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Abstract. Fire is a natural phenomenon with important im-
plications on soil properties. The degree of this impact de-
pends upon fire severity, the ecosystem affected, topography
of the burned area and post-fire meteorological conditions.
The study of fire effects on soil properties is fundamental
to understand the impacts of this disturbance on ecosystems.
The aim of this work was to study the short-term effects im-
mediately after the fire (IAF), 2, 5, 7 and 9 months after a
low-severity spring boreal grassland fire on soil colour value
(assessed with the Munsell colour chart), soil organic matter
content (SOM) and soil water repellency (SWR) in Lithua-
nia. Four days after the fire a 400 m2 plot was delineated
in an unburned and burned area with the same topograph-
ical characteristics. Soil samples were collected at 0–5 cm
depth in a 20 m× 20 m grid, with 5 m space between sam-
pling points. In each plot 25 samples were collected (50 each
sampling date) for a total of 250 samples for the whole study.
SWR was assessed in fine earth (< 2 mm) and sieve frac-
tions of 2–1, 1–0.5, 0.5–0.25 and< 0.25 mm from the 250
soil samples using the water drop penetration time (WDPT)
method. The results showed that significant differences were
only identified in the burned area. Fire darkened the soil
significantly during the entire study period due to the in-
corporation of ash/charcoal into the topsoil (significant dif-
ferences were found among plots for all sampling dates).

SOM was only significantly different among samples from
the unburned area. The comparison between plots revealed
that SOM was significantly higher in the first 2 months af-
ter the fire in the burned plot, compared to the unburned
plot. SWR of the fine earth was significantly different in the
burned and unburned plot among all sampling dates. SWR
was significantly more severe only IAF and 2 months after
the fire. In the unburned area SWR was significantly higher
IAF, 2, 5 and 7 months later after than 9 months later. The
comparison between plots showed that SWR was more se-
vere in the burned plot during the first 2 months after the
fire in relation to the unburned plot. Considering the differ-
ent sieve fractions studied, in the burned plot SWR was sig-
nificantly more severe in the first 7 months after the fire in
the coarser fractions (2–1 and 1–0.5 mm) and 9 months after
in the finer fractions (0.5–0.25 and< 0.25 mm). In relation
to the unburned plot, SWR was significantly more severe in
the size fractions 2–1 and< 0.25 mm, IAF, 5 and 7 months
after the fire than 2 and 9 months later. In the 1–0.5- and 0.5–
0.25 mm-size fractions, SWR was significantly higher IAF,
2, 5 and 7 months after the fire than in the last sampling date.
Significant differences in SWR were observed among the dif-
ferent sieve fractions in each plot, with exception of 2 and 9
months after the fire in the unburned plot. In most cases the
finer fraction (< 0.25 mm) was more water repellent than the
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others. The comparison between plots for each sieve frac-
tion showed significant differences in all cases IAF, 2 and
5 months after the fire. Seven months after the fire signif-
icant differences were only observed in the finer fractions
(0.5–0.25 and< 0.25 mm) and after 9 months no significant
differences were identified. The correlations between soil
Munsell colour value and SOM were negatively significant
in the burned and unburned areas. The correlations between
Munsell colour value and SWR were only significant in the
burned plot IAF, 2 and 7 months after the fire. In the case of
the correlations between SOM and SWR, significant differ-
ences were only identified IAF and 2 months after the fire.
The partial correlations (controlling for the effect of SOM)
revealed that SOM had an important influence on the cor-
relation between soil Munsell colour value and SWR in the
burned plot IAF, 2 and 7 months after the fire.

1 Introduction

Fire is a natural phenomenon important to many ecosystems
worldwide. It is accepted that fire plays an important role
in plant adaptations and ecosystem development and distri-
bution (Pausas and Kelley, 2009). It is well known that fire
is a common occurrence and important disturbance in bo-
real ecosystems and a factor in the forest ecology of the re-
gion (Vanha-Majamaa et al., 2007). These ecosystems are
strongly adapted to fire disturbance (Granstrom, 2001; Hy-
lander, 2011; Pereira et al., 2013a, b). However, climate
change, recent land-use change and fire suppression poli-
cies, may have important implications on the fire regime, fire
severity and the role of fire in boreal environments (De Groot
et al., 2013; Kouki et al., 2012; Van Bellen et al., 2010).

Fire has been recognized to be a soil-forming factor (Cer-
tini, 2014). Despite this, little research has been carried out
on soil properties from boreal grassland ecosystems (Pereira
et al., 2013a, c). The majority of studies on fire impacts on
grassland soils have been carried out in tropical (Coetsee et
al., 2010; Michelsen et al., 2004), subhumid (Knapp et al.,
1998), desert (Ravi et al., 2009a; Whitford and Steinberger,
2012), arid (Vargas et al., 2012), semiarid (Dangi et al., 2010;
Ravi et al., 2009b; Xu and Wan, 2008), temperate (Harris et
al., 2007) and Mediterranean environments (Marti-Roura et
al., 2013; Novara et al., 2013; Úbeda et al., 2005).

After a fire, the degree of direct and indirect impacts on
soils (e.g. ash and soil erosion, water balance, organic mat-
ter, hydrophobicity, ash nutrient input, and microbiological
changes) has consequences for the complex spatio-temporal
distribution and availability of nutrients (Kinner and Moody,
2010; Malkinson and Wittenberg, 2011; Moody et al., 2013;
Pereira et al., 2011; Sankey et al., 2012; Shakesby, 2011).
The spatio-temporal extent of fire impacts depends on the
fire severity, topography of the burned area and the post-fire
meteorological conditions.

Fire can change soil colour. In fires of high severity the
temperatures increase soil redness, especially at tempera-
tures of 300–500◦C (Terefe et al., 2008) or> 600◦C (Ket-
terings and Bigham, 2000; Ulery and Graham, 1993), which
is attributed to the destruction of the organic matter and in-
crease in iron oxides such as hematite (Terefe et al., 2005).
In contrast, low-severity fires darken the soil as a result of
the incorporation of ash/charcoal into the soil surface and
matrix (Eckmeier et al., 2007). These authors observed that
soil lightness of colour had a significant negative correlation
with charcoal carbon. Despite this knowledge, little is known
about the soil lightness changes in the immediate period af-
ter the fire, when the major changes in soil properties and ash
transport happen (Pereira et al., 2013a; Scharenbroch et al.,
2012).

Few studies have been carried out about fire effects on
soil colour lightness in comparison to unburned soils. Eck-
meier et al. (2007) studied the effects of a slash-and-burn
fire on soil lightness compared to soil in an unburned plot.
However, the study was carried out immediately after the fire
and 1 year after the fire. Major changes were not observed
in detail in the year after the fire. The changes in soil light-
ness after fire can have implications for temperature (albedo
increase or decrease) and microbiological activity (Certini,
2005; Gomez-Heras et al., 2006). Thus it is important to have
high-resolution studies of fire effects on soil lightness.

Fire affects also the soil organic matter (SOM) chemical
composition and quantity. Fire can increase or decrease SOM
depending on the type of fire and severity, a parameter which
considers the effects of biophysical variables such as topog-
raphy, soil type, vegetation species and ecosystem affected
(Certini et al., 2011; González-Peréz et al., 2004; Knicker,
2007). Low-severity fires can increase SOM in the immedi-
ate period after, due to the incorporation of charred material
(De Marco et al., 2005), and high-severity fires tend to con-
sume the major part of SOM due to the high temperatures
(Neff et al., 2005). Depending on the rainfall and topogra-
phy, important amounts of SOM can be also lost by erosion
some months after a fire (Novara et al., 2011).

The soil Munsell colour value, chroma and hue are useful
methods to estimate SOM content (Spielvogel et al., 2004;
Viscarra Rossell et al., 2006). The Munsell colour value is
used to describe the lightness of the soil, chroma measures
the colour intensity and hue the shade of the soil (Thwaites,
2002). Usually, SOM content is negatively correlated with
soil hue, value and chroma (Ibañez-Ascencio et al., 2013;
Viscarra Rossell et al., 2006). However, this relationship de-
pends on the SOM composition. In soils with high organic
carbon, soil darkening is attributed to the composition and
quantity of black humic substances (Schulze et al., 1993).
Soil colour estimation has been carried out using visual ob-
servation in the field (Post et al., 1983), in a laboratory envi-
ronment (Torrent et al., 1980; Scharenbroch et al., 2012), us-
ing diffuse reflectance spectrophotometers (Spielvogel et al.,
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2004; Torrent and Barron, 1983) and more recently, smart-
phone applications (Gomez-Robledo et al., 2013).

It is widely known that fire can induce soil water repel-
lency (SWR), with implications for soil infiltration, water
and nutrient availability and an increase of runoff and ero-
sion (DeBano et al., 2000; Mataix-Solera et al., 2013; Varela
et al., 2005). The fire impacts on SWR depend on type of soil
affected, temperature reached, fire severity, fire recurrence,
time of residence, type and amount of vegetation combusted,
ash produced and pre- and post-fire soil moisture content
(Bodí et al., 2011; Doerr et al., 2000; Jordán et al., 2011;
MacDonald and Huffman, 2004; Mataix-Solera and Doerr,
2004; Tessler at al., 2012; Vogelmann et al., 2012). Previous
studies observed that after a fire, SWR is especially changed
in soils that were wettable before the fire compared to those
that are hydrophobic (Gimeno-Garcia et al., 2011). In wet-
table soils, fire usually increases SWR (Granged et al., 2011;
Mataix-Solera and Doerr, 2004), meanwhile in hydrophobic
soils, fire can slightly reduce or have no impact on SWR (Do-
err et al., 1998; Jordán et al., 2011; Neris et al., 2013). How-
ever, this effect depends on fire severity. Rodriguez-Alleres
et al. (2012) reported that moderate-to-high severity fires can
increase SWR in naturally repellent soils. Soil heating in-
creases SWR due the volatilization of organic compounds in
the litter and topsoil. The heating of the soil surface layer
develops a pressure gradient in the heated layer, causing the
upward movement into the atmosphere of these compounds,
while others move downwards. The decrease of soil tem-
perature with depth forces SOM compounds to condense
onto soil particles at or below the soil surface. Soil heat-
ing can redistribute and concentrate the natural substances
in soil and litter, facilitate the bonding of these substances
to soil particles, and increase their hydrophobicity as a re-
sult of conformational changes in their structural arrange-
ment (Doerr et al., 2009). Heat changes the SOM compo-
sition through thermal alteration and chemical transforma-
tion. Heating also induces an increase in the content of aro-
matic compounds, the formation of complex high-molecular-
weight compounds and low-molecular-weight oxo- and hy-
droxyacids (Atanassova and Doerr, 2011). Soil moisture con-
trols SWR. Doerr and Thomas (2000) observed in coarse-
textured burned and unburned soils that SWR disappeared
when soil moisture exceeded 28 %. MacDonald and Huff-
man (2004) noted soil moisture thresholds where soils be-
came hydrophilic were 10 % for unburned sites, 13 % for ar-
eas burned with low severity and 26 % for sites burned at
moderate and high severity. Post-fire changes in SWR are
not well understood. Doerr et al. (2009) stated that more de-
tailed studies are needed to determine (i) the duration of fire-
induced SWR in different vegetation types and (ii) the rel-
ative roles of physical, chemical, and biological factors in
breaking down post-fire SWR.

Spring grassland fires are frequent in Lithuania. After the
winter, farmers burn the dead grass in order to improve fields
for spring and summer crops (Pereira et al., 2012a). Thus,

it is important to know the effects of these fires on soil
properties in order to understand the impacts of this prac-
tice and their persistence in time, especially in this environ-
ment where few studies have been carried out. This study
contributes to a better understanding of fire effects and short-
term changes in soil properties in boreal grasslands. At this
time, the use of fire for landscape management is forbidden
in Lithuania but, frequently, farmers set fires and leave the
area until the fires are extinguished, leading on many oc-
casions to loss of infrastructure and impacts on natural re-
sources (Mierauskas, 2012; Pereira et al., 2012a).

The aim of this work was to study the short-term temporal
effects of a low-severity spring grassland fire on some surface
soil properties (0–5 cm) such as soil colour value (assessed
with the Munsell colour chart), SOM content and SWR, in
order to observe if this grassland fire induced relevant short-
term impacts on these soil properties. The study focused on
the upper soil layer because previous studies have shown
that fire effects on soil are especially limited to the first 5
cm (Marion et al., 1991; Blank et al., 2003), and especially
in low-severity fires, where soil temperatures rarely exceed
100◦C at the surface and 50◦C at 5 cm (Agee, 1973).

2 Materials and methods

2.1 Study site and design

On 15 April 2011 an area of 20–25 ha near Vilnius (Lithua-
nia) was affected by a wildfire. The burned area is lo-
cated at coordinates 54◦42′ N, 25◦08′ E with an elevation of
158 m a.s.l. (above sea level). According to the local farmers,
the fire was attributed to human causes resulting from the
burning of grass and wood residues (Pereira et al., 2012a).
The characteristics of the study area are described in Table 1.
Fire severity was considered low based on the predominance
of black ash and unburned patches (Pereira et al., 2013a).
Four days after the fire, a plot of 400 m2 was delineated
(20 m× 20 m, with a grid with 5 m spacing between sam-
pling points) in an unburned and burned area with the same
topographical characteristics (flat area). In total, 25 samples
(topsoil, 0–5 cm) were collected in each plot, immediately
after burning (IAF) and 2, 5, 7 and 9 months later. Samples
were stored in plastic bags, taken to the laboratory and air-
dried for 24 h to constant weight. Subsequently, the samples
were carefully sieved through a 2 mm mesh.

2.2 Laboratory analysis

The soil colour value was assessed using the Munsell colour
chart (Viscarra Rossel et al., 2006) in the 2 mm sieved
fraction. The Munsell value gives information about soil
darkness/lightness. Low values correspond to dark soils
and high values to light soils (Eckmeier et al., 2007). All
the soil value analyses were carried out by the same per-
son under the same light conditions. SOM content was

www.solid-earth.net/5/209/2014/ Solid Earth, 5, 209–225, 2014



212 P. Pereira et al.: Short-term changes in soil Munsell colour value, SOM content and SWR

Table 1.Main characteristics of the study area.

Geological substrate Glacio-lacustrine deposits
(Kadunas et al., 1999)

Soil type (WRB, 2006) Albeluvisols

a, bTexture (% sand, silt and clay) 9.4 (±3.07), 63.5 (±8.14),
(USDA, 2004) 27.1 (±5.21) (Silt loam)

apH 7.2 (±0.15)

aOrganic matter content (%) 6.5 (±1.16)

Mean annual rainfall (mm) 735
(Bukantis, 1994)

Mean annual temperature (◦C) 8.8
(Bukantis, 1994)

Dominant vegetation Fall dandelion (Leontodon
autumnalisL.) and sweet
vernal grass (Anthoxanthum
odaratumL.)

a Values based on unburned soil samples (N = 25).
b Sand: 2–0.05 mm, silt: 0.05–0.002 mm, clay:< 0.002 mm.

estimated by the loss-on-ignition (LOI) method using ap-
proximately 1 g of soil heated to 900◦C for 4 h (Avery and
Bascomb, 1974) after drying at 105◦C for 24 h to remove
the moisture. LOI was calculated according to the formula
LOI = (Weight105− Weight900) / Weight105) × 100.

Soil texture of unburned samples was analysed using the
Bouyoucos method (Bouyoucos, 1936) and pH with 1 : 2.5
deionized water (Table 1). Soil water repellency was assessed
in the samples sieved through the 2 mm mesh (fine earth)
and in the subsamples of all of the 250 samples divided
into different soil sieve fractions of 2–1, 1–0.5, 0.5–0.25 and
< 0.25 mm, as used in previous studies (Jordán et al., 2011;
Mataix-Solera and Doerr, 2004). Soil sieving was done on
the dried samples and the separation of fractions was carried
out carefully, in order to not destroy the aggregates (Mataix-
Solera and Doerr, 2004). In total 1250 SWR subsamples were
analysed. Between 5 and 7 g of soil of each sample and sub-
sample were placed in 60 mm diameter plastic dishes and ex-
posed to a controlled laboratory environment (temperature of
20◦C and 50 % of air relative humidity) for 1 week in order
to avoid potential effects of atmospheric conditions on SWR
(Doerr, 1998; Doerr et al., 2005). The persistence of SWR
was measured with the water drop penetration time (WDPT)
method that involves placing three drops of distilled water
onto the soil surface and registering the time required for the
complete penetration of the drops (Wessel, 1988). The av-
erage time of the three drops was used to assess the WDPT
of each sample and subsample. WDPT classes were assessed
according to Doerr (1998) (Table 2).

Table 2. WDPT classes used in this work. Water drop penetration
time measured in seconds (s) (according to Doerr, 1998).

WDPT classes Wettable Low Strong Severe

WDPT interval (s) < 5 6–60 61–600 601–3600

2.3 Statistical analysis

Data normality and homogeneity of the variances were tested
with the Shapiro–Wilk test (Shapiro and Wilk, 1965) and
Levene test, respectively. Data were considered normal and
homogeneous at ap > 0.05. In this study, data did not fol-
low the normal distribution and displayed heteroscedasticity.
Thus the alternative non-parametric Kruskal–Wallis ANOVA
(analysis of variance) test (K–W) was used to analyse differ-
ences among sampling dates and SWR according to the ag-
gregate sieve fractions in each plot. The comparison between
plots was carried out with the Mann–WhitneyU test (MU).
If significant differences at ap < 0.05 were observed after
the K–W test, a Tukey HSD (honestly significant difference)
post-hoc test was applied.

Correlations between the variables were carried out with
the Pearson coefficient of correlation after variables SQR
transformation, in order for the data to meet normality re-
quirements. In the case of SWR, the coefficient of correlation
just considered the fine-earth samples. A partial correlation
was carried out between Munsell colour value and SWR, us-
ing SOM content as a control variable in order to observe
if SOM influenced the correlation between Munsell colour
value and SWR. Significant correlations were considered at
a p < 0.05. Statistical analyses were carried out with STA-
TISTICA 6.0 (Statsoft Inc., 2006).

3 Results

3.1 Soil Munsell colour value

The soil colour in the burned and unburned plots was in
the soil Munsell 10YR hue for all the samples. The Mun-
sell colour value was significantly different among sampling
dates in the burned plot (K–W = 35.37,p < 0.001), but not in
the unburned area (K–W = 9.20,p > 0.05) (Fig. 1). Soil was
significantly darker in the burned than in the unburned plot
for all sampling dates, IAF (MU = 1,p < 0.001), 2 months
(MU = 69, p < 0.001), 5 months (MU = 46,p < 0.001), 7
months (MU = 56,p < 0.001) and 9 months later (MU = 84,
p < 0.001).

3.2 Soil organic matter

SOM content was not significantly different among sampling
dates in the burned plot (K–W = 6.60,p > 0.05), but it was in
the unburned area (K–W = 20.96p < 0.001) (Fig. 2). SOM
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Fig. 1. Evolution of soil Munsell value in the unburned and burned plot in the 2 

post-fire sampling dates (bars represent ±Standard Deviation). Different 3 

letters indicate significant differences (p<0.05) among time. IAF (Immediately 4 

After the Fire). 5 

Fig. 1. Evolution of soil Munsell value in the unburned and burned
plots in the post-fire sampling dates (bars represent± standard de-
viation). Different letters indicate significant differences (p < 0.05)
among times. IAF (Immediately After the Fire).
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Fig. 2. Evolution of SOM content in the unburned and burned plot in the post-2 

fire sampling dates (bars represent ±Standard Deviation). Different letters 3 

indicate significant differences (p<0.05) among time. IAF (Immediately After 4 

the Fire). 5 

 6 

Fig. 2.Evolution of SOM content in the unburned and burned plots
in the post-fire sampling dates (bars represent± standard deviation).
Different letters indicate significant differences (p < 0.05) among
times.

content was significantly higher in the burned plot than in the
unburned plot IAF (MU = 31,p < 0.001) and 2 months after
the fire (MU = 116,p < 0.001). Five (MU = 266,p > 0.05), 7
(MU = 299,p > 0.05) and 9 months (MU = 254,p > 0.05) af-
ter the fire no significant differences were observed between
plots.

3.3 Soil water repellency

The SWR of the fine earth was significantly different among
sampling dates in the burned (K–W = 94.18,p < 0.001) and
unburned plots (K–W = 45.65,p < 0.001) (Fig. 3). With time
a decrease of SWR was observed in the burned area. In the
unburned area SWR was significantly more severe IAF, 2,

 1 

Fig. 3. Evolution of SWR (composite sample) in the unburned and burned plot 2 

in the post-fire sampling dates (bars represent ±Standard Deviation). Different 3 

letters indicate significant differences (p<0.05) among time.  4 

  5 

Fig. 3. Evolution of SWR (composite sample) in the unburned
and burned plots in the post-fire sampling dates (bars repre-
sent± standard deviation). Different letters indicate significant dif-
ferences (p < 0.05) among times.

5 and 7 months after the fire than 9 months later. SWR was
significantly high in the burned soil in the first two sampling
dates, IAF (MU = 0,p < 0.001) and 2 months after the fire
(MU = 26, p < 0.001). No significant differences were ob-
served between plots 5 (MU = 249,p > 0.05), 7 (MU = 238,
p > 0.05) and 9 months (MU = 267,p > 0.05) after the fire.

In relation to the analysed sieved soil fractions, signif-
icant differences were observed in SWR among all sieve
fractions in the burned and unburned areas (Table 3a). In
the burned area significant differences were observed in
the coarser sieve fractions (2–1 and 1–0.5 mm) in the first
7 months after the fire, whereas in the finer fractions (0.5–
0.25 and< 0.25 mm), significant differences among fractions
were not identified until 9 months later (Table 4). In the un-
burned area’s aggregate-size fractions of 2–1 and< 0.25 mm
SWR was more severe IAF, 5 and 7 months after the fire than
2 and 9 months after the fire. In the size fractions 1–0.5 and
0.5–0.25 mm, SWR was significantly more persistent IAF, 2,
5 and 7 months after the fire than 9 months after the fire (Ta-
ble 4).

The SWR was higher in the finer fractions (0.5–0.25 and
< 0.25 mm) than in the coarser fractions (2–1 and 1–0.5 mm)
(Table 4). Significant differences were observed in the stud-
ied sieve fractions in SWR in each plot during the experimen-
tal period, with the exception of 2 and 9 months after the fire
in the unburned plot (Table 3b). In the unburned and burned
plots for all sampling dates, the SWR in the finer fraction
(< 0.25 mm) was significantly more severe than in the other
sieve fractions, except for IAF and 5 months after the fire in
the unburned plot, where no significant differences were ob-
served between 0.5–0.25 mm and< 0.25 mm sieve fractions
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Table 3. Results of Kruskal–Wallis ANOVA and Mann–Whitney
tests for SWR according to the analysed sieved fractions, (a) time,
(b) soil sieved fractions in the same plot and (c) between plots in
each soil sieved fraction.

(a) Sieved
fraction Plots K–W p

mm

2–1 Unburned 43.07 ***
Burned 75.25 ***

1–0.5 Unburned 35.39 ***
Burned 78.17 ***

0.5–0.25 Unburned 41.17 ***
Burned 87.28 ***

< 0.25 Unburned 62.89 ***
Burned 89.44 ***

(b) Sampling Plot K–W p

date

IAF Unburned 25.14 ***
Burned 33.29 ***

2 months Unburned 4.06 n.s.
Burned 24.35 ***

5 months Unburned 41.30 ***
Burned 9.07 *

7 months Unburned 36.21 ***
Burned 27.07 ***

9 months Unburned 4.25 n.s.
Burned 8.60 *

(c) Sieve
Sampling fractions MU p

date mm

IAF 2–1 30 ***
1–0.5 30 ***
0.5–0.25 13.50 ***
< 0.25 15 ***

2 months 2–1 39 ***
1–0.5 10.50 ***
0.5–0.25 22.50 ***
< 0.25 13.00 ***

5 months 2–1 30.50 ***
1–0.5 29.50 ***
0.5–0.25 67 ***
< 0.25 164 *

7 months 2–1 255 n.s.
1–0.5 265 n.s.
0.5–0.25 193 *
< 0.25 196 *

9 months 2–1 298.5 n.s.
1–0.5 297.5 n.s.
0.5–0.25 299 n.s.
< 0.25 225 n.s.

n.s.: non-significant at ap < 0.05.< 0.05∗, and< 0.001∗∗∗.
IAF (immediately after the fire).

(Table 4). Significant differences were also found in SWR
between both plots IAF, 2 and 5 months after the fire. Seven
months after the fire significant differences were only ob-
served in the finer fractions (0.5–0.25 and< 0.25 mm) and
9 months later no significant differences were identified be-
tween plots in any of the sieve fractions (Table 3c).

In the unburned plot, for all the sampling dates and aggre-
gate sieve fractions analysed, samples were predominantly
wettable (Fig. 4a, c, e, i), with the exception of 7 months after
the fire where the finer fraction (< 0.25 mm) samples were
classified as “low”. In the burned plot the SWR was clas-
sified mainly as “low” (Fig. 4b, d, f, h, j). However, SWR
was classified as strong and severe IAF in the finer fraction
(< 0.25 mm). With time SWR persistence was reduced in all
the fractions and 9 months after the fire the samples were all
wettable, with SWR< 5 s (Fig. 4i, j).

3.4 Correlation between variables

In the unburned area the correlations between soil Munsell
colour value and SOM were always negatively significant
(p < 0.05). The correlations between soil Munsell colour
value and SWR and between SOM and SWR were not signif-
icant in any case (Table 5). The correlations between Mun-
sell colour value and SOM in the burned area were nega-
tively significant for all sampling dates. However, the corre-
lations between Munsell colour value and SWR and between
SOM and SWR were only significant IAF, 2, and 7 months
after the fire (7 months later only in the correlation between
Munsell colour value and SWR). The coefficients of corre-
lation decrease with time in all cases (Table 5). The partial
correlation results showed that SOM controls the correla-
tion between Munsell colour value and SWR, in the burned
plot IAF, 2, and 7 months after the fire. IAF the original cor-
relation was highly significant (r =−0.81, p < 0.001), be-
ing considerably reduced in the partial correlation (r = 0.41,
p < 0.01), 2 months after the fire the original correlation was
significant (r = 0.39, p < 0.01), disappearing in the partial
correlation (r = 0.26,p > 0.05), and 7 months later the orig-
inal correlation was significant (r = 0.32,p < 0.05), decreas-
ing in the partial correlation (r = 0.14,p > 0.05) (Table 5).

4 Discussion

4.1 Soil Munsell colour value

Fire darkened the soil in the immediate period after the fire.
Incomplete fuel combustion produces black ash (Úbeda et
al., 2009), especially in low-severity fires, as in the present
one, where the temperatures do not reach high values (Kee-
terings and Bigham, 2000). Normally, black ash is incorpo-
rated into the soil or can be eroded in the weeks following the
fire (Pereira et al., 2013b), contributing to the darkening of
the soil following the fire and the reduction of Munsell value
as observed in this study and in previous reports (Ulery and
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Fig. 4.Relative frequency of SWR for composite and sieved soil fractions,(a) unburned, after the fire;(b) burned, after the fire;(c) unburned,
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Table 4. Water drop penetration time (s) in terms of the different size fractions for unburned and burned plots for different sampling dates.
Statistical comparisons were carried out between times (upper case) and in each plot (different fractions in the same plot) during the studied
sampling dates (lower case). Different letters represent significant differences atp < 0.05.

Sampling Plots 2–1 mm 1–0.5 mm 0.5–0.25 mm < 0.25 mm
date

IAF Unburned 1.73(0.78)Ab 2.02(1.91)Ab 3.12(7.29)Aab 15.44(37.42)Aa
Burned 65.74(133.01)Ab 101.13(165.66)Ab 159.65(301.90)Ab 500.44(657.81)Aa

2 months Unburned 1.57(0.58)B 1.62(0.74)A 1.78(1.36)A 3.21(4.86)B
Burned 6.60(4.05)Bb 12.24(15.14)Bb 17.88(26.53)Bb 119.13(237.27)Ba

5 months Unburned 1.72(0.62)Ab 1.73(0.61)Ab 2.69(3.69)Aa 11.66(16.02)Aa
Burned 6.70(5.02)Bb 8.08(7.32)Bb 9.13(9.86)Cb 39.33(46.50)Ca

7 months Unburned 2.12(0.79)Ab 2.25(1.92)Ab 2.70(2.42)Ab 11.93(15.56)Aa
Burned 3.24(1.89)Cb 3.61(2.67)Cb 4.60(4.29)Db 19.04(25.45)Da

9 months Unburned 1.05(0.15)B 1.08(0.22)B 1.02(0.09)B 1.33(0.25)B
Burned 1.10(0.30)Cb 1.36(1.20)Cb 1.09(0.34)Eb 1.57 (0.85)Ea

Table 5.Coefficients of correlation between the studied variables in the burned area.

Munsell Munsell Partial
Sampling colour colour SOM correlation
date value value vs. SWR (SOM)

vs. SOM vs. SWR

IAF Unburned −0.63c −0.01n.s. 0.01n.s. n.c.
Burned −0.74c −0.81c 0.75c −0.41b

2 months Unburned −0.62c −0.01n.s. 0.02n.s.
− n.c.

Burned −0.56b −0.39b 0.34a −0.26n.s.

5 months Unburned −0.47b −0.08n.s. 0.17n.s. n.c.
Burned −0.45b −0.23n.s. 0.22n.s. n.c.

7 months Unburned −0.50b −0.10n.s. 0.18n.s. n.c.n.s.

Burned −0.45b −0.32a 0.17n.s.
−0.14n.s.

9 months Unburned −0.41b −0.01n.s. 0.01n.s. n.c.
Burned −0.42b −0.22n.s.

−0.07n.s. n.c.

Significant at< 0.05a, < 0.01b and< 0.001c.
n.s.: non-significant at ap < 0.05.
n.c.: partial correlation not calculated due to the lack of correlation between Munsell colour value
and SWR.

Graham, 1991). With time, despite the significant differences
of soil Munsell colour value between plots, the soil became
lighter in the burned plot. This may be attributed to the incor-
poration of burned residues into the first top centimetres of
the soil, reducing soil surface darkness (Eckmeier et al. 2007;
Pereira et al., 2012b, c; Woods and Balfour, 2011). The black
ash cover has implications in the soil environment in the im-
mediate period after the fire (e.g. temperature and water con-
tent). The soil blackening decreases the albedo. This leads to
an increase of the soil temperature during the day and a more
rapid cooling and heat loss at night (Bowman et al., 2009;
Hart et al., 2005; Mataix-Solera et al., 2009; Moody et al.,
2013; Scharenbroch et al., 2012). These changes in the soil
environment may have effects on the soil temperature and

consequently on the microbiological activity, since most bio-
logical reactions are related to the temperature. Warmer soils
after the fire increase the rates of microbiological processes,
such as organic matter decomposition and nutrient release,
important to plant recovery (Badia and Marti, 2003; Dooley
and Treseder, 2012; Hart et al., 2005; Raison and McGar-
ity, 1980). The change in environmental conditions, together
with the nutrient availability, rainfall amount after the fire,
and warmer temperatures during the spring season, can ex-
plain the fact that 2 months after the fire vegetation recov-
ered completely in this burned area. During this period a to-
tal of 88 mm of rainfall was registered (Pereira et al., 2012a;
2013a). As a result of this, 2 months after the fire the effects
of soil colour on soil temperature may have been reduced. As
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in other grassland ecosystems, the fast vegetation recovery is
an indicator that the ecosystem is resilient to the impacts of
this type of fire (Bond and Parr, 2010; Lewis et al., 2009;
Morgan, 1999; Wu et al., 2014).

4.2 Soil organic matter

SOM was higher in the burned plot, especially in the first 2
months after the fire. Among sampling dates, a significant
difference was only observed in the unburned plot. Previous
studies observed that SOM increases in the immediate pe-
riod after the fire. Vergnoux et al. (2012) identified that in
recent fire-affected areas the total organic carbon was signif-
icantly higher. In low-severity fires, as in this study, SOM
increases temporarily due to the incorporation of ash and
charred material into the soil profile (González-Peréz et al.,
2004). Short-term increases of SOM in the immediate pe-
riod after low and medium severity fires were also reported
in other studies (De Marco et al., 2005; Gimeno-Garcia et al.,
2000; Mataix-Solera et al., 2002; Vogelmann et al., 2012).
In this work, during the experimental period significant dif-
ferences among sampling periods were not observed in the
burned plot and this may be related to the fact that the studied
plot is located in a flat area and the fast vegetation recovery
may have prevented or reduced wind erosion. Soil erosion
and SOM transport are accelerated in fire-affected areas due
to vegetation removal (Shakesby et al., 2011). Previous stud-
ies have shown that losses are high in sloped areas due to
water erosion. Gimeno-Garcia et al. (2000) observed that 1
month after an experimental fire carried out in a sloped area,
the majority of SOM was washed out due to an extreme rain-
fall event of more than 30 mm h−1. Also, Novara et al. (2011)
identified a redistribution and a major accumulation of SOM
on the bottom of the slope after a fire in the Valencia region
(Spain). The authors attributed this to transport of burned
material by surface wash. In the unburned area significant
differences among sampling periods were observed, show-
ing that fire might have changed in the short-term the SOM
seasonal variation. The lowest value of SOM was observed
IAF (April 2011), increasing in the following months. This
reduced SOM content in the beginning of the spring season
may be attributed to the lack of fresh litter input and reduced
biological activity during the winter due to the low tempera-
tures. In summary, this spring fire of low severity increased
SOM which may have contributed to the rapid recovery of
the vegetation (Pereira et al., 2013a).

The correlation between soil Munsell colour value and
SOM was always significantly negative, but especially high
in the immediate sampling dates after the fire in both plots.
Darker soils correspond to low Munsell values (Viscarra
Rosell et al., 2006; Shields et al., 1968; Conant et al., 2011),
independently of the area being affected by fire or not. In
burned areas, soil became darker with the increasing content
of aromatic carbon, present in high amounts in the charred
material produced by fires (Dümig et al., 2009). In soils af-

fected by low-severity fires, the colour is darker due to the in-
complete combustion of organic matter (Terefe et al., 2008).

4.3 Soil water repellency

SWR in the fine earth was significantly different among sam-
pling dates in the burned plot until 2 months after the fire,
whereas in the unburned plot 9 months after the fire SWR
was significantly lower than the previous sampling dates.
Fire-induced SWR was reported in previous works in ar-
eas affected by low-severity fires (Gleen and Finley, 2010;
Granjed et al., 2011; Stoof et al., 2011). Fire changes SWR
in previously wettable soils depending on the fuel amount
and litter consumed, soil temperature and pre-fire moisture
level (Doerr et al., 2000). In this burned plot it is very likely
that the direct impacts of fire (e.g. temperature) were min-
imal since IAF no significant differences were observed in
soil moisture between the burned (14.17 %± 2.83) and un-
burned (13.59 %± 2.82) plots (Pereira et al., 2012b). In this
case, since the temperature impact on the topsoil was prob-
ably minimal, the observed increase of SWR in the burned
plot can be attributed to the indirect effect of ash deposition
on the topsoil. Miranda et al. (1993) observed that during a
prescribed fire in an open grassland, at 2 cm below the soil
surface, the temperature ranged from 29 to 38◦C. According
to these authors and Heringuer et al. (2002), in grassland fires
the soil temperature does not increase importantly and the
majority of the heat is lost by convection. Thus, as observed
by Vogelman et al. (2012), the increase of soil temperature
may not be the responsible for the increase of SWR. The
ash produced at low temperature can be hydrophobic (Bodí
et al., 2011) and once deposited onto the soil surface can
contribute strongly to SWR increases. As in previous works,
the ash collected in this burned area (all samples had black
colour) was hydrophobic (Pereira et al., 2012a). Ash water
repellency is strongly linked to ash chemistry, especially the
organic matter content. Dlapa et al. (2013) observed that the
wettability of ash decreases with organic matter content. Hy-
drophobic surfaces are mainly present in organic material,
while inorganic material produced at high temperatures is
hydrophilic. According to the authors, this explains the dif-
ferent hydrological properties of different types of ash. These
results suggested that the incorporation of organic hydropho-
bic material produced by the fire may have increased tem-
porarily the SWR. In the unburned plot, changes in SWR
may be linked with the seasonal variability in this parame-
ter. SWR is a short-term or seasonal phenomenon and de-
pends, among other factors, on climate, the critical soil mois-
ture content above which SWR disappears, texture and or-
ganic matter (Doerr et al., 2000; Vogelman et al., 2013).
Nine months after the fire (January 2012), the soil was cov-
ered by a thick layer of snow and ice. SWR is more severe
after dry periods than during wet conditions (Doerr et al.,
2000). Buczko et al. (2005) observed in sandy luvisols that
SWR was more severe in summer than in autumn/winter. The
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authors attributed this seasonal variability to the organization
of organic amphiphilic compounds that changes during wet-
ting and drying cycles according to the seasonal variations of
the soil moisture regime. However, the seasonal variability
of organic compounds dissolved into the soil solution may
also be relevant. Studies carried out by Arye et al. (2007)
observed that SWR decreases with the increase of dissolved
organic matter leached out by water. In grassland soils, Far-
rel et al. (2011) observed that soil-dissolved organic carbon
was higher in spring than in autumn and winter due to the re-
duced microbiological activity and the vegetation’s seasonal
carbon cycles, which have implications for SOM decompo-
sition. Also, according to Kaiser et al. (2001), the soil sam-
ples collected in the summertime are richer in hydrophobic
compounds than those collected in winter. Further research
is needed in order to understand the dynamics of seasonal
variation of SWR in boreal grasslands, especially during the
wintertime in snow covered soils.

Two months after the fire, SWR decreased substantially
in the burned plot, while SOM maintained the same lev-
els during the whole study period. Vogelmann et al. (2012)
also observed after a grassland fire an increase of SWR 2
months after the fire, decreasing thereafter. The preservation
of SOM levels may be attributed to the rapid vegetation re-
cuperation in the studied area, which maintained the SOM
content levels, but vegetation recovery, rainfall, microbiolog-
ical and invertebrate activity, may contribute to a decrease
in the amount of hydrophobic compounds produced by the
fire. The biological activity associated with vegetation re-
covery has implications on the reduction of SWR (Doerr et
al., 2009). Knicker et al. (2013) observed that in fire-affected
soils where there is no vegetation cover re-establishment and
litter input, the different chemical composition of SOM and
pyrogenic organic matter increase the SOM aromaticity with
reduced solubility. The inputs of fresh litter from vegeta-
tion re-establishment replenish SOM and changes soil chem-
ical composition towards that of an area unaffected by fire
(Knicker et al., 2013).

In burned areas, previous reports have shown that after a
fire, dissolved organic compounds increased in relation to the
unburned plot. Michalzik and Martin (2013) observed that af-
ter a low-severity prescribed fire in a pine forest, the amount
of dissolved organic carbon was significantly higher in the
burned plot than in the unburned area. The authors concluded
that the leaching of dissolved organic carbon increased mea-
surably after low-severity fires. Similar findings were regis-
tered by Zhao et al. (2012) after a prescribed fire in a wet-
land located in north-eastern China. The authors identified
that the dissolved organic carbon was higher in the burned
plot than in the unburned plot, until the second growing sea-
son after the fire. The solubility of the dissolved organic frac-
tions depends on pH (Andersson et al., 2000; Impellitteri et
al., 2002). Impelliteri et al. (2002) observed that the solu-
bility of humic and fulvic acids in soils increased with in-
creasing pH, while hydrophilic acids remain constant at a pH

range between 3 and 9. The authors found that at a pH be-
tween 3 and 6 the hydrophilic acids dominate the dissolved
organic fraction, while at a pH between 7 and 9, humic acids
were the dominant fraction. Humic and fulvic acids are rec-
ognized to be potential sources of SWR (Atanassova and Do-
err, 2011; Badía-Villas et al., 2013; DeBano, 2000). Humic
acids increase in percentage in the humin fraction after lab-
oratory heating and real fires (González-Peréz et al., 2004).
The potentially leached material in the burned area may be
primarily composed of humic and fulvic acids, very likely
leached in the first 2 months after the fire. The soil pH of
the burned plot was in the range of 6.73–7.42 IAF and 7.13–
7.66 2 months after the fire (not shown), hence favourable to
the leaching of fulvic and especially humic acids. In contrast,
pH levels were not the most advantageous to hydrophilic acid
leaching. Overall, this may have facilitated the reduction of
SWR. Fire induces important changes in pH and increases
nutrient availability due to ash deposition, determining the
composition of the microbial community. In the short term,
the heat impacts on soil induce microbial mortality. Over the
long term, there may be changes in soil microbial commu-
nities due to the modification of the plant community and
soil environment (Hart et al., 2005). In addition to the di-
rect impact of fire, bacterial activity can be increased in the
immediate period after the fire due to increases in soil pH
and dissolved organic compounds (Bárcenas-Moreno et al.,
2011). This increase of soluble carbon in fire-affected soils
stimulates the recolonization of some microbes such as het-
erotrophic bacteria and enhances the basal respiration rates
(Mataix-Solera et al., 2009). After the fire, the increase of
microbiological activity reduces the SWR, due to the decom-
position of waxes and hydrophobic material (Franco et al.,
2000; Noordman and Jansen, 2002). This activity contributes
to the release of organic nutrients immobilized in aromatic
compounds present in charred material and fundamental to
plant recovery (Knicker et al., 2013). Microbiological activ-
ity stimulates root development, plant growth and vice versa
(Cheng and Coleman, 1990; Fu and Cheng, 2002; Vessey,
2003). The plant regrowth protects the soil from raindrop
impact (Cerdà and Robichaud, 2009) and root development
creates new pathways and preferential water flow, increasing
the water infiltration (Lange et al., 2009). The invertebrates’
activity may also have contributed to the reduction of soil
hydrophobic compounds and changed the hydraulic conduc-
tivity in the burned plot studied (Fig. 5). To our knowledge
there are no studies about the impact of earthworm activ-
ity on SWR in burned soils, however, in contaminated ar-
eas, it was reported that earthworms have the capacity to
take up hydrophobic compounds (Belfroid and Sijm, 1998;
Belfroid et al., 1995). A bibliographic review carried out
by Blouin et al. (2013) described that earthworm biomass is
positively correlated with water infiltration. Earthworm bur-
rows facilitate root penetration and increase hydraulic con-
ductivity. Soil invertebrates can survive easily after grassland
fires, since the severity needed to affect them is normally
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Fig. 6. Evidence of earthworm activity (indicated with a red circle) in the 2 

burned plot 17 days after the fire. 3 

 4 

Fig. 5. Evidence of earthworm activity (indicated with a red circle)
in the burned plot 17 days after the fire.

not achieved (Neary et al., 1999). Previous studies observed
that, in the period between 3 and 16 days after a fire in a
grassland area, ants constructed their mounds (Pereira et al.,
2013b). In other words, the increase of microbiological ac-
tivity after the fire may have had impacts on the decompo-
sition of hydrophobic material present in the soil particles
and aggregates. In the burned area, the decomposition of this
material together with the root development and invertebrate
activities may have reduced SWR and increased water in-
filtration, facilitating the transport of the soluble hydropho-
bic material. These aspects may have had important effects
on the SWR decrease 2 months after the fire in the burned
area. Also, post-fire wetting and drying cycles (Doerr et al.,
2009) and the exceedance of a “critical soil moisture thresh-
old” (Doerr and Thomas, 2000; Huffman and MacDonald,
2004) are related to the SWR decrease. However, Doerr and
Thomas (2000) showed that after wetting, SWR is not nec-
essarily re-established when soil becomes dry again. Other
factors involved in SWR reduction may be the spatial or-
ganization of amphiphilic molecules (Horne and McIntosh,
2000). Differences of SWR among sample times in each
sieve fraction of each plot were identified in the burned and
unburned plots. In the burned area the coarser-size fractions
(2–1 and 1–0.5 mm) demonstrated significant differences in
SWR in the first 7 months after the fire, while in the finer-size
fractions (0.5–0.25 and< 0.25 mm) significant differences
in SWR were observed until 9 months later. This shows that
the hydrophobic substances attached to soil fractions disap-
pear faster in the coarser sieve fractions than from the finer
ones. This dynamic can be attributed to microbiological ac-
tivity. Microbes may decompose the organic material at dif-
ferent rates. To our knowledge, no previous works have been
conducted on microbial decomposition rates in different size
fractions in burned areas. However, Fazle Rabbi et al. (2014)
observed in Acrisols collected in a native pasture that the
soil organic carbon mineralization was higher in macro-

(250–2000 µm) and microaggregates (53–250 µm) than in the
< 53 µm fraction. Fernández et al. (2010) found in non-tilled
Entic Haplustoll soils that carbon losses through mineraliza-
tion were especially observed in intermediate-size fractions
(1–4 mm). Wu et al. (2012) identified in grassland soils that
microbial biomass and dissolved organic carbon were sig-
nificantly higher in the> 2000 µm-size fraction, than in the
0–63 µm-size fraction. Also, Jha et al. (2012) observed that
water soluble carbon was significantly higher in macroag-
gregates than in microaggregates. These results may sup-
port the hypothesis that the mineralization rates and leach-
ing of hydrophobic organic materials were higher in coarser
sieve fractions than in the smaller ones. In relation to the dif-
ferences observed in the unburned plot, in the coarser (2–
1 mm) and the finer fractions (< 0.25 mm) SWR was more
persistent IAF, 5 and 7 months after the fire in relation to
the other sampling dates, while in the intermediate-size frac-
tions (1–0.5 and 0.5–0.25 mm) SWR was significantly lower
9 months after the fire in comparison to the other sampling
dates. The intermediate-size fractions followed the same pat-
tern observed for the fine earth. The main differences were
identified 2 months after the fire. It is not clear why this dif-
ference occurred in the second sampling date after the fire.
In the international literature no previous works were found
about the seasonal impacts on SWR according to soil aggre-
gate sizes. Further research is needed to identify the factors
responsible for these changes.

In the unburned and burned plots, the SWR was high in
the finer fraction (< 0.25 mm). The results obtained in this
study are in accordance with previous works in unburned
(Arcenegui et al., 2008; Urbanek et al., 2007) and burned
soils (Mataix-Solera and Doerr, 2004; Gimeno Garcia et al.,
2011; Jordán et al., 2011), which identified that the finer soil
fraction was more repellent than the coarser fractions. SWR
is mainly attributed to soils with coarser textures that are
more susceptible to developing repellent surfaces, due to the
smaller specific surface area in relation to fine textured soils
(Blas et al., 2010; Doerr et al., 2000). However, it has been
observed that when a soil is hydrophobic, the finer fraction
is usually more water repellent than the coarser ones (Jordán
et al., 2011; Mataix-Solera and Doerr, 2004). In the present
study SWR was especially severe in the finer fraction in the
immediate sampling dates after the fire in the burned area.
This can be attributed to the existence of hydrophobic ash
smaller than 0.25 mm and/or the presence of hydrophobic
interstitial organic matter that influenced the SWR (Mataix-
Solera and Doerr, 2004). In the fine earth significant differ-
ences between plots were only identified in the 2 months af-
ter the fire. Nevertheless, between each fraction in the differ-
ent plots, significant differences were observed in the coarser
fractions (2–1 and 1–0.5 mm) until 7 months after the fire and
in the fine fractions (0.5–0.25 and< 0.25 mm) until 9 months
after the fire. The time for the burned plot to return to previ-
ous conditions depends also on the soil-size fraction because
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the rates of mineralization and/or leaching of organic hy-
drophobic substances may be not equal.

In the burned area the correlations between the Munsell
colour value and SOM with SWR were significant only in
the first 2 months after the fire (7 months later in the case
of Munsell colour value and SWR). In unburned and burned
areas SWR can be correlated (Lozano et al., 2013; Martínez-
Zavala and Jordán-López, 2009; Mataix-Solera et al., 2002;
Mataix-Solera and Doerr, 2004) or not (Blas et al., 2010)
with the amount of SOM. The presence of hydrophobic com-
pounds may be related to a certain type of organic material
and not to the total SOM content (Doerr et al., 2000). Badía-
Villas et al. (2013) observed a significant positive correlation
between SWR and pyrolysed carbon, suggesting that SWR
is strongly linked with organic materials produced by fire.
Also, SWR may be affected by the ionic strength of the soil
solution that induces an approximation of charged functional
groups in SOM (Hurraß and Shaumann, 2006). These re-
sults suggest that the soil became water repellent from the
hydrophobic substances produced during the fire, as organic
coatings that covered the soil particles and aggregates that
with time were decomposed and leached, especially from
the coarser fractions. The significant correlations obtained
in the first sampling dates after the fire in the burned plot
may be the result of the presence of hydrophobic compounds
with dark colour. Nevertheless, the partial correlation results
showed that SOM controls the correlation of the Munsell
colour value and SWR, IAF, 2 and 7 months after the fire,
revealing that the original correlations were spurious. This
suggests that SOM characteristics may have influenced the
SWR. Other studies observed also that SOM has an impor-
tant influence on SWR correlation with other variables, such
as pH and the fungi parameters ergosterol- and glomalin-
related soil proteins (Lozano et al., 2013). In fact, SWR must
be more controlled by the chemical composition of SOM,
than by its amount (DeBano et al., 1970). Horne and McIn-
tosh (2000) observed that SWR was especially determined
by amphipathic compounds rather than the organic matter’s
bulk characteristics. Spielvogel et al. (2004) found that SOM
aromatic compounds contribute strongly to the correlation of
soil lightness and SOM. The authors observed a strong corre-
lation between soil lightness and aryl C (r = 0.87,p < 0.01).
Also Schmidt et al. (1997) identified that charred material
and the presence of aromatic C had important implications
in the negative correlation between soil lightness and SOM.
These results suggest that SOM characteristics exert signifi-
cant control on soil Munsell colour values. Also, a soil with
the same Munsell value may have different concentrations of
aromatic compounds that increase SWR, such as humic and
fulvic acids. This shows that the Munsell colour value may
not be a good variable to estimate SWR.

5 Conclusions

Fire darkened the soil and increased for a short period the
SOM content (first 2 months after the fire). This increase was
likely due to the input of partially burned ash into the surface
soil that produced an increase in the SWR, due to the char-
acteristics of the burned material. However, this increase was
not homogeneous across all aggregate-size fractions. Finer
fractions were more water repellent than the coarser ones.
In the burned area, the SWR of the finer fractions was more
persistent in time (9 months after the fire) than in the coarser
fractions (7 months after the fire). The correlations between
Munsell colour value and SOM were negatively significant
in all cases in the burned and unburned plots. However, the
correlations between Munsell colour value and SWR and
Munsell colour value and SOM were only significant in the
burned area IAF, 2 and 7 months after the fire (in the last sam-
pling date, only between Munsell colour value and SWR).
The partial correlations revealed that the correlation between
Munsell colour value and SWR IAF, 2 and 7 months after the
fire in the burned plot was strongly controlled by SOM, sug-
gesting that organic matter properties may have implications
on SWR.

Future research is needed to understand the persistence
of the SWR in different sieve fractions, and the factors that
control this dynamic, that may be linked with microbiologi-
cal activity. The different responses of soil-size fractions to
SWR after a fire induce considerable temporal variability of
fire impacts on SWR and hydrologically related parameters
such as infiltration, runoff and soil erosion.
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