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Abstract. In this study we have applied spectral techniques
to analyze geomagnetic field time-series provided by obser-
vatories, and compared the results with those obtained from
analogous analyses of synthetic data estimated from models.
Then, an algorithm is here proposed to detect the geomag-
netic jerks in time-series, mainly occurring in the eastern
component of the geomagnetic field. Applying such analy-
sis to time-series generated from global models has allowed
us to depict the most important space-time features of the
geomagnetic jerks all over the globe, since the beginning of
XXth century. Finally, the spherical harmonic power spec-
trum of the third derivative of the main geomagnetic field has
been computed from 1960 to 2002.5, bringing new insights
to understand the spatial evolution of these rapid changes of
the geomagnetic field.

1 Introduction

Studies of discrete time-series of physical quantities are
widely interesting not only for their forecasting, but also for
defining both nature and behavior of the underlying phys-
ical phenomena. Different methods of time-series analyses
have been used to study the geomagnetic field which is, at
all times, subject to temporal variations on a wide range of
time scales. Most of the rapid variations are linked to the
solar activity and solar variability (many different forms in-
clude solar flares, coronal mass ejections, solar wind sector
boundaries, coronal hole streams), as well as the Earth’s en-
vironment (e.g. interactions between the solar wind and the
core field). Most of the slow variations are generated in the

outer fluid core (changes in the fluid flow). The temporal
variations in the geomagnetic field cover a huge range of
time-scales, from seconds to hours (external in origin), from
months to decades (overlapping between external and inter-
nal changes), or from millennial to reversals (internal varia-
tions). Here, we focus on the analysis of time variations of
geomagnetic field of the intermediate-range (longer than a
day, shorter than a decade), especially on time variations in
range of months, known as geomagnetic jerks.

The geomagnetic jerks (Courtillot et al., 1978), can be de-
fined as sudden changes (a V-shape like change) in the slope
of the secular variation (SV), i.e. the first time derivative of
the Earth’s magnetic field, or an abrupt (step-like) change
in the secular acceleration (SA), i.e. the second time deriva-
tive. As a very first approximation, the secular variation can
be described as a set of linear changes over some years to
some decades, separated by geomagnetic jerks occurring on
a time-scale of a few months when the nearly constant secu-
lar acceleration changes sign (and, eventually, its magnitude)
abruptly. For a more detailed characterization of geomag-
netic jerks, we have to consider the findings of Alexandrescu
et al. (1996). Indeed, when the wavelet technique has been
applied to series of monthly means, it appears that the event
reveals a singular behavior with a fractional derivative close
to an order 1.5. This interesting behavior would be useful to
analyze the geomagnetic jerks at the place of their origin, in-
deed the top of the core. However, in the present analysis, we
consider geomagnetic jerks more conventionally as singular-
ities characterized by discontinuities of an integer derivative
(i.e. a second order).
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Nowadays, it is almost accepted that geomagnetic jerks are
internal in origin, i.e. they are produced by fluid flows at the
top of the outer core. Some attempts to explain their physi-
cal origin have been done. One of them, found in Bloxham et
al. (2002), explains jerks origins by a combination of a steady
flow and a simple time-varying, axisymmetric, equatorially
symmetric, toroidal zonal flow, consistent with sustained tor-
sional oscillations in the Earth’s core.

Usually, geomagnetic jerks are particularly visible in the
eastward component (Y), which is supposed to be the least
affected by the external fields (Mandea et al., 2010). More
likely affected by external field contaminations are the north-
ward component (X) and, slightly less, the vertical down-
ward component (Z). An easy method to determine the epoch
when a geomagnetic jerk occurs is to approximate secular
variation time-series by straight lines and to consider the in-
tersection point of such lines as the date of an event (Chau
et al., 1981; Stewart and Whaler, 1992). During the last two
decades, more powerful methods to detect geomagnetic jerks
and to estimate their location and duration have been devel-
oped. For example, the continuous wavelet analysis has been
largely applied to the monthly mean series provided by dif-
ferent geomagnetic observatories (Alexandrescu et al., 1995;
Alexandrescu et al., 1996; Chambodut et al., 2005), or a sta-
tistical time-series model has been used to analyze monthly
means of the geomagnetic eastward component at different
observatories (Nagao et al., 2003). More recently, Pinhero et
al. (2011) have modeled the secular variation by two straight-
line segments around the time occurrence of known jerks
(1969, 1978, 1991, 1999). Using the least-squares method
and L-norm method, error bars in the jerk occurrence times
have been estimated for almost all ground observatories. Ac-
cording to their results, the 1969, 1978 and 1991 jerks are
globally detected with an occurrence time covering a large
interval for different observatories and different components,
with mean errors of 1.7 years (X component), 1.1 years (Y
component) and 1.5 years (Z component).

In this work, we have used three different methods to
study time-series of geomagnetic field components and sec-
ular variations, with particular attention to the Y compo-
nent. All methods are essentially spectral analyses. Two of
them, the Short Time Fourier Transform (STFT) and Discrete
Wavelet Transform (DWT), derive directly as natural devel-
opments of Fourier Analyses, while the third one is a spatial
spectral analysis in spherical harmonics performed at differ-
ent successive epochs. The first two methods are essentially
single-station time-series analyses, while the third one is a
global spherical harmonic analysis. In this paper, we present
the results of applying these methods on time-series of ge-
omagnetic fields of different observatories or time-series of
synthetic data generated from different models. Thereafter,
we discuss the results and conclude.

2 Data: observed and model-based temporal series

Before presenting the applied methods, we describe the used
data. The first dataset, based on real data, is composed of
time-series of geomagnetic field components recorded by
several geomagnetic observatories. They are chosen to be
longer than 50 years and located as far as possible from each
other. In addition, some synthetic data have been generated
by means of specific function (see Sect. 3.1.2) or by spe-
cific composition (see Sect. 3.2.2) that simulate geomagnetic
jerks, in order to optimize the real data processing. We have
then generated time-series of geomagnetic field components,
secular variation or secular acceleration from two geomag-
netic field models described below, for a regular (uniform)
grid of points over the Earth, allowing investigation of spe-
cific, large scale behavior of jerks over the globe. We have
also used one of these models to investigate the third deriva-
tive of the Gauss coefficients.

2.1 Observatory data

In this work, we have considered several observatories: Al-
ibag (ABG), Apia (API), Chambon La Foret (CLF), Eskdale-
muir (ESK), Gnangara (GNA), Hermanus (HER), Huancayo
(HUA), Kakioka (KAK), Lerwick (LER), Pilar (PIL), Sitka
(SIT), Vassouras (VSS), for which hourly means have been
downloaded1. From the original hourly means of these ob-
servatories, their monthly mean values series have been cal-
culated.

In addition, a long and typical time-series of the geomag-
netic field has been recorded at Niemegk Observatory (before
1932 observations were made nearby at Potsdam, then Sed-
din). The annual means series of X, Y, Z components and the
differences of sequential values (1X/1t , 1Y/1t , 1Z/1t ,
with1t= 1 year) are presented in Fig. 1. The monthly means
of X, Y, Z components show the same behavior as the an-
nual means, but the differences of sequential values (1X/1t ,
1Y/1t , 1Z/1t , with 1t= 1 month), show that they are
bearing a great amount of noise not filtered from the signal
(Fig. 1). A glance at these plots stimulates two remarks. First,
the same field component has the same behavior in both time-
series, however, mainly for the X component, the noise level
is higher in the monthly means. Second, the secular variation
(first differences of the component values) shows changes
in its trend, better observed in the annual curves then in the
monthly ones.

Amongst the considered observatories, 4 of them, indi-
cated in Table 1, have been chosen as representative for our
analyses. These observatories have been selected because
their continuous recordings over more than 50 years and their
location at different latitudes and longitudes.

1http://spidr.ngdc.noaa.gov/spidr/
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Fig. 1. Annual (upper) and monthly (lower) mean series of X, Y, Z components and their 

numerical derivatives (differences of the sequential values). 

Fig. 1.Annual (upper) and monthly (lower) mean series of X, Y, Z components and their numerical derivatives (differences of the sequential
values).

Table 1.The geomagnetic observatories that have been chosen as representatives for analyses.

IAGA code Latitude Longitude Altitude (m)

API −13◦ 48′ 188◦ 13.2′ 4
HER −34◦ 25.2′ 19◦ 13.8′ 26
KAK 36◦ 13.8′ 140◦ 11.4′ 36
NGK 52◦ 4.2′ 12◦ 40.8′ 78

2.2 Geomagnetic models

Time-series of the geomagnetic field components, their secu-
lar variation and acceleration are generated from two models,
CM4 (Sabaka et al., 2004) and Gufm1 (Jackson et al., 2000).

The CM4 model (Sabaka et al., 2004) entails the param-
eterisation and co estimation of fields associated with the
major magnetic field sources in the near-Earth regime from
field measurements taken from ground-based observatories

and satellite missions (POGO, Magsat, Ørsted, CHAMP). It
supplies the local X, Y, Z components of theB magnetic field
vector from the main, lithosphere, primary and induced mag-
netosphere, primary and induced ionosphere, and toroidal
field sources. Two evaluations of the main field are accom-
modated per two given spherical harmonic degree ranges for
the span period 1960–2000 (http://core2.gsfc.nasa.gov/CM/
CM4 A.html). The capacity of this model to represent geo-
magnetic jerks has already been investigated (Sabaka et al.,
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2002; Chambodut and Mandea, 2005). Here, we use the time-
series of the third derivative of Gauss coefficients (1960–
2002.5) to study any possible relation between maxima of
the corresponding spherical harmonic power spectra and ge-
omagnetic jerk occurrence.

The Gufm1 model (Jackson et al., 2000), is based on a
massive compilation of historical observations of the geo-
magnetic field (from 1590 to 1990). For the period before
1800, more than 83000 individual observations of magnetic
declination were recorded at more than 64000 locations;
more than 8000 new observations came from the 17th cen-
tury alone. Since no intensity data are available prior to 1840,
the axial dipole component is linearly extrapolated back be-
fore this date. The time-dependent field model constructed
from this dataset is parameterised spatially in terms of spher-
ical harmonics and temporally in B-splines, using a total
of 36512 parameters (http://jupiter.ethz.ch/∼cfinlay/gufm1.
html). This model has been used to generate monthly series
of X, Y, Z components and their secular variation on a regular
grid on the Earth’s surface.

3 Methods: characteristics and application to datasets

3.1 Short Time Fourier Transform (STFT)

3.1.1 STFT – definition and representation

It is well known, that the Fourier analysis breaks down a sig-
nal into constituent harmonics of different frequencies. For
regularly sampled data, Fourier analysis is performed using
the discrete Fourier transform (DFT).

Using the Fourier transform of a signal, it is impossible to
indicate when particular events (such as drifts, trends, abrupt
changes, etc.) appear within the time-series. This deficiency
can be corrected by applying the Fourier transform only to
small sections of the signal at successive times, a technique
called windowing the signal (Gabor, 1946) or the Short Time
Fourier Transform (STFT) (see Appendix A). The STFT
maps a signal into a two-dimensional function of time and
frequency and can provide information about both time and
frequency, thus characterizing any eventual irregularity (i.e. a
spectral feature which is different from the typical behavior
of the signal under scrutiny) present in the analyzed time-
series.

In order to detect particular events in long time-series of
the geomagnetic field components, secular variation or sec-
ular acceleration, we have used the “specgram” function of
Matlab7 software which computes the windowed discrete-
time Fourier transform of a signal using a sliding window
(Matlab release notes, 2004 – see Appendix A). The spectro-
gram is the magnitude of this function expressed in decibels
(dB). Different kinds of windows have been tested, with dif-
ferent lengths and different overlaps, providing a sampling
frequency:fs = 1 (month−1 or year−1 according to the kind

of analysis). To avoid a flat spectrum in the case of geomag-
netic field components, an average value of series is sub-
tracted from each input data.

The most used windows have a Gaussian-like form
(e.g. Blackman, Bohman, Chebyshev, Gaussian, Hamming,
Hann, Parzen windows), and we notice that the results of
spectrogram analyses almost do not depend on the form of
the window, but depend on the windows length (window pa-
rameter). The shorter this length is, the smoother the spec-
trum. By testing different lengths, we have tried to find the
most appropriate one to identify the known geomagnetic jerk
occurrence.

3.1.2 SFTF – applied to a synthetic signal

Mathematically, the jerk events are discontinuities (break-
downs) of the second derivatives of the geomagnetic field
components. To test the real effectiveness of different tech-
niques, we have considered a synthetic signal which has such
breakdowns in its second derivative. Then, we have taken the
advantage of the found results to apply the same processing
scheme to the real data.

We consider the following synthetic signal as defined in
the interval−0.5≤ t ≤ 0.5

f (t)=

{
exp(−40· t2) for −0.5≤ t < 0
exp(+5 · t2) for 0≤ t ≤ 0.5

, (1)

and sampled at every1t = 10−3. We have actually rescaled
the temporal abscissa as time = 500 +t ·1000, i.e. in the in-
terval of time 0–1000 (Fig. 2). We chose such a signal be-
cause it and its first derivative have a smooth behavior during
the whole interval, but its second derivative breaks down ex-
actly at time = 500 (t = 0) showing a jerk-like behavior. One
cannot detect any breakdown in the signal plot (Fig. 2, upper
left) and in the spectrogram of the signal (Fig. 2 down left).
The spectrogram of the first differences shows a clear break-
down close to the real one at time = 500 (Fig. 2, down right).
By trials, we have chosen the Matlab specgram function pa-
rameters (nfft = 1000,fs = 1, Hamming window length = 12,
overlaps = 10) as the most effective ones to detect the break-
down of the second derivative. Using a window parameter 12
does not mean that the data length in the input to the FFT is
a 12 multiple, but a longer data, with a weighting tapering
towards zero at the ends. As the vast majority of these data
are zero, the STFT method produces heavily smoothed plots
as it can be seen in Fig. 2.

3.1.3 SFTF – applied to annual series

We present here some results of the SFTF analyses, firstly
applied to NGK series of 116 averaged annual means (from
1890 to 2005). In case of X, Y, Z component series, from the
original data the average value of each series is subtracted
correspondingly. In the spectrograms of these field compo-
nents series and their first differences (see Fig. 3) the same

Solid Earth, 3, 131–148, 2012 www.solid-earth.net/3/131/2012/

http://jupiter.ethz.ch/~cfinlay/gufm1.html
http://jupiter.ethz.ch/~cfinlay/gufm1.html


B. Duka et al.: Geomagnetic jerks characterization via spectral analysis 135

0 250 500 750 1000
0

1

2

3

4

0 250 500 750 1000
0

0.005

0.01

0.015

0.02

Time = 500 + t*1000

Fr
eq

ue
nc

y

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Time = 500 + t*1000
0 250 500 750 1000

0

0.1

0.2

0.3

0.4

0.5

-120

-100

-80

-60

-40

-20

0

20

dB

 
 
Fig. 2. The signal (1) (up left) sampled at every Δt = 10-3 with the temporal abscissa 

rescaled as time = 500+t•1000, the spectrogram of the signal (down left), the first 

difference series (upper right) and its spectrogram (down right). The units are arbitrary.  

 

Fig. 2.The signal (1) (up left) sampled at every1t = 10−3with the temporal abscissa rescaled as time = 500 +t1000, the spectrogram of the
signal (down left), the first difference series (upper right) and its spectrogram (down right). The units are arbitrary.

kind of window (Hamming), the same lengths of window (12
values) and overlaps (10 values) are used. The spectrograms
of different components show particular events at different
epochs, most of them not corresponding to the known geo-
magnetic jerks found in literature (e.g. Mandea et al., 2010).
The spectrograms of the first differences of the consecutive
annual values, show the evidence of particular events likely
to be the geomagnetic jerks especially in the case of the Y
component. In this case, there is a clear evidence of a spe-
cial event around 1969, identified by a large separation of
different patterns of spectrum, that corresponds to the first
noted geomagnetic jerk. One can also find some evidence of
the geomagnetic jerks of 1901, but little evidence of other
known events. For instance, there is very little evidence of
an event in the middle of two known close events of 1991
and 1999, that are difficult to be identified by this spectro-
gram. There is a large sector of high values of power (dB) at
low frequency contents which peak (higher frequency) cor-
responds to the large maximum event of 1925 (compare the
graph in the middle of second row of Fig. 1 with Fig. 3d).

3.1.4 SFTF – applied to monthly series

The first differences of monthly means of the geomagnetic
field components represent very irregular and noisy signals
(Fig. 1). In order to minimize this noise, i.e. to reduce an-
nual variation mainly produced by the external field varia-
tions (ionospheric and magnetospheric variations), we have

applied a moving average approach (Olsen and Mandea,
2007) to produce a 12-month running mean every month,
thus we have obtained monthly secular variation values by
subtracting the mean of 12 earlier consecutive monthly val-
ues from the mean of the next 12 monthly values of the geo-
magnetic field component (Mandea et al., 2000).

Applying the “specgram” function to the monthly series of
12-months running mean secular variation of Y component
of NGK observatory with the same kind of window, the same
length and overlaps as in the case of annual series, we have
obtained the spectrogram shown in Fig. 4. We can detect the
geomagnetic jerks around the years 1901, 1969 and hardly
that of 1990, which are however better underlined here than
in the case of annual average differences. The reason is that
the technique provides better results when applied to longer
datasets.

In order to improve further the results of the spectrogram
method, we have considered an efficient technique of secular
variation de-noising that uses the wavelet decomposition of
signals. Some different technique of de-noising secular varia-
tion data from the external contamination, has been recently
applied by Wardinski and Holme (2011), better physically
justified than the one used here. We prefer to consider here-
after the wavelet decomposition technique being more effi-
cient to our aims.

www.solid-earth.net/3/131/2012/ Solid Earth, 3, 131–148, 2012
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Fig. 3. Spectrograms of annual means of the geomagnetic field components and their 
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Fig. 3.Spectrograms of annual means of the geomagnetic field components and their secular variation (first differences) for NGK observatory
(1890–2005):(a) X component,(b) X secular variation,(c) Y component,(d) Y secular variation,(e)Z component,(f) Z secular variation.

3.2 Discrete Wavelet Transform (DWT)

3.2.1 DWT – definition and representation

Wavelet analysis represents a windowing technique with
variable-sized regions, normally with long time intervals pro-
viding more precise low-frequency information, and shorter
time intervals with high-frequency information. Wavelet
analysis is capable of revealing aspects of data like trends,
breakdown points, discontinuities in higher derivatives, and
self-similarity. It is also used to compress or de-noise a signal
without appreciable degradation (e.g. Kumar and Georgiu,
1994). For the self-consistency of this paper, a few specifici-
ties of the wavelet analysis are summarized in the follow-
ing, whereas full information can be found, for example, in
Grossmann et al. (1987), Meyer (1992, 1993) and Holschnei-
der (1995), Misiti et al., (2007), Brockwell et al (2009) to cite
a few.

The wavelet analysis is the breaking up of a signals(t)

into scaled and shifted versions of the original (ormother)
wavelet function9(t). If a function9 is continuous, has null
moments, decreases quickly towards 0 whent tends towards
infinity, or is null outside a segment ofR, it is a likely can-
didate to become a wavelet. The wavelet decomposition con-
sists of calculating a “resemblance coefficient” between the

signal and the wavelet located at positionb and of scalea.
The family of such coefficientsC(a,b) depends on two in-
dicesa andb (Kumar and Georgiu, 1994):

C(a,b)=

∫
R

s(t)
1
√
a
9

(
t − b

a

)
dt. (2)

Scaling (dilating) a wavelet simply means stretching (or
compressing) it by a scale factora. Shifting (translating) a
wavelet simply means delaying (or hastening) its onset. In
the Continuous Wavelet Transform (CWT), the set to which
a and b belong is:a ∈ R+ – {0}, b ∈ R. In the Discrete
Wavelets Transform (DWT), the scale parametera and the
location parameterb are discrete, usually based on powers of
two: a= 2j , b = k ·2j , (j , k) ∈ Z2 (so-called dyadic scales
and positions).

Defining:

ψj,k(t)=
1
√

2j
ψ

(
t − k2j

2j

)
= 2−j/2ψ

(
2−j t − k

)
, (3)

it is possible to construct a certain class of wavelets9(t) such
that 9j,k(t) are orthonormal, i.e. the wavelets are orthogonal
to their dilates and translates:∫
ψj,k(t)ψj ′,k′(t)dt = δjj ′δkk′ . (4)
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Fig. 4. The monthly series of SVY (upper panel) produced by 12-month running mean for 

NGK observatory (1890-2005) and its spectrogram (bottom panel). 

 
 

Fig. 4.The monthly series of SVY (upper panel) produced by 12-month running mean for NGK observatory (1890–2005) and its spectrogram
(bottom panel).

All such functions9j,k(t) form a complete orthonormal ba-
sis for all functionss(t) that have finite norm, i.e. the time
signals(t) is expressed by the coefficients of discrete wavelet
decompositionC(j,k) as:

s(t)=
∑
j∈Z

∑
k∈Z

C(j,k)ψj,k(t), whereC(j,k)=
〈
s,ψj,k

〉
(5)

≡

∫
s(t)ψj,k(t)dt.

Let us fixj and sum onk. A detaildj is then the function:

dj (t)=
∑
k∈Z

C(j,k)ψj,k(t). (6)

The signal is the sum of all the details:

s =
∑
j∈Z

dj . (7)

Let us take now a reference level calledJ . There are two sorts
of details. Those associated with indicesj ≤ J correspond to
the scalesa =2j≤ 2J which are the fine details. The others,
which correspond toj > J , are the coarser details. We group
these latter details into:

aJ =
∑
j>J

dj . (8)

which defines what is called an approximation of the signal
s. We have just created the details and an approximation. The

equality:

s = aJ +
∑
j≤J

dj , (9)

means that the signals is the sum of its approximationaJ
and of its fine detailsdj .

Wavelet Toolbox of Matlab software (http://www.
mathworks.com/help/toolbox/wavelet/) provides a variety of
the signal analysis (signal decompositions, compression, de-
noising, etc.) by different kinds of wavelet shapes and differ-
ent levels. Aiming to detect a “rupture” in thej -th derivative,
the selection should be a sufficiently regular wavelet with at
leastj vanishing moments.

We have found that the kind of wavelets detecting success-
fully the second order derivative change in the known signal
(1) is the Daubechies (Db) wavelet (Daubechies, 1992) of
order 4: Db4 (see sketches of this wavelet in the Fig. 12) at
level 2 of the signal decomposition:

s = a2+ d2+ d1, (10)

where the decomposition (see Eq. 9) ends atJ = 2. The re-
sults show anomalous values of coefficientsd1 andd2 exactly
where (time = 500) the signal (1) has the second derivative
breakdown. This breakdown is better localized by the anoma-
lous values ofd1 coefficients.
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3.2.2 Geomagnetic data de-noising by using DWT

The presence of noise makes more complicated the identi-
fication of discontinuities. If the first levels of the decom-
position can be used to eliminate a large part of noise, the
“rupture” is sometimes visible only at deeper levels in the
decomposition.

Synthetic signal

In order to define empirically the best way for applying DWT
technique to the signal de-noising, we have generated a se-
ries of first differences of the several exponential spikes like
(1) with different slope changes (jerk-like), respectively at
time = 100, 200, 250, 300, 500, 700, 850 (Fig. 5a). In order
to get a signal more likely as the secular variation provided
by a geomagnetic observatory, we have added to such series
of synthetic signal a modified colored AR(3) noise (see Ap-
pendix B). The modifications provide a more realistic noise
(more like a secular variation signal) with the amplitude of
the noise of about 15 % of the signal itself. The composed
signal is presented in Fig. 5b.

After applying DWT with different wavelets for signal de-
compositions, the most appropriate ones to get the best de-
noised signal are the Daubechies wavelets of order 4 and
level 4 of decomposition. Such de-noised signal is presented
in Fig. 5. In the bottom panel of Fig. 5 (d–f), the spectro-
grams of the respective signals Fig. 5 (a–c), are presented.
The spectrograms are plotted using the same parameters of
the specgram Matlab function. According to these spectro-
grams, we can note:

– Using an appropriate de-noising process and applying
it to the composed signal (original one and noise), the
obtained spectrogram is similar to that of the original
signal, but allowing better than non de-noised signal
(compare Fig. 5e and f) to identify the abrupt changes
of slopes (breakdowns of the second derivative).

– Apart from some moderate breakdowns of the second
derivative (for example at time 500 of the original syn-
thetic signal), all breakdowns of the second derivative
jerk-like can be identified by separation of the spectro-
gram pattern of the de-noised signal. The more abrupt
the changes of the signal slope are, the more visible such
separation appears.

– Looking at spectrogram of the de-noising signal, it is
difficult to individuate two close and small-scale slope
changes, for example those of time 200 and 250. This
drawback of the SFTF method should be considered
during the interpretation of the spectrograms of the de-
noised real secular variation.

Real data

We have applied this technique of de-noising the signal be-
fore getting the spectrogram of the secular variation for the Y
component (SVY ) monthly series of the 4 observatories pre-
viously described. The obtained results are shown in Fig. 6,
where the breakdowns of the spectrogram patterns corre-
spond to the time occurrences of the jerk-like events.

Figure 6 shows that generally the spectrograms of the de-
noised secular variation of different observatories reflect a
different behavior of the secular variation in these observa-
tories. In the low latitude observatories (see API when com-
pared with the others) more changes in the slope of the sec-
ular variation can be better detected than at higher latitude
observatories. These changes are smaller in amplitude and
longer in time and reflect long-term events, such as 1950–
1954 and 1996–1998 at API observatory. From the spec-
trogram corresponding to API observatory, it is possible to
confirm some geomagnetic jerks around 1954 and 1978. At
higher latitude observatories (see NGK when compared with
the others) the geomagnetic jerks noted in the original sig-
nals (as around 1925 and 1978) are difficult to be detected in
the respective spectrograms. However, in NGK spectrogram,
geomagnetic jerks around 1901, 1969, 1990 can be detected.
Spectrograms for the middle latitude observatories (HER and
KAK) indicate some different times for geomagnetic jerks.
In particular, for HER observatory it is possible to note a
less marked event around 1953, a stronger one around 1986
and the strongest event around 1996. The change in the slope
centered in 1972 lasts here from 1968 to 1978 and can not be
considered as a geomagnetic jerk signature. For the KAK ob-
servatory, we can identify a geomagnetic jerk around 2000,
and hardly identify events nearly by 1953, 1962 and a dou-
ble event 1968–1970. Although there are clear changes in
the secular variation of KAK observatory before 1951, they
might be also due to some poor quality of data in that period
of time.

3.2.3 DWT applied to the monthly series

To determine the second derivative breakdown of the geo-
magnetic field components, we have applied DWT to long
time-series of geomagnetic fields recorded at different geo-
magnetic observatories. Better results, when jerks are easily
detected, have been obtained when the DWT analyses is ap-
plied to the Y component secular variation, calculated by the
12-month moving average. Before applying the DWT anal-
yses, we have applied a de-noising procedure on the secular
variation signal.

Synthetic signal

The composed signal (first derivative of several exponential
spikes + a colored noise) is de-noised by using Db wavelets
(order 4 and level 4) and represented in Fig. 5. The obtained
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Fig. 5. a) Synthetic signal representing a secular variation-like signal (top panel, left) 

composed by first differences (first derivative) of several exponential spikes; b) Composed 

signal by the above synthetic signal and a colored noise; c) The de-noised signal of the 

composed signal (b). The units of the signal, its derivative and time are arbitrary. Bottom 

panel, the spectrograms (d-f) of the respective signals (a-c).  

 

Fig. 5. (a) Synthetic signal representing a secular variation-like signal (top panel, left) composed by first differences (first derivative) of
several exponential spikes;(b) Composed signal by the above synthetic signal and a colored noise;(c) The de-noised signal of the composed
signal(b). The units of the signal, its derivative and time are arbitrary. Bottom panel, the spectrograms(d–f) of the respective signals(a–c).
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Fig. 6. The signals (blue curves) and de-noised signals (red curves) of secular variations (SVy= dY/dt) of NGK, KAK, API and HER
observatories and their respective spectrograms.

www.solid-earth.net/3/131/2012/ Solid Earth, 3, 131–148, 2012



140 B. Duka et al.: Geomagnetic jerks characterization via spectral analysis

 

 
 
Fig. 7. The decomposition up to level 2 of the de-noised signal s(t) of the synthetic 

composed signal  (first derivative of a series of exponential spikes + colored noise).  

Units of the signal s (approximation a2, details d1 and d2) and the time t are arbitrary. 

 

Fig. 7.The decomposition up to level 2 of the de-noised signals(t) of the synthetic composed signal (first derivative of a series of exponential
spikes + colored noise). Units of the signals(approximationa2, detailsd1 andd2) and the timet are arbitrary.

signal is decomposed according to Eq. (9) up to level 2
(Eq. 10) by using the same Db wavelets of order 4, as is
shown in Fig. 7. One can note that the maxima of the ampli-
tude variation ofd1 and d2 coefficients correspond to the dis-
continuities of the first derivative of the signal, better repre-
sented by maxima of thed1 coefficient amplitude (see Fig. 7).
According to the graph scale, thed1 coefficient values, at the
breakdowns of time:t = 100, 500, 850 are not visible.

Real data

Considering again the NGK observatory, a suitable de-
noising of the monthly series of secular variation, without
distortions of the signal itself, is achieved by using the fol-
lowing Daubechies wavelets: Db wavelets of order 2 at de-
composition level 3 or 4, Db wavelets of order 3 at decom-
position level 4, Db wavelets of order 4 at decomposition
level 5 or 6 (see Fig. 8). From the previous tests we can con-
clude that a better way to detect particular events in such de-
noised series is to use the same order of Daubechies wavelets
as those used for the de-noising and the level 2 of decom-
positions. Plotting the averaged values (rms of the 12 val-
ues of each year) of the detail coefficientsd1 (Fig. 8) of

such decompositions, the geomagnetic jerks around 1969
and 1991 are clearly detected, while in a higher decompo-
sition level events can be noted around 1922 and 1941. This
last event, not known as a regional or large-scale geomag-
netic jerk, is related to changes of the secular variation slope
due to several spikes close to each other.

We have then applied the same method to the monthly
series of four geomagnetic observatories mentioned in
Sect. 3.2.2. The results, not presented here, indicate that in
order to get a reasonable de-noised signal, we have to apply
different values of wavelet order and level of decompositions.
The results of analyzed observatories underline different par-
ticular events, some of them corresponding to well-known
geomagnetic jerks. However, we can note that from some
observatory data, the presence of a large number of fringes
(short spikes) in the de-noised signal makes it difficult to de-
tect geomagnetic jerks. This particularity is linked not only
to the difference in length of geomagnetic recordings and the
data quality provided by different observatories, but also to
the different behavior of Y secular variation over the globe.
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Fig. 8. De-noised SVY signal of NGK (up) and the respective values of averaged (rms) d1 

coefficients (down). The unit of d1 coefficients are in nT/year. 

 

Fig. 8.De-noised SVY signal of NGK (up) and the respective values of averaged (rms) d1coefficients (down). The unit ofd1 coefficients are
in nT/year.

3.2.4 DWT applied to global model-based monthly
series

Accepting that the amplitude variation of the detail coeffi-
cient (d1) of the decomposition of the de-noised secular vari-
ation is an indicator of breakdowns in time-series of the sec-
ond derivative of the geomagnetic field, we have composed
the field of this amplitude (its yearlyrms values) on the
Earth’s surface at different subsequent epochs. As the need is
for long monthly series uniformly distributed over the Earth,
we have used the Gufm1 model to generate them. However,
an important question can arise, linked to the possible signa-
ture of the B-splines nodes of the model in the wavelet anal-
ysis of synthetic series calculated from Gufm1 model. This
has been investigated (but not shown here), and the effects of
jerks are much larger, with different amplitudes and occur-
rence times, so the B-splines nodes are not relevant for our
analyses.

The Gufm1 code generates the secular variation values of
the main geomagnetic field at every epoch in the range of the
covered period by the model, and everywhere on the Earth.
Using this code, we have firstly investigated a single location
series, by generating a long monthly series (1890–1990) of

SVY at NGK observatory coordinates. The wavelet decom-
position at level 2 by the Daubechies wavelets of order 2 is
applied to this series and therms of detailedd1 coefficients
are shown in the Fig. 9. To detect particular events, we should
consider only the values ofrms d1 coefficients larger than
their mean (0.004). Here, one can identify several events, that
are undeniably known as large-scale extension (1969, 1978),
or may have a similar extension (1913, 1925), or seems to be
more local events (1906, 1919, 1949, 1958) (Alexandrescu
et al., 1996; Le Huy et al., 1998; Mandea et al., 2010). The
longest event is a local one that lasts from 1942 to 1949 and
has a central maximum at 1946.

Thereafter, we have applied the wavelet analyses to the
monthly values of SVY estimated from Gufm1 on a grid of
212 points uniformly distributed over the Earth’s surface,
for the period 1900–1990. Each series is decomposed by
Daubechies wavelets of order 2 (Db2) at level 2, saving the
coefficients of decomposition. Then, we have calculated the
rmsvalue ofd1 coefficients for every year of the considered
period and plotted the field ofd1 coefficients (rmsvalues) for
each epoch over the Earth. In Fig. 10, the fields ofd1 coef-
ficient for a selection of epochs are presented. The deviation
of thermsd1 coefficient from its mean value over the whole
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Fig. 9. Monthly series of secular variation of Y component generated by Gufm1 model at NGK Observatory coordinates for the period
1890–1990 (upper panel) and averagedrmsd1 coefficients of the series decomposition by Db2 wavelets of level 2. Thermsd1 coefficients
(in nT/year) below their mean value are covered.

period is plotted: the white areas correspond to regions where
the rms d1 values are smaller than the mean value and the
black areas correspond to regions where values of therms
d1 coefficient are greater than the maximum of the chosen
scale. The plots of whole period can be seen in an additional
animation (see Supplement).

Let us discuss the behavior of thermsd1 coefficient field,
as observed from plots and animation. It is indeed possible
to note a relatively strong field in 1901, localized in four lat-
itude belts mainly in the low and middle latitudes, which is
followed by quiet fields from 1902 to 1904. Then two small
spots of a strong field appear in 1905 over the Northern hemi-
sphere, gradually enlarged and expanded even in the South-
ern hemisphere in 1910, 1911, 1912 , to be reduced again in
1913.

Two other foci of strong field start in 1917, reaching a
maximum the next year and being reduced to a small spot
in 1920. A quiet period follows until 1925, when a strong
widespread field appears, and gradually reduces over the fol-
lowing years, with three remaining belts getting the strongest
field from 1930–1932. From 1934 to 1940 a quiet period

follows, with a few small spots at different locations, how-
ever insignificant.

From 1945, a strong field wide spreads until 1949, then
two large belts of longitudes characterize the period 1950–
1954. Similar shifted belts appear again in 1960, after a pe-
riod of almost quiet field from 1954–1959, reaching their
maxima in 1964. Another period of quiet field reaching the
smallest value almost everywhere in 1967, is followed by a
strong field reaching the maximum for the European area in
1969 and for a region situated in the Southern hemisphere in
1970.

Over the time period 1972–1978 a quiet field dominates
with a few small spots of strong field near the South Pole. A
strong field in 1978 is observed mainly in the large West-
ern and Eastern longitude belts. A quiet field period ends
in 1982 with the appearance of two local spots of strong
field: one located around African continent and the other lo-
cated in the large Western and Eastern longitudes. The latest
one is faded gradually in the following years, while the first
one reached maximum in 1985, moving thereafter toward the
South Pole and splitting in two belts of strong field in 1987.
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Fig. 10. An example of  the field of the rms d1 coefficient in nT/yr , for the epochs: 1901, 

1906, 1911, 1925, 1946, 1958, 1970, 1986, which are a selection from the complete 

animation in the supplemental material. 

Fig. 10.An example of the field of thermsd1 coefficient in nT yr−1 , for the epochs: 1901, 1906, 1911, 1925, 1946, 1958, 1970, 1986, which
are a selection from the complete animation in the Supplement.

The strongest field in 1990 must be considered with caution
because of the edge effects.

3.3 Spherical Harmonic Power Spectra (SHPS)

The spherical harmonic analysis is a representation of the ge-
omagnetic field potential as solution of Laplace equation. In
order to detect any relation between the known jerk events
and the time changes of the spherical harmonic of differ-
ent degrees, we have also investigated the time variations of
the Mauersberger-Lowes power spectrum terms of different
degrees (Lowes, 1974, 2007) extending its definition to the
third derivative of Gauss coefficients:

R3d
n =

(a
r

)2n+4
(n+1)

n∑
m=0

[(...
g
m

n

)2
+

(...
h
m

n

)2
]

(11)

with a= 6371.2 km, the mean radius of the Earth. We have
estimated the spatial power spectrum of the third derivative

as a geomagnetic jerk is defined like a step-like function in
the second derivative of the geomagnetic field, thus it can be
somehow related to extremes in the power spectral density
of the third derivative,R3d

n . We have used the CM4 model to
calculate the time-series of the third derivative of the Gauss
coefficients, using time increment:1t = 2.5 years, over the
time-span 1960–2002.5. Fig. 11 shows plots ofR3d

n time evo-
lution for different degrees (fromn = 1 to n = 12) on the
Earth’s surface. The time behavior ofR3d

n at the CMB is simi-
lar, with the same relative minima and maxima, being just the
same quantity scaled by a different radial ratio (a/r)2n+4.

According to Holme et al. (2011), the secular variation and
acceleration spectra at the core-mantle boundary show strong
effects of damping at degree 4 and above. This effect can
be more important for the first epochs covered by a model,
here, when using the CM4 model, for 1960–1962.5 time-
span. This model provides the Gauss coefficients values of
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Fig. 12.  Daubechies wavelet functions  Ψ(t) of order 2, 3, 4. The units are arbitrary.  
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the main field and their first, second, third and fourth deriva-
tive values of degrees fromn = 1 ton = 13. We have checked
these values and found that the Gauss coefficients values and
their third derivative for the main field of CM4 model after
the first couple of years of its starting time can be considered
robust (at least up ton = 10).

Supposing that the occurrence date of the known jerks
(1969, 1978, 1986, 1991, 1999) is in the middle of each
epoch, the time interval (in years) of each jerk from the near-
est maximum ofR3td

n is calculated for each degreen. These
time intervals1t1969(n), 1t1978(n), 1t1986(n), 1t1991(n),
1t1999(n) (n = 1, 2, . . . 12) are presented in the second row
of doubled rows of Table 2, where the sign is (–) when the
jerk happened before the nearest maximum and (+) when the
jerk happened after the nearest maximum. In order to weigh
relatively the maxima ofR3d

n terms, we define the quantity:

γ = (Rn
3d

max−Rn
3d

min)/(Rn
3d

max+R
3d

min), (12)

where max and min indicate that values are at the nearest
maximum or minimum. The weightsγ range in the interval
[0, 1], and they are indicated in the first row of doubled row
characterizing each event. The weight of a maximum is an
indicator of how clear and strong a jerk occurring near that
maximum is, which may be translated in a scale information.

Averaging the time between a given jerk date and the near-
est maximum for all degrees (n = 1, 2, . . . 12) an averaged
time-interval is obtained, listed in the penultimate column of
the table:

1t1969=

∑
i

1t i1969

12
;1t1978=

∑
i

1t i1978

12
;1t1986 (13)

=

∑
i

1t i1986

12
;1t1991=

∑
i

1t i1991

12
;1t1999=

∑
i

1t i1999

12
.

In the last column of the table the so-called “averaged scaled
time-interval” is defined as the average of the time-intervals
from nearest maximum when these intervals are divided by
the weight of respective maximum:

1t
s

1969=
1

12

∑
i

1t i1969

γ1969
;1t

s

1978=
1

12

∑
i

1t i1978

γ1978
; ...; (14)

1t
s

1999=
1

12

∑
i

1t i1999

γ1999
.

As the weights are smaller than 1, the divided time-intervals
are increased in comparison to the respective time-intervals,
and this increase is greater when the weight of maximum is
smaller. In the last row of the table, the sums of time-intervals
of all jerks for given degree are indicated, while the penulti-
mate row indicate the sums of time-intervals divided by the
weight of the respective maximum (scaled time-intervals).

Analyzing the values indicated on columns (degrees) of
Table 2 it appears that the best coincidences of the geomag-
netic jerk dates withR3d

n maxima are found for the degrees

n = 5 andn = 9. When we consider the sum of scaled time-
intervals there is little deterioration forn = 5, comparing
with n = 9. According to this, we can estimate a spreading
behavior of the geomagnetic jerks by comparing it to the
wavelengths of these harmonics (n = 5 andn = 9) given by

2π
n+1/2 · r (Backus et al., 1996). The obtained spatial scales
of about 7300 and 4230 km, respectively, are a confirmation
of estimates from thed1 coefficient field analysis, previously
shown, where regions of the strong fields possess these spa-
tial scales.

Analyzing Table 2 rows, in terms of geomagnetic jerks,
it appears that events around 1969, 1978 and 1999 occur
at the shorter averaged time-intervals from the maximums
of R3d

n (if we exceptn = 1, then these time-intervals vary
from 1.5 to 2 years), while the events around 1986 and 1991
occur at longer time-intervals from maxima ofR3d

n (4–6.5
years). The same results are indicated by the row of averaged
scaled time-intervals. We can consider the geomagnetic jerks
of 1986 and 1991 more localized events. These results, es-
pecially for the events of 1991 and 1999, are different from
those of Pinheiro et al. (2011). According to their results the
1991 event is a global one, while the 1999 event is a local
one.

4 Discussion and conclusions

Understanding the origin of rapid changes of the geomag-
netic field arising from inside the Earth, such as the geo-
magnetic jerks, is challenging. The recent joint analysis of
ground-based and satellite data has brought some progress,
mainly because of their very different distributions in space
and in time. Nevertheless, such new data are available only
over the last decade, and there is a clear need to apply
new mathematical techniques to geomagnetic series cover-
ing longer periods.

Here, we show that a specific behavior of geomagnetic
jerks can be noted mostly in different longitude belts. Par-
ticular events, having as signatures strong fields of therms
d1 coefficients, are not extended over the whole globe. As
shown by the available animation in the supplemental mate-
rial, starting with the 1901 event, the strong field is concen-
trated mostly in four longitudinal belts. The known extended
1913 jerk is represented by a strong field during 1910–1911,
while the one in 1925 is represented by a strong field in
four large longitudinal belts (the largest one in the center).
An event around 1932 is presented by a strong field in the
longitudinal belts from 1930–1932. The event of 1949 is
characterized by a strong field that lasts for the longest pe-
riod of time (1945–1951), covering almost half of the globe.
The well known geomagnetic jerk in 1969 is presented by a
spot over Europe and an eastern belt of strong fields during
1968–1969, followed by two large belts of strong field dur-
ing 1970–1971 and a relatively strong field in the Southern
hemisphere in 1972. The 1978 geomagnetic jerk is shown

www.solid-earth.net/3/131/2012/ Solid Earth, 3, 131–148, 2012
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Table 2.Geomagnetic jerk dates correspondences to theR3d
n maxima.

n= 1 n= 2 n= 3 n= 4 n= 5 n= 6 n= 7 n= 8 n= 9 n= 10 n= 11 n= 12 Averaged
time-intervals
(year)

Averaged
scaled
time-intervals

1969.5 0.850 0.207 0.019 0.332 0.831 0.697 0.958 0.811 0.944 0.634 0.479 0.150
–13 –0.5 –0.5 4.5 –0.5 –0.5 2 2 2 2 2 2 2.791 7.186

1978.5 0.850 0.221 0.344 0.391 0.574 0.713 0.181 0.173 0.726 0.178 0.402 0.650
–4 –4 –4 1 –1.5 –1.5 1 1 1 –1.5 1 1 1.876 5.57

1986.5 0.802 0.199 0.815 0.541 0.286 0.766 0.725 0.112 0.636 0.692 0.350 0.272
4 4 4 1.5 –3.5 6.5 4 4 4 6.5 4 –8.5 4.541 12.757

1991.5 0.907 0.761 0.913 0.330 0.215 0.766 0.725 0.835 0.395 0.690 0.248 0.272
–6 –6 –6 –3.5 1.5 +11.5 9 –8.5 –1 –11 –8.5 –3.5 6.333 11.823

1999.5 0.907 0.526 0.913 0.023 0.761 0.895 0.865 0.835 0.851 0.690 0.361 0.166
+2 2 2 –0.5 –0.5 –3 –3 –0.5 –0.5 –3 –0.5 –0.5 1.5 3.945

Sum 33.81 52.30 51.61 51.23 23.09 29.67 29.01 54.74 12.90 41.26 53.75 62.00 ← Sum of Scaled time-intervals
29 16.5 16.5 11 7.5 23 19 16 8.5 24 16 15.5 ← Sum of Nonscaled time-intervals

by local foci of strong field over some regions of the Earth.
Finally, the event in 1986 is represented by a strong field
mostly over the Southern African and the South Pole re-
gion. Apart from these events corresponding to geomagnetic
jerks already noted in literature, thed1 coefficients indicate
additional particular events, especially in 1917–1918, 1945–
1946, 1952–1954, 1963–1965, so far not reported as possible
geomagnetic jerks.

Recently, Olsen and Mandea (2008) have shown that
changes in the core magnetic field can be as short as a few
months. These rapid secular variation fluctuations are not
globally observed from satellite data. Our results based on
both observatory and synthetic data are a complement of pre-
vious studies investigating the geomagnetic jerks or the spa-
tial distribution of rapid secular variation fluctuations, and
illustrate, with results covering nearly one century, that these
events are not global in appearance. Also the unbalanced
contributions of the spherical harmonic degrees at the differ-
ent jerks are intriguing and deserve deeper attention in fur-
ther studies and analyses. To conclude, all these findings are
important for continuing the present investigations on jerks
to uncover more details and features of the core dynamics.

Appendix A

The STFT definition

The Short Time Fourier Transform (STFT) of one-
dimensional continuous time functionx(t) is the Fourier
Transform of the functionx(t)multiplied by a window func-
tion, where the window is slid along the time axis, resulting
in a two-dimensional representation of the signal ( Jacobsen

and Lyons, 2003):

X(τ,ω)=

∞∫
−∞

x(t)w(t − τ)e−jωtdt, (A1)

wherew(t) is the window function, commonly a Gaussian-
form centered around zero. Generally,X(τ ,ω) is a complex
function representing the phase and magnitude of the signal
over time and frequency. The magnitude squared of the STFT
yields the spectrogram of the function:

spectrogram{x(t)} ≡ |X(τ,ω)|2 . (A2)

In the discrete time case, the data to be transformed are bro-
ken up into blocks, which usually overlap each other. Each
block is Fourier transformed, and the complex result is added
to a matrix, which records magnitude and phase for each
point in time and frequency. This can be expressed as:

STFT{x[m]} ≡X(k,ω)=
∞∑

m=−∞

x[m]w[m− k]e−jmt0ω,

(A3)

likewise, with discrete signalx[m] and discrete window
w[m], while the frequencyω= 2π f is continuous. But in
most typical applications the STFT is performed on a com-
puter using the Fast Fourier Transform algorithm, so both
variables are discrete and quantized:m = 0, 1, 2, . . .N −1
andf = n·f0= n·fs/N = n/(t0·N) ( n = 0, 1, 2, . . .,N−1).
Then the STFT is defined as:

STFT{x[m]} ≡X(k,n)=
N−1∑
m=0

x[m]w[m− k]e−j2πmn/N ,

(A4)
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wherek =0, 1, 2,...,N – 1, and the spectrogram is defined
as:

spectrogram{x[m]} ≡ |X(k,n)|2 . (A5)

The MatLlab function:

B = specgram(x, nfft, fs , window(length), numover-
lap)

calculates the windowed discrete-time Fourier trans-
form for the signal in vectorx with lengthN ; nfft specifies
the FFT length that specgram uses,fs specifies the sampling
frequency, window specifies a windowing function and
the number of samples specgram uses in its sectioning of
vectorx. If x is real, specgram computes the discrete-time
Fourier transform at positive frequencies only. IfN is even,
specgram returnsnfft/2+1 rows inB (including the zero and
Nyquist frequency terms). Ifn is odd, specgram returns
(nfft+1)/2 rows. The number of columns inB is the integer
number (fix number) of (N -numoverlap)/(length(window)-
numoverlap)).

The windows of the spectrogram figure present in time-
frequencies axis the plots of the scaled logarithmic (in dB)
amplitudes: 20∗log10(abs(B)).

Appendix B

WARMA – noise generation

“warma” is a colored AR(3) noise generated by MATLAB
from the formula:
b2(t)=−1.5b2(t−1)−0.75b2(t−2)−0.125b2(t−3)+b1(t)+0.5,
b1(t) being a uniform white noise series.

The test of normal probability plot shows that the underly-
ing distribution of the “warma” series fort = 1, 2, 3. . . , 1000,
is a normal one, with variance = 0.6135 and sigma = 0.78326.

The following changes on “warma” signal provide a more
realistic noise (more like the noise of a secular variation sig-
nal). From a 125-value long colored noise [warma(1:125),
variance = 0.6079, sigma = 0.7797)] we generate a more
extended noise (1000 value long), where 8 values between
each couple of successive values are generated by adding
proportionally the difference between these successive val-
ues. The test of normal probability plot shows a slight devia-
tion from the normal distribution, with variance = 0.2284 and
sigma = 0.4779. Each value is multiplied by certain number
such that the amplitude of the noise reaches about 15 % of
the signal amplitude (the signal composed by differences of
several exponential spikes like (1)).
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