly layered, it in-
cludes tuffs and breccias increasing the inner velocity con-
trasts (Maresh and White, 2005). Moreover, in periods with-
out igneous activity, lacustrine shales and coals were accu-
mulated and sediments were emplaced filling the basin floor
deeps (White et al., 2003). Those facts result in a highly
heterogeneous distribution of physical properties within the
basaltic body.

In the Faroe Shelf, the structure above the basalt and the
top basalt interface can be succesfully resolved using con-
ventional techniques because of the high contrast in physical
properties between basalt and overlying sediments. How-
ever, attenuation and scattering of the seismic wavefield as
it passes through the basaltic pile make seismic imaging dif-
ficult below the top basalt surface (Smallwood et al., 2001).
The top basalt interface shows an irregular topography fea-
turing fractal properties (Martini and Bean, 2002). This ir-
regular topography is often at a scale similar to the seis-
mic wavelength which causes the dispersion of elastic energy
(scattering) degrading the signal coherence in the wavefield.
In addition, heterogeneities within the basalt flows yield a
high impedance contrast generating internal reverberations,
mode conversions and internal multiples (Martini and Bean,
2002). Therefore, seismic energy reflected or refracted by
these structures is incoherently scattered and dispersed re-
sulting in a poor subbasalt image.

3 Pre-stack depth migration

An extensive revision of the algorithms and evolution of
Pre-Stack migration can be found in the dedicated volume
of Jones et al.(2008). Pre-stack depth migration aims to
place the reflected amplitude at the precise location within
the model from which the energy was reflected. Conven-
tional migration algorithms requiere travel time tables to dis-
tribute the energy recorded (the amplitude of the seismo-
grams) among the grid points in the model. The amplitudes
of a trace in a shot gather,a(ti), are distributed (sprayed)

among the points of a gridded model according to theti time
at which it arrived at the sensor. Therefore, an algorithm to
compute the travel times is imperative in order to be able
to migrate. There are different ways to compute this travel
times. A large majority of algorithms use conventional ray
tracing approximations in one of each varieties, ray shoot-
ing, two point ray tracing, gausian beam etc. Once the travel
time has been estimated we need to estimate how the am-
plitude is distributed among all the grid points in the model.
The amplitude in the trace can be considered to be:

a(ti) =

∑
j

rj · a(ti)j

wherej covers all the points of the model characterized by a
time ti . ti is the time it took the seismic energy to travel from
the source to that point in the model and then to the receiver.

The calculation of traveltime tables for a given velocity
model is an essential stage in Kirchhoff prestack depth mi-
gration. Classical ray tracing techniques have been widely
used to solve the forward problem (Zelt and Smith, 1992)
and to calculate traveltime tables. Snell’s law based algo-
rithms are fast and provide an estimation of the traveltime
for areas in the model sampled by rays traced. However,
in some implementations, sampling all the model requires
a large amount of rays and depending on the velocity model
(e.g. high velocity gradients) some areas can be undersam-
pled resulting in shadow zones where no traveltimes are cal-
culated. Ray-tracing methods in the presence of high velocity
contrasts, and/or structures with sharp edges have difficulties
in calculating the travel times. The result is that a few grid
points lack travel times. This can be solved in different ways,
for example by performing interpolating schemes (seeJones
et al., 2008for a review) or by using a finite difference ap-
proach.

In the present work, we used a finite difference algorithm
to solve the eikonal equation (Hole and Zelt, 1995). Using
this algorithm, traveltimes are calculated for every node in
the model, which slightly increases the computational cost
compared with shooting ray methods, but, on the other hand,
shadow zones are avoided. Moreover, using complete trav-
eltime tables allows the handling of diffractions, correctly
restoring the diffracted energy to its original position in the
model. The finite difference solution of the eikonal equation
is not unique to the algorithm used in this manuscript. This
approach is used in other commercial packages. The advan-
tages of using the eikonal to compute the travel times is that
it is more robust than ray tracing methods as it is able to es-
timate travel times for all the points in a model grid being
more stable when high velocity contrasts exist.

As migration consist of summation of the contributions
from the wavefield for every source-receiver pair, once the
traveltime field has been calculated, a half-derivative is per-
formed on every trace and amplitudes are spread among
the grid points of the model. The amplitudes have been

Solid Earth, 2, 1–7, 2011 www.solid-earth.net/2/1/2011/



I. Flecha et al.: Some improvements in subbasalt imaging using pre-stack depth migration 3
4 I. Flecha et al.: Some improvements in subbasalt imaging using pre-stack depth migration

0

0.5

1.0

1.5

D
e

p
th

 (
k
m

)

0 1 2 3 4 5
Distance (km)

1.5

1.7

1.9

2.1

2.3

V
e

lo
c
it
y
 (

k
m

/s
)

0

1

2

3

T
im

e
 (

s
)

0 1 2 3 4 5
Distance (km)

Figure 1. Velocity model used to calculate synthetic data (top) and

a shotgather generated at x = 4 km (bottom).

Computing obliquity factors by using the forward model-

ing parameters, as the angle of incidence at each of the model

grid point is the conventional approach. The algorithm, in

this manuscript in its present form uses the semblance of the

tau-p transform of the shot gathers. The most relevant dif-

ference between the conventional algorithms and the current

one is that conventional schemes use to compute the r j using

the model (they are model dependent) while in the approach

used in this manuscript we use the actual data to compute the

obliquity factors (the algorithm is data dependent). The sem-

blance of the tau-p transform of the shot gathers represents a

measure of the reflected energy as a function of the slowness

(ray parameter, direction of the reflection). Therefore, these

are representative of the obliquity factors.

Another key point in pre-stack depth migration is the gen-

eration of numerical artifacts that result in “smiling” images.

This is a known issue that usually is solved by limiting the

aperture in the migration algorithm. This strategy can solve

the problem in subhorizontal layered models but it fails when

considering complex models with vertical or dipping struc-

tures. In any case, if the fold of the data is high, the summa-

tion of complete migrated shotgathers contributes to enhance

coherent signal while spurious artifacts are highly attenuated

in the final image.

We coded this approach into a new pre-stack migration al-

gorithm. In order to test the code, a synthetic model was

used (Forel et al., 2005). The model consists in three layers

and within the second one, a thin high velocity layer was in-

cluded to simulate a basaltic intrusion (Fig. 1 top). Up to 40

synthetic shotgathers were calculated for this velocity model

using a full waveform acoustic scheme (Fig. 1 bottom). The

sources were placed on the surface every 50 m between 2

and 4 km and the receivers were also placed every 50 m at

the surface using a split-spread pattern with offset ranging

from -1500 m to 1500 m. For every source and every re-

ceiver, a traveltime table was calculated. Then, for every
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Figure 2. Traveltime tables for the source at x=0.2 km (top) for the

receiver at x=5.8 km (middle) and the sumation of both timetables

(bottom). These traveltime tables were obtained using a finite dif-

ference solution of the eikonal equation (Hole and Zelt, 1995). The

yellow and orange colors indicate the zone of minimum traveltimes.

This ilustrates the fastest path from the source to the receiver within

the model (the banana-kernels). This ilustrates that the scheme used

is able to handle long-offsets.
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Figure 3. Migrated image of the synthetic example.
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Fig. 1. Velocity model used to calculate synthetic data (top) and a
shotgather generated atx = 4 km (bottom).

previously scaled by the apropriate obliquity factor (Yilmaz,
1987) that correspond to each grid point.

The rj are commonly known as the obliquity factors.
These obliquity factors are estimated by using the parameters
of the ray at the particular point (angle of incidence). Thus.
For prestack migration we nearly always require a starting
model. This starting model is used to compute all the nec-
essary parameters for the migration, the travel times and the
obliquity factors.

Computing obliquity factors by using the forward model-
ing parameters, as the angle of incidence at each of the model
grid point is the conventional approach. The algorithm, in
this manuscript in its present form uses the semblance of the
tau-p transform of the shot gathers. The most relevant dif-
ference between the conventional algorithms and the current
one is that conventional schemes use to compute therj using
the model (they are model dependent) while in the approach
used in this manuscript we use the actual data to compute the
obliquity factors (the algorithm is data dependent). The sem-
blance of the tau-p transform of the shot gathers represents
a measure of the reflected energy as a function of slowness
(ray parameter, direction of the reflection). Therefore, these
represent to some degree the obliquity factors.

Another key point in pre-stack depth migration is the gen-
eration of numerical artifacts that result in “smiling” images.
This is a known issue that usually is solved by limiting the
aperture in the migration algorithm. This strategy can solve
the problem in subhorizontal layered models but it fails when
considering complex models with vertical or dipping struc-
tures. In any case, if the fold of the data is high, the summa-
tion of complete migrated shotgathers contributes to enhance
coherent signal while spurious artifacts are highly attenuated
in the final image.

We coded this approach into a new pre-stack migration al-
gorithm. In order to test the code, a synthetic model was
used (Forel et al., 2005). The model consists in three layers
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Figure 1. Velocity model used to calculate synthetic data (top) and

a shotgather generated at x = 4 km (bottom).
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synthetic shotgathers were calculated for this velocity model

using a full waveform acoustic scheme (Fig. 1 bottom). The

sources were placed on the surface every 50 m between 2
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Figure 2. Traveltime tables for the source at x=0.2 km (top) for the

receiver at x=5.8 km (middle) and the sumation of both timetables

(bottom). These traveltime tables were obtained using a finite dif-

ference solution of the eikonal equation (Hole and Zelt, 1995). The

yellow and orange colors indicate the zone of minimum traveltimes.

This ilustrates the fastest path from the source to the receiver within

the model (the banana-kernels). This ilustrates that the scheme used

is able to handle long-offsets.
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Fig. 2. Traveltime tables for the source atx = 0.2 km (top) for the
receiver atx = 5.8 km (middle) and the sumation of both timetables
(bottom). These traveltime tables were obtained using a finite dif-
ference solution of the eikonal equation (Hole and Zelt, 1995). The
yellow and orange colors indicate the zone of minimum traveltimes.
This ilustrates the fastest path from the source to the receiver within
the model (the banana-kernels). This ilustrates that the scheme used
is able to handle long-offsets.

and within the second one, a thin high velocity layer was in-
cluded to simulate a basaltic intrusion (Fig.1 top). Up to 40
synthetic shotgathers were calculated for this velocity model
using a full waveform acoustic scheme (Fig.1 bottom). The
sources were placed on the surface every 50 m between 2
and 4 km and the receivers were also placed every 50 m at
the surface using a split-spread pattern with offset ranging
from −1500 m to 1500 m. For every source and every re-
ceiver, a traveltime table was calculated. Then, for every
source-receiver pair, their respective traveltime tables were
added to obtain a new traveltime table which represents, for
each grid point, the travel time from source to receiver of a
wave crossing this grid point. This new traveltime table be-
comes the one used in the migration (Fig.2). Note that the
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Figure 1. Velocity model used to calculate synthetic data (top) and

a shotgather generated at x = 4 km (bottom).
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obliquity factors (the algorithm is data dependent). The sem-

blance of the tau-p transform of the shot gathers represents a

measure of the reflected energy as a function of the slowness

(ray parameter, direction of the reflection). Therefore, these

are representative of the obliquity factors.
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Fig. 3. Migrated image of the synthetic example.

region of minimum traveltimes (banana-kernel) in the result-
ing traveltime table can be used to obtain (a posteriori) the
ray trajectory for first arrivals. Every shot in the dataset was
migrated and stacked over every node in the model result-
ing in a final migrated image (Fig.3). The resulting image
reproduces reasonably well the theoretical model.

4 Real case: subbasalt imaging

Data from the survey FLO-96 over the Faroe Shelf (Fig.4)
acquired using two vessels (White et al., 1999) with multiple
passes to build up a synthetic aperture of over 38 km with a
receiver group spacing of 12.5 m which presents other issues
associated with the geometry caused by poorly constrained
cable feathering. This dataset features the conventional prob-
lems of marine seismic reflection data: multiples, peg-legs,
and other reverberation; tidal and ambient noise; converted
waves etc.

The lead vessel (M/V Western Cove) towed a 6 km cable
and deployed a 32 sleeve-gun source array with a total vol-
ume of 3000 cu in. The second vessel (I/S Thetis) followed at
variable distances and towed a 4.8 km cable and deployed a
30 sleeve-gun source array with a total volume of 5070 cu in.
Data acquired using this configuration can be considered
from two points of view: as a standard normal incidence ex-
periment; or as a very dense wide-angle experiment. This
combination gave an effective aperture of 16.8 km. The basic
processing steps are laid out in Table1; the philosophy was:
to enhance the low frequency energy; suppress sea-bed, sed-
iment and top-basalt multiples, peg-legs and other reverber-
ations; suppress other low velocity energy; and stack using
a velocity model based on conventional analysis. The sub-
basalt velocity model was determined from the occasional
strong reflection event visible above the noise probably from
a sill or top basement.

From the stacked image (Fig.5 top) we can interpret the
structure overlying the basalts and obtain a detailed velocity
model for these sediments. We can also map the topography
of the top-basalt. However, using conventional post stack
imaging techniques, no laterally coherent events are identi-
fied under this high velocity layer (Fig.5 top). In order to
improve this image beneath the basalt, pre-stack depth mi-
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The lead vessel (M/V Western Cove) towed a 6 km cable

and deployed a 32 sleeve-gun source array with a total vol-

ume of 3000 cu in. The second vessel (I/S Thetis) followed

at variable distances and towed a 4.8 km cable and deployed

a 30 sleeve-gun source array with a total volume of 5070

cu in. Data acquired using this configuration can be consid-

ered from two points of view: as a standard normal incidence

experiment; or as a very dense wide-angle experiment. This

combination gave an effective aperture of 16.8 km. The basic

processing steps are laid out in Table 1; the philosophy was:

to enhance the low frequency energy; suppress sea-bed, sed-

iment and top-basalt multiples, peg-legs and other reverber-

ations; suppress other low velocity energy; and stack using

a velocity model based on conventional analysis. The sub-

basalt velocity model was determined from the occasional

strong reflection event visible above the noise probably from

a sill or top basement.

From the stacked image (Fig. 5 top) we can interpret the

structure overlying the basalts and obtain a detailed velocity

model for these sediments. We can also map the topography

of the top-basalt. However, using conventional post stack

imaging techniques, no laterally coherent events are identi-

fied under this high velocity layer (Fig. 5 top). In order to

improve this image beneath the basalt, pre-stack depth mi-

gration was applied using the pre-stack data after SRMS and

Tau-p filtering had been applied. This providesmore detailed

image of the subbasalt zone. While stack-based methodolo-

gies produce a section in time, pre-stack depth migration will

result in a depth section which provides information for a bet-

ter interpretation.

The main advantage of considering long offset streamer

data is that long offset phases may be identified, providing

information to perform tomographic inversions. In standard

marine seismic reflection data, most of the signal and en-

ergy lie within the water-wave cone and therefore are affected

by multiples and peg-leg making it very difficult to identify

phases. At long offset these reflections appear as clear and

isolated events and refractions can be picked as clear arrivals.

The use of long offset data therefore considerably improves

the accuracy and quality of the velocity model with respect

to the usual velocity analysis in the CDP domain.

In the first part of the profile, refractions from basalt and

reflections from the top of the basalt layer are very clear. In

some shots, two hyperbolic events can be picked and inter-

preted as the base-basalt reflection and the top-basement re-

flection (Fig. 4). In the last part of the profile, the top-basalt

reflection could be identified while the basalt refraction com-

pletely disappeared. This is due to the thinning of the basalt

layer to the SE. Also in this part, some hyperbolic events

were identified in the data out of the water-wave cone, but,

due to the lack of lateral continuity (events only appeared

www.jn.net Journalname

Fig. 4. Survey FLO-96. Location map of the profile (top), and
shotgather (bottom). In the shot gather the NW corresponds to the
left and the SE to the right The following phases are identified: sea
bottom reflection (blue), top-basalt reflection (green), basalt refrac-
tion (red), base-basalt reflection (purple) and top-basement reflec-
tion (yellow). This shotgather is a composite from the two-ship
experiment (see the text for an explanation).

gration was applied using the pre-stack data after SRMS and
Tau-p filtering had been applied. This provides more detailed
image of the subbasalt zone. While stack-based methodolo-
gies produce a section in time, pre-stack depth migration will
result in a depth section which provides information for a bet-
ter interpretation.

The main advantage of considering long offset streamer
data is that long offset phases may be identified, providing
information to perform tomographic inversions. In standard
marine seismic reflection data, most of the signal and energy
lie within the water-wave cone and therefore are affected
by multiples and peg-leg making it very difficult to identify
phases. At long offset these reflections appear as clear and
isolated events and refractions can be picked as clear arrivals.
The use of long offset data therefore considerably improves
the accuracy and quality of the velocity model with respect
to the usual velocity analysis in the CDP domain.

In the first part of the profile, refractions from basalt and
reflections from the top of the basalt layer are very clear.
In some shots, two hyperbolic events can be picked and
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Table 1. Processing steps applied to data.

Processing step Parameters

Source matching filter
Assign geometry
Bandpass filter high-cut Ormsby 48–64 Hz
Bin 50 m receiver group/25 m CMP spacing
Create Split Spread aperture−1 km→ 16.8 km

Surface Related Multiple multiple model based on sea-bed inter-sediment
Suppression (SRMS) horizon and top-basalt picked from near-offset stack

Tau-p filter applied to both common Gaussian weighted filter with mean slowness
shot and common receiver domains of 0.075 ms m−1 and variance of 0.064 ms m−1

Velocity analysis Semblance, function gather and function stacks
NMO
Mute Outer and Inner mute
Stack
Amplitude recovery t1.8

DisplayI. Flecha et al.: Some improvements in subbasalt imaging using pre-stack depth migration 7

Figure 5. Top: stacked section from the FLO-96 survey. The top of basalt is clearly delineated. At the beginning of the profile (NW) basalt

is shallower (around 1.8 s) becoming deeper from kilometer 60 to kilometer 75 where it remains practically flat around 3 s until the end

of the profile (SE). No coherent subbasalt events can be identified. Bottom: Pre-stack depth migration of the same data set. The coloured

background stands for the velocity model obtained by means of seismic tomography (Trinks et al., 2005). Dashed lines stand for interpreted

base of basalt (red) and top of basement (yellow).

The code was then used with real data from the FLO-96 sur-

vey. This processing showed that pre-stack depth migration

improved the image obtained beneath the top of the basalt

layer In the final image, the base of the basalt was inferred

in some parts of the model and subbasalt events were recov-

ered. The results indicate that all offsets are required to pro-

duce a high frequency pre-stack depth migration image. The

migrated section is highly dependent on the velocity model,

therefore, using an accurate tomographicmodel is mandatory

to obtain a reliable result.
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Fig. 5. Top: stacked section from the FLO-96 survey. The top of basalt is clearly delineated. At the beginning of the profile (NW) basalt
is shallower (around 1.8 s) becoming deeper from kilometer 60 to kilometer 75 where it remains practically flat around 3 s until the end
of the profile (SE). No coherent subbasalt events can be identified. Bottom: pre-stack depth migration of the same data set. The coloured
background stands for the velocity model obtained by means of seismic tomography (Trinks et al., 2005). Dashed lines stand for interpreted
base of basalt (red) and top of basement (yellow).
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interpreted as the base-basalt reflection and the top-basement
reflection (Fig.4). In the last part of the profile, the top-basalt
reflection could be identified while the basalt refraction com-
pletely disappeared. This is due to the thinning of the basalt
layer to the SE. Also in this part, some hyperbolic events
were identified in the data out of the water-wave cone, but,
due to the lack of lateral continuity (events only appeared
for four or five shots), these events were interpreted as sills
or laminar instrusions rather than a laterally continous geo-
logical discontinuity. Inverting basalt refractions, top-basalt
reflections, base-basalt reflections and basement reflections,
a velocity model was obtained down to the top of the base-
ment (coloured background in Fig.5 bottom). The veloc-
ity model was obtained using the tomographic algorithm by
Trinks et al.(2005). This algorithm is able to use diving as
well as reflected waves. Therefore it recovers the velocity
distribution and the topography of the reflecting structures.
In this study, the reflected phases were use to increase the
resolution of the velocity model. The pre-stack migration al-
gorithm only required the distribution of velocities to gener-
ate the depth migrated image. The reflecting interfaces con-
strained by the tomographic algorithm were not used. The
image produced correlates very closely with the interfaces
constrained by the inversion algorithm.

The sedimentary cover features velocities ranging from
around 2 km s−1 at the sea bottom to 3.5 km s−1 at the top
of the basalt layer. A high velocity layer (4.5–5 km s−1)
can be identified with a decreasing thickness from 1.5 km at
40 km to 0.5 km at 100 km. The inverted model suggests that
there maybe a lower velocity layer under the basalts. Nev-
ertheless, few events were identified from under the basalt
layer, suggesting velocities in this area are less constrained
than in other parts of the model. The lack of events within
the basement made it impossible to extend the tomographic
model beyond 6 km depth. The new pre-stack depth migra-
tion scheme was used to obtain a new image using the veloc-
ity determined by the tomographic inversion (Fig.5 bottom).
This method provided an improved display under the upper
basalt interface where prominent events correlate with major
velocity discontinuities along the whole model. The top of
the basalt is clearly delineated. The base of this layer can be
estimated in some parts of the model, especially along the
first 30 km. In addition, some reflectors exist between 4 and
5 km depth which may correspond to the top of the basement.

The determination of the base of the basalt layers is a key
issue for exploration perspectives. Sedimentary layers can be
located between the basalt intrusive and the basement. The
importance of imaging these hidden sedimentary structures
to gauge potential petroleum resources becomes clear.

Some authors have proposed an alternative scheme for mi-
grating long offset reflection data (Fruehn et al., 2001; Flied-
ner and White, 2001, 2003; White et al., 2003). Their scheme
uses only selected signal out of the water-wave cone Follow-
ing this strategy a low frequency image was produced be-
cause only long offset phases were included. In the present

study, all the data in every shotgather were used in the pro-
cess, obtaining a more detailed image because high frequen-
cies were also included in the migration. Migrating selected
parts of the shotgathers causes final image to be highly de-
pendent on a subjective interpretation undertaken prior to the
migration. This interpretation was considered when inverting
traveltimes. Migrating the whole data set has the advantge of
obtaining a migrated section free of a priori interpretations.
Moreover, in regions where intra-basalt and subbasalt events
are weak, the reflectors are more clearly displayed using all
the data as shown in the last part of the profile.

5 Conclusions

Pre-stack depth migration provided improvement in sub-
basalt imaging. The code developed to implement this tech-
nique takes advantage of a finitte difference algorithm that
can handle sharp velocity contrasts and velocity inversions
avoiding shadow zones in the traveltime tables. Synthetic
simulations using a realistic model showed a good perfor-
mance of the code and good recovery of the original model.
The code was then used with real data from the FLO-96 sur-
vey. This processing showed that pre-stack depth migration
improved the image obtained beneath the top of the basalt
layer. In the final image, the base of the basalt was inferred
in some parts of the model and subbasalt events were recov-
ered. The results indicate that all offsets are required to pro-
duce a high frequency pre-stack depth migration image. The
migrated section is highly dependent on the velocity model,
therefore, using an accurate tomographic model is mandatory
to obtain a reliable result.
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