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Abstract. Bilinear flow occurs when fluid is drained from a
permeable matrix by producing it through an enclosed frac-
ture of finite conductivity intersecting a well along its axis.
The terminology reflects the combination of two approxi-
mately linear flow regimes: one in the matrix with flow essen-
tially perpendicular to the fracture, and one along the fracture
itself associated with the non-negligible pressure drop in it.
We investigated the characteristics, in particular the termina-
tion, of bilinear flow by numerical modeling allowing for an
examination of the entire flow field without prescribing the
flow geometry in the matrix. Fracture storage capacity was
neglected relying on previous findings that bilinear flow is as-
sociated with a quasi-steady flow in the fracture. Numerical
results were generalized by dimensionless presentation. Defi-
nition of a dimensionless time that, other than in previous ap-
proaches, does not use geometrical parameters of the fracture
permitted identifying the dimensionless well pressure for the
infinitely long fracture as the master curve for type curves of
all fractures with finite length from the beginning of bilin-
ear flow up to fully developed radial flow. In log–log scale
the master curve’s logarithmic derivative initially follows a
1/4-slope straight line (characteristic for bilinear flow) and
gradually bends into a horizontal line (characteristic for ra-
dial flow) for long times. During the bilinear flow period,
isobars normalized to well pressure propagate with the fourth
and second root of time in fracture and matrix, respectively.
The width-to-length ratio of the pressure field increases pro-
portional to the fourth root of time during the bilinear period,
and starts to deviate from this relation close to the deviation
of well pressure and its derivative from their fourth-root-of-
time relations. At this time, isobars are already significantly

inclined with respect to the fracture. The type curves of finite
fractures all deviate counterclockwise from the master curve
instead of clockwise or counterclockwise from the 1/4-slope
straight line as previously proposed. The counterclockwise
deviation from the master curve was identified as the arrival
of a normalized isobar reflected at the fracture tip 16 times
earlier. Nevertheless, two distinct regimes were found in re-
gard to pressure at the fracture tip when bilinear flow ends.
For dimensionless fracture conductivitiesTD < 1, a signifi-
cant pressure increase is not observed at the fracture tip until
bilinear flow is succeeded by radial flow at a fixed dimen-
sionless time. ForTD > 10, the pressure at the fracture tip has
reached substantial fractions of the associated change in well
pressure when the flow field transforms towards intermittent
formation linear flow at times that scale inversely with the
fourth power of dimensionless fracture conductivity. Our re-
sults suggest that semi-log plots of normalized well pressure
provide a means for the determination of hydraulic parame-
ters of fracture and matrix after shorter test duration than for
conventional analysis.

1 Introduction

Transient fluid flow in fractures or faults plays an important
role for the production of oil and gas, as well as for fresh
water supply and the production of geothermal energy, es-
pecially from artificial fracture systems, so called hot-dry-
rock (HDR) or enhanced geothermal systems (EGS). Flow
in fractures and fracture networks may as well be important
for the triggering of seismicity by precipitation (e.g., Hainzl
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Fig. 1.Model geometry and realized mesh for simulations.

et al., 2006), by groundwater recharge (e.g., Saar and Manga,
2003), by hydraulic stimulation (e.g., Deichmann and Ernst,
2009; Majer et al., 2007; Shapiro and Dinske, 2009), and by
water level changes in dams (e.g., Chen and Talwani, 1998).

For fractures in an impermeable rock matrix, fluid flow
and pressure propagation are restricted to the fracture vol-
ume, and are thus exclusively controlled by the hydraulic dif-
fusivity of the fractures. In contrast, fluid flow and pressure
propagation in fractures is accompanied by fluid exchange
with a permeable rock matrix, a rather complex problem for
mathematical treatment. A first analytical solution was pre-
sented in the context of well testing (Cinco-Ley et al., 1978)
that applies to the case of fluid production from boreholes
subsequent to hydraulic fracturing (for the simplified geom-
etry of a single fracture aligned with a borehole, see Fig. 1a).
Cinco-Ley et al. (1978) simplified the flow field as a super-
position of two fields of parallel flow: one in the fracture
and one in the rock matrix, the latter perpendicular to the
fracture plane (see Fig. 1b). Accounting for its peculiar ge-
ometry, this flow regime was named bilinear flow (Cinco-
Ley and Samaniego-V., 1981). Evidence for bilinear flow
was reported from hydraulic tests after hydraulically frac-
turing a low permeable matrix; for example, in tight basins
that produce gas (Rushing et al., 2005; Stright and Gordon,
1983) and in sedimentary and granitic geothermal reservoirs
(Häring et al., 2008; Jung and Weidler, 2000; Ortiz et al.,
2011; Zimmermann, 2006). Interest in unconventional gas

recovery from tight formations also triggered studies con-
sidering horizontal wells (see, for example, Du and Stewart,
1995; Jelmert and Vik, 1995; Verga and Beretta, 2001).

For constant production, a bilinear flow field is accom-
panied by a decrease of the wellbore pressure proportional
to the fourth root of elapsed pumping time. The time win-
dow, during which this fourth-root relation can be observed,
is however finite, and thus long-term predictions – of great
practical importance for exploitation of liquid or gaseous re-
sources – are erroneous when using this relationship. There-
fore, constraining estimates of the end time of bilinear
flow received attention in previous research (Cinco-Ley and
Samaniego-V., 1981; Weir, 1999). Since radial flow domi-
nated by the matrix properties develops when this time is
exceeded, it specifically marks the end of the gain due to a
stimulation operation involving hydraulic fracturing.

Until today, the physical understanding of the proposed
relations for the end time of bilinear flow is incomplete. In
this study, we rely on numerical simulations using a two-
dimensional finite element model in order to investigate the
hydraulic diffusion in finite conductivity fractures. We in-
clude an analysis of the spatio-temporal characteristics of the
entire pressure field in fracture and matrix in order to clarify
the flow processes that lead to the termination of bilinear flow
as well as to substantiate quantitative rules for the end of bi-
linear flow. Outlining the end time and investigating the pres-
sure field in a dimensionless parameter space allows for us to
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generalize our findings obtained for specific cases to frac-
tures with a range of dimensionless fracture conductivities.
Focus is put on fractures with negligible storage capacity, and
wellbore storage is also neglected. However the formulation
aims at clarifying the role of fracture length. In this contribu-
tion, we first briefly give the background in terms of govern-
ing equations and non-dimensional formulation, describe the
chosen modeling approach, report results, and subsequently
discuss them in the light of their practical use.

2 Background and approach

2.1 Governing equations for the hydraulics of a
fractured well

For a well intersected by a single fracture and surrounded
by a permeable matrix, two basic hydraulic equations, partial
differential equations for fluid pressurep, have to be consid-
ered, namely

sm
∂p

∂t
=

km

ηf
∇

2p (1)

for flow in the infinite, isotropic, and homogeneous matrix,
and

SF
∂p

∂t
=

TF

ηf
∇

2p +
qF(t)

h
(2)

for flow in the fracture. The two equations are coupled by the
fluid flow between matrix (subscript m) and fracture (sub-
script F),qF(t) (see, for example, Cinco-Ley et al., 1978).
Here,km [m²] denotes the matrix permeability,sm [Pa−1] the
specific storage capacity of the matrix,ηf [Pa s] the fluid vis-
cosity, TF = bFkF [m³] the fracture conductivity with frac-
ture width bF [m] and fracture permeabilitykF [m2], and
SF = bFsF [m Pa−1] the fracture storativity with specific stor-
age capacity of the fracturesF [Pa−1] (see also the nomen-
clature at the end of the paper). Equation (1) expresses the
mass balance in the volume elements of the matrix. Storage
of fluid in a matrix volume associated with pressure tran-
sients, i.e.,−sm∂p/∂t , constitutes the sole source term, and
thus equals the divergence of the flow through a volume el-
ement,∇ · qm. The flow in the matrix is assumed to obey
Darcy’s law,qm = −km∇p/ηf . Similarly, Eq. (2) describes
the mass balance in the elements of the fracture, which has
to account for an additional source term representing the
fluid exchange between the matrix and the fracture (qF(t)).
Frequently, these equations are recast introducing the hy-
draulic diffusivities of the matrix,Dm = km/ηfsm [m2 s−1],
and the fracture,DF = TF/ηfSF [m2 s−1] (see, for example,
Chaudhry, 2004; Dake, 2001; Matthews and Russell, 1967).

Specific solutions of the governing Eqs. (1) and (2) for
particular initial and boundary conditions have led to the
distinction of characteristic flow regimes.Radial flow, char-
acterized by a well pressure changing proportionally to the

logarithm of elapsed pumping time, results when production
from (injection into) a homogeneous formation causes radial
flow lines to develop normal to the production surface com-
posed solely of the well. For homogeneous and isotropic me-
dia, diffusion of pressure perturbations obeys a linear scaling
relation between the square of the characteristic propagation
distanceLc and the characteristic propagation timetc involv-
ing the hydraulic diffusivity of the matrix, i.e.,Dm ∼ L2

c/tc
(see, for example, radius of investigation or drainage in Bour-
det, 2002; Chaudhry, 2004; Dake, 2001; Earlougher, 1977;
Horne, 1995; Matthews and Russell, 1967). Highly perme-
able fractures – that is, fractures in which the pressure gra-
dient is negligible – intercepting the well may extend the ef-
fective production surface such that flow in the subsurface is
actually directed towards this extended surface rather than
radial towards the well (e.g., Jenkins and Prentice, 1982).
Such flow geometry is termedformation linear flowsince
straight flow lines are thought to result in the matrix. The
well pressure changes proportionally to the square root of
elapsed pumping time. Thebilinear flow regime is encoun-
tered when the flow is approximately linear in both the frac-
ture or narrow zone of high conductivity and the matrix (e.g.,
Butler and Liu, 1991). In this regime the finite conductivity
of the fracture leads to a finite pressure gradient in the frac-
ture (Boonstra and Boehmer, 1986; Gringarten, 1985). Frac-
tures in an impermeable matrix result infracture linear flow,
which is per se indistinguishable from formation linear flow
regarding the power law relation between well pressure and
elapsed pumping time.

2.2 Modeling approach

In our study, we focus on fractures with negligible storage
capacitySF → 0; that is, the fracture is considered unde-
formable, and the amount of fluid in the fracture is consid-
ered small enough for its compressibility to be neglected. In
this approximation, Eq. (2) reads

0 =
TF

η
∇

2p +
qF (t)

h
; (3)

that is, the pressure in the fracture obeys an inhomogeneous
diffusion equation with a time-dependent source term but
without an intrinsic transient term. The changes of pressure
with time are considered to be dominated by the fluid transfer
between matrix and fracture. Previous studies revealed that
only for small dimensionless times do the flow in the well
and the flow in the matrix deviate from each other due to
storage effects in the fracture (e.g., Weir, 1999). In the classi-
cal dimensionless form of (2) (see Eq. A1 in Cinco-Ley and
Samaniego-V., 1981), the transient term on the left side ap-
pears multiplied by the diffusivity ratioκ = Dm/DF. When
this ratio is small, the effect of the intrinsic transient term
on wellbore pressure becomes important only for extremely
small values of time, and thus can be neglected for bilinear
flow (see Cinco-Ley and Samaniego-V., 1981; Riley, 1991).
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We use a two-dimensional finite element model consist-
ing of a fracture with half-lengthxF positioned on thex axis
(at y = 0; see Fig. 1c) and intercepting a well along its axis.
Flow in the fracture of finite conductivity embedded in the
permeable matrix is approximated as one-dimensional and
wellbore storage is neglected. Thus, (1) and (3) are imple-
mented as

∂p

∂t
= Dm

(
∂2p

∂x2
+

∂2p

∂y2

)
(4)

and

TF

ηf

∂2p

∂x2
+

qF(x, t)

h
= 0. (5)

The origin of the coordinate system coincides with the well,
actually represented by a point source with a flow rateqw/h

determined from the true flow rate in the wellqw and the
height of the open well sectionh (Fig. 1). The fluid flow be-
tween matrix and fracture,

qF(x, t) = 2
km

ηf

∂p

∂y

∣∣∣∣
y=0

, (6)

couples the two equations, where the factor of 2 accounts for
the communication via the two fracture surfaces.

In principle, numerical analysis does not require the flow
geometry in the matrix to be prescribed, as do the majority of
previously presented analytical solutions. The assumption of
most analytical treatments that flow lines in the fracture and
in the matrix remain strictly perpendicular to each other in-
deed cannot hold towards the end of bilinear flow. The pres-
sure diffusion in the matrix proceeds proportional tot1/2, ul-
timately surpassing pressure diffusion in the finite conduc-
tivity fracture that scales witht1/4. Thus, eventually isobars
have to change direction with increasing time.

We performed more than 30 simulations using COMSOL
Mulitphysics®employing the linear system solver UMF-
PACK. To ensure the occurrence of bilinear flow, fracture
length was varied from 1.5 to 1500 m, while the further
parameters remained constant (qw/h = 2 · 10−4 m2/s, ηf =

2.5 · 10−4 Pa s,TF = 1.5 · 10−16 m3, km = 1 · 10−18 m2, and
sm = 1 · 10−11 Pa−1). An effect of the model boundaries on
the simulation results was avoided by locating them far from
the fracture (about 600 to 1200 m). The used free-meshing
technique generated an unstructured mesh with triangular el-
ements (Fig. 1d). Close to the fracture a finer mesh was ob-
tained by fixing the length of the fracture elements to less
than 0.36 m. Thus, the total number of elements varied con-
siderably depending on the model size determined by frac-
ture length (with order of magnitude of about 104 to 105).
The time step was gradually increased from 1 s to 3600 s
during a simulation. A typical succession consisted of a time
step of 1 s for the first 30 s, then 20 s until 600 s, 60 s un-
til 12 000 s, 300 s until 72 000 s, and 3600 s until the end of
the simulation. However, the time step was also reduced for

specific phases of a simulation to study the completion of
bilinear flow in detail. Initially this “zooming in” into time
required repetition of a certain simulation, while the gained
understanding of the systematic relations for the occurrence
of bilinear flow eventually allowed for the time intervals to be
set for reduced time steps right from the start of a simulation.

2.3 Dimensionless formulation

Our numerical modeling is performed with dimensional
properties, but for reporting results we use non-dimensional
parameters in order to foster a fundamental understanding of
bilinear flow in our conceptual study. Previous analyses of
flow regimes employed a variety of non-dimensionalization
approaches. Here, we use the conventional definition for di-
mensionless pressure (see, for example, Earlougher, 1977;
Matthews and Russell, 1967):

pwD = 2π
kmh

qwηf

1pw. (7)

However, we use a modified definition of dimensionless
time:

τ =
tD

T 2
D

=
Dmk2

m

T 2
F

t, (8)

wheretD = tDm/x2
F is the classical definition of dimension-

less time for an infinite reservoir adapted for the flow in frac-
tures by replacing radial distancer with half-fracture length
xF (Cinco-Ley et al., 1978; Earlougher, 1977; Matthews and
Russell, 1967). Furthermore, the dimensionless fracture con-
ductivity is defined by

TD =
TF

kmxF
. (9)

The employed model parameters correspond to values ofTD
ranging from 0.1 to 100.

Our choice of non-dimensional parameters is guided by
the necessity to avoid fracture storage capacity and the re-
quest to also avoid fracture length. When fracture length is
used as an explicit parameter in the conventional definition of
dimensionless time, one encounters the problem that “time”
becomes ill defined for very long or infinitely long fractures.
The formulation should, however, be apt for fractures with
a range of finite lengths, such as those created, for exam-
ple, during hydraulic fracturing operations, as well as for
fractures with “infinite” length, such as those encountered
when length simply exceeds the influence zone of the pump-
ing operation. The latter situation may rather be typical for
stimulations in a geothermal context that create a connection
between the well and either an extended network of natural
fractures or a large geological fault.
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2.4 Previously presented solutions for bilinear flow

The theoretical background of bilinear flow was first pre-
sented by Cinco-Ley et al. (1978) and Cinco-Ley and
Samaniego-V. (1981), who studied the solution of (1) and
(2) using a two-dimensional numerical model and Laplace
transform, respectively. They demonstrated that the pressure
in a vertically fractured well producing at constant flow rate
is proportional to the fourth root of time in the bilinear flow
regime. This result, subsequently confirmed by several ap-
proaches (e.g., Riley, 1991), reads

pwD =
π

0
(
5
/

4
)√

2
τ1/4

' 2.45τ1/4 (10)

for the non-dimensional well pressure during bilinear flow
with our set of non-dimensional parameters. Thus, we get a
unique relation between non-dimensional well pressure and
non-dimensional time independent of any further model pa-
rameters.

Some approximate analytical solutions for the pressure
distribution in infinitely long fractures were derived in previ-
ous studies (see Boonstra and Boehmer, 1986; Weir, 1999).
Notably, Boonstra and Boehmer (1986) demonstrated that
during a certain sequence of bilinear flow, the pressure dis-
tribution is governed by a single variable combining time
and distance (w in their notation). Weir (1999) subsequently
emphasized the self-similarity of the pressure function with
x4/t in contrast to Theis’ solution for a homogeneous reser-
voir (also called line source or exponential-integral solution,
Earlougher, 1977; Matthews and Russell, 1967; Theis, 1935)
that admitsr2/t as a self-similar variable.

In their seminal study, Cinco-Ley and Samaniego-
V. (1981) report three expressions for the end time of bilinear
flow, but did not explicitly state how these relations were de-
rived. Essentially, two extended regimes separated by a short
intermediate regime are found for end time as a function of
dimensionless fracture conductivity.

3 Results

Presentation of the results of our numerical simulations first
focuses on the evolution of well pressure. We then continue
with the propagation of the pressure perturbation along the
fracture and in the matrix in order to identify the mechanisms
for the end of bilinear flow based on which we establish ra-
tional criteria for the end time.

3.1 Evolution of the well pressure

Following common praxis, results are presented in the form
of type curves (in log–log scale) of the dimensionless well
pressure and its dimensionless logarithmic derivative ver-
sus dimensionless time (Fig. 2a, b). The main features can
be best explained using the derivative (Fig. 2b). In accord

Fig. 2. Type curves of the dimensionless well pressure(a), its log-
arithmic derivative(b), and of the normalized well pressure(c) as
functions of dimensionless time. Note that(c) is actually a restricted
zoom of the data presented in(a) and(b). For example, the clock-
wise bending of the curve forTD = 100 prominent in(a) is out-
side of the chosen scale. The red line in(c) represents the normal-
ized curvep∞

wD/2.45τ1/4, wherep∞
wD is the master curve for an

infinitely long fracture (see Table 1).
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Table 1.Values of the master curve for normalized well pressurep∞
wD/2.45τ1/4 (Figs. 2c, 6)

τ p∞
wD/2.45τ1/4 p∞

wD τ p∞
wD/2.45τ1/4 p∞

wD

1.00E–09 1.00E+00 1.38E–02 2.88E–05 9.98E–01 1.79E–01
1.50E–09 1.00E+00 1.52E–02 4.37E–05 9.97E–01 1.99E–01
1.27E–09 1.00E+00 1.46E–02 6.61E–05 9.97E–01 2.20E–01
2.53E–09 1.00E+00 1.74E–02 9.92E–05 9.96E–01 2.43E–01
5.06E–09 1.00E+00 2.07E–02 1.49E–04 9.95E–01 2.69E–01
7.59E–09 1.00E+00 2.29E–02 2.24E–04 9.94E–01 2.98E–01
1.14E–08 1.00E+00 2.53E–02 3.36E–04 9.92E–01 3.29E–01
1.78E–08 1.00E+00 2.83E–02 5.07E–04 9.91E–01 3.64E–01
3.56E–08 1.00E+00 3.36E–02 7.04E–04 9.89E–01 3.95E–01
5.33E–08 1.00E+00 3.72E–02 1.06E–03 9.87E–01 4.36E–01
8.89E–08 1.00E+00 4.23E–02 1.54E–03 9.85E–01 4.78E–01
1.42E–07 1.00E+00 4.76E–02 2.30E–03 9.82E–01 5.27E–01
2.13E–07 1.00E+00 5.27E–02 3.46E–03 9.78E–01 5.81E–01
3.20E–07 1.00E+00 5.83E–02 5.18E–03 9.74E–01 6.40E–01
4.80E–07 1.00E+00 6.45E–02 7.74E–03 9.69E–01 7.04E–01
7.11E–07 1.00E+00 7.11E–02 1.16E–02 9.63E–01 7.74E–01
1.07E–06 1.00E+00 7.87E–02 1.74E–02 9.56E–01 8.51E–01
1.60E–06 1.00E+00 8.71E–02 2.61E–02 9.49E–01 9.34E–01
2.49E–06 1.00E+00 9.73E–02 3.92E–02 9.40E–01 1.02E+00
3.73E–06 9.99E–01 1.08E–01 5.89E–02 9.29E–01 1.12E+00
5.69E–06 9.99E–01 1.20E–01 8.83E–02 9.18E–01 1.23E+00
8.53E–06 9.99E–01 1.32E–01 1.32E–01 9.05E–01 1.34E+00
1.28E–05 9.99E–01 1.46E–01 1.50E–01 9.01E–01 1.37E+00
1.92E–05 9.98E–01 1.62E–01

with previous theoretical and numerical analyses (Cinco-Ley
and Samaniego-V., 1981; Weir, 1999), the derivatives follow
a straight line with a slope of 1/4 over over a certain pe-
riod of dimensionless time. For sufficiently high dimension-
less fracture conductivities (i.e.,TD � 1), the derivative first
turns counterclockwise into a straight line with slope ½cor-
responding to formation linear flow, fully developed only
for TD > 50 (Fig. 2b). Ultimately, as expected (e.g., Bour-
det, 2002), derivatives bend into a unique horizontal line
(dpwD/d lnτ = 0.5) for all fracture conductivities, indicating
that radial flow is reached. The dimensionless time to reach
fully developed radial flow increases with decreasingTD, and
is highest forTD = 0.

The log–log plots of the well pressure and its deriva-
tive (Fig. 2a, b) suggest that type curves withTD > 1.8 and
TD ≤ 1.8 bend off counterclockwise and clockwise from the
1/4-slope straight line, respectively, as previously described
by Cinco-Ley and Samaniego (1981). However, introducing
a normalized well pressure,pwD/2.45τ1/4, as a measure of
the deviation from the expected bilinear behavior (10), the
resulting presentation is more sensitive than the conventional
type curves of the well pressure, and shows that the curve for
TD = 0 actually constitutes the master curve followed by all
type curves of normalized pressure for a certain time interval
(Fig. 2c). The master curve (Table1), addressed asp∞

wD in the
following, is associated with an infinitely long fracture (note

that the alternative case forTD = 0, namelyTF = 0, is mean-
ingless since in this case no fluid can be injected or with-
drawn via the fracture). The normalized pressure stays close
to unity until dimensionless timeτ > 10−6, when the master
curve bends downwards with increasing slope (clockwise),
indicating the transition from bilinear to radial flow.

All normalized type curves first deviate counterclockwise
from the master curve before finally bending clockwise like
the master curve itself. The latter behavior is evidenced for a
few curves, but is outside the explored time range for others
(Fig. 2c). Normalized type curves forTD > 10 start bending
counterclockwise in the section where the normalized master
curve is still at unity; those forTD < 10 only in the downward
bending part of the master curve. As a consequence, normal-
ized type curves forTD > 10 exhibit a maximum, whereas
those for 1.6 < TD < 10 exhibit a succession of a minimum
and a maximum. ForTD ' 1.6 the two extrema degenerate
to a single saddle point, and all normalized type curves with
TD < 1.6 decrease monotonically. Normalized type curves
with 1.8 < TD < 10 intersect the horizontal line correspond-
ing to unity twice, whereas those withTD < 1.8 stay below.
This behavior is probably the reason why previous authors,
e.g., Cinco-Ley and Samaniego (1981), assumed a disconti-
nuity in the behavior of the type curves nearTD = 1.8.
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Fig. 3. Snapshots of the normalized pressure fieldpN for fractures
with dimensionless fracture conductivity ofTD = 0.314 (top) and
TD = 5 (bottom).

3.2 Evolution of the pressure along the fracture and in
the matrix

For a systematic analysis of the evolution of the pressure field
in the fracture and in the matrix, a ratio of pressure differ-
ences,

pN =
p(x,y, t) − p0

pw(t) − p0
, (11)

is defined, wherep(x,y, t) denotes the pressure at posi-
tion (x,y) in the fracture or matrix,p0 the initial pressure
(assumed identical in matrix and fracture), andpw(t) the
well pressure at timet . Thus, the quantitypN compares the
change in pressure at some point in the fracture or matrix
to the pressure change in the well. Lines in the(x,y) plane
with pN = const. are referred to as normalized isobars in the
following (see examples in Fig. 3). The ratio of pressure dif-
ferences notably assumes identical values when calculated
using either absolute or dimensionless pressures.

Normalized isobars exhibit a characteristic flame-like, al-
most triangular shape with a pointed tip before reaching the
fracture tip, and a semi-circular front after passing it, (see
Fig. 3) rather than running parallel to the fracture as assumed
in previous treatments prescribing flow lines in the matrix
perpendicular to the fracture (e.g., Cinco-Ley et al., 1978).
The numerical simulation, however, also shows that after the
start of injection or production the normalized isobars mi-
grate with the fourth root of dimensionless time along thexD
axis and with the square root of time along theyD axis for
a certain time (Fig. 4). During this time period the dimen-

sionless distance of the normalized isobars on thexD axis
progresses according to

xiD(τ ) = αbTDτ1/4, (12)

with the value of the constantαb depending on the cho-
sen isobar; for example,αb is about 3 and 2 for the nor-
malized isobarspN = 0.01 and 0.05, respectively. In dimen-
sional variables, Eq. (12) reads

xi(t) = αb (Dbt)
1/4 , (13)

wherexi(t) is the position of the isobar in the fracture for
time t and

Db =
T 2

F

ηfkmsm
, (14)

here referred to as the bilinear flow diffusivity. This diffu-
sivity combines fracture and matrix properties, and has di-
mensions of L4/T. Equations (13) and (14) are specific for-
mulations of the self-similarity of the pressure profiles in the
fracture during bilinear flow found by Weir (1999).

The dimensionless distance of the normalized isobar on
theyD axis is given by

yiD = αmTDτ1/2 (15)

during bilinear flow corresponding to

yi = αm (Dmt)1/2 (16)

in dimensional variables. Combining (12) and (15), the evo-
lution of the ratioyiD/xiD depends on dimensionless time as

yiD

xiD
=

αm

αb
τ1/4

=
αm

αb

(
D2

m

Db

)1/4

t1/4 . (17)

The migration of the normalized isobars according to
Eqs. (12) to (17) terminates for two different reasons de-
pending on the size of the dimensionless fracture conductiv-
ity. The change in migration behavior occurs in the interval
1 < TD < 2, and we illustrate the two types of terminations
by considering two examples –TD = 0.314 andTD = 5 – in
Fig. 4.

For dimensionless fracture conductivities lower than 1, the
normalized isobars start to slightly accelerate relative to the
fourth-root-of-time migration along thexD axis long before
they reach the fracture tip, i.e.,xD = 1 (Fig. 4). Migration
of the normalized isobars in they direction simultaneously
slows down a little bit relative to the initial square-root-of-
time migration (Fig. 4a, b). The curves ofxiD andyiD merge
close to the interception of the two extrapolated diagnostic
fourth-root and square-root relations actually occurring at
(τ ' 1, xD = yD ' 1). After merging, the two curves follow
the ½-slope straight line, indicating that radial flow condi-
tions are approached.
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Fig. 4. Dimensionless distancesxiD andyiD of isobars of normalized pressurepN along thexD andyD axis as a function of dimensionless
time for (a) TD = 0.314,pN = 0.01; (b) TD = 0.314,pN = 0.05; (c) TD = 5, pN = 0.01; and(d) TD = 5, pN = 0.05.

For dimensionless fracture conductivities larger than 2,
migration of the normalized isobars along thexD axis de-
celerates and actually almost terminates for a finite time in-
terval when reaching the fracture tip and long before the in-
terception of the two extrapolated diagnostic fourth-root and
square-root relations (Fig. 4c, d). After some time, the mi-
gration finally accelerates again and appears to approach the
straight line ofyiD that closely follows a square-root-of-time
relation. Upon closer inspection, one notices thatxiD slightly
accelerates just before the prominent halt in migration asso-
ciated with the arrival at the fracture tip, i.e.,xiD = 1 (Fig. 4c,
d). This intermittent acceleration is caused by the reflection
of the isobar at the fracture tip that one can rationalize when
invoking an image fracture at the fracture tip and an image
well at a distance of 2xF producing or injecting at the same
rate as the real well. The “reflection” of the normalized iso-
bar is then approximated by the superposition of the pres-
sure fields of the two wells. Migration will accelerate when
the isobars of the two wells are approaching each other from
both sides of the fracture tip (Fig. 5).

Fig. 5. Evolution of normalized distancesxiD/TDτ1/4 (a) and
yiD/TDτ1/4 (b), and of the ratioyiD/xiD (c) as functions of dimen-
sionless timeτ for normalized isobarspN = 0.01 andpN = 0.05.
Dimensionless fracture conductivity isTD = 0.314 in all cases.
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A more detailed view of the deviation of the normal-
ized isobars from the fourth-root and square-root-of-time
behavior is obtained by using normalized presentations,
xiD/TDτ1/4 andyiD/TDτ1/2, similar to the one used for the
well pressure (Fig. 2c). These presentations (Fig. 6a, b) con-
firm that normalizedxiD is constant for a certain time inter-
val, and starts to bend upward in a similar way as the nor-
malized well pressure bends downward (Fig. 2c). Normal-
ized yiD is not constant even in the early stage (τ ' 10−6),
but decreases continuously with a slight increase in slope at
dimensionless timeτ ' 10−2 (Fig. 5b). The early deviation
from the square-root-of-time migration indicates that even in
the direction perpendicular to the fracture, the pressure prop-
agation is affected by the presence of the fracture at all times.
The width-to-length ratio of the normalized isobars (or pres-
sure field),yiD/xiD , initially follows a fourth-root-of-time re-
lation (Fig. 6c), and subsequently bends clockwise from the
1/4-slope straight line simultaneously with the upward bend-
ing of normalizedxiD . Within the resolution of our numerical
simulation, this ratio is almost identical for all normalized
isobars (Fig. 6c), suggesting that all normalized isobars have
a similar shape and undergo the same evolution simultane-
ously in dimensionless time. The observed relationship be-
tween the ratioyiD/xiD and dimensionless timeτ allows for
us to determine the width-to-length ratio of all normalized
isobars at any instant. During the bilinear flow period this
ratio is approximately given byyiD/xiD ' 1.1τ1/4 (Fig. 6c).

3.3 End time of bilinear flow from well-pressure
observations

For single-well tests, well pressure constitutes the only ob-
servable pressure, and the end time of bilinear flow is gen-
erally determined by using its deviation from the 1/4-slope
straight line (in log–log plots of well pressure vs. time). Ac-
cording to our observations (Sect. 3.1), the type curve for
the infinitely long fracture rather than the 1/4-slope straight
line represents the master curve, and only in its initial part
up to dimensionless timeτ ' 10−6 is this master curve iden-
tical to the 1/4-slope straight line. For later times the mas-
ter curve bends clockwise from the 1/4 -slope straight line
due to the gradual transition from bilinear to radial flow.
All type curves for fractures with finite length deviate coun-
terclockwise from this master curve. Type curves for di-
mensionless fracture conductivityTD < 10 do this in the
clockwise-bending section of the master curve, and those for
TD > 10 in the straight-line section. We consequently intro-
duce two criteria for the termination of bilinear flow: one for
the clockwise deviation of the master curve from the 1/4-
slope straight line, and a second one for the counterclock-
wise deviation from the master curve. According to the un-
derlying mechanisms, these criteria are addressed astransi-
tion criterion andreflection criterion, respectively. The time
determined by the transition criterion will be addressed as
transition time, and the time determined by the reflection cri-

Fig. 6. Evolution of normalized distancesxiD/TDτ1/4 (a) and
yiD/TDτ1/4 (b), and of the ratioyiD/xiD (c) as functions of dimen-
sionless timeτ for normalized isobarspN = 0.01 andpN = 0.05.
Dimensionless fracture conductivity isTD = 0.314 in all cases. For
τ < 10−2 the normalized distancexiD/TDτ1/4 is approximately
constant and equal toαb introduced in Eqs. (12) and (13) and cal-
culated from Fig. 4.
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Fig. 7. Type curves of the normalized well pressure for indicated
values of dimensionless fracture conductivityTD. The dashed grey
lines are the deviation lines representing the end time using the tran-
sition criterion (18); the solid grey lines are the deviation lines rep-
resenting the reflection criterion (19).

terion asreflection time. In order to achieve higher accuracy
in the determination of transition time and reflection time,
the two criteria are formulated for the normalized type curves
pwN = pwD/2.45τ1/4 andp∞

wN = p∞
wD/2.45τ1/4.

Thetransition criterion

pwN = p∞
wN = 1− ε (18)

addresses the clockwise deviation of type curves and the
master curve from the horizontal at unity; that is, actual pres-
sures fall short of the bilinear relation by a relative amount of
ε due to the transition to radial flow (Fig. 7). Unaffected by
the fracture tip, the type curves under consideration are iden-
tical with the master curve before the transition criterion is
fulfilled. Accordingly, the transition time is identical for all
type curves complying with this criterion, and in particular
depends not on dimensionless fracture conductivityTD but
instead only on the value ofε used (Fig. 8a, c). For eachε a
maximumTD, however, exists up to which the transition time
can be determined. For type curves deviating from the mas-
ter curve before the transition criterion is met, the transition
time cannot be determined.

Thereflection criterion

pwN = (1+ ε)p∞
wN (19)

reflects the described reflection of normalized isobars at the
fracture tip (Sect. 3.2) that produces the counterclockwise de-
viation of the normalized type curvespwN from the normal-
ized master curvep∞

wN (Fig. 7). Our data show that for nor-
malized type curves withTD ≥ 1, the reflection at the fracture
tip is strong enough to produce intersections with the curved
deviation lines (19) up to at leastε = 0.05, and thus a reflec-
tion timeτr can be determined. Type curves withTD < 1 also

show a reflection, but the associated deviation from the nor-
malized master curve remains quite small, and the reflection
criterion may not be met for anyε of practical significance.
The reflection time is proportional toT −4

D for all type curves
with TD > 1 (Fig. 8). This relation is intuitively understand-
able when recalling our observation that the normalized iso-
bars in the fracture migrate proportional toτ1/4. The time it
takes for a normalized isobar to propagate from the well to
the fracture tip is therefore proportional tox4

F, and sinceTD
is inversely proportional toxF, the observed relation between
reflection time and dimensionless fracture conductivity re-
sults. For dimensionless fracture conductivitiesTD < 1, this
relation may no longer be valid since in these cases migra-
tion of the normalized isobars starts to accelerate relative to
the fourth-root-of-time migration long before the reflection
criterion is fulfilled.

The arrival time of a normalized isobarpN at the frac-
ture tip is smaller than the reflection time by a factor of 16
(Fig. 8a, c) when the same value is used forε andpN (e.g.,
ε = pN = 0.05). This numerical relation can be explained by
turning again to the above-introduced concept of an image
fracture and an image well. In this concept, the reflection of
the normalized isobar at the fracture tip is approximated by
the superposition of the normalized pressure profiles of the
two wells. Inserting 2xFD instead ofxFD in Eq. (12) increases
the time by the observed factor of 16.

During the bilinear flow period the dimensionless well
pressure is proportional toτ1/4, and thus its values are con-
stant for the transition time and proportional toT −1

D for the
reflection time (Fig. 8b, d). Dimensionless well pressures for
the reflection time and for the time of arrival of the normal-
ized isobar at the fracture tip differ by a factor of 161/4

=2.
The end time of bilinear flow reported by Cinco-Ley

and Samaniego-V. (1981) differs significantly from our time
estimates for dimensionless fracture conductivitiesTD < 5
(Fig. 8). When reporting their three regimes, Cinco-Ley and
Samaniego-V. (1981) were not specific on their criterion for
quantitative determination. Their data likely reflect the short-
comings encountered when relying on a deviation from the
1/4-power relation without investigating the deviation in de-
tail, especially for type curves with 1.6 < TD < 2.5; end time
apparently becomes a discontinuous function ofTD as re-
ported in Cinco-Ley and Samaniego-V. (1981).

4 Discussion

Introducing the dimensionless timeτ according to (8) as an
alternative to the approach by Cinco-Ley and Samaniego-
V. (1981), while leaving all other dimensionless parameters
consistent with this previous analysis, proved to be favorable
for a better understanding of bilinear flow. The new dimen-
sionless time permits for identification of a unique function
of the dimensionless well pressure for an infinitely long frac-
ture (TD = 0) applicable from the beginning of bilinear flow
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Fig. 8.Dimensionless end timesτe according to the transition mechanism (τt) and reflection mechanism (τr), Eqs. (18) and (19), respectively,
and dimensionless arrival timeτa of the indicated isobar at the fracture tip for(a) ε = pN = 0.01 and(c) ε = pN = 0.05. The dimensionless
end time reported by Cinco-Ley and Samaniego (1981) is represented by thin grey lines. Fit equations for the calculated end and arrival times
are represented with blue lines and blue dashed lines, respectively. Note thatτr andτa differ by a factor of 16. Dimensionless well pressure
at τe andτa. Note that the dimensionless well pressures forτr andτa differ by a factor of 2. Fit equations for the calculated dimensionless
well pressure are represented with blue lines and blue dashed lines byτ = τe andτ = τa, respectively.

up to fully developed radial flow. A normalized presentation
of computed type curves for various dimensionless fracture
conductivities showed that the type curve for the infinitely
long fracture rather than the 1/4-slope straight line, as as-
sumed by Cinco-Ley and Samaniego (1981), constitutes the
master curve for the type curves of all fractures with finite
length. The latter all deviate counterclockwise from the mas-
ter curve instead of clockwise (for low fracture conductivity)
or counterclockwise (for high fracture conductivity) from the
1/4-slope straight line as assumed by these authors.

The master curve itself starts its clockwise deviation from
the 1/4-slope straight line at a dimensionless timeτ ' 10−6.
However, clockwise deviation builds up very slowly and be-
comes noticeable in the commonly used log–log presentation
only at τ ' 10−2. Furthermore, this clockwise deviation is
counteracted by a counterclockwise bending for finite frac-
tures. These counteracting effects are balanced best for frac-
ture conductivities close to 2 so that these type curves stay
close to the 1/4-slope straight line the longest, explaining

why the end times of bilinear flow given by Cinco-Ley and
Samaniego (1981) strikingly peak forTD ∼ 1.8.

In order to distinguish the two types of processes that lead
to a termination of bilinear flow, transition to radial flow, and
isobar reflection at the fracture tip preceding the transition to
intermittent formation linear flow, we replaced the term “end
time” by the specifications “transition time” and “reflection
time” and established corresponding criteria. Application of
these criteria to normalized type curves is especially advanta-
geous for fractures with dimensionless conductivity between
1 and 2 since in this interval both transition time and reflec-
tion time can be determined. The transition time that is inde-
pendent of dimensionless fracture conductivity can be deter-
mined for dimensionless fracture conductivities up to about
2; reflection time, inversely proportional to the fourth power
of dimensionless fracture conductivity, can be determined for
dimensionless fracture conductivities down to about 1.

Investigating the migration of isobars for (effectively) infi-
nite fractures, we found that isobars normalized with respect
to the well pressure migrate proportional toτ1/4 along thex
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axis (i.e., in the fracture) and approximately proportional to
τ1/2 along they axis (i.e., in the matrix perpendicular to the
fracture) up to a dimensionless timeτ ' 10−2. Their width-
to-length ratio is close to 1.1τ1/4 during this time period, and
is independent of dimensionless fracture conductivity. This
relation approximately holds for all normalized isobars with
pN < 1 that therefore have similar shape at any instant. When
τ is known, this simple relation allows for determination of
the width-to-length ratio of the isobars at any instant. The
ratio is 0.035 forτ ' 10−6, when the first sign of deviation
from the fourth-root-of-time behavior of the well pressure is
noticeable relying on the semi-log plots of normalized well
pressure (Fig. 2c, Fig. 7). Forτ ' 10−2, when the deviation
becomes noticeable in conventional log–log presentations,
the ratio amounts to 0.35. Thus, in a strict sense, bilinear
flow ends at a very early state of the shape evolution, but the
termination becomes noticeable in conventional type curves
only at a much later state, i.e., at a time when the growth
of the width-to-length ratio also starts to deviate noticeably
from the fourth-root-of-time relationship. Shape evolution of
normalized isobars was computed up to dimensionless time
τ ' 1, where the width-to-length ratio is about 0.7 and ap-
parently needs about two orders of magnitude more time to
approach 1 for true radial flow in the case of the infinite frac-
ture, a suggestion that has to be checked by further studies.

For finite fractures the shape evolution is disturbed when
the isobars approach the fracture tip by a process here de-
scribed as “reflection”. This reflection is noticed by a clock-
wise deviation of the well pressure from the master curve at
a time 16 times later than its actual occurrence at the frac-
ture tip. Interestingly, the disturbance in the shape evolution
shortens the time it takes to approach radial flow conditions
characterized by a width-to-length ratio of 1. This shorten-
ing can be explained by the fact that migration of the isobars
along thex axis is retarded after passing the fracture tip.

Our results substantiate and quantify the analytical finding
of the self-similarity of the pressure functions during bilin-
ear flow with the variablex4/t (see Boonstra and Boehmer,
1986; Weir, 1999). Thus, scaling considerations have to use
Db ∼ l4c/tc with the hydraulic diffusivity for bilinear flow,
Db, given by Eq. (14) rather than the traditionally used scal-
ing relation between hydraulic diffusivityDhyd ∼ l2c/tc (e.g.,
Matthews and Russell, 1967) and characteristic length (lc)

and timescale (tc) of pressure diffusion when a prominent
two-dimensional hydraulic conduit (e.g., fracture or fault)
is present. Due to these differences in scaling behavior, the
characteristic propagation distance of the pressure perturba-
tion in the vicinity of a fracture-like heterogeneity will ex-
ceed the classical penetration estimate for short dimension-
less times, while it will increase much less than the classi-
cal penetration estimate for long dimensionless times. Some
aspects of the conclusions based on hydraulic scaling rela-
tions as in analyses of hydraulic stimulation (e.g., Shapiro
and Dinske, 2009) or aftershock (e.g., Mukhopadhyay et al.,

2011) and swarm activity (e.g., Hainzl, 2004) may therefore
have to be reconsidered in cases.

5 Implications for well-test analysis

Our findings may be used to determine geometric and hy-
draulic properties of fracture and matrix from short injec-
tion and production tests for which conventional well-test
analysis would not be applicable. However, this evaluation
requires excellent test conditions and high-quality pressure
data. We recommend analyzing plots of normalized well
pressure (Fig. 6) in addition to the conventional log–log plots
and derivative (exemplified in Fig. 2 a,b). Using these nor-
malized plots one may obtain the desired information on
fracture transmissibility, matrix permeability, and fracture
length at a much earlier time than with conventional proce-
dures as explicitly outlined below.

The first step of any analysis is to determine the slope
M characterizing the bilinear flow section of a diagram of
the change in well pressure vs. fourth root of time (1pw =

Mt1/4). The slope is then used to construct a1pw/Mt1/4 vs.
time diagram. In case bilinear flow ended during the pump-
ing operation (indicated by either a clockwise or an counter-
clockwise deviation from a horizontal line at 1), transition
time (tt) and/or reflection time (tr) and the corresponding
well pressure (pwt and/orpwr) can be read from this dia-
gram for a considered relative deviation, i.e., a specific value
of ε in (18) or (19). The following cases and their potential
for determining fracture and matrix characteristics have to be
distinguished:

Case 1: When the well-pressure record constrains only the
slopeM, then the productTF (kmsm)1/2 can be determined
using

TF (kmsm)1/2
=

(
qwη

3/4
f

Mh

)2

. (20)

Case 2: When the well-pressure record exhibits a clockwise
deviation of relative magnitudeε (that is, the transition time
is known), then the permeability of the matrixkm can be de-
termined from

km =
qwηf

2πh

pwtD

pwt
, (21)

wherepwtD = 0.38, 0.68, and 0.92 forε = 0.01, 0.03, and
0.05, respectively (Fig. 8b, d). In case the storage coeffi-
cient the storage coefficient of the matrix,sm, is known or
can be reasonably estimated, the fracture conductivity can be
derived by

TF =
1

(kmsm)1/2

(
qwη

3/4
f

Mh

)2

. (22)

Then, also the two diffusivities of the system, the one for
bilinear flow Db (14) and the one for the matrixDm, are
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constrained. Furthermore, the ratioyiD/xiD (or yi/xi) can be
determined from

yiD

xiD
=

αm

αF
τ

1/4
e ' 1.1τ

1/4
t . (23)

The dimensionless fracture conductivity obeys the relation
TD < TDmax with TDmax = 2.5, 1.6, and 1.0 forε = 0.01,
0.03, and 0.05, respectively, and thus one also has a con-
straint on fracture length, i.e.,xF > TF/TDmaxkm.

Case 3: When the pressure record contains a counterclock-
wise deviation of relative magnitudeε but no clockwise devi-
ation, then one knows the reflection time and has the relation
TD > 10. The dimensionless fracture conductivityTD cannot
be further constrained, however, since all type curves rapidly
rise in a similar way. Thus, only the productTF (kmsm)1/2 can
be determined (as in case 1). In addition, if the matrix prop-
erties (km andsm) are known or can be reasonably estimated,
one can infer

xF = C

(
T 2

F

kmηfsm
tr

)1/4

= C(Dbtr)
1/4 (24)

from the reflection time, whereC = 1.73, 1.41, and 1.25 for
ε = 0.01, 0.03, and 0.05, respectively (Fig. 8a, c).

Case 4: When the pressure record exhibits a clockwise de-
viation from the 1/4-slope straight line succeeded by a coun-
terclockwise deviation from the master curvep∞

wN, then tran-
sition time as well as reflection time are known. Such data al-
low for determination of matrix permeability, fracture trans-
missibility, and the ratioyi/xi (as in case 2). In addition, the
dimensionless fracture conductivityTD can be quantified by
looking for a pair of matching transition times and reflection
times in Fig. 8, and with that the fracture lengthxF can be
determined according to

xF =
TF

kmTD
. (25)

6 Conclusions

Using two-dimensional numerical modeling, we investigated
the evolution of the pressure field in and around a fracture
imbedded in a permeable matrix during injection or produc-
tion tests at a constant rate in a borehole aligned with the
fracture. The understanding of the well-pressure evolution
has gained significantly from introducing a new dimension-
less time containing only the transport parameters of fracture
and matrix as well as the storage coefficient of the matrix
but no geometrical or storage parameters of the fracture. In
this presentation, type curves of dimensionless well pressure
for fractures with finite length evolve from a single master
curve when dimensionless time progresses. The unique mas-
ter curve corresponds to an infinitely long fracture and com-
prises two stages with an extended transition in between. The
early and the late stage are characterized by pressure in the

well increasing with time to a power of 1/4 (bilinear flow)
and the logarithm of time (radial flow), respectively. For frac-
tures of finite length, well pressure always deviates from the
master curve towards higher pressures; that is, all type curves
branch off counterclockwise from the master curve instead of
clockwise or counterclockwise from the 1/4-slope straight
line as considered by Cinco-Ley and Samaniego-V. (1981).
Nevertheless, two mechanisms have to be distinguished for
the termination of bilinear flow depending on fracture and
matrix properties.

For any fracture of finite length, the propagation of the
pressure front in the fracture will eventually be affected by
the fracture tip. Fractures with a dimensionless conductiv-
ity TD > 10 qualify as fractures with high conductivity since
for these the reflection of the pressure front at the fracture
tip happens long before substantial migration of isobars in
the matrix. The reflection leads to a reduction of the pressure
gradient in the fracture, and thus signals the transition to for-
mation linear flow. Termination of bilinear flow is noticed by
an increase of well pressure relative to the horizontal section
of the normalized master curve that occurs, however, only 16
times later than the actual reflection at the fracture tip. In con-
trast, for fractures with low conductivity (TD < 1), migration
of isobars in the matrix becomes significant long before the
pressure front in the fracture approaches the fracture tip due
to the difference in the power in the relation with time, i.e.,
square root and fourth root for matrix and fracture, respec-
tively. The gaining of pressure propagation in the matrix on
that in the fracture ultimately results in radial flow, indicated
by normalized well pressures falling below the horizontal at
unity and width-to-length ratios of isobars deviating signif-
icantly from an initial relation to the fourth root of dimen-
sionless time and indicating substantial inclination of isobars
with respect to the fracture. For an intermediate range of frac-
ture conductivities (1< TD < 10), reflection at the fracture
tip interferes with the transition to radial flow and normal-
ized well pressure exhibits a peculiar succession of decrease,
increase, and decrease in cases.

The two criteria introduced for the deviation of the master-
curve from the fourth-root-of-time behavior (transition crite-
rion) and for the deviation of the type curves for finite frac-
tures from the master curve (reflection criterion) revealed that
the transition time is independent of the dimensionless frac-
ture conductivity and applies to the infinite fracture as well
as to all finite fractures whose type curves do not branch
off from the master curve before this end time is reached.
The reflection time is inversely proportional to dimension-
less fracture conductivity to a power of 4 corresponding to
the fourth-root-of-time migration of the normalized isobars
in the fracture expressed by a scaling relation that includes a
bilinear diffusivity with dimensions of L4/t.

The gained insight into the relation between the entire flow
field and the peculiarities of the recorded wellbore pressure
permits for constraining hydraulic and geometrical param-
eters of the subsurface in practice. Using semi-log plots of
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Table 2.Nomenclature.

bF fracture width [m]
C constant [–]
Db effective hydraulic diffusivity of fracture during bilinear flow, Eq. (14), [m4s−1]
DF hydraulic diffusivity of (isolated) fracture,DF = TF/ηfSF [m2s−1]
Dm hydraulic diffusivity of matrix,Dm = km/ηfsm[m2s−1]
h height of the open well section, fracture height, [m]
km matrix permeability [m2]
paD dimensionless pressure atτa
peD dimensionless pressure atτe
pN normalized pressure difference, Eq. (11), [–]
prD dimensionless pressure atτr
pw well pressure, [Pa]
1pw change in well-pressure difference, [Pa]
pwD dimensionless well pressure, Eq. (7), [–]
p∞

wD master curve for dimensionless well pressure (Figs. 2c and 6) [–]
pweD dimensionless well pressure at end time of bilinear flow, [–]
pwN normalized well pressure, i.e., normalized by the 1/4-relation for bilinear flow, [–]
qw flow rate in the well [m3s−1]
sm specific storage capacity of matrix [Pa−1]
SF storativity of the fracture [mPa−1]
t time, [s]
TF fracture conductivity (transmissibility), [m3]
TD dimensionless fracture conductivity, Eq. (9), [–]
x,y spatial coordinates along, normal to the fracture with origin at the well, [m]
xF fracture half length, [m]
xD,yD dimensionless coordinates (xD = x/xF, yD = y/xF) [–]
xiD ,yiD dimensionless distances of normalized isobars from the well (along thexD- andyD axis, respectively) [–]

Greek symbols

αb constant for pressure diffusion in fracture during bilinear flow, Eq. (12), [–]
αm constant for pressure diffusion in matrix, Eq. (15), [–]
0 gamma function [–]
ηf fluid viscosity, [Pa s]
τ dimensionless time, Eq. (8), [–]
τa dimensionless arrival time (of the normalized isobar at the fracture tip) [–]
τe dimensionless end time of bilinear flow [–]
τr dimensionless reflection time (arrival time of the reflected normalized isobar at the well) [–]
τt dimensionless transition time [–]

normalized well pressure in addition to the common log–log
diagrams improves the sensitivity of analyses in particular
for dimensionless fracture conductivities smaller than 3, and
hydraulic parameters of matrix and fracture may be deter-
mined after shorter test duration than necessary for conven-
tional analysis.

Our results substantiate and quantify the previously dis-
cussed self-similarity of the pressure functions during bi-
linear flow. In the presence of planar conduits with higher
conductivity than the enclosing matrix pressure, diffusion
obeys a scaling between characteristic propagation distance
and characteristic time leading to faster and slower pressure
propagation for small and large dimensionless times, respec-
tively, in comparison to the classical scaling for hydraulic
diffusivity in homogeneous media. Therefore, care has to be

taken when using scaling arguments for situations compris-
ing preferred hydraulic pathways, as, for example, generated
during stimulation, or likely associated with earthquakes.
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