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1 The subduction process

The discoveries in the previous century of continental drift,
convection in Earth’s mantle, and the formation of oceanic
lithosphere at mid-ocean ridges set the stage for the reali-
sation that oceanic material is continuously recycled back
into the mantle (e.g., Wegener, 1918; Holmes, 1931; Run-
corn, 1956; Hess, 1962; Vine and Matthews, 1963; Wilson,
1966). This idea is also confirmed by evidence that no in situ
oceanic lithosphere older than ca. 270 Ma exists on Earth
(Müller et al., 2008; Fig. 1a). The process of sinking of cold
oceanic lithosphere into the mantle, occurring at convergent
margins, is called subduction.

Subduction is not only responsible for mixing surface ma-
terial back to the deep Earth and introducing significant
chemical variation back into the mantle (Christensen and
Hofmann, 1994), but also for driving plate motions (Forsyth
and Ueda, 1975), mountain building and the growth of new
continental crust (Davidson and Arculus, 2006). Subduction
also deeply modifies the thermal structure of the mantle and
accounts for arc volcanism, in addition to causing substan-
tial surface (vertical and horizontal) deformations and re-
leasing most of the seismic energy of the Earth. The sub-
duction process plays, therefore, a key role in the geody-
namical and geochemical phenomena that shape our Earth
and, for this reason, has led to a more-than-average atten-
tion from the Earth Science community. But, despite these
efforts, subduction still holds many enigmas and open ques-
tions. The most important are embedded in the lack of a
common behaviour of global subduction zones (e.g., Uyeda
and Kanamori, 1978). Some subduction zones are long-lived,
such as the Andes subduction zone, which is over 100 million
years old, whereas others have just initiated, such as the New
Hebrides and Puysegur subduction zones. Present-day sub-
duction zones are also diverse in terms of trench motion, slab

dip, nature of the overriding plate, back-arc tectonic regime,
behaviour at the 660 km-discontinuity, seismicity, and vol-
canic productivity of the arc (e.g., Jarrard, 1986; Pacheco et
al., 1993; Heuret and Lallemand, 2005; Acocella and Funi-
ciello, 2009; Heuret et al., 2011; Hayes et al., 2012).

Subduction is a complex dynamic process, which occurs
over long timescales and to large depths and integrates small-
scale with large-scale phenomena. This process can, there-
fore, only be understood by adopting a multidisciplinary ap-
proach integrating geological observations and geophysical
imaging of regions of past and present subduction, with geo-
chemical fingerprinting of materials recycled in the subduc-
tion system, and studies of subduction dynamics in space and
time. The direct association with devastating earthquakes and
active volcanism signifies a social need for an understand-
ing of all aspects of this process. Decades of research have
furthered our understanding of the large-scale kinematics of
subduction processes and the close links between subducting
lithosphere, mantle flow, and surface deformation. However,
past research has made it very clear that several fundamen-
tal questions remain unanswered. We therefore considered it
timely to bring together a selection of papers that highlight
the current state of subduction research.

2 The Subduction Zones special issue

In this special issue we follow the subducting lithosphere on
its journey from the surface to the lower mantle (Fig. 1b).
Using tomographic imaging, numerical modelling, and field
observations, the contributing articles outline several chal-
lenges in the subduction system. In the text below, references
to articles in the special issue are in italics.

Subduction zones are associated with thrust earthquakes
on the interplate contact and with intermediate-to-deep slab
seismicity, posing a serious threat to communities living
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Fig. 1. (a)Map of present-day subduction systems, and(b) schematic subduction zone cross-section with areas of study of the Subduction
Zones special issue indicated as dashed boxes. Age of ocean crust from Müller et al. (2008).

close to these convergent regions (Fig. 1a). Previous stud-
ies have found that faults in the upper part of a subduc-
tion zone are susceptible to changes in ice and water loads
(e.g., Chochran et al. 2004; Luttrell and Sandwell, 2010).Li
and Hampel (2012)use 2-D finite element models to show
that glacial–interglacial sea level variations can be responsi-
ble for significant stress variations within convergent plates
and, in turn, for the earthquake cycle of subduction thrust
faults. Earthquakes are promoted during sea-level fall and
delayed during sea-level rise.Arcay (2012)finds that sub-
duction interplate dynamics are strongly dependent on both
ductile and brittle strength parameters. The evolution of the
depth of the brittle-to-ductile transition and the kinematic de-
coupling depth along the subduction interface are both in-
fluenced by the interplate friction coefficient and the mantle
wedge strength. When comparing the thermochemical mod-

elling results with observations, it suggests a moderate-to-
strong viscosity reduction of the asthenosphere due to meta-
somatism of the mantle wedge.

The thermal structure of a subduction system is important
for understanding subduction seismicity, slab dehydration,
arc volcanism and geochemistry.Bengtson and van Keken
(2012) investigate to which extent the common approach of
using 2-D cross-sections provides a reasonable image of the
3-D system. 3-D numerical models of the thermal structure
and the flow regime in the mantle wedge show that 2-D cross-
sections are reasonable for arcs that have minor along-strike
variations. However, a full 3-D model is unavoidable to sim-
ulate strongly curved subduction systems, such as the Mar-
ianas, where significant 3-D mantle flow is induced in the
mantle wedge by the subduction process.
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When an oceanic basin closes and continental lithosphere
enters a subduction zone, the positive buoyancy of the conti-
nental crust will resist subduction, leading to a slow-down,
and ultimately to the end of subduction (e.g., McKenzie,
1969). Continental collision is accompanied by severe crustal
and lithospheric deformation, mountain building, slab break-
off, metamorphism, and the exhumation of high and ultra-
high pressure [(U)HP] rocks.Warren (2013)reviews mech-
anisms to subduct continental crust to (U)HP conditions and
exhume the rocks back to Earth’s surface. The record of ex-
humation is complicated by the fact that exhumation mecha-
nisms may change in time and space within the same subduc-
tion zone. Buoyancy and external tectonic forces drive ex-
humation, but the changing spatial and temporal dominance
of different driving forces still remains unclear and further
research is required to determine to what extent exhumation
is transitory and discrete versus continuous and long-lived.

Using 2-D numerical models,Magni et al. (2012)show
that trenches can start advancing by 40 to 220 km once con-
tinental collision occurs. Locking of the subduction zone and
subsequent steepening of the slab induce trench advance.
These results highlight that trench advance can be intrinsic
to the subduction system and need not necessarily be driven
by external plate-driving forces only. The changes in ther-
mal and isostatic forces, flexural strength and mantle-induced
stresses that accompany collision are also expressed in ver-
tical surface motions.Bottrill et al. (2012)show that during
ongoing subduction a back-arc basin forms and deepens once
collision starts due to steepening of the slab. In their 2-D nu-
merical models, this basin is transient as initial surface uplift
close to the suture zone migrates into the former basin after
slab detachment. The model results fit with the sedimentation
record and topography on the overriding plate for the Arabia-
Eurasia collision zone where a temporary shallow marine
basin existed in the Upper Oligocene – Early Miocene. Such
temporal and spatial variations in horizontal and vertical sur-
face displacements may further complicate the often already
complex interpretation of the geological record of past and
present subduction zones.

The Pyrenean orogen formed after inversion of a Mesozoic
rift system, resulting in continental collision of the Iberian
and Eurasian plates (e.g., Muñoz, 1992). To the west in
the Cantabrian domain, the Iberian continental lithosphere
subducts underneath the transitional-to-oceanic lithosphere
of the Bay of Biscay.Tavani (2012)describes this unusual
tectonic setting and suggests that the preserved lithospheric-
scale syncline structures in the Cantabrian domain form one
of the few natural examples of subduction initiation.

The oceanic lithosphere carries fluids (mainly water),
which are contained either as free fluid in the pores of the
rocks or bound mineralogically (e.g., Rüpke et al., 2004).
As the subducted lithosphere reaches higher pressures and
temperatures, these fluids are released by compaction and
dehydration reactions.Ramachandran and Hyndman (2012)
present P- and S-wave velocities from 3-D seismic tomog-

raphy to constrain fluids released from the young and hot
Cascadia subducting lithosphere. The seismic velocities indi-
cate substantial amounts of serpentinite in the forearc mantle,
lending itself towards weakness, which has important conse-
quences for earthquake potential and collision tectonics. Sig-
nificant silica deposition at the base of the lower crust makes
it a primary contributor to the average composition of the
continental crust. The Pacific slab subducting under north-
east Japan is an example of a cold subduction system due
to the high convergence rate and old age of the subducting
lithosphere.Tong et al. (2012)present P- and S-wave seis-
mic tomography that image fluids released from dehydration
of the subducting Pacific lithosphere under the 2011 Iwaki
earthquake area and Fukushima nuclear power plant location.
As fluids decrease fault friction, slab dehydration might have
triggered earthquake activity. Based on this study, it is sug-
gested that the Fukushima nuclear power plant site should
be strengthened to survive future earthquake activity in the
area. The role of fluids in the generation of intermediate-
depth (> 40 km) seismicity is investigated byVan Keken et
al. (2012)with 2-D numerical models in which slab kinemat-
ics is prescribed. They find that intermediate depth seismicity
in the upper part of the slab below northern Japan is delimited
by the blueschist to hydrous ecologite phase change, which
forms a major dehydration front in the subducted crust. The
correlation breaks down in the junction between the northern
Japan and Kurile arcs where time dependent, 3-D dynamics
of the slab may significantly affect the thermal slab structure
and hence dehydration reactions.

Jaxybulatov et al. (2013)present P- and S-wave tomogra-
phy of the mantle beneath the Izu-Bonin and Mariana arcs.
The tomographic models show along-strike variations in the
subduction system with differences in slab dip angle that cor-
relate with segments that are also delineated by deep seismic-
ity clusters.

Numerical and analogue models of subduction necessar-
ily need to simplify the many complex aspects of subduction
in order to be able to arrive at reliable solutions. Among the
many problems inherent in this process are choices of defor-
mation mechanisms, values for mechanical and thermal ma-
terial properties, and the treatment of boundary conditions
for models that do not simulate the entire Earth.Chertova
et al. (2012)test the influence of sidewall boundary condi-
tions on the dynamics of subduction with regional-scale 2-D
numerical models. They document differences in slab evo-
lution, trench motion and mantle flow in models with open
sidewalls compared to closed (free-slip) sidewalls and con-
clude that open boundaries soften the impact of side bound-
ary conditions, allowing for smaller lateral extent of the
models. Whole-Earth geodynamic models of mantle flow do
not suffer from the necessity of lateral boundary conditions.
Steinberger et al. (2012)present a new comparison of whole-
mantle tomography with viscous geodynamic flow models,
which are based on 300 million years of subduction history.
The correlation between the tomography and geodynamic
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models is improved in comparison to previous models. One
important aspect for this improved fit is the presence of a
chemical layer at the base of the lower mantle, shaped into
two piles as the Pacific and African Large Low Shear Veloc-
ity Provinces.

3 Concluding remarks: Future directions in subduction
research

A short introduction to a collection of thirteen papers cannot
do full justice to the broad and thriving discipline of subduc-
tion research. Nevertheless, we would like to conclude by
highlighting some avenues of future research that we con-
sider interesting and promising (see also Gerya (2011) for
future directions in subduction modelling):

1. Identifying and analysing key-elements for the occur-
rence of mega-earthquakes that characterise convergent
margins and determining the most likely conditions that
can trigger such events;

2. Combining observations of young subduction zones and
sparse remnants of the initial stages of older subduc-
tion zones with dynamic models to evaluate scenarios
of subduction initiation, and determine whether a com-
mon mechanism of subduction initiation exists;

3. Investigating mechanisms of exhumation of (ultra-)high
pressure and temperature rocks, especially with large
semi-coherent terranes;

4. Correlating slabs imaged with seismic tomography to
subduction histories and linking the evolution of Earth’s
surface to the dynamics of the deep Earth;

5. Defining the role of structures inherited from previous
extensional or convergent deformation phases on the
distribution of later deformation;

6. Evaluating controls on the dynamics of the interaction
of subducted lithosphere with the 660 km discontinuity;

7. Close coupling of dynamic models with fluids and
melts;

8. A discussion of which laboratory creep laws should be
used in numerical subduction models.

A list like this is never complete and invariably coloured
by our own research interests and experiences in modelling
subduction. However, we hope that our list of future research
directions illustrates the many open questions that still sur-
round the subduction process. We have no doubt that many
exciting answers will be discovered from multidisciplinary
approaches to inter-related aspects of the subduction process
operating over a large range of spatial and temporal scales.
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