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Abstract. Geodynamic modeling is often related with chal-
lenging computations involving solution of the Stokes and
continuity equations under the condition of highly variable
viscosity. Based on a new analytical approach we have de-
veloped particular analytical solutions for 2-D and 3-D in-
compressible Stokes flows with both linearly and exponen-
tially variable viscosity. We demonstrate how these particu-
lar solutions can be converted into 2-D and 3-D test problems
suitable for benchmarking numerical codes aimed at mod-
eling various mantle convection and lithospheric dynamics
problems. The Main advantage of this new generalized ap-
proach is that a large variety of benchmark solutions can
be generated, including relatively complex cases with open
model boundaries, non-vertical gravity and variable gradi-
ents of the viscosity and density fields, which are not parallel
to the Cartesian axes. Examples of respective 2-D and 3-D
MatLab codes are provided with this paper.

1 Introduction

Numerical modeling of geodynamic processes is recognized
as a challenging computational problem which requires use
of advanced computational techniques and development of
powerful numerical tools (e.g., Ismail-Zadeh and Tackley,
2010, and references therein). One of the major challenges
concerns solving of the inertia-free Stokes equation cou-
pled to the incompressible continuity equation in a combi-
nation with strong viscosity variations in the computational
domain. Consequently, benchmarking of numerical codes

against analytical and numerical solutions constrained for
various mechanical and thermomechanical Stokes flow prob-
lems is a common practice in computational geodynamics
(e.g., Blankenbach et al., 1989; Moresi et al., 1996; van
Keken et al., 2008; Gerya and Yuen, 2003, 2007; Deubel-
beiss and Kaus, 2008; Duretz et al., 2011; Gerya et al., 2013;
Popov, 2014; Lobanov et al., 2014; Popov and Sobolev, 2008;
Tackley and King, 2003; Torrance and Turcotte, 1971; Zhong
and Gurnis, 1994). Available analytical and numerical solu-
tions are mostly two-dimensional and include

– 2-D mantle convection with constant and variable vis-
cosity (Hager and O’Connell, 1981; Revenaugh and
Parsons, 1987; Blankenbach et al., 1989);

– 2-D thermochemical convection (van Keken et al.,
1997);

– 2-D buoyancy-driven flows for strongly varying viscos-
ity (Zhong, 1996; Moresi et al., 1996; Gerya and Yuen,
2003);

– 2-D mechanical and thermomechanical channel and
Couette flows for constant and variable viscosity (Tur-
cotte and Schubert, 2002; Gerya and Yuen, 2003; Gerya,
2010);

– 2-D flow around deformable elliptic inclusions (Schmid
and Podladchikov, 2003);

– 2-D Rayleigh–Taylor instability (Ramberg, 1968; Kaus
and Becker, 2007);
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– 2-D thermomechanical corner flows in subduction
zones (van Keken et al., 2008);

– 2-D spontaneous subduction with a free surface
(Schmeling et al., 2008);

– 2-D buoyancy-driven flows with a free surface (Crameri
et al., 2012);

– 2-D numerical sandbox experiments (Buiter et al.,
2006);

– 3-D mantle convection in Cartesian geometry (Busse
et al., 1993; Albers, 2000);

– 3-D mantle convection in spherical geometry (Zhong
et al., 2008);

– 3-D infinitesimal and finite amplitude folding instability
(Kaus and Schmalholz, 2006);

– 2-D and 3-D shear band formation and plasticity imple-
mentation (Lemiale et al., 2008; Kaus, 2010; Thieulot
et al., 2008);

– numerical sandbox experiments (Buiter et al., 2006),
(Gerya and Yuen, 2007), (Thieulot, 2011) and (Gerya,
2010);

– 3-D convection at infinite Prandtl numbers in Cartesian
geometry (Busse et al., 1993);

– falling block (Gerya and Yuen, 2003; Gerya, 2010;
Thieulot, 2011).

These solutions are constrained for a number of well defined
model setups, which are of potential significance for vari-
ous situations which numerical codes may face during real
geodynamic simulations. Availability and broad range of 2-
D and 3-D benchmark solutions are, therefore, critical for the
development and testing of the next generation of numerical
geodynamic modeling software which aims to combine rhe-
ological complexity of constitutive laws with adaptive grid
resolution to on both global and regional scales (e.g., Moresi
et al., 2003; Dabrowski et al., 2008; Tackley, 2008; Stadler
et al., 2010; Gerya et al., 2013).

In the present paper we aim to significantly expand avail-
ability of benchmark solutions for both 2-D and 3-D variable-
viscosity Stokes flows. In contrast with previous studies, we
prefer not to start from any prescribed model setups but
rather derive general analytical solutions, which are poten-
tially suitable for generating a broad range of test problems.
We derive generalized solutions for incompressible Stokes
problems with linearly and exponentially variable viscosity.
In the following we demonstrate how these generalized solu-
tions can be converted into 2-D and 3-D test problems suit-
able for benchmarking numerical codes. Finally, based on
the obtained benchmark problems, we show examples of nu-
merical convergence tests for staggered-grid discretizations
schemes (e.g., Gerya and Yuen, 2003, 2007).

2 Two-dimensional solution

2.1 Formulation of 2-D equations with variable
viscosity

Consider the plane flow, 2-D Stokes equations for the case of
varying viscosity have the form

2η
∂2vx

∂x2
+ 2

∂η

∂x

∂vx

∂x
+ η

∂2vx

∂y2
+ η

∂2vy

∂y∂x
+

∂η

∂y

∂vx

∂y
(1)

+
∂η

∂y

∂vy

∂x
−

∂P

∂x
= −ρGx,

η
∂2vy

∂x2
+ η

∂2vx

∂y∂x
+

∂η

∂x

∂vx

∂y
+

∂η

∂x

∂vy

∂x
+ 2

∂η

∂y

∂vy

∂y
(2)

+2η
∂2vy

∂y2
−

∂P

∂y
= −ρGy,

∂vx

∂x
+

∂vy

∂y
= 0. (3)

Here(vx,vy) is the flow velocity,η = η(x,y) is the viscos-
ity, P is the pressure,ρ is the density,(Gx,Gy) is the gravi-
tational force. Note that Eq. (3) is the continuity equation.

Let us change the variablesvx,vy,P in such a way that

∂vx

∂x
=

1

η

∂ux

∂x
,

∂vx

∂y
=

1

η

∂ux

∂y
, (4)

∂vy

∂x
=

1

η

∂uy

∂x
,

∂vy

∂y
=

1

η

∂uy

∂y
, (5)

1

η

∂P

∂x
=

∂P̃

∂x
,

1

η

∂P

∂y
=

∂P̃

∂y
. (6)

The correctness conditions for such replacement are as fol-
lows:

∂

∂y

(
1

η

∂ux

∂x

)
=

∂

∂x

(
1

η

∂ux

∂y

)
,

∂

∂y

(
1

η

∂uy

∂x

)
=

∂

∂x

(
1

η

∂uy

∂y

)
,

∂

∂y

(
η
∂P̃

∂x

)
=

∂

∂x

(
η
∂P̃

∂y

)
.

These conditions lead to the following correlations:

∂η

∂y

∂ux

∂x
=

∂η

∂x

∂ux

∂y
,

∂η

∂y

∂uy

∂x
=

∂η

∂x

∂uy

∂y
,

∂η

∂y

∂P̃

∂x
=

∂η

∂x

∂P̃

∂y
.

If we consider these conditions as a partial differential equa-
tions then we obtain the same characteristic equation for all
these conditions:

∂η

∂x
dx +

∂η

∂y
dy = 0.
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Evidently, η(x,y) = C is an integral of the equation. It is
well known that an integral of the characteristic equation
gives one good new variable. Namely,η = η(x,y) is a good
new variable (the second coordinate should be orthogonal
to the first one). Note that the assumption that the viscosity
varies is now crucial because we use the viscosity as a new
coordinate (instead of the standard Cartesian spatial coordi-
nate). Hence, the solutions of our equations, which predeter-
mine the correctness of the replacement suggested above, are

ux = 8(η), uy = 9(η), P̃ = P̃ (η).

After the replacement, the Stokes Eqs. (1, 2) and the conti-
nuity condition (3) transform to the following form:

2
∂2ux

∂x2
+

∂2ux

∂y2
+

∂2uy

∂y∂x
− η

∂P̃

∂x
= −ρGx, (7)

∂2uy

∂x2
+

∂2ux

∂y∂x
+ 2

∂2uy

∂y2
− η

∂P̃

∂y
= −ρGy, (8)

∂ux

∂x
+

∂uy

∂y
= 0. (9)

Inserting the expressions forux,uy into Eqs. (7–9), one
obtains the following equations:

28′
∂2η

∂2x
+ 28′′

(
∂η

∂x

)2

+ 8′
∂2η

∂2y
+ 8′′

(
∂η

∂y

)2

+

9 ′
∂2η

∂y∂x
+ 9 ′′

∂η

∂y

∂η

∂x
− ηP̃ ′

∂η

∂x
= −ρGx, (10)

29 ′
∂2η

∂2y
+ 29 ′′

(
∂η

∂y

)2

+ 9 ′
∂2η

∂2x
+ 9 ′′

(
∂η

∂x

)2

+

8′
∂2η

∂y∂x
+ 8′′

∂η

∂y

∂η

∂x
− ηP̃ ′

∂η

∂y
= −ρGy, (11)

8′
∂η

∂x
+ 9 ′

∂η

∂y
= 0. (12)

2.2 Linearly varying viscosity

To obtain the solutions of Eqs. (10–12) we make some as-
sumptions. In particular, in this section we assume, first, that
the viscosityη is a linear function of the Cartesian coordi-
nates,

η = ax + by + c, (13)

where a,b,c are non-zero constants. Second, the restric-
tion concerning the gravitational terms takes place:ρ(aGy −

bGx) andρ(bGy +aGx) are assumed to be functions of one
variable – viscosity. It means thatρGy andρGx are func-
tions ofη only. Introduce functionsf,f1:

f (η) =
ρ(aGy − bGx)

(a2 + b2)2
, f1(η) =

ρ(bGy + aGx)

a2 + b2
. (14)

Under these assumptions one gets the following system of
equations:

8′′(2a2
+ b2) + 9 ′′ab − aηP̃ ′

= −ρGx,

9 ′′(a2
+ 2b2) + 8′′ab − aηP̃ = −ρGy,

8′a + 9 ′b = 0.

One can simply solve this linear algebraic system with re-
spect to8′′,9 ′′, P̃ ′:

8′′
= bf (η), 9 ′′

= −af (η), P̃ ′
=

f1(η)

η
. (15)

That gives us

ux = 8 = b

η∫
1

dη1

η1∫
1

dη2f (η2) + bc1η + c2,

uy = 9 = −a

η∫
1

dη1

η1∫
1

dη2f (η2) − ac1η + c3,

P̃ =

η∫
1

dη1
f1(η1)

η1
+ c4.

Correspondingly, one obtainsvx,vy,P :

vx = b

η∫
1

dη1

η1

η1∫
1

dη2f (η2) + bc1 logη + c2

= b

η∫
1

dη2f (η2)

η∫
η2

dη1

η1
+ bc1 logη + c2.

Finally,

vx = b

η∫
1

dη2f (η2) log

(
η

η2

)
+ bc1 logη + c2. (16)

Analogous transformation takes place forvy :

vy = −a

η∫
1

dη1

η1

η1∫
1

dη2f (η2) − ac1 logη + c3,

Namely,

vy = −a

η∫
1

dη2f (η2) log

(
η

η2

)
− ac1 logη + c3. (17)

The expression for the pressure is as follows:

P =

η∫
1

dη1f1(η1) + c4. (18)
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In particular, in the case of constant gravitational terms,
i.e., forf (η) = A = const,f1(η) = A1 = const one has

vx = bAη + bc̃1 logη + c̃2,

vy = −aAη − ac̃1 logη + c̃3,

P = A1η + c̃4.

Consider a more complicated case when the density is
a linear function of the viscosity:ρ = β1η + β2. Then,

f (η) = a1η + a2, f1(η) = b1η + b2,

where constantsa1,a2,b1,b2 are as follows:

a1 = β1
(aGy − bGx)

(a2 + b2)2
, a2 = β2

(aGy − bGx)

(a2 + b2)2
,

b1 = β1
(bGy + aGx)

a2 + b2
, b2 = β2

(bGy + aGx)

a2 + b2
.

Note that in this case the continuity Eq. (3) should be rewrit-
ten in a more general form:

∂(ρvx)

∂x
+

∂(ρvy)

∂y
= 0. (19)

Equations (16)–(18) gives us

vx = −b(a1/2+ a2 − c1) logη +
1

4
ba1η

2
+ ba2η

−
1

4
a1b − a2b + c2,

vy = a(a1/2+ a2 − c1) logη −
1

4
aa1η

2
− aa2η

+
1

4
a1a + a2a + c3,

P =
1

2
b1η

2
+ b2η −

1

2
b1 − b2 + c4.

The continuity Eq. (19) gives us the relation betweenc2,c3:

ac2 + bc3 = 0.

2.3 Exponentially varying viscosity

Let us construct the second benchmark solution. Now we
assume that the viscosity is the exponential function of the
Cartesian coordinates:

η = cexp(ax + by). (20)

General consideration up to Eqs. (10–12) is the same as ear-
lier. By inserting Eq. (20) into Eqs. (10–12) and taking into
account that

∂η

∂x
= aη,

∂η

∂y
= bη,

one obtains the following system of equations:

(2a2
+ b2)(8′′η2

+ 8′η) + ab(9 ′′η2
+ 9 ′η)

− aP̃ ′η2
= −ρGx,

ab(8′′η2
+ 8′η) + (a2

+ 2b2)(9 ′′η2
+ 9 ′η)

− bP̃ ′η2
= −ρGy,

a8′
+ b9 ′

= 0.

Using the last relation, we exclude9 from the first two equa-
tions:

(a2
+ b2)(8′′η2

+ 8′η) − aP̃ ′η2
= −ρGx,

−
a3

+ ab2

b
(8′′η2

+ 8′η) − bP̃ ′η2
= −ρGy,

9 ′
= −

a

b
8′. (21)

One can see that we obtain a linear algebraic system with
respect to(8′′η2

+ 8′η) andP̃ ′. The solution is as follows:

P̃ ′
=

f1(η)

η2
, (22)

8′′η2
+ 8′η = bf (η). (23)

Remark. It is interesting that these formulas contain the same
functionsf (η), f1(η) as in the previous section.

Equation (23) is a well-known Euler ordinary differential
equation. One can get its solution for arbitrary functionf :

ux = 8(η) = b

η∫
1

log

(
η

η1

)
f (η1)

η1
dη1 + bc1 logη + c2.

(24)

Taking into account the relation in Eq. (21), one obtainsuy :

uy = 9(η) = −a

η∫
1

log

(
η

η1

)
f (η1)

η1
)dη1 − ac1 logη + c3.

(25)

Taking into account Eqs. (4, 5) one obtainsvx , vy :

vx = b

η∫
1

dη1

η2
1

η1∫
1

dη2
f (η2)

η2
− bc1

1

η
+ bc1 + c2

= b

η∫
1

dη2
f (η2)

η2

η∫
η2

dη1

η2
1

− bc1
1

η
+ bc1 + c2.

Hence, we get the expression forvx and analogously, forvy :

vx = b

η∫
1

dη2
f (η2)

η2

η − η2

ηη2
− bc1

1

η
+ bc1 + c2, (26)

vy = −a

η∫
1

dη2
f (η2)

η2

η − η2

ηη2
+ ac1

1

η
− ac1 + c3. (27)
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As for the pressure, we obtain it from Eq. (22) by taking
into account Eq. (6):

P̃ =

η∫
1

dη1
f1(η1)

η2
1

+ c4.

Hence,

P =

η∫
1

dη1
f1(η1)

η1
+ c4. (28)

One can compare Eqs. (26–28) with Eqs. (16–18).
For a simple particular case (constant gravitational term)

whenf (η) = A = const,f1(η) = A1 = const one has

vx = −
b(A + c1)

η
−

bA logη

η
+ c̃2,

vy =
a(A + c1)

η
+

aA logη

η
+ c̃3,

P = A1 logη + c4 − b1,

wherec̃2 = bc1 + c2, c̃3 = −ac1 + c3.

For more a complicated case when the density is a linear
function of the viscosityρ = β1η + β2, i.e.,

f (η) = a1η + a2, f1(η) = b1η + b2,

where constantsa1,a2,b1,b2 are the same as in the previous
section. The continuity equation should be written in a more
general form Eq. (19). It is simple to evaluate integrals in
Eqs. (26–28). In such a way one obtains

vx = ba1 logη +
b(a1 − a2 − c1)

η
− ba2

logη

η
+ c̃2,

vy = −aa1 logη −
a(a1 − a2 − c1)

η
+ aa2

logη

η
+ c̃3,

P = b1η + b2 logη + c̃4,

where c̃2 = c2 + bc1 + ba2 − ba1, c̃3 = c3 + aa1 − aa2 −

ac1, c̃4 = c4 − b1. The continuity Eq. (19) gives us the same
relation as earlier:

ac2 + bc3 = 0.

3 Three-dimensional case

3.1 Formulation of 3-D equations with
variable viscosity

The situation in the 3-D case is similar to that for 2-D. In
particular, we can realize the same procedure as in the 2-D

case with some additional restrictions. The initial system of
equations is as follows:

2η
∂2vx

∂x2
+ 2

∂η

∂x

∂vx

∂x
+ η

∂2vx

∂y2
+ η

∂2vy

∂y∂x
+

∂η

∂y

∂vx

∂y
+

∂η

∂y

∂vy

∂x

+ η
∂2vx

∂z2
+ η

∂2vz

∂z∂x
+

∂η

∂z

∂vx

∂z
+

∂η

∂z

∂vz

∂x
−

∂P

∂x
= −ρGx,

η
∂2vy

∂x2
+ η

∂2vx

∂y∂x
+

∂η

∂x

∂vx

∂y
+

∂η

∂x

∂vy

∂x
+ 2

∂η

∂y

∂vy

∂y
+ 2η

∂2vy

∂y2

+ η
∂2vy

∂z2
+ η

∂2vz

∂z∂y
+

∂η

∂z

∂vy

∂z
+

∂η

∂z

∂vz

∂y
−

∂P

∂y
= −ρGy,

η
∂2vz

∂x2
+ η

∂2vx

∂z∂x
+

∂η

∂x

∂vz

∂x
+

∂η

∂x

∂vx

∂z
+ η

∂2vy

∂z∂y
+

∂η

∂y

∂vz

∂y

+
∂η

∂y

∂vy

∂z
+ η

∂2vz

∂y2
+ 2η

∂2vz

∂z2
+ 2

∂η

∂z

∂vz

∂z
−

∂P

∂z
= −ρGz,

(29)

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0. (30)

The replacement of the variablesvx,vy,vz,P by
ux,uy,uz, P̃ is analogous to that in the two-dimensional
case:

∂vx

∂x
=

1

η

∂ux

∂x
,

∂vx

∂y
=

1

η

∂ux

∂y
, (31)

∂vx

∂z
=

1

η

∂ux

∂z
,

∂vy

∂x
=

1

η

∂uy

∂x
,

∂vy

∂y
=

1

η

∂uy

∂y
,

∂vy

∂z
=

1

η

∂uy

∂z
,

∂vz

∂x
=

1

η

∂uz

∂x
,

∂vz

∂y
=

1

η

∂uz

∂y
,

∂vz

∂z
=

1

η

∂uz

∂z
,

1

η

∂P

∂x
=

∂P̃

∂x
,

1

η

∂P

∂y
=

∂P̃

∂y
,

1

η

∂P

∂z
=

∂P̃

∂z
.

The correctness conditions for such replacement are as fol-
lows:

∂η

∂y

∂ux

∂x
=

∂η

∂x

∂ux

∂y
,

∂η

∂z

∂ux

∂x
=

∂η

∂x

∂ux

∂z
,

∂η

∂z

∂ux

∂y
=

∂η

∂y

∂ux

∂z
,

∂η

∂y

∂uy

∂x
=

∂η

∂x

∂uy

∂y
,

∂η

∂z

∂uy

∂x
=

∂η

∂x

∂uy

∂z
,

∂η

∂z

∂uy

∂y
=

∂η

∂y

∂uy

∂z
,

∂η

∂y

∂uz

∂x
=

∂η

∂x

∂uz

∂y
,

∂η

∂z

∂uz

∂x
=

∂η

∂x

∂uz

∂z
,

∂η

∂z

∂uz

∂y
=

∂η

∂y

∂uz

∂z
,

∂η

∂y

∂P̃

∂x
=

∂η

∂x

∂P̃

∂y
,

∂η

∂y

∂P̃

∂x
=

∂η

∂x

∂P̃

∂y
,

∂η

∂z

∂P̃

∂x
=

∂η

∂x

∂P̃

∂z
.
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The characteristic equations for each triplet of equations, i.e.,
for ux,uy,uz, P̃ are the same (analogously to 2-D case). The
solutions for these conditional equations are

ux = 8(η), uy = 9(η), uz = 0(η), P̃ = P̃ (η). (32)

These relations give us correctness of the above introduced
replacement for arbitrarily varying viscosity. However, it al-
lows one to obtain the solution of the Stokes continuity equa-
tions only under some assumptions concerning the viscosity.

3.2 Linearly varying viscosity – 3-D case

Below we will assume (analogously to 2-D case, Eq.13) that

η = ax + by + cz + e, (33)

wherea,b,c,e are non-zero constants. Moreover, in the 3-D
case we need the following restriction for the gravitational
terms (compare with Eq.14): ρGx,ρGy,ρGz are functions
of one variable – viscosity (for example, these terms may be
constant).

Making the substitution (Eq.31) in the system (Eq.29),
one transforms it to the form,

2
∂2ux

∂x2
+

∂2ux

∂y2
+

∂2uy

∂y∂x
+

∂2ux

∂z2

+
∂2uz

∂z∂x
− η

∂P̃

∂x
= −ρGx

∂2uy

∂x2
+

∂2ux

∂y∂x
+ 2

∂2uy

∂y2
+

∂2uy

∂z2

+
∂2uz

∂z∂y
− η

∂P̃

∂y
= −ρGy,

∂2uz

∂x2
+

∂2ux

∂z∂x
+

∂2uy

∂z∂y
+

∂2uz

∂y2
(34)

+2
∂2uz

∂z2
− η

∂P̃

∂z
= −ρGz,

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (35)

Substitution of Eq. (32) into Eq. (??), Eq. (35) leads to the
following system for8,9,0,P̃ :

8′′(2a2
+ b2

+ c2) + 9 ′′ab + 0′′ac − ηaP̃ ′
= −ρGx, (36)

9 ′′(a2
+ 2b2

+ c2) + 8′′ab + 0′′bc − ηbP̃ ′
= −ρGy, (37)

0′′(a2
+ b2

+ 2c2) + 8′′ac + 9 ′′bc − ηcP̃ ′
= −ρGz, (38)

8′a + 9 ′b + 0′c = 0. (39)

Hence,

8′′(a2
+ b2

+ c2) − ηaP̃ ′
= −ρGx,

9 ′′(a2
+ b2

+ c2) − ηbP̃ ′
= −ρGy,

−
1

c
8′′(ac2

+ ab2
+ a3) −

1

c
9 ′′(bc2

+ a2b + b3)

− ηcP̃ ′
= −ρGz,0

′
= −

a

c
8′

−
b

c
9 ′.

The first three equations gives one a linear algebraic sys-
tem with respect to8′′,9 ′′, P̃ ′ which can be solved with-
out difficulties. Then, one gets0′′ from the last equation of
the system. To be correct, the obtained expressions should be
functions of one variable – viscosity. It is ensured by our as-
sumption concerning the gravitational terms. The result is as
follows:

8′′
=

ρ(Gyab + Gzac − Gx(b
2
+ c2))

(a2 + b2 + c2)2
= fx(η), (40)

9 ′′
=

ρ(Gxab + Gzbc − Gy(a
2
+ c2))

(a2 + b2 + c2)2
= fy(η), (41)

0′′
=

ρ(Gxac + Gybc − Gz(a
2
+ b2))

(a2 + b2 + c2)2
= fz(η), (42)

P̃ ′
=

ρ(Gxa + Gyb + Gxc)

η(a2 + b2 + c2)
=

fP (η)

η
. (43)

Here we defined four functions:fx(η),fy(η),fz(η),fP (η).
The obtained expressions are analogous to that in Eq. (15).
Correspondingly, the integration is analogous, and one ob-
tains

vx =

η∫
1

dη2fx(η2) log

(
η

η2

)
+ c1x logη + c2x, (44)

vy =

η∫
1

dη2fy(η2) log

(
η

η2

)
+ c1y logη + c2y, (45)

vz =

η∫
1

dη2fz(η2) log

(
η

η2

)
+ c1z logη + c2z, (46)

P =

η∫
1

dη1fP (η1) + cp. (47)

In particular, in the case of constant gravitational terms,
i.e., for fx(η) = Ax = const,fy(η) = Ay = const,fz(η) =

Az = const,fP (η) = AP = const one obtains a result anal-
ogous to the 2-D case:

vx = Axη + c̃1x logη + c̃2x,

vy = Ayη + c̃1y logη + c̃2y,

vz = Azη + c̃1z logη + c̃2z,

P = AP η + c̃P .
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The continuity condition gives one the following correla-
tion between the coefficients:

ac̃1x + bc̃1y + cc̃1z = 0. (48)

The condition,

aAx + bAy + cAz = 0,

is identically valid (see the expressions forfx,fy,fz).
Consider a more complicated case when the density is

a linear function of the viscosity:ρ = β1η + β2. Then,

fx(η) = a1η + a2, fy(η) = b1η + b2,

fz(η) = d1η + d2, fP (η) = p1η + p2,

where constantsa1,a2,b1,b2,d1,d2,p1,p2 are as follows:

a1 = β1
(Gyab + Gzac − Gx(b

2
+ c2))

(a2 + b2 + c2)2
,

a2 = β2
(Gyab + Gzac − Gx(b

2
+ c2))

(a2 + b2 + c2)2
,

b1 = β1
(Gxab + Gzbc − Gy(a

2
+ c2))

(a2 + b2 + c2)2
,

b2 = β2
(Gxab + Gzbc − Gy(a

2
+ c2))

(a2 + b2 + c2)2
,

d1 = β1
(Gxac + Gybc − Gz(a

2
+ b2))

(a2 + b2 + c2)2
,

d2 = β2
(Gxac + Gybc − Gz(a

2
+ b2))

(a2 + b2 + c2)2
,

p1 = β1
(Gxa + Gyb + Gxc)

(a2 + b2 + c2)
,

p2 = β2
(Gxa + Gyb + Gxc)

(a2 + b2 + c2)
.

The continuity Eq. (30) in this situation has more general
form:
∂(ρvx)

∂x
+

∂(ρvy)

∂y
+

∂(ρvz)

∂z
= 0. (49)

In this case the formulas for the velocity and the pressure
preserve their form from Eqs. (44–47) and give us

vx = −(a1/2+ a2 − c1x) logη +
1

4
a1η

2
+ a2η −

1

4
a1

−a2 + c2x,

vy = −(b1/2+ b2 − c1y) logη +
1

4
b1η

2
+ b2η −

1

4
b1

−b2 + c2y,

vz = −(d1/2+ d2 − c1z) logη +
1

4
d1η

2
+ d2η −

1

4
d1

−d2 + c2z,

P =
1

2
p1η

2
+ p2η −

1

2
p1 − p2 + cp.

The continuity Eq. (49) leads to the relation

ac2x + bc2y + cc2z = 0.

3.3 Exponentially varying viscosity – 3-D case

Consider the second benchmark solution (for exponential de-
pendence of the viscosity on the Cartesian coordinates):

η = C exp(ax + by + cz). (50)

The assumption concerning the gravitational terms is the
same as earlier. General 3-D consideration is the same. By
inserting Eq. (32) into the equations forux,uy,uz, P̃ and tak-
ing into account that

∂η

∂x
= aη,

∂η

∂y
= bη,

∂η

∂z
= cη,

one obtains the following system of equations:

(2a2
+ b2

+ c2)(8′′η2
+ 8′η) + ab(9 ′′η2

+ 9 ′η)

+ ac(0′′η2
+ 0′η) − aP̃ ′η2

= −ρGx,

ab(8′′η2
+ 8′η) + (a2

+ 2b2
+ c2)(9 ′′η2

+ 9 ′η)

+ bc(0′′η2
+ 0′η) − bP̃ ′η2

= −ρGy,

ac(8′′η2
+ 8′η) + bc(9 ′′η2

+ 9 ′η) + (a2
+ b2

+ 2c2)

(0′′η2
+ 0′η) − cP̃ ′η2

= −ρGz,

a8′
+ b9 ′

+ c0′
= 0.

We can note that the first three equations give us the same
linear algebraic system as in the case of linear viscosity
(Eqs. 36–38), if one takes(8′′η2

+ 8′η), (9 ′′η2
+ 9 ′η),

(0′′η2
+ 0′η), ηP̃ ′ as variables instead of8′′,9 ′′,0′′, P̃ in

the linear viscosity case. Hence, the solution of the system is
as follows:

8′′η2
+ 8′η = fx(η),

9 ′′η2
+ 9 ′η = fy(η),

0′′η2
+ 0′η = fz(η),

P̃ ′η =
fP (η)

η
.

The definition of the functionsfx,fy,fz,fp was given
above, see Eqs. (40–43). One can solve these equations by
the procedure used in the corresponding 2-D case (exponen-
tial viscosity). By this method, we come to the result

vx =

η∫
1

dη2
fx(η2)

η2

η − η2

ηη2
+ c1x

1

η
+ c2x, (51)

vy =

η∫
1

dη2
fy(η2)

η2

η − η2

ηη2
+ c1y

1

η
+ c2y . (52)

vz =

η∫
1

dη2
fz(η2)

η2

η − η2

ηη2
+ c1z

1

η
+ c2z. (53)

P =

η∫
1

dη1
fP (η1)

η1
+ cp. (54)
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Herec1x,c1y,c1z, c2x,c2y,c2z,cp are constants. The conti-
nuity equation gives one a relation between the coefficients:

ac1x + bc1y + cc1z = 0.

One can compare Eqs. (51–54) with the results for the corre-
sponding 2-D case (Eqs.26–28).

For a particularly simple case (constant gravitational term)
when fx(η) = Ax = const, fy(η) = Ay = const, fz(η) =

Az = const,fP (η) = AP = const one has:

vx = −
(Ax + c1x)

η
− Ax

logη

η
+ c̃2x,

vy = −
(Ay + c1y)

η
− Ay

logη

η
+ c̃2y,

vz = −
(Az + c1z)

η
− Az

logη

η
+ c̃2z,

P = AP logη + cp.

Consider a more complicated case when the density is
a linear function of the viscosity:ρ = β1η + β2. Then,

fx(η) = a1η + a2, fy(η) = b1η + b2,

fz(η) = d1η + d2, fP (η) = p1η + p2,

where constantsa1,a2,b1,b2,d1,d2,p1,p2 have been deter-
mined in the previous section. Here we use the continuity
equation in the form of Eq. (49). In this case Eqs. (51–54)
give us

vx = a1 logη +
(a1 − a2 − c1x)

η
− a2

logη

η
+ c̃2x,

vy = b1 logη +
(b1 − b2 − c1y)

η
− b2

logη

η
+ c̃2y,

vz = d1 logη +
(d1 − d2 − c1y)

η
− d2

logη

η
+ c̃2y,

P = p1η + p2 logη + c̃P ,

wherec̃2x = c2x + c1x + a2 − a1, c̃2y = c2y + c1y + b2 − b1,

c̃2z = c2z + c1z + d2 − d1, c̃P = cp − p1. The continuity
Eq. (49) leads to the relation

ac̃2x + bc̃2y + cc̃2z = 0.

4 Example problems and numerical convergence tests

The scheme of algorithm testing is as follows. Initially, we
have obtained particular solutions of the Stokes and conti-
nuity equations for two types of viscosity variations. Let us
choose a domain, e.g., a rectangle in the 2-D case. We calcu-
late the values for velocity and pressure given by our analyti-
cal solution and take these values as the boundary conditions.

Figure 1. Distribution of viscosityη and densityρ; 2-D case, lin-
early varying viscosity, high-viscosity contrast (η2 = η3 = 100).

Figure 2. Distribution ofvx , vy andP ; 2-D case, linearly varying
viscosity, high-viscosity contrast (η2 = η3 = 100),vxe = vxn−vxa ,
vye = vyn − vya , Pre = Prn − Pra .

Then, due to the uniqueness theorem, the solution of the
boundary problem in the domain should coincide with our
analytical solution. Let us compute the solution of the bound-
ary problem by a numerical method which is tested. Compar-
ison of the result with the exact analytical solution gives us
the error of the numerical solution and shows the quality of
the numerical algorithm. In the present paper, we used stan-
dard 2-D and 3-D stress-conservative finite-differences on
staggered regularly spaced grid for obtaining numerical so-
lutions (Gerya, 2010). Respective MatLab programs for the
2-D and 3-D cases are provided in the Supplement to this
paper. All results of calculations are presented in the Sup-
plement. In the main text of the paper we show only a few
examples.
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Figure 3. Logarithm of the relative error (logE) via logarithm of
the grid step (logH ); 2-D case, linearly varying viscosity, high-
viscosity contrast (η2 = η3 = 100); blue lines – pressure, green
lines – vx , black lines –vy ; solid lines –L1-error, dashed lines
– L∞-error, solid dotted line –L2-error.

Figure 4. Distribution of viscosityη and densityρ; 2-D case, ex-
ponentially varying viscosity, high-viscosity contrast (η2 = η3 =

100).

4.1 2-D example

4.1.1 Linearly varying viscosity

Consider a simple example of such flow in a rectangle�:
0 ≤ x ≤ xsize,0 ≤ y ≤ ysize. We assume thatη = ax+by+c.

We will mark the exact solution obtained in Sect. 2 as
vx,a,vy,a,Pa . It is the solution of the boundary problem in
the rectangle� with the following conditions at the bound-
ary ∂� = {x = 0,x = xsize,y = 0,y = ysize} :

vy |∂� = vy,a, vx |∂� = vx,a .

Let us compute the velocity and the pressure by the finite-
difference scheme. The corresponding solution is marked as
vx,n,vy,n,Pn. The deviation of these values from the exact

Figure 5. Distribution of vx , vy and P ; 2-D case, exponentially
varying viscosity, high-viscosity contrast (η2 = η3 = 100)vxe =

vxn − vxa , vye = vyn − vya , Pre = Prn − Pra .

solution (vx,n − vx,a,vy,n − vy,a,Pn − Pa) is related to the
error of the numerical scheme. We calculate the relative er-
ror norms of three types:L∞,L1,L2 for different viscosity
contrasts, i.e., different values of the coefficientsa,b. We
test the program Stokes 2-D variable-viscosity 1 fromGerya
(2010). Calculations show that the convergence is better for
the case of low-viscosity contrast (cf., Supplement). The re-
sults for high-viscosity contrast are presented in Figs. 1–3:
Fig. 1 shows prescribed viscosity and density distribution,
Fig. 2 presents the pressure and the velocity components dis-
tributions and Fig. 3 contains the plot of the relative errors
via the grid resolutions in logarithmic scale. The viscosity
contrast, i.e., the values of the coefficients in the expression
for the viscosity, is determined by the given values of the
viscosity at three corners of the model rectangle. . . The value
of the viscosity at the initial rectangle corner is 1, whereas
η2 andη3 are the prescribed values of the viscosity at the
upper-left and lower-right corner, respectively. In all figures
“n” means “numerical solution”, “a” means “analytical so-
lution” (benchmark).

For the case of linearly varying viscosity we made calcu-
lations for the following system parameters:

xsize= ysize= 1,Gx = 0,Gy = 10,

η1 = 1,β1 = 1,β2 = 3× 103,

c = η1,a = (η3 − η1)/xsize,b = (η2 − η1)/ysize,

ρ = β1(ax + by + c) + β2.

One can see that the numerical approach has rather high ac-
curacy. We observe the conventional situation –L∞-error is
the largest among the considered errors norms, andL1-error
andL2-error are similar.
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Figure 6. Logarithm of the relative error (logE) via logarithm
of the grid step (logH ); 2-D case, exponentially varying viscos-
ity, high-viscosity contrast (η2 = η3 = 100); blue lines – pressure,
green lines –vx , black lines –vy ; solid lines –L1-error, dashed
lines –L∞-error, solid dotted lines –L2-error.

Figure 7. Distribution of viscosityη and exponentially varying vis-
cosity, high-viscosity contrast (η2 = η3 = η4 = 100).

To describe in more details the dependence of the error on
the viscosity contrast, we fill tables with errors for different
values ofη2,η3 (see Appendix, Tables A1–A3).

4.1.2 Exponentially varying viscosity

The case of exponentially varying viscosity is treated analo-
gously. In order to make a comparison with the case of lin-
early varying viscosity, we take the same system parameters
(geometrical size, gravitational terms and the dependence of
the density on the viscosity) with the same viscosity contrast

Figure 8.Distribution ofvx andvy ; 3-D case, exponentially varying
viscosity, high-viscosity contrast (η2 = η3 = η4 = 100)vxe = vxn−

vxa , vye = vyn − vya .

(i.e., the values of the viscosity at the rectangle corners):

C = η1, a = (log(η3) − log(η1))/xsize,

b = (log(η2) − log(η1))/ysize,

η = C exp(ax + by),

ρ = β1η + β2,

xsize= ysize= 1,

Gx = 10, Gy = 10,

η1 = 1, β1 = 1, β2 = 3× 103.

We examine two cases (low- and high-viscosity contrasts,
cf. Supplement). Figures 4–6 present the results for high-
viscosity contrast. There are some similarities with the pre-
vious case. In particular,L∞ error norm gives us the max-
imum relative error value among the three considered error
norms. However, peculiarities are more interesting. Namely,
the numerical scheme works essentially better for the case
of exponentially varying viscosity than for linearly varying
viscosity. We observe good convergence for both low- and
high-viscosity contrasts (compare Figs. 3 and 6, also cf. Sup-
plement).

Dependence of the errors on the viscosity contrast for ex-
ponentially varying viscosity is presented in the Appendix
Tables A3–A6.
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Figure 9. Distribution of vz andP ; 3-D case, exponentially vary-
ing viscosity, high-viscosity contrast (η2 = η3 = η4 = 100),vze =

vzn − vza , Pre = Prn − Pra .

4.2 3-D example

One can note that benchmark solutions for the 3-D case are
essentially more rare than for the corresponding 2-D situa-
tion. It is, therefore, noteworthy that the suggested approach
allows us to obtain such solutions for 3-D Stokes and conti-
nuity equations. As earlier, we consider the cases of linearly
and exponentially varying viscosity.

4.2.1 Linearly varying viscosity

The statement of the problem is analogous to the previ-
ous case. In the 3-D space we consider a parallelepiped
�: 0 ≤ x ≤ xsize,0 ≤ y ≤ ysize,0 ≤ z ≤ zsize. We assume that
η = ax + by + cz + e. We will mark the exact solution ob-
tained in Sect. 3 asvx,a,vy,a,vz,a,Pa . Due to the uniqueness
theorem, it is the solution of the boundary problem in the par-
allelepiped� with the following conditions at the boundary
∂� = {x = 0,x = xsize,y = 0,y = ysize,z = 0,z = zsize} :

vx |∂� = vx,a,vy |∂� = vy,a,vz|∂� = vz,a .

Let us compute the velocity and the pressure numerically
using chosen finite-difference algorithm. The correspond-
ing numerical solution is marked asvx,n,vy,n,vz,n,Pn. The
deviation of these values from the exact solution (vx,n −

vx,a,vy,n − vy,a,vz,n − vz,a,Pn − Pa) is related to the er-

Figure 10. Logarithm of the relative error (logE) via logarithm
of the grid step (logH ); 3-D case, exponentially varying viscosity,
high-viscosity contrast (η2 = η3 = η4 = 100); blue lines – pressure,
red lines –vx , black lines –vy , green lines –vz; solid lines –L1-
error, dashed lines –L∞-error, solid dotted lines –L2-error.

ror of the numerical scheme. As in the 2-D case, we con-
sider three error norms:L∞,L1,L2. We examine cases of
low- and high-viscosity contrasts. Coefficientsa,b,c,e in the
viscosity formula are determined by given viscosity values
(η1 = 1,η2,η3,η4) at four adjacent parallelepiped vertices.

We choose the following system parameters:

e = η1, a = (η3 − η1)/xsize,

b = (η2 − η1)/ysize, c = (η4 − η1)/zsize.

η = ax + by + cz + e,

ρ = β1η + β2,

xsize= ysize= zsize= 1,

Gx = 10, Gy = 10, Gz = 0,

η1 = 1, β1 = 1, β2 = 3× 103.

Results are presented in the Supplement. It should be men-
tioned that the numerical procedure for the 3-D case takes es-
sentially greater time than for the 2-D case. Qualitatively, the
results are similar to that for the corresponding 2-D case. Bet-
ter numerical convergence is again found for low-viscosity
contrast.

4.2.2 Exponentially varying viscosity

As in the 2-D case, we consider also exponentially varying
viscosity. The consideration is analogous to that in the re-
spective 2-D case. In order to make a comparison we take
here the same system parameters. Naturally, the viscosity
and, correspondingly, the density distributions are now ex-
ponential.
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The system parameters are chosen as follows:

C = η1, a = (log(η3) − log(η1))/xsize,

b = (log(η2) − log(η1))/ysize,

c = (log(η4) − log(η1))/zsize.

η = C exp(ax + by + cz),

ρ = β1η + β2,

xsize= ysize= zsize= 1,

Gx = 10, Gy = 10, Gz = 0,

η1 = 1, β1 = 1, β2 = 3× 103,

The results are presented in Figs. 7–10 for the case of high-
viscosity contrast. Similarly to 2-D results, the numerical
procedure converges better for the exponentially varying vis-
cosity than for the linearly varying viscosity. The algorithm
convergence, i.e., the dependence of the errors on the grid
resolution is shown in Fig. 10.

5 Conclusions

In this paper, we developed new, specific analytical solutions
for the 2-D and 3-D Stokes flows with both linearly and expo-
nentially variable viscosity. We also demonstrated how these
solutions can be converted into 2-D and 3-D test problems
suitable for benchmarking numerical geodynamic codes. The
main advantage of this new generalized approach is that large
variety of benchmark problems can be easily generated, in-
cluding relatively complex cases with open model bound-
aries, non-vertical gravity and variable gradients of viscosity
and density fields, which are not parallel to Cartesian axes.
These solutions can be very useful for testing numerical al-
gorithms aimed at modeling variable-viscosity mantle con-
vection and lithospheric dynamics. Examples of respective
2-D and 3-D MatLab codes are provided with the paper.

The Supplement related to this article is available online
at doi:10.5194/se-5-461-2014-supplement.

Acknowledgements.The work was made in the framework of
Scientific and Technological Cooperation Programme Switzerland–
Russia. This work was partially financially supported by the
Government of Russian Federation (grant 074-U01), by the
Ministry of Science and Education of the Russian Federation
(GOSZADANIE 2014/190, Project 14.Z50.31.0031), by a grant
of the Russian Foundation for Basic Research and grants of the
President of Russia (state contracts 14.124.13.2045-MK and
14.124.13.1493-MK).

Edited by: J. C. Afonso

Solid Earth, 5, 461–476, 2014 www.solid-earth.net/5/461/2014/

http://dx.doi.org/10.5194/se-5-461-2014-supplement


I. Yu. Popov et al.: Benchmarking of geodynamic Stokes problems with variable viscosity 473

Appendix A: Error decreasing with decreasing grid res-
olution

The dependence of the convergence on the viscosity con-
trast is shown in the following tables. Namely, the viscosi-
tiesη2,η3 run through a set of values from 2 to 10000. For
each pair ofη2,η3 we perform the benchmarking procedure
described above and obtain the curve describing the depen-
dence of the logarithm of the error norm on the logarithm
of the grid resolution. The tangent of the slope angle of this
curve gives us an input of the table. Full set of tables are
given in the Supplement. Below, we show several examples
of such tables.

Table A1.Tangent of the slope of the curve showing the dependence
of the logarithm ofL2-error for pressureP on the logarithm of the
grid step for different viscosity contrasts. Linearly varying viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.42 1.14 1.24 0.86 0.46 0.08 −0.20
5 1.13 1.44 1.03 1.30 0.57 0.23 −0.16
20 1.23 1.03 1.39 1.27 0.83 0.43 −0.01
100 1.14 1.21 1.26 1.36 1.33 0.50 0.26
300 1.27 1.27 1.29 1.33 1.34 1.17 0.40
1000 0.56 0.70 1.03 1.24 1.31 1.36 0.39
10 000 −0.21 −0.19 −0.04 0.23 0.34 0.43 1.27

Table A2. Tangent of the slope of the curve showing the depen-
dence of the logarithm ofL2-error for velocity componentvx on
the logarithm of the grid step for different viscosity contrasts. Lin-
early varying viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.81 1.99 1.81 1.20 0.70 0.29 0.01
5 1.53 1.61 1.80 1.79 0.91 0.47 0.04
20 1.47 1.54 1.61 1.81 1.09 0.77 0.20
100 1.13 1.39 1.54 1.69 2.04 0.94 0.53
300 1.64 1.63 1.63 1.61 1.70 1.49 0.77
1000 0.56 0.77 1.23 1.57 1.60 1.15 0.90
10 000 −0.19 −0.13 0.01 0.41 0.69 0.96 0.88

Table A3. Tangent of the slope of the curve showing the depen-
dence of the logarithm ofL2-error for velocity componentvy on
the logarithm of the grid step for different viscosity contrasts. Lin-
early varying viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.99 1.53 1.49 1.14 0.51 0.07 −0.21
5 1.99 1.90 1.54 1.61 0.79 0.26 −0.19
20 1.81 1.80 1.79 1.56 1.24 0.63 −0.03
100 1.27 1.47 1.79 2.03 1.61 0.94 0.34
300 1.86 1.93 1.99 2.04 2.04 1.43 0.60
1000 0.37 0.53 0.90 1.56 1.97 2.03 0.74
10 000 0.019 0.04 0.20 0.54 0.76 0.89 1.23

A1 Linearly varying viscosity

Tables A1–A3 contain log rates ofL2 error norm decreasing
with decreasing grid resolution (the curve slope in Fig. 3 in
the logarithmic scale) for different viscosity contrasts in the
case of linearly varying viscosity. Calculations were made
for the following system parameters:

xsize= ysize= 1, Gx = 0, Gy = 10,

η1 = 1, β1 = 102, β2 = 3× 103,

c = η1, a = (η3 − η1)/xsize, b = (η2 − η1)/ysize,

ρ = β1(ax + by + c) + β2.
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A2 Exponentially varying viscosity

Tables A4–6 contain log rates ofL2 error norm decreasing
with decreasing grid step (the curve slope in Fig. 6 in the log-
arithmic scale) for different viscosity contrasts in the case of
exponentially varying viscosity. The system parameters are
the same as in the case of linearly varying viscosity with re-
spective changes:

c = η1, a = (logη3 − logη1)/xsize,

b = (logη2 − logη1)/ysize,

ρ = β1cexp(ax + by) + β2.

Table A4. Tangent of the slope of the curve showing the depen-
dence of the logarithm ofL2-error for pressureP on the logarithm
of the grid step for different viscosity contrasts. Exponentially vary-
ing viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.46 1.03 1.20 1.47 1.56 1.53 1.40
5 1.03 1.13 1.23 1.39 1.53 1.51 1.39
20 1.13 1.24 1.31 1.46 1.51 1.46 1.31
100 1.27 1.39 1.39 1.46 1.43 1.37 1.23
300 1.37 1.41 1.39 1.40 1.37 1.31 1.19
1000 1.41 1.41 1.36 1.33 1.30 1.24 1.11
10 000 1.37 1.34 1.26 1.17 1.14 1.11 1.00

Table A5.Tangent of the slope of the curve showing the dependence
of the logarithm ofL2-error for velocity componentvx on the loga-
rithm of the grid step for different viscosity contrasts. Exponentially
varying viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.92 2.00 1.97 2.03 2.00 1.96 1.91
5 1.66 1.92 1.93 2.09 2.01 1.97 1.90
20 1.63 1.84 2.06 2.09 2.01 1.96 1.87
100 1.71 1.93 2.06 2.04 1.97 1.90 1.83
300 1.87 1.99 2.03 2.00 1.93 1.84 1.74
1000 1.93 2.00 2.03 2.00 1.93 1.84 1.74
10 000 1.76 1.89 1.96 1.94 1.90 1.83 1.67

Table A6.Tangent of the slope of the curve showing the dependence
of the logarithm ofL2-error for velocity componentvy on the loga-
rithm of the grid step for different viscosity contrasts. Exponentially
varying viscosity.

η2 2 5 20 100 300 1000 10 000
η3

2 1.97 1.66 1.81 2.10 2.01 1.94 1.83
5 2.00 1.93 1.99 2.11 2.10 2.04 1.94
20 1.97 1.90 2.09 2.14 2.11 2.07 2.00
100 1.89 1.96 2.11 2.09 2.06 2.04 1.97
300 2.03 2.11 2.09 2.01 1.97 1.96 1.93
1000 2.11 2.06 2.04 1.96 1.91 1.87 1.86
10 000 1.96 1.94 1.93 1.87 1.83 1.77 1.71
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