
Supplement to ”Practical analytical solutions for benchmarking of
2-D and 3-D geodynamic Stokes problems with variable viscosity”

1 Example problems and numerical convergence
tests

The scheme of algorithm testing is conventional. We have obtained
particular solutions of the Stokes and continuity equations for two
types of viscosity variations. Let us choose a domain, e.g., a rect-
angle in 2D case. Calculate values of velocity and pressure given
by our analytical solution and take this values as the boundary con-
ditions. Then, due to the uniqueness theorem the solution of the
boundary problem in the domain should coincide with our analyti-
cal solution. Let us compute the solution of the boundary problem
by a numerical method. Comparison of the result with the exact
analytical solution shows the quality of the numerical algorithm. In
the present paper, we used standard 2D and 3D stress-conservative
finite-differences on staggered regularly spaced grid for obtaining nu-
merical solutions (Gerya et al., 2010). Respective MatLab programs
for 2D and 3D cases are provided as supplements to this paper.

1.1 2D example

1.1.1 Linearly varying viscosity

Consider a simple example of such flow in a rectangle 0 ≤ x ≤ xsize, 0 ≤
y ≤ ysize. We assume that η = ax + by + c. We will mark the exact
solution obtained in Section 2 as vx,a, vy,a, Pa. It is the solution of the
boundary problem in the rectangle Ω with the following conditions at
the boundary ∂Ω = {x = 0, x = xsize, y = 0, y = ysize} :

vy|∂Ω = vy,a, vx|∂Ω = vx,a.

Let us compute the velocity and pressure with using of finite-
difference scheme. The corresponding solution is marked as vx,n, vy,n, Pn.
The deviation of these values from the exact solution (vx,n−vx,a, vy,n−
vy,a, Pn − Pa) is related with the error of the numerical scheme We
calculate the relative errors of three types: L∞, L1, L2 for different
viscosity contrasts , i.e. different values of the coefficients a, b. We
test the program Stokes2D-variable-viscosity1 from [?]. The results
are presented at Fig. 1 - 6. Namely, figures 1-3 correspond to low vis-
cosity contrast, Figures 4-6 - to high viscosity contrast. Particularly,
Fig. 1 and Fig. 4 show pressure and velocity components distribu-
tions. Fig. 2 and Fig. 4 characterizes the viscosity and the density
distributions. Fig. 3 and Fig. 6 contain plots of relative errors via
the grid resolutions in logarithmic scale. The viscosity contrast, i.e.
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Figure 1: Distribution of vx, vy and P ; 2D case, linearly varying viscosity, low
viscosity contrast (η2 = η3 = 5). Here and in the following indices at the com-
puted velocity components and pressure indicate analytical (a) and numerical
(n) values and difference between them (e).

the values of the coefficients in the expression for the viscosity, is de-
termined by given values of the viscosity at three rectangle corners.
The value of the viscosity at the initial rectangle corner is 1, η2, η3

are the values of the viscosity at two adjacent corners. At all fig-
ures ”n” means ”numerical solution”, ”a” means ”analytical solution”
(benchmark).

For the case of linearly varying viscosity we made calculations for
the following system parameters:

xsize = ysize = 1, Gx = 0, Gy = 10,

η1 = 1, β1 = 1, β2 = 3× 103,

c = η1, a = (η3 − η1)/xsize, b = (η2 − η1)/ysize,

ρ = β1(ax+ by + c) + β2.

One can see that there is rather high accuracy of the numerical
approach. We observe the conventional situation - L∞-error is the
largest among the considered errors norms, and L1-error and L2−error
are similar. The calculations show that one has good convergence of
the numerical scheme for small viscosity contrast, but it is not so for
high viscosity contrast (compare Fig. 3 and Fig. 6).

To describe in more details the dependence of the error on the
viscosity contrast we fill tables with errors for different values of η2, η3

(see Appendix, tables 1-9).
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Figure 2: Distribution of viscosity η and density ρ; 2D case, linearly varying
viscosity, low viscosity contrast (η2 = η3 = 5).

Figure 3: Logarithm of the relative error via logarithm of the grid step; 2D
case, linearly varying viscosity, low viscosity contrast (η2 = η3 = 5); blue line -
pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error, line with
dots - L2-error.
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Figure 4: Distribution of vx, vy and P ; 2D case, linearly varying viscosity, high
viscosity contrast (η2 = η3 = 100).

Figure 5: Distribution of viscosity η and density ρ; 2D case, linearly varying
viscosity, high viscosity contrast (η2 = η3 = 100).
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Figure 6: Logarithm of the relative error via logarithm of the grid step; 2D case,
linearly varying viscosity, high viscosity contrast (η2 = η3 = 100); blue line -
pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error, line with
dots - L2-error.

1.1.2 Exponentially varying viscosity

The case of exponentially varying viscosity is treated analogously.
To have a possibility of comparison with the case of linearly varying
viscosity we take the same system parameters (geometrical size, grav-
itational terms and the dependence of the density on the viscosity)
with the same viscosity contrast (i.e. the values of the viscosity at
the rectangle corners)

C = η1, a = (log(η3)− log(η1))/xsize,

b = (log(η2)− log(η1))/ysize,

η = C exp (ax+ by),

ρ = β1η + β2

xsize = ysize = 1,

Gx = 10, Gy = 10,

η1 = 1, β1 = 1, β2 = 3× 103,

We deal with two cases (low and high viscosity contrasts). Figures
7-12 present the results. Namely, figures 7-9 correspond to the case
of low viscosity contrast, figures 10-12 are related with the case of
high viscosity contrast. There are some similarities with the previous
case. Particularly, L∞ error norm gives us the maximum relative error
value among three considered error norms. We have small errors
(see the velocity and pressure distributions, Fig. 7, Fig. 10). But
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Figure 7: Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
low viscosity contrast (η2 = η3 = 5).

peculiarities are more interesting. Namely, the numerical scheme
works essentially better for the case of exponentially varying viscosity
than for linearly varying viscosity. We observe good convergence both
for low and for high viscosity contrasts (compare Fig. 9, Fig. 12 and,
correspondingly, Fig. 3, Fig. 6).

Dependence of the errors on the viscosity contrast for exponen-
tially varying viscosity is presented in the tables 10-18 in Appendix.

Figure 8: Distribution of viscosity η and density ρ; 2D case, exponentially
varying viscosity, low viscosity contrast (η2 = η3 = 5).
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Figure 9: Logarithm of the relative error via logarithm of the grid step; 2D case,
exponentially varying viscosity, low viscosity contrast (η2 = η3 = 5); blue line -
pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error, line with
dots - L2-error.

Figure 10: Distribution of vx, vy and P ; 2D case, exponentially varying viscosity,
high viscosity contrast (η2 = η3 = 100).
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Figure 11: Distribution of viscosity η and density ρ; 2D case, exponentially
varying viscosity, high viscosity contrast (η2 = η3 = 100).

Figure 12: Logarithm of the relative error via logarithm of the grid step; 2D
case, exponentially varying viscosity, high viscosity contrast (η2 = η3 = 100);
blue line - pressure, green - vx, black - vy; line - L1-error, dashed line - L∞-error,
line with dots - L2-error.
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1.2 3D example

One can note that benchmark solutions for 3D case are essentially
more rare than for the corresponding 2D situation. It is remarkable
that the suggested approach allows us to obtain such solutions for 3D
Stokes and continuity equations. As earlier, we consider the cases of
linearly and exponentially varying viscosity.

1.2.1 Linearly varying viscosity

The statement of the problem is absolutely analogous to the previous
case. In 3D space we consider a parallelepiped Ω: 0 ≤ x ≤ xsize, 0 ≤
y ≤ ysize, 0 ≤ z ≤ zsize. We assume that η = ax+by+cz+e. We will mark
the exact solution obtained in Section 3 as vx,a, vy,a, vz,a, Pa. Due to
the uniqueness theorem, it is the solution of the boundary problem
in the parallelepiped Ω with the following conditions at the boundary
∂Ω = {x = 0, x = xsize, y = 0, y = ysize, z = 0, z = zsize} :

vx|∂Ω = vx,a, vy|∂Ω = vy,a, vz|∂Ω = vz,a.

Let us compute the velocity and pressure with using of chosen
finite-difference algorithm. The corresponding numerical solution is
marked as vx,n, vy,n, vz,n, Pn. The deviation of these values from the
exact solution (vx,n − vx,a, vy,n − vy,a, vz,n − vz,a, Pn − Pa) is related with
the error of the numerical scheme. As in 2D case, we consider three
error norms: L∞, L1, L2. We deal with cases of low and high viscosity
contrasts. Coefficients a, b, c, e in the viscosity formula are determined
through given viscosity values (η1 = 1, η2, η3, η4) at four adjacent par-
allelepiped vertices. We choose the following system parameters:

e = η1, a = (η3 − η1)/xsize,

b = (η2 − η1)/ysize, c = (η4 − η1)/zsize.

η = ax+ by + cz + e,

ρ = β1η + β2

xsize = ysize = zsize = 1,

Gx = 10, Gy = 10, Gz = 0,

η1 = 1, β1 = 1, β2 = 3× 103,

Results are presented at Fig. 13-20. Figures 13-16 correspond to
the case of low viscosity contrast, figures 17-20 - to the case of high
viscosity contrast. Figures 13, 14 and figures 17, 18 shows the velocity
components and the pressure distribution for the central cross-section
of the parallelepiped. The analytical and the numerical solutions
and also the error (the solutions deviations) are shown. Fig. 15,
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Figure 13: Distribution of vx and vy; 3D case, linearly varying viscosity, low
viscosity contrast (η2 = η3 = η4 = 5).

19 characterizes the distribution of the viscosity and the density for
the same cross-section. In Fig. 16, 20 the errors for a sequence of
grid resolution used to solve the equations numerically are provided.
Positive slope of the curves shows the algorithm convergence. It
should be mentioned that the numerical procedure for 3D case takes
essentially greater time than in 2D case. Qualitatively, the results
are similar to that for the corresponding 2D case. The numerical
procedure works better for low viscosity contrast.

1.2.2 Exponentially varying viscosity

As in 2D case, we consider also exponentially varying viscosity. Con-
sideration is absolutely parallel to that in the previous section. To
have a possibility of comparison we take here the same system pa-
rameters. Naturally, the viscosity and, correspondingly, density dis-
tributions are now exponential. The system parameters are chosen
by the following manner:

C = η1, a = (log(η3)− log(η1))/xsize,

b = (log(η2)− log(η1))/ysize, c = (log(η4)− log(η1))/zsize.
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Figure 14: Distribution of vz and P ; 3D case, linearly varying viscosity, low
viscosity contrast (η2 = η3 = η4 = 5).

Figure 15: Distribution of viscosity η and density ρ; 3D case, linearly varying
viscosity, low viscosity contrast (η2 = η3 = η4 = 5).
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Figure 16: Logarithm of the relative error via logarithm of the grid step; 3D
case, linearly varying viscosity, low viscosity contrast (η2 = η3 = η4 = 5); blue
line - pressure, red - vx, black - vy, green - vz; line - L1-error, dashed line -
L∞-error, line with dots - L2-error.

Figure 17: Distribution of vx and vy; 3D case, linearly varying viscosity, high
viscosity contrast (η2 = η3 = η4 = 100).
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Figure 18: Distribution of vz and P ; 3D case, linearly varying viscosity, high
viscosity contrast (η2 = η3 = η4 = 100).

Figure 19: Distribution of viscosity η and density ρ; 3D case, linearly varying
viscosity, high viscosity contrast (η2 = η3 = η4 = 100).
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Figure 20: Logarithm of the relative error via logarithm of the grid step; 3D
case, linearly varying viscosity, high viscosity contrast (η2 = η3 = η4 = 100);
blue line - pressure, red - vx, black - vy, green - vz; line - L1-error, dashed line
- L∞-error, line with dots - L2-error.

η = C exp (ax+ by + cz),

ρ = β1η + β2

xsize = ysize = zsize = 1,

Gx = 10, Gy = 10, Gz = 0,

η1 = 1, β1 = 1, β2 = 3× 103,

The results are presented at Fig. 21-28. Figures 21-24 correspond to
the case of low viscosity contrast, figures 25-28 - to the case of high
viscosity contrast. It occurs that for exponentially varying viscosity
the numerical algorithm works better than for linearly varying vis-
cosity (compare the velocity and the pressure distributions and the
corresponding errors at Fig. 21, 22, 25, 26 with Fig. 13, 14, 17, 18).
It is in correlation with 2D case. The algorithm convergence, i.e. the
dependence of the errors on the grid resolution is shown at Fig. 24,
28. One can see that ”exponential” case gives us better convergence
than the corresponding ”linear” case.
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Figure 21: Distribution of vx and vy; 3D case, exponentially varying viscosity,
low viscosity contrast (η2 = η3 = η4 = 5).
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Figure 22: Distribution of vz and P ; 3D case, exponentially varying viscosity,
low viscosity contrast (η2 = η3 = η4 = 5).

Figure 23: Distribution of viscosity η and density ρ; 3D case, exponentially
varying viscosity, low viscosity contrast (η2 = η3 = η4 = 5).
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Figure 24: Logarithm of the relative error via logarithm of the grid step; 3D
case, exponentially varying viscosity, low viscosity contrast (η2 = η3 = η4 = 5);
blue line - pressure, red - vx, black - vy, green - vz; line - L1-error, dashed line
- L∞-error, line with dots - L2-error.

Figure 25: Distribution of vx and vy; 3D case, exponentially varying viscosity,
high viscosity contrast (η2 = η3 = η4 = 100).
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Figure 26: Distribution of vz and P ; 3D case, exponentially varying viscosity,
high viscosity contrast (η2 = η3 = η4 = 100).

Figure 27: Distribution of viscosity η and exponentially varying viscosity, high
viscosity contrast (η2 = η3 = η4 = 100).
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Figure 28: Logarithm of the relative error via logarithm of the grid step; 3D case,
exponentially varying viscosity, high viscosity contrast (η2 = η3 = η4 = 100);
blue line - pressure, red - vx, black - vy, green - vz; line - L1-error, dashed line
- L∞-error, line with dots - L2-error.

2 Error decreasing via the grid resolution de-
creasing

The dependence of the convergence on the viscosity contrast is shown
in the following tables. Namely, the viscosities η2, η3 run through a
set of values from 2 to 10000. For each pair of η2, η3 we perform
the benchmarking procedure described above and obtain the curve
describing the dependence of the logarithm of the error norm on the
logarithm of the grid resolution. The tangent of the slope angle of
this curve gives us an input of the table. Full set of tables is given in
supplementary materials. Below, we show several examples of such
tables.

2.1 Linearly varying viscosity

Tables A1–A9 contain log rates of error decreasing via the grid res-
olution decreasing (the curve slope at Figs. 3 and 6 in logarithmic
scale) for different viscosity contrasts in the case of linearly varying
viscosity. Calculations were made for the following system parame-
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Table 1: Pressure; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 0.89 0.97 0.81 0.46 0.11 −0.19 −0.40
5 0.96 0.93 0.89 0.77 0.14 −0.14 −0.39
20 0.83 0.89 0.86 0.77 0.73 −0.06 −0.33
100 0.80 0.79 0.77 0.83 0.77 0.46 −0.21
300 0.76 0.76 0.77 0.79 0.83 0.79 −0.11
1000 0.49 0.61 0.73 0.77 0.77 0.83 0.14
10 000 −0.40 −0.39 −0.33 −0.21 0.13 0.41 0.80

Table 2: Pressure; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.40 0.96 1.16 0.74 0.41 0.04 −0.24
5 0.96 1.41 0.86 1.30 0.41 0.17 −0.20
20 1.16 0.86 1.37 1.21 0.60 0.24 −0.06
100 1.07 1.13 1.19 1.37 1.34 0.31 0.13
300 1.29 1.31 1.34 1.36 1.37 1.04 0.19
1000 0.37 0.51 0.77 1.16 1.33 1.36 0.20
10 000 −0.30 −0.27 −0.14 0.04 0.14 0.27 1.27

ters:

xsize = ysize = 1, Gx = 0, Gy = 10,

η1 = 1, β1 = 102, β2 = 3× 103,

c = η1, a = (η3 − η1)/xsize, b = (η2 − η1)/ysize,

ρ = β1(ax+ by + c) + β2.

Empty table cells correspond to the case when we have very small
errors for all considered grid steps.

2.2 Exponentially varying viscosity

Tables A10–A18 contain log rates of error decreasing with decreasing
grid step (the curve slope at Figs. 9 and 12 in logarithmic scale)
decreasing for different viscosity contrasts in the case of exponentially
varying viscosity. System parameters are the same as in the case of
linearly varying viscosity with natural changes:

c = η1, a = (log η3 − log η1)/xsize, b = (log η2 − log η1)/ysize,

ρ = β1c exp (ax+ by) + β2.
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Table 3: Pressure; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.42 1.14 1.24 0.86 0.46 0.08 −0.20
5 1.13 1.44 1.03 1.30 0.57 0.23 −0.16
20 1.23 1.03 1.39 1.27 0.83 0.43 −0.01
100 1.14 1.21 1.26 1.36 1.33 0.50 0.26
300 1.27 1.27 1.29 1.33 1.34 1.17 0.40
1000 0.56 0.70 1.03 1.24 1.31 1.36 0.39
10 000 −0.21 −0.19 −0.04 0.23 0.34 0.43 1.27

Table 4: Velocity vx; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.67 1.67 1.41 0.77 0.34 −0.03 −0.30
5 1.63 1.44 1.23 1.04 0.36 0.06 −0.26
20 1.50 1.39 1.11 0.83 0.26 0.09 −0.17
100 0.59 0.79 0.73 1.08 1.43 0.06 −0.04
300 1.59 1.59 1.36 1.36 1.41 0.06 −0.01
1000 −0.29 −0.13 0.29 0.60 1.41 0.03 −0.01
10 000 −0.67 −0.64 −0.51 −0.21 0.07 0.03 0.00

Table 5: Velocity vx; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.68 2.01 1.91 1.40 0.83 0.40 0.13
5 1.51 1.75 1.96 1.93 1.09 0.60 0.16
20 1.44 1.47 1.70 2.00 1.50 0.99 0.31
100 1.17 1.43 1.56 1.85 2.09 1.39 0.70
300 1.63 1.61 1.63 1.66 1.89 1.87 1.04
1000 0.64 0.84 1.24 1.59 1.61 1.36 1.29
10 000 −0.06 −0.01 0.13 0.53 0.84 1.09 1/12

Table 6: Velocity vx; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.81 1.99 1.81 1.20 0.70 0.29 0.01
5 1.53 1.61 1.80 1.79 0.91 0.47 0.04
20 1.47 1.54 1.61 1.81 1.09 0.77 0.20
100 1.13 1.39 1.54 1.69 2.04 0.94 0.53
300 1.64 1.63 1.63 1.61 1.70 1.49 0.77
1000 0.56 0.77 1.23 1.57 1.60 1.15 0.90
10 000 −0.19 −0.13 0.01 0.41 0.69 0.96 0.88
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Table 7: Velocity vy; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.75 1.63 1.47 0.64 0.03 −0.40 −0.67
5 1.67 1.44 1.37 1.23 0.24 −0.26 −0.64
20 1.40 1.23 0.97 0.83 0.34 0.09 −0.51
100 0.83 0.79 0.79 1.33 1.56 0.07 −0.21
300 1.66 1.76 1.91 1.91 1.91 0.66 0.04
1000 −0.01 0.06 0.04 0.37 0.86 1.17 0.03
10 000 −0.30 −0.27 −0.16 −0.06 −0.03 −0.03 −0.30

Table 8: Velocity vy; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.98 1.51 1.44 1.17 0.59 0.16 −0.13
5 2.01 1.90 1.47 1.63 0.84 0.34 −0.10
20 1.90 1.94 1.94 1.57 1.30 0.73 0.06
100 1.51 1.76 2.00 2.06 1.66 0.81 0.43
300 1.87 1.96 2.04 2.09 2.07 1.44 0.76
1000 0.66 0.86 1.30 1.81 2.07 2.07 0.93
10 000 0.14 0.19 0.34 0.74 1.07 1.34 1.87

Table 9: Velocity vy; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.99 1.53 1.49 1.14 0.51 0.07 −0.21
5 1.99 1.90 1.54 1.61 0.79 0.26 −0.19
20 1.81 1.80 1.79 1.56 1.24 0.63 −0.03
100 1.27 1.47 1.79 2.03 1.61 0.94 0.34
300 1.86 1.93 1.99 2.04 2.04 1.43 0.60
1000 0.37 0.53 0.90 1.56 1.97 2.03 0.74
10 000 0.019 0.04 0.20 0.54 0.76 0.89 1.23

Table 10: Pressure; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 0.94 0.83 0.67 1.01 1.24 1.41 0.84
5 0.87 0.64 0.71 0.84 1.24 1.31 1.16
20 0.73 0.83 0.81 1.01 1.29 1.19 1.04
100 0.80 0.89 1.07 1.30 1.23 1.14 0.96
300 0.90 0.99 1.13 1.23 1.19 1.09 0.91
1000 1.04 1.13 1.14 1.11 1.09 1.03 0.86
10 000 1.19 1.13 0.70 0.91 0.87 0.84 0.71
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Table 11: Pressure; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.40 0.89 1.10 1.40 1.46 1.44 1.37
5 0.89 1.13 1.17 1.34 1.41 1.43 1.36
20 0.97 1.14 1.31 1.40 1.40 1.40 1.33
100 1.20 1.36 1.31 1.39 1.39 1.36 1.26
300 1.37 1.36 1.27 1.34 1.36 1.31 1.21
1000 1.39 1.36 1.27 1.29 1.30 1.26 1.17
10 000 1.33 1.29 1.23 1.17 1.14 1.13 1.06

Table 12: Pressure; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.46 1.03 1.20 1.47 1.56 1.53 1.40
5 1.03 1.13 1.23 1.39 1.53 1.51 1.39
20 1.13 1.24 1.31 1.46 1.51 1.46 1.31
100 1.27 1.39 1.39 1.46 1.43 1.37 1.23
300 1.37 1.41 1.39 1.40 1.37 1.31 1.19
1000 1.41 1.41 1.36 1.33 1.30 1.24 1.11
10 000 1.37 1.34 1.26 1.17 1.14 1.11 1.00

Table 13: Velocity vx; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.72 1.71 1.61 1.81 1.74 1.70 1.63
5 1.69 1.65 1.41 1.83 1.73 1.66 1.56
20 1.66 1.59 1.36 1.80 1.70 1.56 1.44
100 1.71 1.79 1.90 1.76 1.59 1.46 1.36
300 1.87 2.00 1.89 1.71 1.56 1.46 1.31
1000 1.79 1.87 1.93 1.71 1.54 1.41 1.26
10 000 1.49 1.66 1.91 1.67 1.51 1.37 1.17

Table 14: Velocity vx; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.89 2.03 2.06 2.17 2.10 2.06 2.01
5 1.61 1.78 2.06 2.24 2.14 2.10 2.01
20 1.59 1.83 2.21 2.21 2.16 2.13 2.04
100 1.64 1.87 2.10 2.21 2.14 2.10 2.04
300 1.76 1.91 2.04 2.21 2.14 2.07 2.01
1000 1.84 1.94 2.04 2.13 2.14 2.06 1.97
10 000 1.77 1.87 1.96 2.00 2.01 2.00 1.91

23



Table 15: Velocity vx; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.92 2.00 1.97 2.03 2.00 1.96 1.91
5 1.66 1.82 1.93 2.09 2.01 1.97 1.90
20 1.63 1.84 2.06 2.09 2.01 1.96 1.87
100 1.71 1.93 2.06 2.04 1.97 1.90 1.83
300 1.87 1.99 2.03 2.00 1.93 1.84 1.74
1000 1.93 2.00 2.03 2.00 1.93 1.84 1.74
10 000 1.76 1.89 1.96 1.94 1.90 1.83 1.67

Table 16: Velocity vy; L∞-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.76 1.67 1.83 1.87 1.71 1.71 1.56
5 1.73 1.56 1.53 2.09 1.99 1.90 1.89
20 1.67 1.46 1.37 1.96 1.89 1.86 1.84
100 1.57 1.27 1.80 1.77 1.69 1.64 1.61
300 1.27 1.80 1.79 1.67 1.57 1.53 1.50
1000 1.81 1.81 1.73 1.56 1.49 1.43 1.36
10 000 1.71 1.16 1.56 1.40 1.36 1.29 1.19

Table 17: Velocity vy; L1-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.91 1.63 1.74 2.16 2.13 2.11 2.03
5 2.03 1.91 1.97 2.13 2.17 2.19 2.14
20 2.03 2.01 2.26 2.21 2.20 2.20 2.14
100 2.01 2.24 2.29 2.31 2.30 2.26 2.17
300 2.26 2.34 2.27 2.23 2.26 2.26 2.17
1000 2.24 2.24 2.23 2.17 2.17 2.17 2.16
10 000 2.07 2.10 2.11 2.11 2.09 2.07 2.07

Table 18: Velocity vy; L2-error.
η2 2 5 20 100 300 1000 10 000

η3

2 1.97 1.66 1.81 2.10 2.01 1.94 1.83
5 2.00 1.93 1.99 2.11 2.10 2.04 1.94
20 1.97 1.90 2.09 2.14 2.11 2.07 2.00
100 1.89 1.96 2.11 2.09 2.06 2.04 1.97
300 2.03 2.11 2.09 2.01 1.97 1.96 1.93
1000 2.11 2.06 2.04 1.96 1.91 1.87 1.86
10 000 1.96 1.94 1.93 1.87 1.83 1.77 1.71
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