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Abstract. Fumarole fields related to hydrothermal processes
release the heat of the underground through permeable path-
ways. Thermal changes, therefore, are likely to depend also
on the size and permeability variation of these pathways.
There may be different explanations for the observed per-
meability changes, such as fault control, lithology, weather-
ing/alteration, heterogeneous sediment accumulation/erosion
and physical changes of the fluids (e.g., temperature and
viscosity). A common difficulty, however, in surface tem-
perature field studies at active volcanoes is that the param-
eters controlling the ascending routes of fluids are poorly
constrained in general. Here we analyze the crater of Ste-
fanos, Nisyros (Greece), and highlight complexities in the
spatial pattern of the fumarole field related to permeabil-
ity conditions. We combine high-resolution infrared mosaics
and grain-size analysis of soils, aiming to elaborate param-
eters controlling the appearance of the fumarole field. We
find a ring-shaped thermal field located within the explosion
crater, which we interpret to reflect near-surface contrasts of
the soil granulometry and volcanotectonic history at depth.
We develop a conceptual model of how the ring-shaped ther-
mal field formed at the Stefanos crater and similarly at other
volcanic edifices, highlighting the importance of local per-
meability contrast that may increase or decrease the thermal
fluid flux.

1 Introduction

Thermal anomalies in volcanic areas may be detected be-
fore, during and long after eruptions, allowing assessment of
precursors, of fluid flux and degassing intensity levels, and

quantification of the volcanic heat discharge at the surface
(Sekioka and Yuhara, 1974; Stevenson, 1993). Besides the
magmatic/hydrothermal source itself, different factors may
affect the expression and intensity of fumaroles. These may
be, for instance, the stress field, the presence of faults and
fractures, or the lithology (Mongillo and Wood, 1995; Dob-
son et al., 2003; Finizola et al., 2003; Revil et al., 2008;
Schöpa et al., 2011; Peltier et al., 2012). Thermal anoma-
lies can be detected at the surface by direct measurements
and by satellite-based or hand-held infrared camera measure-
ments (Bukumirovic et al., 1997; Harris and Maciejewski,
2000; Chiodini et al., 2007; Harris et al., 2009). These mea-
surements alone cannot however explain which factors con-
trol the permeability complexities and the thermal expres-
sion. Therefore the question of how the thermal expression at
volcanoes is affected by permeability complexities remains
to be studied. Few case studies have investigated the effect
of permeability on fumaroles (Mongillo and Wood, 1995;
Schöpa et al., 2011; Peltier et al., 2012), highlighting the en-
tanglement between the stress, the faults and the lithologies.
Mongillo et al. (1995) showed that, at White Island, New
Zealand, the tectonic structures control the site permeability
at an edifice scale, whereas the lithology has a local influence
on it. Schöpa et al. (2011) indicated that at Vulcano Island,
Italy, the topography-induced stress field focuses the perme-
able pathways toward the morphological crests. At these sites
both the position (e.g., inner or outer flank) and geometry
(e.g., radial or concentric) are controlled by the lithology and
the shallow fractures. Peltier et al. (2012) suggested that at
the Yasur–Yenkahe complex, Vanuatu, the stratigraphic lay-
ering dictates the permeability setting together with faults
and fractures. At a larger scale, the relation between porosity,
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permeability and fluid flow was studied at the Yellowstone
caldera (Dobson et al., 2003). Here, results showed that sedi-
ments and non-welded tuffs have high permeability thanks to
primary porosity. Other welded lithologies have even higher
permeability because of fractures and veins, which represent
the secondary porosity.

The reconnaissance of the permeability background be-
comes relevant to decipher the temporal and spatial vari-
ability of thermal fields as it also relates to unrest. Faults
and fractures, in particular, control the permeability of the
rock masses according to Darcy’s cubic law (Caine et al.,
1996; Faulkner et al., 2010), whereas the permeability of
soils relates to the grain-size distribution as well as com-
paction, cementation and alteration (Shepherd, 1989; Ben-
son et al., 1995); consequently they all accomplish con-
vective heat flow (Hardee, 1982). Variations in volcanic
and geothermal activity have been frequently observed at
sites such as Vulcano Island, Italy (Bukumirovic et al.,
1997; Harris and Maciejewski, 2000), at Iwodake Volcano,
Japan (Matsushima et al., 2003), at the Solfatara of Poz-
zuoli, Italy (Chiodini et al., 2007), and at Colima, Mex-
ico (Stevenson and Varley; 2008), but they were alterna-
tively attributed to changes in the magmatic or hydrother-
mal source (Stevenson, 1993), to permeability changes due
to conduit sealing by deposition or tectonic activity (Har-
ris and Maciejewski, 2000), or a combination thereof. Ex-
amples of chemical and thermal changes were also recently
documented for the 2011–2012 unrest episode at Santorini
(Parks et al., 2013; Tassi et al., 2013).

In this work we test the influence of permeability by ana-
lyzing the stratigraphic and volcanotectonic setting in con-
trolling the degassing sites at Nisyros Island. We first ex-
plore if the results from thermal mapping and soil analysis
correlate, both possibly reflecting the local geology. On the
one hand, we make use of a portable infrared (IR) camera,
which is efficient in imaging volcanic regions at metric to
sub-metric resolutions, overcoming the low spatial resolution
of satellites and the cost- and time-consuming thermometer-
based measurements. On the other hand we collect and sieve
soil samples at the fumarole field to define soil types and re-
lated permeabilities. Finally we compare the spatial perme-
ability contrasts with the spatial distribution of the thermal
anomalies. Our testing location was the Stefanos crater on
Nisyros (Fig. 1). This volcanic island has a long history of
phreatic eruptions, the latest in 1871–1873 and 1887 (Marini
et al., 1993), experiencing an episode of unrest in 1996–2001
(Papadopoulos et al., 1998; Chiodini et al., 2002; Sachpazi
et al., 2002). The Stefanos crater is one of several phreatic
craters on Nisyros, and is also the major contributor to the
total heat budget of the island (Lagios et al., 2007; Ganas et
al., 2010). Below we first introduce the study area, the in-
frared and soil analysis methods, followed by our results that
allow an interpretation of how the permeability might control
the appearance of thermal anomalies.

Fig. 1. (a) Nisyros Island. Coordinates are in UTM, zone 35, grid
ticks are at 2 km. The brown line marks the border of the caldera.
Inside the caldera: the red square shows the position of the Stefanos
crater; the white line highlights the 2001–2002 fissure at the Lakki
plain. Other toponyms outside the caldera indicate the villages on
the island.(b) Satellite image (WV02) showing the main volcanic
features inside the caldera; grid ticks are at 500 m. The red square
indicates the Stefanos crater labeled St; other labeled sites are the
Kaminakia crater (Kk), the Lofos dome (LD), the nested Polybotes
Megalos and Polybotes craters (PM,P), the Polybotes Micro crater
(Pm) and the Phlegeton crater (Ph). LF is the fissure in the Lakki
plain. The camera icons point out the position where IR and OP
images were collected, inside/outside of the Stefanos crater and at
the caldera border (brown line). W1 and W2 indicate the positions
of two geothermal wells.

Solid Earth, 5, 183–198, 2014 www.solid-earth.net/5/183/2014/



M. Pantaleo and T. R. Walter: The ring-shaped thermal field of Stefanos crater 185

2 Study area

2.1 Geological background

Nisyros is a volcanic island in the South Aegean active vol-
canic arc related to the northward subduction of the African
plate below the Aegean plate. The island is sub-circular in
plan view with a diameter of∼ 7 km and morphologically
appears like a truncated cone. The volcanic edifice developed
through five distinguished stages (Marini et al., 1993; Tibaldi
et al., 2008) that led to the formation of a∼ 4 km-wide
caldera, hosting rhyodacitic domes in the west and an alluvial
plain in the eastern part, respectively. Superheated geother-
mal fluids have triggered hydrothermal explosions forming
several phreatic craters, most recently in 1887 (Marini et al.,
1993). The largest of these craters is the Stefanos crater, with
a diameter of∼ 300 m (Fig. 1), which is in the focus of our
study.

2.2 Hydrothermal activity

The remarkable hydrothermal activity, hot springs and fu-
maroles motivated site studies and the drilling of two deep
wells for geothermal exploitation (Geotermica Italiana 1983,
1984; Marini et al., 1993). These gave a direct view into
the hydrogeological and hydrothermal system. Geochemical
analyses (Chiodini, 1993; Lagios et al., 2007) helped to char-
acterize the system, and the fumaroles on Nisyros were in-
vestigated in detail (Chiodini, 1993; Chiodini et al., 2002;
Teschner et al., 2007).

The hydrogeological system of the caldera consists of two
separate permeable zones, as identified by the drilling of two
geothermal wells (Geotermica Italiana, 1983, 1984; W1 and
W2 in Fig. 1b). One permeable zone is found at a depth
> 1000 m, the other is located at a depth of∼ 200 m. Both the
permeable zones are deeper in the eastern part of the caldera.
This vertical offset relates to a graben-like structure of the
caldera basement (Caliro et al., 2005). The deep permeable
zone is developed within the intrusive dioritic basement, but
ends at the overlying carbonate and volcanic sequence. This
permeability contrast is attributed to diverse fracture density
between the lithologies (Ambrosio et al., 2010). The deep
permeable zone has a temperature range of 300–350◦C and
the heat is provided by magmatic fluids (Caliro et al., 2005;
Lagios et al., 2007). The deep permeable zone provides va-
por to the shallow permeable zone, which has a temperature
range of 150–260◦C (Chiodini et al., 2002, Lagios et al.,
2007). Finally, Lagios et al. (2007) proposed that a third still
shallower reservoir exists and is fed by condensates.

At the surface, fumaroles occur mainly at phreatic craters
such as at Stefanos, Phlegethon, Polybotes Micros (St, Ph,
Pm in Fig. 1b), and at the eastern base of the Lofos dome
(LD in Fig. 1b). Temperature measurements at the phreatic
craters have been conducted for decades, recording fuma-
role outlet temperatures of mostly 96–100◦C (Chiodini et al.,

2002; Teschner et al., 2007). Smaller fumaroles occur along
the flanks and on top of the Lofos dome and at the Kaminakia
crater flank (LD, Kk in Fig. 1b). Some degassing vents oc-
cur also along the southern and western internal flank of the
caldera following the NE–SW trends, which represents one
of the main fault strikes recognized by Caliro et al. (2005),
Lagios et al. (2005) and Tibaldi et al. (2008).

A 100-year period of quiescence ended with the 1996–
2001 unrest episode. During this period, field observations
report increased fumarole activity in 1997 (Vougioukalakis
and Fytikas, 2005). Other phenomena attributed to the unrest
include the progressive opening of a fissure in the Lakki plain
since 2001 (Vougioukalakis and Fytikas, 2005; Fig. 1). Mon-
itoring of the fumaroles at Nisyros since 2003 (Teschner et
al., 2007) indicates that the outlet temperature only fluctuates
by a few degrees due to variations in meteorological condi-
tions. Satellite TIR data from 2000–2005 indicate that the
Stefanos crater hosts a high temperature anomaly and con-
tributes the most to the total heat flux budget of the caldera
(Lagios et al., 2007; Ganas et al., 2010). In the same period,
gravity surveys reveal short-term changes (Gottsmann et al.,
2005) occasionally associated with height changes, inferred
to reflect instabilities of the hydrothermal system (Gotts-
mann et al., 2007). However, these variations do not appear
in the temperature data of Teschner et al. (2007). More re-
cent ground-based InSAR measurements (2010) could not
detect a significant displacement signal, implying a general
decrease in activity and suggesting that the hydrothermal sys-
tem is close to rest conditions (Pantaleo, 2014).

While the previous studies suggest that hydrothermal ac-
tivity at depth and at the surface are related, a direct study on
how the fumarole field depends on the near-surface perme-
ability has not been elaborated. In this paper, we investigate
the relationship between the thermal activity and the perme-
ability contrast. Thermal activity was recorded by means of
infrared measurements, whereas the permeability was ana-
lyzed indirectly by granulometry. A better understanding of
the thermal field allows important implications in the frame-
work of hazard assessments for the hydrothermal activity at
the site.

3 Method

3.1 Infrared (IR) survey

A forward-looking infrared camera (FLIR P620) was used
to collect images of the 200× 300 m-large Stefanos crater in
normal and panorama mode (Fig. 1). The camera operates
at 7.5–13 µm bandwidth. The image size is 640× 480 pix-
els and the resolution is 0.33 or 0.65 mrad (different lenses
were used at different monitoring distances). The dimension
of the pixel size is given by the resolution (mrad) times the
distance of the target (D). The camera also hosts a digital op-
tical sensor, allowing joint acquisitions of target regions. In
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Fig. 2. (a, b) OP and IR images collected from long distance
(caldera rim, Fig. 1b). Solid lines mark the upper and lower crater
rim. Both the OP and IR images display part of the crater floor and
the east-facing flank; the IR images show thermal anomalies along
the bottom rim and a weaker anomaly toward the center of the crater
but also propagating to the south. The yellow rectangle in(b) de-
fines the area shown by the close-up in(c). (c) Magnification of the
wide thermal anomaly (r, dashed line) on the western side of the
crater. The coarse spatial resolution (∼ 0.8 m) causes the smoothed
appearance of the temperatures.

total we recorded> 200 images to ensure ideal clear viewing
conditions and the feasibility of image stitching, in order to
investigate the thermal field at different scales (Figs. 2, 3 and
4). On average 4–10 images were necessary to create mosaic
panoramas (Fig. 3) for both infrared and optical images, and
∼ 30 images to create the synoptic IR map of high spatial
resolution (Fig. 4).

A data set of images was collected on the 7 April 2010 dur-
ing a single day. During daytime the images from the caldera
rim were collected at 08:30 (local time), and the images from
outside and inside the crater were collected between 12:30
and 14:00 (local time). During nighttime the images were

Fig. 3. (a, b)OP and IR daytime panorama viewing westward; the
dashed line marks the crater’s bottom rim.(b) The thermal anomaly
is visible at the break in slope of the flank and is wider in corre-
spondence to the mound (r). The crater floor (cf) and the flank are
generally cold; the lateral thermal gradient (from SW to NW) on the
flank appears because of the insolation. The thermal anomaly along
the flank (g) is volcanic and is stronger than the insolated areas. The
insolation and the fine spatial resolution allow the IR data to display
morphological features (e.g., horizontal layering, gullies). Temper-
ature values are saturated at 15 and 60◦C to optimize the view.(c,
d) OP and IR nighttime panorama facing southeastward; the dashed
line marks the crater bottom rim.(d) The thermal anomaly clearly
shows its ring-shaped pattern at the break in slope of the flank; at the
eastern (n) and western (r) sides the anomaly appears to be wider.
Another anomaly (p) appears close to the center in the southern
direction and represents the mud pits. Also visible is the thermal
anomaly (g) along the flank, as observed in (Fig. a, b). Temperature
values are saturated at 10 and 60◦C to optimize the view.(a) and
(c) also show the sites with high sulfur content (yellowish).

collected from outside and inside the crater between 22:15
and 23:00 LT. Images from long distances were collected
from the caldera rim close to Nikia (Fig. 1); here we used
a telezoom to obtain a spatial resolution of∼ 0.8 m (Fig. 2).
Images from shorter distances were recorded in panorama
mode from two opposite vantage points along the crater rim.
One subset was recorded from a position∼ 200 m southeast
of the crater (Fig. 1b) showing the center of the crater and the
east-facing Stefanos crater flank (Fig. 3a and b). The other
subset viewed the crater from∼ 100 m northwest of the Ste-
fanos crater rim (Fig. 1b) showing the bottom of the crater
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and its southeastern flank (Fig. 3c and d). For these subsets,
the pixel dimension ranged between 0.05 and 0.15 m. Dif-
ferences exist between the panoramas because the vantage
points had different distances leading to a different field of
view and incidence angles. A 360◦ panorama was recorded
at the bottom of the crater (Fig. 1b), and these images were
used to generate an IR mosaic of the entire crater (Fig. 4) and
to detail small-scale features on the crater floor.

The IR images display temperatures on a color-coded
scale, and these temperatures are considered apparent. That
is, the temperature value represents the thermal energy dis-
tribution integrated over the pixel footprint (Dozier, 1981);
accordingly,

Tobj = Av × Tv + (1− Av) × Tb, (1)

where (Tobj) is the pixel temperature, andAv and (1−Av)
are the vent area and the vent-free area within the unitary
pixel, respectively;Tv andTb are the temperature (◦C) of the
vent and of the background, vent-free area, respectively. Oth-
erwiseTobj depends on parameters like the target-to-sensor
distance (D), the emissivity of the target, and the transmit-
tance of the atmosphere as a function of atmospheric temper-
ature (Tatm) and relative humidity (RH). Finally, the accuracy
of the measurements depends on the orientation of the field
of view, which should be as parallel as possible to the target
(Ball and Pinkerton, 2006).

For each data set acquired in panorama mode, the images
were sampled in fast sequence steering the IR camera and
allowing a sufficient overlap between consecutive pictures.
Because the distance was almost constant for each of the
shooting positions and the time required between each ac-
quisition is a few seconds only, the parametersD, Tatm and
RH were assumed constants. Values ofTatm and RH are as-
sumed to be suitable to site conditions in the range of 10–
20◦C and 50 %, respectively. Also,ε is assumed to be con-
stant and equal to 0.93 according to the literature (Lagios
et al., 2007). All these assumptions were valid also for the
other IR images collected as independent snapshots. We did
not consider a pixel-by-pixel correction approach. Also, ge-
ometric complexities arising from the different viewing field
and topography were not corrected for.

We processed the raw images by FLIR ThermaCAM soft-
ware. The results are displayed (Figs. 2–4) with tempera-
ture scales saturated and clipped at the 10–60◦C interval
for the night panorama, and at 15–60◦C and 15–90◦C for
day panoramas, respectively, to enhance the thermal patterns.
The stitching of infrared and digital images is finally exe-
cuted using a combined perspective–cylindrical merging tool
as embedded in common image software (Photoshop). The
images taken from within the crater floor were also used to
generate a crater-wide mosaic that is subsequently georefer-
enced in map view (Fig. 4) with GIS software (ArcGIS 9.3 by
ESRI). This necessitates the application of a matching proce-

Fig. 4. (Above) Georeferenced IR mosaic showing the full extent
of the ring-shaped thermal field along the bottom crater rim. Grid
ticks are at 100 m. This map better highlights the NW–SE trending
of the wider anomalies including the mounds (r, n) as well as the
isolated position of the boiling ponds (p) and of the anomaly along
the northern flank (g). Temperature values are saturated at 10 and
60◦C to optimize the view. Three orthogonal traces (a–a′, b–b′,
c–c′) are shown intersecting those features. (Below) Temperature–
topography profiles (a–a′, b–b′, c–c′); the distances along the trace
and the topographic height (x–y axes are not scaled) are in black;
the temperature axis and the values are in orange. These profiles
highlight the fact that thermal anomalies occur mostly at breaks in
the slope.

dure of ground control points recognized in both the satellite
image (WorldView02, visible bands) and the IR mosaic.

A second field survey on 17 January 2013 allowed for the
collection and verification of the IR images collected in 2010.
The survey followed a similar procedure, except that the im-
ages were taken from the northern and southern borders of
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Fig. 5. (a, b) IR and OP close-ups of a fumarole on the western
mound. The IR image shows that the temperature at the vent reaches
100◦C, according to direct measurements. This is possible as the
pixel size is sub-mm. It also shows that temperature rapidly de-
creases sideways. The same can be deduced by the OP, where solid
sulfur exists close to the degassing vent.(c, d) IR and OP close-up
of the dessication polygon. The IR image shows the plate as cool,
whereas the bounding fracture is∼ 5◦C warmer. The black circle
is a 1 Euro coin for scale; it appears cooler because it has an emis-
sivity different from the emissivity of the soil. The OP image shows
the sulfur crystallization close to the fracture.

the crater. The crater floor could not be imaged because it
was partially flooded by recent rainfall.

Fig. 6. (upper row) Digital pictures of the pits where soil samples
were collected and (lower row) corresponding material. The dif-
ference between granular and cohesive types can be distinguished
visually. S01 is loose and shows few clasts≥ 1 cm dispersed in an
∼ uniform fine sand matrix. S03 occurs in blocks of cohesive mate-
rial and no particle can be distinguished. S06 is loose and shows few
clasts≥ 1 cm, but the matrix is graded. S08 has few clasts≥ 1 cm
and appears graded. S01 and S06 also have sulfur grains, as indi-
cated by the yellowish color.

3.2 Soil analysis

Soil samples (12) were collected (Fig. 6) during our 2013
campaign on 18 January. Sampling locations were chosen at
the crater floor mainly along an E–W profile (Fig. 7) cross-
ing fumarole-bearing and fumarole-free areas. Two samples
were collected along the eastern flank and two more samples
in the southern and northern sectors, corresponding to sites
of anomalous and normal temperature, respectively (Fig. 7).
The sampling sites were selected according to the need to
(i) represent the different thermal conditions and expres-
sions (fumarole, diffusively heated ground, mud pools, boil-
ing runoff) highlighted by the 2010 infrared survey, (ii) to
have a sampling dense enough for spatial comparison to ther-
mal data, and (iii) to limit the total weight. The E–W profile
allowed us to intersect the thermal anomalies at the crater
border, the center, and the interposed cool areas. A N–S pro-
file instead would have neglected the large thermal anomalies
observed at the western and eastern flank bases. Moreover,
the N–S elongation of the flooded area would have caused
a large gap in the spacing of soil samples. The representa-
tiveness of the bulk grain-size distribution was ensured by
collecting 1–2 kg of a sample, depending on its cohesive or
granular aspect defined in the field.

Each sample was collected at a depth up to 20 cm below
the surface. We ensured that the sample corresponded to a
single soil type. We dug down to 50 cm in an attempt to
check for a possible vertical gradient in temperature. Each
soil sample has been characterized by grain-size analysis in
the laboratory. Samples were oven dried at 70◦C to avoid
melting of sulphur crystals before weighing. Samples were
wet sieved (ASTM-D6913-04, 2009) to discern the relative
percentage of granular fractions, particles with diameter (d)
larger than 0.064 mm, and cohesive fraction, particles withd

smaller than 0.064 mm. The cohesive component is washed
away by running water filtered by sieves, while the granular
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Fig. 7. (a)Optical satellite image (WV02) of the Stefanos crater: the numbered dots mark the sites where soil was sampled.(b) Georeferenced
IR mosaic overlapping the satellite images; it shows the coupling of soil types with the thermal field.(c) Semi-logarithmic plot of grain-size
curve. The vertical axis indicates the cumulative percentage (by weight) of material passing through the sieves; the lower horizontal axis
indicates the mesh diameter of the sieves. The upper horizontal axis indicates the fraction names and intervals according to international
standards. The blue lines are the grain-size curves of cohesive type soils, which have low (L) permeability. The red and black lines indicate
the grain-size curves of granular type soils, which have high (H) permeability. The red curves are for sorted samples, the black for more
uniform samples. Blue, red and black lines are solid within the measured intervals and dashed where uncertainty arises by assuming a
maximum diameter of 10 mm and interpolating the curve (see text).

material is kept on them. Finally, the soil trapped by each
sieve is dried and weighed again.

We used four sieves that allowed us to separate gravel
and coarse sand fraction (d > 2.0), medium sand fraction
(2.0 < d < 0.5), fine sand fraction (0.5< d < 0.064), and silt
and clay fraction (d < 0.064). The maximumd for each sam-
ple was noted visually; few clasts exceeded 10 mm. We did
not perform a settling analysis to compute the relative per-
centage of silt and clay.

Following geotechnical practice, the results are presented
as distribution curves in a semi-logarithmic plot (Fig. 7); the
vertical axis indicates the cumulated percentage (by weight)
of soil passing through the sieve whose mesh size is labeled
on the horizontal axis. In this plot, we adoptd = 10 mm

as the maximum value and assume that all the material is
smaller, so the grain-size curve results are interpolated from
d = 2 mm tod = 10 mm (dashed curves in Fig. 7).

Although our main analysis and result is based on the gran-
ulometry, we also estimate the permeability (k) of our sam-
ples by applying the empirical formula by Alyamani et al.
(1993). Permeability is accordingly based on the knowledge
of d10, d50 (particle diameter values at the 10 and 50 per-
centage of the grain-size curve, respectively) andI0 (the in-
tercept of the line formed byd50 andd10 with the diameter
axis). The parametersd50 andd10 were extracted from linear
interpolation of the grain-size curves. Both particle diame-
ter values could be directly obtained from samples S01 and
S06. For the other samples, however, the measured grain-size
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curve does not intercept the 10 % of passing soil. To pro-
vide a first-order estimate for these other samples, we arbi-
trarily constraind1 = 0.002 mm, which means that samples
have 1 % of clay content in the cumulate curve. Furthermore,
we constrainI0 = 0.001 mm. The aforementioned constraint
cannot be applied to the cohesive samples, because they are
mainly silt–clay material and so, given our grain-size curves,
any prediction ofd50, d10 and I0 would be unrealistic. For
the cohesive samples, we hence refer to the related literature
(Bowles, 1988).

4 Results

4.1 Far field view of large-scale thermal architecture

The IR images collected from the caldera rim, about 1000–
1200 m away from the Stefanos crater (Fig. 1), have a coarse
resolution with pixel size of about 0.60–0.80 m. They show
the western flank of the crater and part of the bottom, the
remaining parts are not imaged because of the topography-
related shadowing effect (Fig. 2a and b). The upper rim of
the crater does not express any thermal anomaly, whilst the
bottom rim of the crater does; the temperature field is shown
by a ring not perfectly concentric bordering the crater floor
(Fig. 2b). The temperature distribution is smoothed and ho-
mogenized because of the coarse resolution, therefore sin-
gle or grouped vents cannot be recognized (Fig. 2c). On the
western and southern sides, more elevated temperatures and
wider thermal fields can be observed. At the southern side
the apparent temperature (T ) is in the range 22–30◦C and
rises to 30–40◦C westward (r in Fig. 2c) before decreas-
ing to 24–30◦C northward. The background cool tempera-
ture inside the crater is≤ 18◦C. Further clustered anomalies
are observed toward the center of the crater; these display an
apparentT of 20–25◦C and mark the transition between a
relatively warm southern sector and relatively cold northern
sector.

4.2 Close field view of medium-scale structures

The mosaics produced with images collected close to the Ste-
fanos crater have a high resolution of about 0.05 and 0.15 m
in pixel size (Fig. 3). These mosaics show that the thermal
anomalies are distributed in a roughly circular-shaped pat-
tern at the margin of the crater floor (Fig. 3b and d). The
anomalies are wider along the west, through the south, to
the eastern side and narrower at the opposite side. Hotter
spots corresponding to clustered vents are now distinguished
as sparsely distributed within the geothermal field, showing
apparent temperatures ofT ≥ 60◦C. The western side hosts
a mound of material (r in Fig. 3a and b), 2–3 m high,≤ 10 m
wide and∼ 50 m long, covered by a hard crust dotted by
centimeter-size vents; around the mound the crater floor is
diffusively heated at apparentT ∼ 40◦C. The southern side
has a rough surface with an extensively developed hard crust

covered by pebbles/boulders fallen from the adjacent flank
(Fig. 3c and d). Here there are few vents and the heat is
pervasively distributed across the surface, so the apparent
T is ∼ 30◦C. The eastern side is flat except for a mound
(n in Fig. 3c and d), 0.5–1 m high, 2–3 m wide and∼ 30 m
long, hosting vents; the base of this flank also hosts surfi-
cial boiling runoff and small boiling ponds (up to tens of
cm in size). The apparentT of the thermal anomaly at this
side is≥ 40◦C. Toward the center of the crater embedded
in the cooler terrain, we identify thermal anomalies – appar-
entT ∼ 30◦C – corresponding to sub-metric to metric wide
boiling ponds fed by meteoric water and superficial runoff.
Another localized anomaly is isolated along the northeastern
flank on the slope (g in Fig. 3b and d); its apparent tempera-
ture is 25–30◦C or higher, depending on the viewing geom-
etry. Both optical panoramas show the aforementioned mor-
phologies (mounds r, n and ponds) as well as the sites with
high sulfur content (yellowish) at the crater floor and along
the flanks (Fig. 3a and c), which are not detectable in the
infrared panoramas.

Temperature values from IR images are generally lower
than inferred from pointwise measurements because the vent
usually occupies a small part of the pixel and contributes pro-
portionally to the pixel thermal budget. Only the IR close-up
of the fumarole clearly displaysT values of∼ 100◦C.

4.3 Close-up of small-scale structure

Using the images collected within the crater, we can further
explore particular features that are not revealed from larger
distances. Indeed, the resolution approach millimeters scale
when standing above the targets. The IR measurements taken
directly above the fumaroles show that the vent tempera-
ture decreases rapidly from∼ 100◦C to 30–40◦C sideways
(Fig. 5). Such a vent temperature is in agreement with the
temperature measured inside the vent by the K-type thermo-
couple during our survey, and confirms findings by previous
authors (Chiodini et al., 2002; Teschner et al., 2007). Sim-
ilarly, the close-up of the mud pits shows the temperature
decreasing rapidly from∼ 60◦C at the deep-seated boiling
surface to almost to 20◦C at the surface. The ground sur-
rounding the ponds is cold and a network of cracks sepa-
rate desiccation polygons (Fig. 5), usually 10–20 cm a side,
whose surfaces have sulfur films developing from the crack
inside the polygon. The cracks are warmer than the plate and
we also observed the soil temperature increasing∼ 5–10◦C
a few centimeters below the crust. Such a pattern resembles
on a small scale the one observed at the crater scale.

4.4 Mosaic of large- to small-scale structure

The thermal features are visualized in the georeferenced IR
mosaic giving a synoptic view of the crater (Fig. 4). A to-
tal of > 30 images have been stitched and≥ 5 ground con-
trol points have been selected to reference each image. The
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Table 1.Permeability values for granular soil samples computed according to Alyamani et al. (1993).

Sample S01 S06 S07 S08 S09 S10 S12

Permeability (ms−1) 1.79E-06 2.17E-05 1.94E-06 1.12E-06 3.82E-07 4.56E-06 6.50E-07

IR map shows most of the crater except for a small patch
in the cold region, which was not covered by any image.
The geothermal field, expressed by the ring-shaped thermal
zone, is located along the border of the crater floor. The ring
is not perfectly symmetric, but appears wider on the east-
ern and western sides (n and r in Fig. 4). Here, the two
opposing flanks are expressed by the highest temperatures
recorded. This geometric symmetry reveals alignments of el-
evated thermal fields trending SW–NE. We note that the same
SW–NE trend is already identified by the long axis of the el-
lipticity of the crater and by one of the main structural trends
seen elsewhere on the island (Caliro et al., 2005; Tibaldi et
al., 2008). The mosaic also shows the thermal anomaly as-
sociated with the boiling ponds, in contrast with the cold
zone close to the crater center and the thermal anomaly
along the NE flank (p and g in Fig. 4). The spatial analy-
sis reveals that the extent of the thermally anomalous area
along the western flank is∼ 2400 m2, and on the opposite
flank it is ∼ 2700 m2, whereas the anomalies at the south-
ern and northern sites cover∼ 500 m2 each. The anomaly at
the center is smaller, being only∼ 70 m2. The overall heated
(> 30◦C) area is therefore∼ 6200 m2 and corresponds to
17 % of the∼ 35 300 m2-wide crater floor. We selected 30◦C
as the threshold because it effectively separates the geother-
mal effect from effects of insolation. We show three cross
sections to highlight the spatial relationship between the ther-
mal anomalies and the topography (Fig. 4). All the sections
show that temperatures augment toward the crater floor and
that the increase is gradual or sharp, depending on whether
the ground is insolated or shadowed, respectively. For ex-
ample, the profileb–b′ shows temperature fluctuations along
the western flank that reflect the stratigraphic layering. The
highest temperatures are reached at the breaks in slope, but
the extents are different, asa–a′ crosses the wide anomalies
(r, n), whereasb–b′ andc–c′ do not. The temperatures have
a tendency to diminish toward the crater center and to flat-
ten at 10◦C (clipped value imposed by our elaboration) in
the cold areas; the only exceptions are the temperature peaks
in correspondence to the boiling ponds (p). Profilec–c′ also
shows the thermal anomaly (g) that occurs along the flank
and reaches values comparable to the anomalies at the flank
base.

4.5 Soil analysis

We present the results from the soil analysis in the form
of a semi-logarithmic grain-size curve and in an ArcGIS
framework on the IR map to provide a combined view of

temperature–grain-size distributions (Fig. 7). The grain-size
plot shows two main groups: the cohesive type, which has
≥ 60 % of cohesive fraction, and the granular type, which
has≤ 40 % of cohesive fraction (Fig. 7). Both soil types are
generally well graded when considering the sand fraction,
with the exception of S01 and S12, which have a dominant
medium and fine sand fraction. In a first-order approxima-
tion, we describe the granular type as medium-to-fine sand
and the cohesive type as a silt–clay. Spatially we observe
that the sample S01 (Fig. 6) collected at the base of the west-
ern mound has 93 % granular content, with cohesive mate-
rial being almost absent. The sample S12 collected at the
southern border and below a hard crust has 85 % granular
content, again with a very low cohesive fraction. At the east-
ern flank, the samples S07, S08 (Fig. 6), S09 and S10 are
granular, with percentages ranging between 64 and 80. The
samples S04 and S05 are collected as close as possible to
the ponds, just a few meters, but out of the area temporarily
flooded by the rain. They have granular content below 40 %
and significant cohesive content of about 60–70 %. A similar
value is found in a deeper sample at the same location (S04 at
50 cm), collected because the IR data showed a∼ 35◦C tem-
perature increase, thus suggesting a reduction in the vertical
efficiency in heat transfer. The samples S02 and S03 (Fig. 6)
collected between the western flank and the mud pools have
cohesive fractions ranging between 70 and 80 %. The sample
S06 (Fig. 6) collected between the eastern flank and the mud
pools is∼ 90 % granular. The soil sample S11, at the north of
the mud pools where there is no thermal anomaly, has only
∼ 68 % of cohesive particles.

Granular soils have higher permeability values than co-
hesive soils, because granular soils allow higher effective
porosity (Graton et al., 1935; Shepherd 1989). The empirical
formulation used to calculate the permeability of our granu-
lar samples indicates that permeability values range between
10−5–10−7 ms−1, with sample locations S06 and S09 being
the most and least permeable, respectively (Table 1). The per-
meability value of the cohesive soils taken from the literature
corresponds tok ∼ 10−11 ms−1 (Bowles, 1988).

4.6 Comparison of IR and soil analysis

Our results show that the locations of thermal anomalies
match with the locations of granular soils. Lower tempera-
tures match with the locations of more cohesive soils (Fig. 7).
We notice that S06 diverges from the general behavior by
having a high granular fraction but being located in a rela-
tively cold area. This particular sample location was close to
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the flooded area, associated with a possible cooling effect.
We also note an apparent correlation between changes in the
granular fraction with the spatial thermal gradient. Looking
at the granular content along the E–W profile (S01–S08), we
note that it decreases by over 60 % from S01 to S02, which
are∼ 40 m apart. A further 10 % decrease is found from S02
to S03, and a 10 % increase from S03 to S06; these locations
are∼ 20 m apart. Higher rates (20–30 % each 20 m) occur be-
tween S06-S07-S08. Similarly we observe strong horizontal
thermal gradients from S01 to S02 and from S06 to S07 (30–
40◦C), whilst from S02 to S06, the gradient is∼ 15◦C. The
granular content along the N–S profile (S08–S10) appears
more stable, as indicated by the horizontal thermal gradient
too.

5 Discussion

This work demonstrates a relationship between the thermal
anomaly and the grain-size distribution of the soil present in
the largest explosive crater on Nisyros Island. The Stefanos
crater is known for the significance of the geothermal activ-
ity, the fluid emissions and the short-term episodes of uplift
and gravity changes. We analyzed the thermal field by means
of a multi-scale infrared study, retrieving spatial resolutions
(pixel size) of 0.05 to 0.8 m. Results show a complex, accu-
rate, high-temperature field bordering the center of the crater
floor that is expressed more strongly on the western and east-
ern sides. Here the temperature is not only higher but the
thermal field is also wider. To test this temperature distribu-
tion in more detail, we collected soil samples and identified
the granulometry. We find a first-order correlation between
the grain-size distribution of the soil, which we consider as a
proxy for soil permeability, and the temperature distribution.

Understanding the dynamics of the degassing close to the
surface at Nisyros is of relevance, as the volcano is currently
ranked in the “Very High Threat” class (Kinvig et al., 2010),
considering the vulnerability of the population (∼ 1000) and
seasonal tourists (∼ 60 000). The Stefanos crater was chosen
for our study because of a recent increase in fumarole activ-
ity and outflow of melted sulfur and hot mud (Papadopoulos
et al., 1998; Chiodini et al., 2002; Sachpazi et al., 2002; Vou-
gioukalakis and Fytikas, 2005; Lagios et al., 2007), as well as
its strong thermal signature in comparison to other phreatic
craters (Lagios et al., 2007; Ganas et al., 2010). Moreover,
our results may have implications relevant for other sites. The
Stefanos crater is a rather typical explosive phreatic crater
with a morphometry similar to those found on other volca-
noes. The Stefanos crater also displays a ring-shaped ther-
mal pattern of fumaroles similarly observed at other vol-
canic craters, such as at Vulcano (Bukumirovic et al., 1997),
Satsuma-Iwojima (Shinohara et al., 2002), Colima (Varley
and Taran, 2003), and Kudrayavy (Yudovskaya et al., 2008).
Vulcano and Kudrayavy in particular could be excellent case
studies to validate or challenge our findings because their

summit craters are collectors of sediments and because they
are safely accessible. At the other active volcanoes, direct
soil sampling, however, is dangerous, making similar studies
difficult.

5.1 Limitations

We surveyed the site during a single day in 2010 and for
2 days in 2013, in both cases collecting images at day and
night time. During this interval Nisyros Island was quies-
cent and we decided to test whether some long-term changes
might have occurred in the hydrothermal system. Seasonal
changes affecting the air temperature and the water table
level may occur, and affect the magnitude and pattern of the
thermal anomalies. However, Teschner et al. (2007) reported
seasonal changes on the order of∼ 5°C at nearby fumarole.
This suggests that the changes are negligible for our purpose.
Moreover, at Nisyros the fumarole temperature outlet does
not change on a day-to-day basis (Teschner et al., 2007), at
least when the volcano is quiescent. Consequently we con-
sider that the IR data, based on single day recording, are rep-
resentative of the site and of the activity during the encom-
passed period. Besides, we observe that the geothermal fields
appeared (in the IR data) almost identical in 2010 and 2013.
Therefore we are confident to relate IR data collected in 2010
to the soil analysis of samples collected in 2013. Indeed, con-
sidering the deposition processes, we do not observe geolog-
ical/geomorphological evidence indicating clear changes in
sedimentation, neither at fast rates (e.g., recent slumpings)
nor at slow rates (e.g., upward grain-size changes) (Fig. 6).
Also, we do not expect changes in sedimentation near mud
pools, because the pits drain the surface runoff rather than
acting as springs. Despite the flooding in this area preventing
us from imaging parts of the crater floor in 2013, we expect
temporary cooling of the water and the soil at the pits because
of the mixing of rising hot gasses with large volumes of cold
rain water. This phenomenon possibly explains the disagree-
ment between the granular aspect of S06 and the low tem-
perature at that location. Limitations may also arise from the
infrared technique, the environmental conditions, the image
processing and mosaicking, or a combination thereof. More-
over, soil sampling and laboratory analysis may affect the
conclusions drawn, as detailed below.

5.1.1 IR imaging

One of the main limitations affecting IR imaging relates to
the changes in emissivity and transmittance, which depend
on geometric conditions (i.e., on distance and viewing an-
gle, and on the physical condition of the target and of the
atmosphere). Here we detail the limitations encountered at
Nisyros and their influence on the results. A detailed de-
scription of general limitations is provided by Spampinato
et al. (2011).
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The IR mosaics we present are computed using a con-
stant camera position. However,D changes within a single
image and across each set of images from foreground to
background, andTobj is expected to vary consequently. In
our data set we found that, doublingD, the Tobj varies in
the range of 1–3 % according to the occurrence ofTobj close
to or higher thanTatm. For the processing, we use the mean
distances in the field of view. Therefore the temperature is
expected to be overestimated at shorter distances. We note
that these differences are small and therefore negligible for
the purpose of this study. Moreover,D influences the geo-
metric and thermal resolutions. IncreasingD has the effect
of widening the pixel size and lessening the apparent tem-
perature, because the pixel will include, comparatively, more
cold surface than degassing vents. This also leads to a lower
sensitivity in the detection of apparent temperature contrasts.
Further errors arise from assuming a single emissivity value,
because it changes with the material and the viewing angle
(Ball and Pinkerton, 2006). We useε = 0.93 for the aver-
age site conditions following previous works (Lagios et al.,
2007). Laboratory tests showed that emissivity is expected
to decrease as the viewing geometry deviates from the per-
pendicular to the surface (Ball and Pinkerton, 2006). Such a
phenomenon should affect the crater floor due to the oblique
viewing, but it should not affect the flanks, as the viewing
geometry is almost perpendicular. Nevertheless we do not
observe any temperature gradient that may relate to the view-
ing angle. Another issue related to the site conditions is the
presence of steam in the line of sight, which dampens the
propagation of the thermal signal (Sawyer and Burton, 2006).
As shown by the digital panoramas (Figs. 2a, 3a and c), we
managed to collect our IR data during low-to-absent (visible)
steam output, although we cannot rule out its contribution.

Considering the atmospheric conditions, we corrected the
transmittance using values of temperature and relative hu-
midity suitable for the site conditions. This does not affect
our results because the purpose of this work is to investi-
gate the spatial distribution of thermal anomalies. Indeed, we
tested that changes inTatm of ±10◦C cause variations ofTobj
ranging between 3 and 1◦C for cool ground and< 1◦C for
heated ground.

Finally, in terms of data processing, the georeferencing ap-
pears accurate along the flank because there are matching
features (layering) between hand-held IR and satellite OP im-
ages, as well as only a small amount of geometric distortion.
We did not further analyze the accuracy of georefencing; at
the crater floor this accuracy may be lower because of the
lack of recognizable features. Moreover, the IR images taken
from the crater floor may suffer from large geometric distor-
tion due to the viewing geometry. However, since our data
are actually collected from a short distance (a few hundred
meters) with a lens providing a field of view of 24◦

× 18◦,
which is somewhat narrow, large distortions are consistent.

5.1.2 Soil analysis

Soil samples were collected within the top 50 cm only. Sam-
pling at a different depth might provide different information
because we commonly observe an increase in alteration and
crystallization at the interface of lithological beddings. How-
ever, we are confident that the correlation of grain size with
the IR data is beyond coincidence.

Grain-size distribution of volcanic deposits is generally in-
vestigated to understand eruptive processes and energy (Bra-
zier et al., 1983) or to address the permeability of volcanic
deposits (Peltier et al., 2012). A major limitation during our
sieving operation was in the artificial modification of the
grain-size distribution. That is, in our samples, native sul-
fur crystals and chemically weathered volcanic clasts (Fig. 7)
were fragile and could break into smaller granular particles.
Conversely, the cohesive material appears as aggregates sim-
ulating granular clasts. We attempted to minimize these is-
sues with a careful washing to avoid strong particle colli-
sion and by using a brush to disperse the cohesive aggre-
gates. The substantial difference in sand contents between
the granular and cohesive type (Fig. 6) suggests that our siev-
ing procedure prevented the convergence to a single sand
class. Another source of error affecting the fraction distri-
bution derives from having volcanic silicate particles with a
density of 2.4–2.6 g cm−3 mixed with native sulfur crystal of
1.9 g cm−3 density. The density contrast could cause a 7 %
difference in weight on equal volumes of silicate and sulfur,
but as the quantity of silicate in our samples is much larger,
the bias becomes negligible.

A systematic bias in the grain-size description of the soil
would cause a different or even misleading estimation of per-
meability values and consequently affect the interpretation of
the thermal field. We might have overestimated the amount
of gravel and coarse sand by having the largest sieve mesh at
2.0 mm and by fixing the maximumd < 10 mm based on vi-
sual description. We evaluate this effect to be∼ 10 % for the
cohesive type and up to∼ 20 % for the granular type (∼ 40 %
for S01). This error affects only the relative percentage of
granular fractions, not the relative percentage of granular vs.
cohesive, though we disregarded the occurrence of gravel to
estimate the soil permeability. The permeability can be mea-
sured by laboratory or in situ tests, but both the procedures
are technically demanding for our purpose (Lambe and Whit-
man, 2008). Alternatively, empirical formulae based on par-
ticle size distribution can be used. We applied the formula-
tion of Alyamani et al. (1993) to the granular samples. The
permeability values of samples S01 and S06 are based on
real grain-size data (Fig. 7). The permeability values of sam-
ples S07, S08, S09, S10, and S12 required a strong assump-
tion about the minimum grain diameter and its mass percent-
age. Nevertheless, all the estimated permeability range cor-
responds to tabulated values (Bowles, 1988) and thus are rea-
sonable. We also tested that the permeability remains in the
same order of magnitude when the mass percentage of the
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Fig. 8. Sketch (not to scale) of the conceptual model. At the bottom an impervious layer is broken by faults that drive the phreatic explosion
through the caldera talus and the deposits of an older eruption. On top of the impervious layer is the crater. The heat rising from the depths
enters the crater through the faults and propagates upward. According to our hypothesis, the crater is initially filled by granular and permeable
deposits that progressively appear only at the sides. Later cohesive and impermeable material deposits on top of and in heteropy to the coarse
ones. The heat flux rises with different efficiency: high in granular deposits (longer arrows), low in cohesive deposits (shorter arrows).
Because of the low permeability at the crater center, fluids are forced to move sideways, increasing the degassing at the border. Possibly there
are also other sideways faults that enhance the heat release at the NW and SE sites (r, n) and funnel hot fluids higher along the NE flank
(g). Fault(s) at the crater center are also responsible for drainage and erosion of the crater filling, by which finally mud pits generate (p).
At the surface, the thermal anomalies are presented in light and dark orange to indicate temperature differences. Brown is the cool terrain
corresponding to the background temperature.

minimum grain diameter increases ten times. This suggests
that permeabilities in the range of 10−5–10−7 ms−1 are real-
istic for the granular soils in the Stefanos crater. Note that the
values refer to water permeability, whereas air permeability,
which is generally higher (Springer et al., 1998), should be
considered. This approximation is nevertheless considered
representative of the different behavior of the soil types iden-
tified at Stefanos.

5.2 Conceptual model

The Stefanos crater has an explosive phreatic genesis and is
elongated NE–SW, consistent with a major fault trend ob-
served elsewhere on the island (Caliro et al., 2005; Tibaldi et
al., 2008). Marini (1993) suggested that a fault may have ini-
tiated the cratering by (i) connecting two aquifers and caus-
ing the flashing of the fluids, or (ii) weakening/opening the
sealing of a deep, over-pressured, hot aquifer that flashed.
One may assume that hot fluids continue to migrate upward
through the fault into the crater (Fig. 8). In this scenario, we
would expect to observe a linear thermal anomaly consis-
tent with the trace of the fault trend. Our data, instead, show
a near-circular thermal anomaly mainly at the border of the

crater. Therefore faults are not the major control on the near-
surface expression of the heat flux.

Our soil analysis suggests that (i) cohesive and impervi-
ous material seals the center of the crater and thus inhibits the
convective fluid ascent, which is then diverted and forced lat-
erally toward the crater border. (ii) There, granular and per-
meable materials effectively transfer the heat along the crater
border. Indeed, we found a permeability contrast of three or-
ders of magnitude in the granular material only. Combined
with cohesive material, our study suggests a contrast of up
to six orders of magnitude. Consequently, the heat release
appears to be controlled by the soil texture distribution. The
soil type, in turn, is related to depositional processes (Fig. 8).
The depositional processes are initiated with rockfalls and
landslides. The remobilized material corresponds to the orig-
inal talus of the caldera escarpment and to the deposits of
the Kaminakia and Stefanos explosions. Afterwards, mixed
granular and cohesive sediments drained by the superficial
runoff into the crater from the surrounding relief and gradu-
ally filled the crater (Fig. 8). We observe that the soil particles
range from pebbles to silt/clay and that there is a selective de-
position based on the energy of the runoff; the particles travel
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either short or long distances from the crater rim according
to their dimension.

The IR observations indicate that the western, southern
and eastern borders have a wider extent of the thermal
anomaly, which might relate to a more widespread deposi-
tion of granular material. We conjecture that the sediment
input at those sites is larger because of the adjacent highs in
relief, the Lofos dome and the caldera rim (Fig. 1b), whereas
in the north the topography is flat (Lakki plain in Fig. 1b).

Only the local mud pools and the diffuse heating along the
northern flank (p and g in Figs. 3–5) contrast the lithological
control and can be speculatively attributed to the volcanotec-
tonic control. Buried and inactive fractures can drain the finer
fraction of soils opening large or small permeable channels.

5.3 Comparison with other results

5.3.1 Thermal data

The comparison of our ground-based survey with previous
satellite-based observations (Lagios et al., 2007) can only ad-
dress the spatial distribution of the thermal anomalies and
not the amplitude. This is because the geometric resolution
differs by two orders of magnitude and therefore the ther-
mal resolution is different. Moreover, the observation angle
from our view point favors accurate thermographic imaging
of the flank, whereas satellites have a better view of the crater
floor. Nevertheless, both data sets reveal that the southern
sector of the crater shows a more pronounced thermal flux
than the northern sector. Prior to the present study, only a
single ground-based IR survey had been performed at Nisy-
ros (immediately after an episode of unrest in 2002) with the
aim of validating satellite IR data (Lagios et al., 2007). Im-
ages were collected from the caldera rim at Nikia (Fig. 1)
and showed all of the Stefanos crater except for the east-
ern flank and the surrounding floor. The spatial resolution
of the previous survey is one order of magnitude lower than
the resolution of our images. Considering this difference, the
amplitude of the anomalies still appears in the same range
of values, and the spatial pattern has remained similar. Only
small anomalies within the current cold region and in the
proximity of the upper crater rim have disappeared since
2002. That might indicate a small decrease in activity fol-
lowing the unrest and simultaneously exclude a significant
decline in heat flux since 2002. The general pattern of tem-
perature distribution remains mostly constant. The anomaly
at the crater floor occurred where we expect the deposition of
cohesive sediment, thus confirming our hypothesis on the de-
positional sealing. The comparison of our 2010 and 2013 sur-
veys, where possible, also does not show significant change
in the extent of the thermal field, confirming the stability of
the degassing system and suggesting that depositional seal-
ing acts at a low rate.

5.3.2 Lithological control

At Nisyros we describe the thermal field of the Stefanos
crater and the concurrence with the soil texture causing per-
meability contrasts on the order of 104–106 ms−1. The role
of soil texture in controlling the thermal permeability was
also suggested at White Island, New Zealand (Mongillo and
Wood, 1995), where lacustrine sediment and fractured lavas
control the distribution of fumarole or thermal anomalies. At
Yenkahe, Vanuatu (Peltier et al., 2012), differences in soil
permeability and thermal expression were observed involv-
ing scoria layers and ash layers. Whereas at these two sites
the permeability contrasts are inherited mostly from primary
eruptive products and processes, at Stefanos it is inherited
from sedimentary depositional processes. A temporal devel-
opment of sediment accumulation and, accordingly, a tem-
perature field change at volcanic craters is open for specula-
tion. In the first stage, we suspect the occurrence of crater
inward sliding of peripheral blocks as observed at Anata-
han, Northern Mariana Island (Nakada et al., 2005) and at
Miyakejima, Japan (Geshi et al., 2012). In a later stage,
the crater collects sediments through ephemeral fluvial-to-
deltaic depositional processes, which activate with seasonal
rainfalls. Our work hence suggests that permeability con-
trasts generated by depositional processes may be relevant
for the evolution of the fumarole field elsewhere, possibly
even being independent from the crater’s genesis. Any pro-
cess reducing the soil permeability (e.g., compaction, argilli-
fication) or increasing the conductive loss (e.g., increased
sediment thickness) might be a factor of risk, because, while
reducing the appearance of the heat signature, it also con-
tributes to the seal the hydrothermal system. The sealing of
hydrothermal sources may lead to overpressure in the hy-
drothermal system, facilitating phreatic explosions (Marini
et al., 1993).

5.3.3 Structural control

While the role of soil texture has been generally underesti-
mated, many previous studies at White Island, New Zealand
(Mongillo and Wood, 1995), at Etna, Vulcano, and Strom-
boli, Italy (Finizola et al., 2003; Aubert et al., 2008), at
Kudryavy, Kurili islands (Yudovskaya et al., 2008), and
Yenkahe, Vanuatu (Peltier et al., 2012) identified and at-
tributed the thermal anomalies to tectonic fault planes or
crater border facilitating the migration and escape of fluids.
These discontinuities may have a geomorphologic expres-
sion at the surface or may be buried.

At the Nisyros caldera the elongation of the crater’s ma-
jor axis, the structural data and CO2 flux measurements in-
dicate that tectonics exert a strong control on fluid pathways
(Caliro et al., 2005). Fractures are identified crosscutting the
southern flank of the Stefanos crater (Caliro et al., 2005).
These fractures are expected to control the fluid flow at depth,
whereas at a shallow level their directional permeability may
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be overprinted by the soil distribution, which pervasively dis-
tributes the thermal expression. Indeed, we observed that the
wider thermal features lie parallel to the fracture direction,
but we do not recognize a well-defined linear thermal pattern.
Also, the gas flux measured during the unrest in 1999–2001
appeared almost homogeneously distributed across the crater
(Caliro et al., 2005), which may result from the enhanced
activity level. Nevertheless, there are two more pieces of ev-
idence, the boiling ponds and the thermal anomaly along the
northern flank (p and g in Figs. 3, 4, and 7, respectively),
suggesting that fractures occur in the subsurface and locally
influence the thermal field.

5.3.4 Stress control

Previous authors have also studied the influence of the grav-
itational stress field on fluid uprise (Schöpa et al., 2011). We
address this topic at Nisyros only qualitatively because the
topography of the Stefanos crater is minor. The crater is ex-
cavated∼ 30 m below the mean caldera topography, and little
is known about the mechanical parameters of the sediments.
A suitable analogue for this morphology is represented by
open pit mines, so we can adopt results from such studies
(Stacey et al., 2003) to our case study. Firstly, the stress field
generated by opposite topographic reliefs does not interact
when the distance of the reliefs is 0.8 times their height. At
Nisyros, this condition is met both at the scales of the caldera
and of the Stefanos crater. Secondly, close to the surface, the
trajectories of the maximum principal stress (σ1) follow the
topography, being near-vertical at the crater walls and hori-
zontal at the crater floor (Stacey et al., 2003). Similarly, an-
other study about the stress field inside a crater morphology
suggests that maximum horizontal stresses are compressive
on the crater floor (Schöpa et al., 2011). This may explain
the absence of thermal degassing and thermal anomalies in
the crater floor at Vulcano Island (Schöpa et al., 2011). How-
ever, an important difference exists between the two sites; at
the crater floor of Stefanos the thermal anomalies are clearly
expressed, whereas at Vulcano thermal anomalies are seen in
the crater floor.

5.4 Implications for future studies

We think that additional case studies might improve the de-
scription and quantification of the geological factors influ-
encing fluid flow in geothermal areas. While the present
study introduced additional complexities to be considered
when inferring deeper geological settings from thermo-
graphic data, repeated surveys can witness the evolution of
the fumarole field. The thermal field of some volcanoes, e.g.,
Vulcano Island, Iwodake, and Colima (Harris and Maciejew-
ski, 2000; Matsushima et al., 2003; Stevenson and Varley,
2008) have experienced temporal and spatial changes. Such
changes are common in active volcanic and geothermal set-
tings and our results suggest that the observation and moni-

toring of lithologies, fault and fractures, and stresses can im-
prove the understanding of those changes. We propose that
thermal anomalies may be reduced by the additional deposi-
tion of sediments acting as an insulating layer; conversely, a
removal of material should augment the appearance. The de-
position or removal of large volumes may be associated with
structural changes such as faulting, landslide or with eruptive
processes, which have the potential to modify the degassing
and thermal anomaly.

From a technical perspective, the interpretation of ther-
mal fields benefits from the integration of IR imaging and
geological information. GIS-based analysis finally allows us
to generate historical databases that easily integrate different
information. This would undoubtedly benefit the hazard as-
sessment by improving the interpretation of infrared data in
terms of increased activity or increased permeability.

6 Conclusions

We used IR measurements to map the spatial arrangement of
the thermal field at the phreatic crater of Stefanos on Nisy-
ros Island (Greece). The combination of IR images and soil
grain-size analysis suggests that the temperature field is in-
fluenced by depositional processes as well as structural fea-
tures such as faults. Warmer areas occur near the edge of
the crater floor within permeable soil, while colder areas oc-
cur within the cohesive sediments at the center. Localized
thermal anomalies might be associated with local or island-
wide fractures, with increased erosional propensity. Conse-
quently, three main factors control fumarole activity: lithol-
ogy (Peltier et al., 2012, this study), volcanotectonic struc-
tures (Finizola et al., 2003), and the stress field (Schöpa et
al., 2011). The relative importance of these three main play-
ers may change from site to site. Assuming that permeabil-
ity changes control the thermal field at the surface, thermal
mapping might allow us to assess the permeability setting of
the near subsurface. We suggest that the parameters control-
ling the fumarole sites might be applicable elsewhere, though
their hierarchy and efficiency may vary according to the gen-
esis of the volcanic morphology and the surrounding geolog-
ical setting.
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