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Abstract. Bilinear flow occurs when fluid is drained from a inclined with respect to the fracture. The type curves of finite
permeable matrix by producing it through an enclosed frac-fractures all deviate counterclockwise from the master curve
ture of finite conductivity intersecting a well along its axis. instead of clockwise or counterclockwise from the islope
The terminology reflects the combination of two approxi- straight line as previously proposed. The counterclockwise
mately linear flow regimes: one in the matrix with flow essen- deviation from the master curve was identified as the arrival
tially perpendicular to the fracture, and one along the fractureof a normalized isobar reflected at the fracture tip 16 times
itself associated with the non-negligible pressure drop in it.earlier. Nevertheless, two distinct regimes were found in re-
We investigated the characteristics, in particular the terminagard to pressure at the fracture tip when bilinear flow ends.
tion, of bilinear flow by numerical modeling allowing for an For dimensionless fracture conductiviti&s < 1, a signifi-
examination of the entire flow field without prescribing the cant pressure increase is not observed at the fracture tip until
flow geometry in the matrix. Fracture storage capacity wasbilinear flow is succeeded by radial flow at a fixed dimen-
neglected relying on previous findings that bilinear flow is as-sionless time. Fofp > 10, the pressure at the fracture tip has
sociated with a quasi-steady flow in the fracture. Numericalreached substantial fractions of the associated change in well
results were generalized by dimensionless presentation. Defpressure when the flow field transforms towards intermittent
nition of a dimensionless time that, other than in previous ap-formation linear flow at times that scale inversely with the
proaches, does not use geometrical parameters of the fractufeurth power of dimensionless fracture conductivity. Our re-
permitted identifying the dimensionless well pressure for thesults suggest that semi-log plots of normalized well pressure
infinitely long fracture as the master curve for type curves of provide a means for the determination of hydraulic parame-
all fractures with finite length from the beginning of bilin- ters of fracture and matrix after shorter test duration than for
ear flow up to fully developed radial flow. In log—log scale conventional analysis.

the master curve’s logarithmic derivative initially follows a

1/4-slope straight line (characteristic for bilinear flow) and

gradually bends into a horizontal line (characteristic for ra-

dial flow) for long times. During the bilinear flow period, 1 Introduction

isobars normalized to well pressure propagate with the fourth

and second root of time in fracture and matrix, respectively.TranSie”t fluid flow in fractures or faults plays an important
The width-to-length ratio of the pressure field increases proJole for the production of oil and gas, as well as for fresh
portional to the fourth root of time during the bilinear period, Water supply and the production of geothermal energy, es-
and starts to deviate from this relation close to the deviationPecially from artificial fracture systems, so called hot-dry-
of well pressure and its derivative from their fourth-root-of- fock (HDR) or enhanced geothermal systems (EGS). Flow

time relations. At this time, isobars are already significantly in fractures and fracture networks may as well be important
for the triggering of seismicity by precipitation (e.g., Hainzl
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Fig. 1. Model geometry and realized mesh for simulations.

et al., 2006), by groundwater recharge (e.g., Saar and Mangaecovery from tight formations also triggered studies con-
2003), by hydraulic stimulation (e.g., Deichmann and Ernst,sidering horizontal wells (see, for example, Du and Stewart,
2009; Majer et al., 2007; Shapiro and Dinske, 2009), and by1995; Jelmert and Vik, 1995; Verga and Beretta, 2001).
water level changes in dams (e.g., Chen and Talwani, 1998). For constant production, a bilinear flow field is accom-
For fractures in an impermeable rock matrix, fluid flow panied by a decrease of the wellbore pressure proportional
and pressure propagation are restricted to the fracture volto the fourth root of elapsed pumping time. The time win-
ume, and are thus exclusively controlled by the hydraulic dif-dow, during which this fourth-root relation can be observed,
fusivity of the fractures. In contrast, fluid flow and pressure is however finite, and thus long-term predictions — of great
propagation in fractures is accompanied by fluid exchangeractical importance for exploitation of liquid or gaseous re-
with a permeable rock matrix, a rather complex problem forsources — are erroneous when using this relationship. There-
mathematical treatment. A first analytical solution was pre-fore, constraining estimates of the end time of bilinear
sented in the context of well testing (Cinco-Ley et al., 1978) flow received attention in previous research (Cinco-Ley and
that applies to the case of fluid production from boreholesSamaniego-V., 1981; Weir, 1999). Since radial flow domi-
subsequent to hydraulic fracturing (for the simplified geom-nated by the matrix properties develops when this time is
etry of a single fracture aligned with a borehole, see Fig. 1a)exceeded, it specifically marks the end of the gain due to a
Cinco-Ley et al. (1978) simplified the flow field as a super- stimulation operation involving hydraulic fracturing.
position of two fields of parallel flow: one in the fracture  Until today, the physical understanding of the proposed
and one in the rock matrix, the latter perpendicular to therelations for the end time of bilinear flow is incomplete. In
fracture plane (see Fig. 1b). Accounting for its peculiar ge-this study, we rely on numerical simulations using a two-
ometry, this flow regime was named bilinear flow (Cinco- dimensional finite element model in order to investigate the
Ley and Samaniego-V., 1981). Evidence for bilinear flow hydraulic diffusion in finite conductivity fractures. We in-
was reported from hydraulic tests after hydraulically frac- clude an analysis of the spatio-temporal characteristics of the
turing a low permeable matrix; for example, in tight basins entire pressure field in fracture and matrix in order to clarify
that produce gas (Rushing et al., 2005; Stright and Gordonthe flow processes that lead to the termination of bilinear flow
1983) and in sedimentary and granitic geothermal reservoiras well as to substantiate quantitative rules for the end of bi-
(Haring et al., 2008; Jung and Weidler, 2000; Ortiz et al., linear flow. Outlining the end time and investigating the pres-
2011; Zimmermann, 2006). Interest in unconventional gassure field in a dimensionless parameter space allows for us to
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generalize our findings obtained for specific cases to fraciogarithm of elapsed pumping time, results when production
tures with a range of dimensionless fracture conductivities.from (injection into) a homogeneous formation causes radial
Focus is put on fractures with negligible storage capacity, andlow lines to develop normal to the production surface com-
wellbore storage is also neglected. However the formulatiorposed solely of the well. For homogeneous and isotropic me-
aims at clarifying the role of fracture length. In this contribu- dia, diffusion of pressure perturbations obeys a linear scaling
tion, we first briefly give the background in terms of govern- relation between the square of the characteristic propagation
ing equations and non-dimensional formulation, describe thadistancel . and the characteristic propagation timé@volv-
chosen modeling approach, report results, and subsequentigg the hydraulic diffusivity of the matrix, i.e Pm ~ L(Z:/tc
discuss them in the light of their practical use. (see, for example, radius of investigation or drainage in Bour-
det, 2002; Chaudhry, 2004; Dake, 2001; Earlougher, 1977;
Horne, 1995; Matthews and Russell, 1967). Highly perme-
able fractures — that is, fractures in which the pressure gra-
dient is negligible — intercepting the well may extend the ef-
fective production surface such that flow in the subsurface is
actually directed towards this extended surface rather than

For a well intersected by a single fracture and surrounded@dial towards the well (e.g., Jenkins and Prentice, 1982).
by a permeable matrix, two basic hydraulic equations, partia>Uch flow geometry is termefdrmation linear flowsince

differential equations for fluid pressupe have to be consid- straight flow lines are thought to result in the matrix. The
ered, namely well pressure changes proportionally to the square root of

elapsed pumping time. THalinear flow regime is encoun-
ap  km_o 1 tered when the flow is approximately linear in both the frac-
Smar = EV @ ture or narrow zone of high conductivity and the matrix (e.g.,
] o _ ~Butler and Liu, 1991). In this regime the finite conductivity
for flow in the infinite, isotropic, and homogeneous matrix, of the fracture leads to a finite pressure gradient in the frac-

2 Background and approach

2.1 Governing equations for the hydraulics of a
fractured well

and ture (Boonstra and Boehmer, 1986; Gringarten, 1985). Frac-
p Te_,  qr@) tures ir_1 an impe_rm_ea_ble matrix resultfacture _Iinez_;\r flow
SFE = EV P (2) which is per se indistinguishable from formation linear flow

regarding the power law relation between well pressure and
for flow in the fracture. The two equations are coupled by theelapsed pumping time.
fluid flow between matrix (subscript m) and fracture (sub-
script F),gr(t) (see, for example, Cinco-Ley et al., 1978). 2.2 Modeling approach
Here,km [m?] denotes the matrix permeability, [Pa 1] the
specific storage capacity of the matrix,[Pa s] the fluid vis-
cosity, Tr = bpkp [M3] the fracture conductivity with frac-
ture width bg [m] and fracture permeabilitgs [m2], and
Sk = brse [m Pa 1] the fracture storativity with specific stor-
age capacity of the fracturg [Pa 1] (see also the nomen-
clature at the end of the paper). Equatid) éxpresses the
mass balance in the volume elements of the matrix. Storag@ = —VZP
of fluid in a matrix volume associated with pressure tran-
sients, i.e.—smdp/dt, constitutes the sole source term, and that is, the pressure in the fracture obeys an inhomogeneous
thus equals the divergence of the flow through a volume eldiffusion equation with a time-dependent source term but
ement,V -gn. The flow in the matrix is assumed to obey without an intrinsic transient term. The changes of pressure
Darcy’s law,gm = —kmV p/n¢. Similarly, Eq. @) describes  with time are considered to be dominated by the fluid transfer
the mass balance in the elements of the fracture, which habetween matrix and fracture. Previous studies revealed that
to account for an additional source term representing theonly for small dimensionless times do the flow in the well

In our study, we focus on fractures with negligible storage
capacity S — 0; that is, the fracture is considered unde-
formable, and the amount of fluid in the fracture is consid-
ered small enough for its compressibility to be neglected. In
this approximation, Eq2) reads

qr(1)

o ®)

fluid exchange between the matrix and the fractyggz(). and the flow in the matrix deviate from each other due to
Frequently, these equations are recast introducing the hystorage effects in the fracture (e.g., Weir, 1999). In the classi-
draulic diffusivities of the matrixPDm = km/ntsm [M? s3], cal dimensionless form o} (see Eg. Al in Cinco-Ley and

and the fractureDg = Tr/n:Se [m?2 s71] (see, for example, Samaniego-V., 1981), the transient term on the left side ap-
Chaudhry, 2004; Dake, 2001; Matthews and Russell, 1967).pears multiplied by the diffusivity ratie = Dy,/ De. When
Specific solutions of the governing Eq4) @nd @) for this ratio is small, the effect of the intrinsic transient term
particular initial and boundary conditions have led to the on wellbore pressure becomes important only for extremely
distinction of characteristic flow regimeRadial flow char-  small values of time, and thus can be neglected for bilinear
acterized by a well pressure changing proportionally to theflow (see Cinco-Ley and Samaniego-V., 1981; Riley, 1991).
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We use a two-dimensional finite element model consist-specific phases of a simulation to study the completion of
ing of a fracture with half-lengtlkg positioned on the axis bilinear flow in detail. Initially this “zooming in” into time
(aty = 0; see Fig. 1¢) and intercepting a well along its axis. required repetition of a certain simulation, while the gained
Flow in the fracture of finite conductivity embedded in the understanding of the systematic relations for the occurrence
permeable matrix is approximated as one-dimensional anaf bilinear flow eventually allowed for the time intervals to be
wellbore storage is neglected. Thug) and @) are imple-  set for reduced time steps right from the start of a simulation.

mented as
2.3 Dimensionless formulation

ap 82p 82p 4

or = Dm (W + a_y2> W  our numerical modeling is performed with dimensional
properties, but for reporting results we use non-dimensional

and parameters in order to foster a fundamental understanding of

Te92p  gr(x,1) o ) bilinear _flow in our conceptugl study. Preyious fanalyses_, of

EW n flow regimes employed a variety of hon-dimensionalization

approaches. Here, we use the conventional definition for di-
The origin of the coordinate system coincides with the well, mensionless pressure (see, for example, Earlougher, 1977;
actually represented by a point source with a flow tgtgh Matthews and Russell, 1967):
determined from the true flow rate in the wel, and the

; ; ; i . kmh

height of thg open well sectidn(Fig. 1). The fluid flow be Pup = 27 m Apw. @)
tween matrix and fracture, qw;

km 0op However, we use a modified definition of dimensionless
qF(-xa t) - 2_ - ) (6) H .

nt 9y ly—o time:
couples the two equations, where the factor of 2 accounts for _ ’p _ Dmkrznt ©)
the communication via the two fracture surfaces. T1§ TIE ’

In principle, numerical analysis does not require the flow
geometry in the matrix to be prescribed, as do the majority ofwhererp = t Dm/x2 is the classical definition of dimension-
previously presented analytical solutions. The assumption ofess time for an infinite reservoir adapted for the flow in frac-
most analytical treatments that flow lines in the fracture andtures by replacing radial distaneewith half-fracture length
in the matrix remain strictly perpendicular to each other in- xg (Cinco-Ley et al., 1978; Earlougher, 1977; Matthews and
deed cannot hold towards the end of bilinear flow. The presRussell, 1967). Furthermore, the dimensionless fracture con-
sure diffusion in the matrix proceeds proportionat¥@, ul- ductivity is defined by
timately surpassing pressure diffusion in the finite conduc-
tivity fracture that scales with'/4. Thus, eventually isobars 7, — Tr
have to change direction with increasing time. kmxr

We performed more than 30 simulations using COMSOL
Mulitphysics®employing the linear system solver UMF-
PACK. To ensure the occurrence of bilinear flow, fracture
length was varied from 1.5 to 1500 m, while the further
parameters remained constagy, (h = 2-10~% m2/s, ns =
25.10%Pas,TF=15-101m? kpm=1-10"¥ m?, and
sm=1-10"11 Pal). An effect of the model boundaries on

©)

The employed model parameters correspond to valué&p of
ranging from 0.1 to 100.

Our choice of non-dimensional parameters is guided by
the necessity to avoid fracture storage capacity and the re-
quest to also avoid fracture length. When fracture length is
used as an explicit parameter in the conventional definition of

the simulati it ided by locating them far f dimensionless time, one encounters the problem that “time”
€ simuiation resufts was avoided Dy ‘ocating INemtartromy, ., 6.5 jj| gefined for very long or infinitely long fractures.

the frgcture (about 600 to 1200 m). The useq fre.e—meshmgl.he formulation should, however, be apt for fractures with
technique generated an unstructured mesh with triangular el

ts (Fia. 1d). CI to the fract p h ba range of finite lengths, such as those created, for exam-
ter_ner:jsb( :,g )t'h <|Jse t?] ftr:acfureta szr mest \f[vaf 0 ple, during hydraulic fracturing operations, as well as for
tﬁme 0 3% 'X'_T_% ethentgt IO eb racfurle € eTen S % ©SStractures with “infinite” length, such as those encountered
siggrably g:a.penL:jsiﬁg gn?{ﬁe r:#(;?j;;;; deeT;rrLisn\é?erke)y fﬁggilvhen length simply exceeds the influence zone of the pump-
; ) i tion. The latter situati ther be typical f
ture length (with order of magnitude of about*1® 1CP). Ing operation. 11e ‘atter Situation may rather be typical for

. 4 stimulations in a geothermal context that create a connection
The time step was gradually increased from 1s to 3600 g

during a simulation. A typical succession consisted of a time etween the well and either an extended network of natural
" . f I logical fault.

step of 1s for the first 30s, then 20s until 600s, 60s un- ractures or a large geological fault

til 12000, 300s until 72000s, and 3600 s until the end of

the simulation. However, the time step was also reduced for
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2.4 Previously presented solutions for bilinear flow a) 10’

100 50— 3.14 2
The theoretical background of bilinear flow was first pre- >

sented by Cinco-Ley et al. (1978) and Cinco-Ley and
Samaniego-V. (1981), who studied the solution df &nd

(2) using a two-dimensional numerical model and Laplace
transform, respectively. They demonstrated that the pressure
in a vertically fractured well producing at constant flow rate <
is proportional to the fourth root of time in the bilinear flow
regime. This result, subsequently confirmed by several ap-
proaches (e.g., Riley, 1991), reads
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for the non-dimensional well pressure during bilinear flow -
with our set of non-dimensional parameters. Thus, we get a
unique relation between non-dimensional well pressure and
non-dimensional time independent of any further model pa-
rameters.

Some approximate analytical solutions for the pressure
distribution in infinitely long fractures were derived in previ-
ous studies (see Boonstra and Boehmer, 1986; Weir, 1999)
Notably, Boonstra and Boehmer (1986) demonstrated that
during a certain sequence of bilinear flow, the pressure dis-
tribution is governed by a single variable combining time
and distancey in their notation). Weir (1999) subsequently
emphasized the self-similarity of the pressure function with
x%/t in contrast to Theis’ solution for a homogeneous reser-
voir (also called line source or exponential-integral solution,
Earlougher, 1977; Matthews and Russell, 1967; Theis, 1935)
that admits-2/+ as a self-similar variable.

In their seminal study, Cinco-Ley and Samaniego- c) 1.1
V. (1981) report three expressions for the end time of bilinear
flow, but did not explicitly state how these relations were de-
rived. Essentially, two extended regimes separated by a shor __ 1.05
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dimensionless fracture conductivity. @
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Presentation of the results of our numerical simulations first

focuses on the evolution of well pressure. We then continue

with the propagation of the pressure perturbation along the 09

fracture and in the matrix in order to identify the mechanisms o 4 5 3 y ]

for the end of bilinear flow based on which we establish ra- 10 10 10 10 10 10

tional criteria for the end time. T

Fig. 2. Type curves of the dimensionless well pressag its log-
arithmic derivative(b), and of the normalized well pressui@ as

Following common praxis, results are presented in the formfunctlons of dimensionless time. Note tlfa}tis actually a restricted

f in | | | f the di ionl IIzoom of the data presented (&) and(b). For example, the clock-
of type curves.(ln 99_ og scale) of t ? ImenS|qn e§s WETl ise bending of the curve fofp = 100 prominent in(a) is out-

pressure and its dimensionless logarithmic derivative Verjya of the chosen scale. The red ling(@ represents the normal-
sus dimensionless time (Fig. 2a, b). The main features caf,qq curvepg,oD/Z.45r1/4, where pS% is the master curve for an

be best explained using the derivative (Fig. 2b). In accordinfinitely long fracture (see Table 1).

3.1 Evolution of the well pressure

www.solid-earth.net/4/331/2013/ Solid Earth, 4, 33B45 2013
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Table 1. Values of the master curve for normalized well presgu@%/z.45r1/4 (Figs. 2c, 6)

T o/ 2.451 1/4 Pab T Pop/2.451 1/4 Pab

1.00E-09 1.00&00 1.38E-02 2.88E-05 9.98E-01 1.79E-01
1.50E-09 1.00E00 1.52E-02 4.37E-05 9.97E-01 1.99E-01
1.27E-09 1.00&00 1.46E-02 6.61E-05 9.97E-01 2.20E-01
2.53E-09 1.00&00 1.74E-02 9.92E-05 9.96E-01 2.43E-01
5.06E-09 1.00E00 2.07E-02 1.49E-04 9.95E-01 2.69E-01
7.59E-09 1.00&00 2.29E-02 2.24E-04 9.94E-01 2.98E-01
1.14E-08 1.00&00 2.53E-02 3.36E-04 9.92E-01 3.29E-01
1.78E-08 1.00E00 2.83E-02 5.07E-04 9.91E-01 3.64E-01
3.56E-08 1.00&00 3.36E-02 7.04E-04 9.89E-01 3.95E-01
5.33E-08 1.00&00 3.72E-02 1.06E-03 9.87E-01 4.36E-01
8.89E-08 1.00&00 4.23E-02 1.54E-03 9.85E-01 4.78E-01
1.42E-07 1.00&00 4. 76E-02 2.30E-03 9.82E-01 5.27E-01
2.13E-07 1.00&00 5.27E-02 3.46E-03 9.78E-01 5.81E-01
3.20E-07 1.00&00 5.83E-02 5.18E-03 9.74E-01 6.40E-01
4.80E-07 1.00&00 6.45E-02 7.74E-03 9.69E-01 7.04E-01
7.11E-07 1.00&00 7.11E-02 1.16E-02 9.63E-01 7.74E-01
1.07E-06 1.00&00 7.87E-02 1.74E-02 9.56E-01 8.51E-01
1.60E-06 1.00&00 8.71E-02 2.61E-02 9.49E-01 9.34E-01
2.49E-06 1.00&00 9.73E-02 3.92E-02 9.40E-01 1.628
3.73E-06 9.99E-01 1.08E-01 5.89E-02 9.29E-01 LIPE
5.69E-06 9.99E-01 1.20E-01 8.83E-02 9.18E-01 HZBE
8.53E-06 9.99E-01 1.32E-01 1.32E-01 9.05E-01 HME
1.28E-05 9.99E-01 1.46E-01 1.50E-01 9.01E-01 LIME
1.92E-05 9.98E-01 1.62E-01

with previous theoretical and numerical analyses (Cinco-Leythat the alternative case fép = 0, namely7g = 0, is mean-
and Samaniego-V., 1981; Weir, 1999), the derivatives followingless since in this case no fluid can be injected or with-
a straight line with a slope of /4 over over a certain pe- drawn via the fracture). The normalized pressure stays close
riod of dimensionless time. For sufficiently high dimension- to unity until dimensionless time > 10, when the master
less fracture conductivities (i.€lp > 1), the derivative first  curve bends downwards with increasing slope (clockwise),
turns counterclockwise into a straight line with slope Yzcor- indicating the transition from bilinear to radial flow.
responding to formation linear flow, fully developed only  All normalized type curves first deviate counterclockwise
for Tp > 50 (Fig. 2b). Ultimately, as expected (e.g., Bour- from the master curve before finally bending clockwise like
det, 2002), derivatives bend into a unique horizontal linethe master curve itself. The latter behavior is evidenced for a
(dpwp/dInt = 0.5) for all fracture conductivities, indicating few curves, but is outside the explored time range for others
that radial flow is reached. The dimensionless time to reach(Fig. 2c). Normalized type curves f@b > 10 start bending
fully developed radial flow increases with decreasihgand  counterclockwise in the section where the normalized master
is highest forTp = 0. curve is still at unity; those fdfp < 10 only in the downward
The log—log plots of the well pressure and its deriva- bending part of the master curve. As a consequence, normal-
tive (Fig. 2a, b) suggest that type curves with> 1.8 and  ized type curves foffp > 10 exhibit a maximum, whereas
Tp < 1.8 bend off counterclockwise and clockwise from the those for 16 < Tp < 10 exhibit a succession of a minimum
1/4-slope straight line, respectively, as previously describedand a maximum. Fofp ~ 1.6 the two extrema degenerate
by Cinco-Ley and Samaniego (1981). However, introducingto a single saddle point, and all normalized type curves with
a normalized well pressurgup/2.45t1/4, as a measure of 7Tp < 1.6 decrease monotonically. Normalized type curves
the deviation from the expected bilinear behavib®)( the  with 1.8 < Tp < 10 intersect the horizontal line correspond-
resulting presentation is more sensitive than the conventionahg to unity twice, whereas those wiff, < 1.8 stay below.
type curves of the well pressure, and shows that the curve folhis behavior is probably the reason why previous authors,
Tp = 0 actually constitutes the master curve followed by all e.g., Cinco-Ley and Samaniego (1981), assumed a disconti-
type curves of normalized pressure for a certain time intervahuity in the behavior of the type curves nday= 1.8.
(Fig. 2c). The master curve (Tally addressed gsy, in the
following, is associated with an infinitely long fracture (note

Solid Earth, 4, 331-345, 2013 www.solid-earth.net/4/331/2013/
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sionless distance of the normalized isobars onikexis

Tp=0.314 progresses according to
7=4.75-103

xip (7) = apTor /4, (12)

with the value of the constant, depending on the cho-
/ sen isobar; for exampley, is about 3 and 2 for the nor-
| malized isobargy = 0.01 and 0.05, respectively. In dimen-

PRI sional variables, Eql1@) reads
xi(1) = ap (Dpt) 4, (13)
o ) wherex;(¢) is the position of the isobar in the fracture for
7=3.7510 timer and
Fracture - 2
/ TF
Dp = , (14)
ntkmsSm

here referred to as the bilinear flow diffusivity. This diffu-
sivity combines fracture and matrix properties, and has di-
mensions of F/T. Equations {3) and (L4) are specific for-
mulations of the self-similarity of the pressure profiles in the
Fig. 3. Snapshots of the normalized pressure figlgfor fractures ~ fracture during bilinear flow found by Weir (1999).

with dimensionless fracture conductivity @5 = 0.314 (top) and The dimensionless distance of the normalized isobar on
Tp = 5 (bottom). the yp axis is given by
. _ yio = amTpr/? (15)
3.2 Evolution of the pressure along the fracture and in
the matrix during bilinear flow corresponding to
For a systematic analysis of the evolution of the pressure fieldi = @m (Dmt)*? (16)
in the fracture and in the matrix, a ratio of pressure differ-, _ . -
ences P in dimensional variables. Combinin2) and (L5), the evo-
' lution of the ratioyip /xip depends on dimensionless time as
y Y. 1) —
_ p(x,y,1) — po (11)
pw(t) — po D2 1/4
. . , YiD _ Om_1/4 _ Om m 1/4
L —=—1"=—— t . 17

is defined, wherep(x, y,r) denotes the pressure at posi XD b o (Db> (7)

tion (x, y) in the fracture or matrixpg the initial pressure
(assumed identical in matrix and fracture), apg(z) the ~ The migration of the normalized isobars according to
well pressure at time. Thus, the quantityy compares the Egs. (2) to (17) terminates for two different reasons de-
change in pressure at some point in the fracture or matriypoending on the size of the dimensionless fracture conductiv-
to the pressure change in the well. Lines in they) plane ity. The change in migration behavior occurs in the interval
with py = const are referred to as normalized isobars in the 1 < Tp < 2, and we illustrate the two types of terminations
following (see examples in Fig. 3). The ratio of pressure dif- by considering two examples? = 0.314 andlp =5 —in
ferences notably assumes identical values when calculateBig. 4.
using either absolute or dimensionless pressures. For dimensionless fracture conductivities lower thathke
Normalized isobars exhibit a characteristic flame-like, al- normalized isobars start to slightly accelerate relative to the
most triangular shape with a pointed tip before reaching thefourth-root-of-time migration along thep axis long before
fracture tip, and a semi-circular front after passing it, (seethey reach the fracture tip, i.exp =1 (Fig. 4). Migration
Fig. 3) rather than running parallel to the fracture as assumedaf the normalized isobars in thedirection simultaneously
in previous treatments prescribing flow lines in the matrix slows down a little bit relative to the initial square-root-of-
perpendicular to the fracture (e.g., Cinco-Ley et al., 1978).time migration (Fig. 4a, b). The curves.af andyp merge
The numerical simulation, however, also shows that after theclose to the interception of the two extrapolated diagnostic
start of injection or production the normalized isobars mi- fourth-root and square-root relations actually occurring at
grate with the fourth root of dimensionless time alongtbe (r ~ 1, xp = yp =~ 1). After merging, the two curves follow
axis and with the square root of time along thg axis for  the %-slope straight line, indicating that radial flow condi-
a certain time (Fig. 4). During this time period the dimen- tions are approached.
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Fig. 4. Dimensionless distancagy andyjp of isobars of normalized pressupg along thexp andyp axis as a function of dimensionless
time for(a) Tp = 0.314, py = 0.01; (b) Tp = 0.314, pNy = 0.05;(c) Tp = 5, pn = 0.01; and(d) Tp =5, pn = 0.05.

For dimensionless fracture conductivities larger than 2
migration of the normalized isobars along the axis de-
celerates and actually almost terminates for a finite time in-
terval when reaching the fracture tip and long before the in-
terception of the two extrapolated diagnostic fourth-root and
square-root relations (Fig. 4c, d). After some time, the mi-
gration finally accelerates again and appears to approach thi
straight line ofy;p that closely follows a square-root-of-time
relation. Upon closer inspection, one notices thatslightly
accelerates just before the prominent halt in migration asso-
ciated with the arrival at the fracture tip, i.ejp = 1 (Fig. 4c,

d). This intermittent acceleration is caused by the reflection Xe
of the isobar at the fracture tip that one can rationalize when
invoking an image fracture at the fracture tip and an image
well at a distance of & producing or injecting at the same
rate as the real well. The “reflection” of the normalized iso- ) ) ) 14
bar is then approximated by the superposition of the prest9- > El‘/’4°|u“°n of normalized distancesp/Tpz™™ (a) and
sure fields of the two wells. Migration will accelerate when D/ 707" (b), and of the ratigip /xip () as functions of dimen-

. . sionless timer for normalized isobargy = 0.01 andpy = 0.05.
the isobars of the two wells are approaching each other 1EromDimensionless fracture conductivity 7 = 0.314 in all cases.
both sides of the fracture tip (Fig. 5).

Py=

0.05

fracture = __o==—

2Xg
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A more detailed view of the deviation of the normal-
ized isobars from the fourth-root and square-root-of-time
behavior is obtained by using normalized presentations,
xip/TptY* andyip / Tpt /2, similar to the one used for the
well pressure (Fig. 2¢). These presentations (Fig. 6a, b) con-
firm that normalizedkjp is constant for a certain time inter-
val, and starts to bend upward in a similar way as the nor-
malized well pressure bends downward (Fig. 2c). Normal-
ized yip is not constant even in the early stage~1075),
but decreases continuously with a slight increase in slope at
dimensionless time ~ 102 (Fig. 5b). The early deviation
from the square-root-of-time migration indicates that even in
the direction perpendicular to the fracture, the pressure prop-
agation is affected by the presence of the fracture at all times.
The width-to-length ratio of the normalized isobars (or pres-
sure field),yip /xip, initially follows a fourth-root-of-time re-
lation (Fig. 6¢), and subsequently bends clockwise from the
1/4-slope straight line simultaneously with the upward bend-
ing of normalizedkjp . Within the resolution of our numerical
simulation, this ratio is almost identical for all normalized
isobars (Fig. 6¢), suggesting that all normalized isobars have
a similar shape and undergo the same evolution simultane-
ously in dimensionless time. The observed relationship be-
tween the ratigip /xip and dimensionless time allows for
us to determine the width-to-length ratio of all normalized
isobars at any instant. During the bilinear flow period this
ratio is approximately given byip /xip ~ 1.1t/# (Fig. 6c).

3.3 End time of bilinear flow from well-pressure
observations

For single-well tests, well pressure constitutes the only ob-
servable pressure, and the end time of bilinear flow is gen-
erally determined by using its deviation from th¢dislope
straight line (in log—log plots of well pressure vs. time). Ac-
cording to our observations (Sect. 3.1), the type curve for
the infinitely long fracture rather than th¢4tslope straight
line represents the master curve, and only in its initial part
up to dimensionless time~ 10~ is this master curve iden-
tical to the Y4-slope straight line. For later times the mas-
ter curve bends clockwise from thedl-slope straight line
due to the gradual transition from bilinear to radial flow.
All type curves for fractures with finite length deviate coun-
terclockwise from this master curve. Type curves for di-
mensionless fracture conductivitih < 10 do this in the
clockwise-bending section of the master curve, and those for
Tp > 10 in the straight-line section. We consequently intro-
duce two criteria for the termination of bilinear flow: one for
the clockwise deviation of the master curve from thd@-1
slope straight line, and a second one for the countercloc
wise deviation from the master curve. According to the un-
derlying mechanisms, these criteria are addresséxhasi-
tion criterion andreflection criterion respectively. The time

Q
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determined by the transition criterion will be addressed asgyjated from Fig. 4.

transition time and the time determined by the reflection cri-
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Fig. 6. Evolution of normalized distancesp/7pt/4 (a) and
kYiD/TDflM (b), and of the ratioip /xip (c) as functions of dimen-
sionless timer for normalized isobargyn = 0.01 andpy = 0.05.
Dimensionless fracture conductivity 7 = 0.314 in all cases. For
T <1072 the normalized distancejp/TptY/4 is approximately
constant and equal ®, introduced in Egs.12) and (L3) and cal-
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show a reflection, but the associated deviation from the nor-
malized master curve remains quite small, and the reflection
criterion may not be met for any of practical significance.
The reflection time is proportional @y “for all type curves
with Tp > 1 (Fig. 8). This relation is intuitively understand-
able when recalling our observation that the normalized iso-
bars in the fracture migrate proportionak{é*. The time it
takes for a normalized isobar to propagate from the well to
the fracture tip is therefore proportional xé, and sincelp
is inversely proportional tog, the observed relation between
reflection time and dimensionless fracture conductivity re-
sults. For dimensionless fracture conductivitigs< 1, this
relation may no longer be valid since in these cases migra-
tion of the normalized isobars starts to accelerate relative to
the fourth-root-of-time migration long before the reflection
criterion is fulfilled.
Fig. 7. Type curves of the normalized well pressure for indicated The arrival time of a normalized isobary at the frac-
values of dimensionless fracture conductivity. The dashed grey  tyre tip is smaller than the reflection time by a factor of 16
Iipgs are thg deviation Iines. represgnting the end time.usin.g the tran(Fig_ 8a, ¢) when the same value is usedd@nd py (e.g.,
sition (_:rltenon (18); f[he sc_)hd_grey lines are the deviation lines rep- ¢ = px = 0.05). This numerical relation can be explained by
resenting the reflection criterion (19). turning again to the above-introduced concept of an image
fracture and an image well. In this concept, the reflection of
terion agreflection time In order to achieve higher accuracy the normalized isobar at the fracture tip is approximated by
in the determination of transition time and reflection time, the superposition of the normalized pressure profiles of the
the two criteria are formulated for the normalized type curvestWo Wells. Inserting 2ep instead ofvrp in Eq. (12) increases

Pup ! (2.45-7114)

09 T \HHH‘ T \HHH‘ T HHIH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T HHHI‘ I \HHH‘ 7T

107 107 10° 10° 10" 10
T

PN = pwp/2.45tY/4 and pg3, = pS%, /2.451 /4, the time by the observed factor of 16. _
Thetransition criterion During the bilinear flow period the dimensionless well
pressure is proportional to'/4, and thus its values are con-
PwN=pan=1—¢ (18)  stant for the transition time and proportional &g 1 for the

dd he clockwise deviati ; q hreflection time (Fig. 8b, d). Dimensionless well pressures for
addresses the cloc wIse eviation o type CUrvVes an t"¢he reflection time and for the time of arrival of the normal-
master curve from the horizontal at unity; that is, actual pres-

. : , ized isobar at the fracture tip differ by a factor ofi4%=2.
sures fall short of the bilinear relation by a relative amount of The end time of bilinear flow reported by Cinco-Ley

e due to the transition to radial flow (Fig. 7). Unaffected by 54 samaniego-V. (1981) differs significantly from our time
the fracture tip, the type curves under consideration are 'denéstimates for dimensionless fracture conductivities< 5

tical with the master curve before the transition criterion is (Fig. 8). When reporting their three regimes, Cinco-Ley and
fulfilled. Accordingly, the transition time is identical for all Samaniego-V. (1981) were not specific on their criterion for
type curves complying with this criterion, and in particular o4 nitative determination. Their data likely reflect the short-
depends not on dimensionless fracture conductiigybut - ninas encountered when relying on a deviation from the

mste_ad only on the value_mfused (F|g._ 8a, c). For ?fim 1/4-power relation without investigating the deviation in de-
maximumTp, however, exists up to which the transition time tail, especially for type curves with@ < Tp < 2.5; end time

can be dege;mmek(]j. For tYPe curves dey|at|ng fLom the ,masépparently becomes a discontinuous functioriTefas re-

tgr curve before the tra'lnsmon criterion is met, the transmonported in Cinco-Ley and Samaniego-V. (1981).

time cannot be determined.
Thereflection criterion

puN = (1+¢) pa (19) 4 Discussion

reflects the described reflection of normalized isobars at théntroducing the dimensionless timeaccording to 8) as an
fracture tip (Sect. 3.2) that produces the counterclockwise dealternative to the approach by Cinco-Ley and Samaniego-
viation of the normalized type curves,y from the normal- V. (1981), while leaving all other dimensionless parameters
ized master curvey, (Fig. 7). Our data show that for nor-  consistent with this previous analysis, proved to be favorable
malized type curves witlip > 1, the reflection at the fracture for a better understanding of bilinear flow. The new dimen-
tip is strong enough to produce intersections with the curvedsionless time permits for identification of a unique function
deviation lines 19) up to at least = 0.05, and thus a reflec- of the dimensionless well pressure for an infinitely long frac-
tion timet, can be determined. Type curves with < 1 also  ture (Ip = 0) applicable from the beginning of bilinear flow
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Fig. 8. Dimensionless end times according to the transition mechanisty) @nd reflection mechanisnar, Egs. (L8) and (L9), respectively,

and dimensionless arrival timg of the indicated isobar at the fracture tip {a) ¢ = py = 0.01 and(c) e = py = 0.05. The dimensionless

end time reported by Cinco-Ley and Samaniego (1981) is represented by thin grey lines. Fit equations for the calculated end and arrival times
are represented with blue lines and blue dashed lines, respectively. Noteahdtr, differ by a factor of 16. Dimensionless well pressure

at e andra. Note that the dimensionless well pressurestfaand ta differ by a factor of 2. Fit equations for the calculated dimensionless

well pressure are represented with blue lines and blue dashed lines by andt = 75, respectively.

up to fully developed radial flow. A normalized presentation why the end times of bilinear flow given by Cinco-Ley and
of computed type curves for various dimensionless fractureéSamaniego (1981) strikingly peak fép ~ 1.8.
conductivities showed that the type curve for the infinitely In order to distinguish the two types of processes that lead
long fracture rather than the/4-slope straight line, as as- to a termination of bilinear flow, transition to radial flow, and
sumed by Cinco-Ley and Samaniego (1981), constitutes thésobar reflection at the fracture tip preceding the transition to
master curve for the type curves of all fractures with finite intermittent formation linear flow, we replaced the term “end
length. The latter all deviate counterclockwise from the mas-time” by the specifications “transition time” and “reflection
ter curve instead of clockwise (for low fracture conductivity) time” and established corresponding criteria. Application of
or counterclockwise (for high fracture conductivity) from the these criteria to normalized type curves is especially advanta-
1/4-slope straight line as assumed by these authors. geous for fractures with dimensionless conductivity between
The master curve itself starts its clockwise deviation from 1 and 2 since in this interval both transition time and reflec-
the 1/4-slope straight line at a dimensionless time 1076, tion time can be determined. The transition time that is inde-
However, clockwise deviation builds up very slowly and be- pendent of dimensionless fracture conductivity can be deter-
comes noticeable in the commonly used log—log presentatiomined for dimensionless fracture conductivities up to about
only at r ~ 10~2. Furthermore, this clockwise deviation is 2; reflection time, inversely proportional to the fourth power
counteracted by a counterclockwise bending for finite frac-of dimensionless fracture conductivity, can be determined for
tures. These counteracting effects are balanced best for fraclimensionless fracture conductivities down to about 1.
ture conductivities close to 2 so that these type curves stay Investigating the migration of isobars for (effectively) infi-
close to the 14-slope straight line the longest, explaining nite fractures, we found that isobars normalized with respect
to the well pressure migrate proportionaltd* along thex
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axis (i.e., in the fracture) and approximately proportional to 2011) and swarm activity (e.g., Hainzl, 2004) may therefore
t1/2 along they axis (i.e., in the matrix perpendicular to the have to be reconsidered in cases.

fracture) up to a dimensionless time~ 10-2. Their width-
to-length ratio is close to.1r%/4 during this time period, and

is independent of dimensionless fracture conductivity. This
relation approximately hold§ fc_)r all normalized .|sobars with our findings may be used to determine geometric and hy-
PN = 1 that thgrefc_)re have S|mllar shape at anylns.tant.. Whendraulic properties of fracture and matrix from short injec-
7 is known, this simple relation allows for determination of

. . . . tion and production tests for which conventional well-test
the width-to-length ratio of the isobars at any instant. The . . . .
ratio is 0.035 forc ~ 10-5, when the first sign of deviation analysis would not be applicable. However, this evaluation

. . . requir xcellen nditions and high-quality pr r

from the fourth-root-of-time behavior of the well pressure is equires excellent test co dtg s and high-qua ty pressure

. . . ; data. We recommend analyzing plots of normalized well
noticeable relying on the semi-log plots of normalized well

pressure (Fig. 2¢, Fig. 7). Far~ 102, when the deviation pressure (Fig. 6) in addition to the conventional log—log plots

becomes noticeable in conventional log—lo resentationsand derivative (exemplified in Fig. 2 a,b). Using these nor-
. . g-log p - ralized plots one may obtain the desired information on
the ratio amounts to 0.35. Thus, in a strict sense, bilinear,

i fracture transmissibility, matrix permeability, and fracture

flow ends at a very early state of the shape evolution, but th(? o . .
o . . . ength at a much earlier time than with conventional proce-
termination becomes noticeable in conventional type curves

only at a much later state, i.e., at a time when the rowthOlures as explicitly outlined below.

of t)r/1e width-to-length ratio,aI'S(.)' starts to deviate notigeabl The first step of any analysis is to determine the slope
gih re . . : Ym characterizing the bilinear flow section of a diagram of

from the fourth-root-of-time relationship. Shape evolution of

) . . : . the change in well pressure vs. fourth root of tinep{, =
normalized isobars was computed up to dimensionless tlm%t1/4) The slope is then used to construa g/ MsY/4 vs
T >~ 1, where the width-to-length ratio is about 0.7 and ap- : P B ’

. ) time diagram. In ilinear flow en ring th mp-
parently needs about two orders of magnitude more time to e diagra case bilinear flow ended during the pump

. . e ing operation (indicated by either a clockwise or an counter-
approach 1 for true radial flow in the case of the infinite frac- gop ( y

. . clockwise deviation from a horizontal line at 1), transition
ture, a suggestion that has to be checked by further studles.time () and/or reflection times() and the corresponding
For finite fractures the shape evolution is disturbed WhenWeII pressure g and/or pwr) can be read from this dia
H H Wi wr -
the_ |sobars“ appro_acrl the_ fracture_ tp _by a process here deg'ram for a considered relative deviation, i.e., a specific value
sc_:rlbed as .reflectlon . This reflection is noticed by a clock- of £ in (18) or (19). The following cases and their potential
wise deV|at_|on of the well pressure from the master curve atfor determining fracture and matrix characteristics have to be
a time 16 times later than its actual occurrence at the frac'distinguished'

ture tip. Intere_stlng_ly, the disturbance in th_e shape evol_u_tlon Case 1When the well-pressure record constrains only the
shortens the time it takes to approach radial flow cond|t|0nsslopeM then the producti (kmsm)~/2 can be determined
characterized by a width-to-length ratio of 1. This shorten—using ’ mam

ing can be explained by the fact that migration of the isobars
along thex axis is retarded after passing the fracture tip. ( 3/4)2

5 Implications for well-test analysis

Our results substantiate and quantify the analytical finding7e (kmsm)Y? = qwie
of the self-similarity of the pressure functions during bilin- Mh

: e
ear flow with the Va”?]ble /1 l(_see Boo_r:jstra and ﬁoehmer, Case 2 When the well-pressure record exhibits a clockwise
1986; Weir, 1999). Thus, scaling considerations have to Usgye,iation of relative magnitude (that is, the transition time

Dy ~ 12/1tc with the hydraulic diffusivity for bilinear flow, is known), then the permeability of the matkix can be de-
Dy, given by Eq. {4) rather than the traditionally used scal- o ined from

ing relation between hydraulic diffusivit®nyq ~ lg/tc (e.0.,

Matthews and Russell, 1967) and characteristic lenfgdh ( kmn = MM, (21)

and timescaler§) of pressure diffusion when a prominent 2h put

two-dimensional hydraulic conduit (e.g., fracture or fault) where pyipp = 0.38, 0.68, and 0.92 fos = 0.01, 0.03, and

is present. Due to these differences in scaling behavior, th@.05, respectively (Fig. 8b, d). In case the storage coeffi-

characteristic propagation distance of the pressure perturbaient the storage coefficient of the matrix,, is known or

tion in the vicinity of a fracture-like heterogeneity will ex- can be reasonably estimated, the fracture conductivity can be

ceed the classical penetration estimate for short dimensionderived by

less times, while it will increase much less than the classi- )

cal penetration estimate for long dimensionless times. Some 1 qwnfs/4

aspects of the conclusions based on hydraulic scaling relalF = (kmsm) Y2\~ Mh

tions as in analyses of hydraulic stimulation (e.g., Shapiro

and Dinske, 2009) or aftershock (e.g., Mukhopadhyay et al.;Then, also the two diffusivities of the system, the one for
bilinear flow Dy (14) and the one for the matrioy,, are

(20)

(22)
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constrained. Furthermore, the ratig /xip (or yj/xj) can be  well increasing with time to a power of/4 (bilinear flow)

determined from and the logarithm of time (radial flow), respectively. For frac-
Yo om 1 tures of finite length, well pressure always deviates from the
L AR R T 23) : -

xo | oF e =11 . ( master curve towards higher pressures; that is, all type curves

branch off counterclockwise from the master curve instead of
The dimensionless fracture conductivity obeys the relationclockwise or counterclockwise from the/4-slope straight
To < Tomax With Tomax= 2.5, 1.6, and 1.0 for = 0.01, line as considered by Cinco-Ley and Samaniego-V. (1981).
0.03, and 0.05, respectively, and thus one also has a corNevertheless, two mechanisms have to be distinguished for

straint on fracture length, i.exp > Tr/ To maxkm- the termination of bilinear flow depending on fracture and
Case 3When the pressure record contains a counterclockmatrix properties.
wise deviation of relative magnituddout no clockwise devi- For any fracture of finite length, the propagation of the

ation, then one knows the reflection time and has the relatiopressure front in the fracture will eventually be affected by
Tp > 10. The dimensionless fracture conductivity cannot  the fracture tip. Fractures with a dimensionless conductiv-
be further constrained, however, since all type curves rapidlity Tp > 10 qualify as fractures with high conductivity since
rise in a similar way. Thus, only the produt (kmsm)¥? can  for these the reflection of the pressure front at the fracture
be determined (as in case 1). In addition, if the matrix prop-tip happens long before substantial migration of isobars in
erties gm andsny) are known or can be reasonably estimated, the matrix. The reflection leads to a reduction of the pressure

one can infer gradient in the fracture, and thus signals the transition to for-
) 1/4 mation linear flow. Termination of bilinear flow is noticed by

X =C T¢ " — C(Dyt) Y/ (24) an increase qf well pressure relative to the horizontal section

kmnSm of the normalized master curve that occurs, however, only 16

times later than the actual reflection at the fracture tip. In con-

from the reflection time, wher€ = 1.73, 1.41, and 1.25 for trast, for fractures with low conductivity'b < 1), migration
£ =0.01, 0.03, and 0.05, respectively (Fig. 8a, c). of isobars in the matrix becomes significant long before the

Case 4 When the pressure record exhibits a clockwise de-pressure front in the fracture approaches the fracture tip due
viation from the ¥4-slope straight line succeeded by a coun-to the difference in the power in the relation with time, i.e.,
terclockwise deviation from the master cupfy, then tran-  square root and fourth root for matrix and fracture, respec-
sition time as well as reflection time are known. Such data al+tively. The gaining of pressure propagation in the matrix on
low for determination of matrix permeability, fracture trans- that in the fracture ultimately results in radial flow, indicated
missibility, and the ratigi/x; (as in case 2). In addition, the by normalized well pressures falling below the horizontal at
dimensionless fracture conductivifyy can be quantified by  unity and width-to-length ratios of isobars deviating signif-
looking for a pair of matching transition times and reflection icantly from an initial relation to the fourth root of dimen-
times in Fig. 8, and with that the fracture length can be  sionless time and indicating substantial inclination of isobars
determined according to with respect to the fracture. For an intermediate range of frac-

T ture conductivities (k Tp < 10), reflection at the fracture

S (25) tip interferes with the transition to radial flow and normal-

kmTb ized well pressure exhibits a peculiar succession of decrease,
increase, and decrease in cases.
6 Conclusions The two criteria introduced for the deviation of the master-

curve from the fourth-root-of-time behavior (transition crite-

Using two-dimensional numerical modeling, we investigatedrion) and for the deviation of the type curves for finite frac-
the evolution of the pressure field in and around a fracturetures from the master curve (reflection criterion) revealed that
imbedded in a permeable matrix during injection or produc-the transition time is independent of the dimensionless frac-
tion tests at a constant rate in a borehole aligned with thegure conductivity and applies to the infinite fracture as well
fracture. The understanding of the well-pressure evolutionas to all finite fractures whose type curves do not branch
has gained significantly from introducing a new dimension- off from the master curve before this end time is reached.
less time containing only the transport parameters of fracturéhe reflection time is inversely proportional to dimension-
and matrix as well as the storage coefficient of the matrixless fracture conductivity to a power of 4 corresponding to
but no geometrical or storage parameters of the fracture. Ithe fourth-root-of-time migration of the normalized isobars
this presentation, type curves of dimensionless well pressure the fracture expressed by a scaling relation that includes a
for fractures with finite length evolve from a single master bilinear diffusivity with dimensions of f/t.
curve when dimensionless time progresses. The unique mas- The gained insight into the relation between the entire flow
ter curve corresponds to an infinitely long fracture and com-field and the peculiarities of the recorded wellbore pressure
prises two stages with an extended transition in between. Thpermits for constraining hydraulic and geometrical param-
early and the late stage are characterized by pressure in theters of the subsurface in practice. Using semi-log plots of

XF
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Table 2. Nomenclature.

b fracture width [m]

C constant [-]

Dy effective hydraulic diffusivity of fracture during bilinear flow, Eq. (14),‘tm‘1]
Df hydraulic diffusivity of (isolated) fractureDg = Tr/n¢ Sk [m2s 1]

D hydraulic diffusivity of matrix,Dm = km/r]fsm[m2 s

h height of the open well section, fracture height, [m]

km matrix permeability [m]

paD dimensionless pressurewt

DeD dimensionless pressuremt

PN normalized pressure difference, Efj1), [-]

prD dimensionless pressuremt

Pw well pressure, [Pa]

Apw change in well-pressure difference, [Pa]

pwD dimensionless well pressure, Eq. (7), [-]

PaD master curve for dimensionless well pressure (Figs. 2c and 6) [-]

PweD dimensionless well pressure at end time of bilinear flow, [-]

PwN normalized well pressure, i.e., normalized by thid-telation for bilinear flow, [-]
qw flow rate in the well [fs~1]

sm specific storage capacity of matrix [PH

Sk storativity of the fracture [mPal]

t time, [s]

Tr fracture conductivity (transmissibility), [F

o dimensionless fracture conductivity, Eq. (9), [-]

X,y spatial coordinates along, normal to the fracture with origin at the well, [m]
XE fracture half length, [m]

XD, YD dimensionless coordinatesy = x/xg, yp = y/xg) [-]

XiD» YiD dimensionless distances of normalized isobars from the well (alongythendyp axis, respectively) [-]

Greek symbols

ap constant for pressure diffusion in fracture during bilinear flow, B8),(—]

am constant for pressure diffusion in matrix, E5), [-]

r gamma function [-]

Nt fluid viscosity, [Pas]

T dimensionless time, Eg8), [-]

Ta dimensionless arrival time (of the normalized isobar at the fracture tip) [-]

Te dimensionless end time of bilinear flow [-]

Tr dimensionless reflection time (arrival time of the reflected normalized isobar at the well) [-]
Tt dimensionless transition time [-]

normalized well pressure in addition to the common log—logtaken when using scaling arguments for situations compris-
diagrams improves the sensitivity of analyses in particularing preferred hydraulic pathways, as, for example, generated
for dimensionless fracture conductivities smaller than 3, andduring stimulation, or likely associated with earthquakes.
hydraulic parameters of matrix and fracture may be deter-
mined after shorter test duration than necessary for conven-
tional analysis. AcknowledgementsGenerous funding by the German science
Our results substantiate and quantify the previously dis-foundation (DFC’-‘:‘) within the_collaboratlve research center “Rheol-
cussed self-similarity of the pressure functions during bi- ogy of the Earth” (SFB 526) is gratefully acknowledged.
linear flow. In the presence of planar conduits with higher
conductivity than the enclosing matrix pressure, diffusion
obeys a scaling between characteristic propagation distance
and characteristic time leading to faster and slower pressure
propagation for small and large dimensionless times, respec-
tively, in comparison to the classical scaling for hydraulic
diffusivity in homogeneous media. Therefore, care has to be
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