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Abstract. Geodynamic modeling is often related with chal- against analytical and numerical solutions constrained for
lenging computations involving solution of the Stokes and various mechanical and thermomechanical Stokes flow prob-
continuity equations under the condition of highly variable lems is a common practice in computational geodynamics
viscosity. Based on a new analytical approach we have defe.g., Blankenbach et al., 1989; Moresi et al., 1996; van
veloped particular analytical solutions for 2-D and 3-D in- Keken et al., 2008; Gerya and Yuen, 2003, 2007; Deubel-
compressible Stokes flows with both linearly and exponen-beiss and Kaus, 2008; Duretz et al., 2011; Gerya et al., 2013;
tially variable viscosity. We demonstrate how these particu-Popov, 2014; Lobanov et al., 2014; Popov and Sobolev, 2008;
lar solutions can be converted into 2-D and 3-D test problemsTackley and King, 2003; Torrance and Turcotte, 1971; Zhong
suitable for benchmarking numerical codes aimed at mod-and Gurnis, 1994). Available analytical and numerical solu-
eling various mantle convection and lithospheric dynamicstions are mostly two-dimensional and include

problems. The Main advantage of this new generalized ap- ) ) ] )
proach is that a large variety of benchmark solutions can — 2-D mantle convection with constant and variable vis-
be generated, including relatively complex cases with open ~ €osity (Hager and O’Connell, 1981; Revenaugh and
model boundaries, non-vertical gravity and variable gradi- Parsons, 1987; Blankenbach et al., 1989);

ents of the viscosity and density fields, which are not parallel

to the Cartesian axes. Examples of respective 2-D and 3-D ~
MatLab codes are provided with this paper.

2-D thermochemical convection (van Keken et al.,
1997);

— 2-D buoyancy-driven flows for strongly varying viscos-
ity (Zhong, 1996; Moresi et al., 1996; Gerya and Yuen,
2003);

1 Introduction
. . . . . — 2-D mechanical and thermomechanical channel and
Numerical modeling of geodynamic processes is recognized o jatte flows for constant and variable viscosity (Tur-

as a challenging computational problem which requires use cotte and Schubert, 2002; Gerya and Yuen, 2003; Gerya,
of advanced computational techniques and development of 2010);

powerful numerical tools (e.g., Ismail-Zadeh and Tackley,
2010, and references therein). One of the major challenges _ 2-p flow around deformable elliptic inclusions (Schmid

concerns solving of the inertia-free Stokes equation cou- and Podladchikov, 2003);
pled to the incompressible continuity equation in a combi-
nation with strong viscosity variations in the computational - 2-D Rayleigh—Taylor instability (Ramberg, 1968; Kaus

domain. Consequently, benchmarking of numerical codes  and Becker, 2007);
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— 2-D thermomechanical corner flows in subduction 2 Two-dimensional solution

zones (van Keken et al., 2008);
_ ) 2.1 Formulation of 2-D equations with variable
— 2-D spontaneous subduction with a free surface viscosity

(Schmeling et al., 2008);
Consider the plane flow, 2-D Stokes equations for the case of

— 2-D buoyancy-driven flows with a free surface (Crameri . . :
varying viscosity have the form

etal., 2012);
— 2-D numerical sandbox experiments (Buiter et al., , 9%v, 2377 Jue | 0%uy 9%, 0n du, 1
: 952 T2 ax T ov2 T Tavax T oy 3y @
2006); ax dx dx ay dydx dy dy
— 3-D mantle convection in Cartesian geometry (Busse +a_”8ﬂ _op = —pGy,
etal., 1993; Albers, 2000); , , dy dx  dx
a“v a an o an dvy an dv
— 3-D mantle convection in spherical geometry (Zhong n—zy +n o + hfx ) 2%y +2_77_y (2)
. ox dydx dx dy  0x 0x dy dy
et al., 2008);
d%v, 9P
— 3-Dinfinitesimal and finite amplitude folding instability +2n av2 5 =—pGy,
(Kaus and Schmalholz, 2006); Y 3v. 9w
X y _
— 2-D and 3-D shear band formation and plasticity imple- x| dy 0. ®)
mentation (Lemiale et al., 2008; Kaus, 2010; Thieulot ) ) _ )
etal., 2008); Here (vy, vy) is the flow velocity,n = n(x, y) is the viscos-

_ _ _ ity, P is the pressureg is the density(G,, G,) is the gravi-
— numerical sandbox experiments (Buiter et al., 2006), tational force. Note that Eq3] is the continuity equation.
(Gerya and Yuen, 2007), (Thieulot, 2011) and (Gerya, Let us change the variables, vy, P in such a way that
2010);

) o )  0vy  10uy ovy  10duy
— 3-D convection at infinite Prandtl numbers in Cartesian ™ =- o’ 9y = - 3y (4)
geometry (Busse et al., 1993); " yoonoy
dvy _ 10u, vy . 10u, 5
— falling block (Gerya and Yuen, 2003; Gerya, 2010; 3x ~— 5 ax ' ay 5 dy ®)
Thieulot, 2011). 19P 9P 13P 3P ©

These solutions are constrained for a number of well defined, 3, = ax nay - By
model setups, which are of potential significance for vari-
ous situations which numerical codes may face during reail he correctness conditions for such replacement are as fol-
geodynamic simulations. Availability and broad range of 2- lows:
D and 3-D benchmark solutions are, therefore, critical for the 5 ¢ ity 9 [10u,
development and testing of the next generation of numerica ( ) (— ) )
geodynamic modeling software which aims to combine rhe- Y n 9y
ological complexity of constitutive laws with adaptive grid 9 <} 3&) - 9 (E%)
resolution to on both global and regional scales (e.g., Moresidy \ 1 9x dx \n dy )’
et al., 2003; Dabrowski et al., 2008; Tackley, 2008; Stadler 5 [ 5p 9 [ opP
etal., 2010; Gerya et al., 2013). oo (”E) = (778—) .

In the present paper we aim to significantly expand avail- Y
ability of benchmark solutions for both 2-D and 3-D variable- 1rese conditions lead to the following correlations:
viscosity Stokes flows. In contrast with previous studies, we
prefer not to start from any prescribed model setups butdn dux  9n dux  dnduy  In du,
rather derive general analytical solutions, which are poten-3y ax ~ ax dy = dy dx  ax dy
tially suitable for generating a broad range of test problems.a 9P  on 9P

. . . . . Ui U

We derive generalized solutions for incompressible Stokes— — = — —.
problems with linearly and exponentially variable viscosity. %Y 9% 9% ¥
In the following we demonstrate how these generalized solu4f we consider these conditions as a partial differential equa-

tions can be converted into 2-D and 3-D test problems suittjons then we obtain the same characteristic equation for all
able for benchmarking numerical codes. Finally, based onhese conditions:

the obtained benchmark problems, we show examples of nu-
merical convergence tests for staggered-grid discretization?ﬂdx + a_”dy =0.
schemes (e.g., Gerya and Yuen, 2003, 2007). dx dy

" ox

n ox

dy
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Evidently, n(x, y) = C is an integral of the equation. It is Under these assumptions one gets the following system of
well known that an integral of the characteristic equationequations:

gives one good new variable. Namely= n(x, y) is a good .
new variable (the second coordinate should be orthogona@//(z"2+b2) +W"ab—anP'=—pGy,
to the first one). Note that the assumption that the viscosityw” (a2 + 2b2) + ®"ab —anP = —pG
varies is now crucial because we use the viscosity as a new, , . \/;, — g

coordinate (instead of the standard Cartesian spatial coordi-

nate). Hence, the solutions of our equations, which predeterOne can simply solve this linear algebraic system with re-
mine the correctness of the replacement suggested above, agpect tod”, ¥”, P’

¥y

ue=®m). uy=Wm. P=P~). &' =bf(p)., W' =—af(y, P'=T (15)
n

Aft_er the r_eplacement, the Stokes Egs. _(1, 2) and the conti=rp ¢ gives us

nuity condition @) transform to the following form:

n n
282ux + 0%ux + 0%u, — ﬁﬁ = —pGy, @) Uy =& = b/dm/dnzf(nz) +bcin +c2,
9x2  9y? = 9yox dx d 1

Py | Ve 0y 0P g (®) fo [

9x2 ayox 8y2 dy » uy =V = —a/dm[dnzf(nz) —acin +cs,
olly Bﬂ _o. ) 1 1

ax ay

n
P= /dnlfl(nl) + 4.
] ni

Inserting the expressions far, u, into Egs. 7-9), one
obtains the following equations:

Correspondingly, one obtains, v, P:

32 an\? 02 an\2
20/ Lo (M) 4Py (1) & n n
92x ox 32y dy dn1
vy =0b | —= [ dn2f(2) +be1logn +c2
\If’ 827’ _I_\ij/an 877 13/377 _ G (10) nm
dyox oy dx T x = 7P nl ' 0
2 2 2 2 dny
2w O oy (D0 p g 20 g (21 =b/dn2f(nz)/i+b61|09n+cz-
02y ay 02x 0x 1 kA n
8217 an an ~ 0N
o’ "= P — =—pG,, 11 i
dydx + dy dx 7 dy POy (1) Finally,
an an !
& — 4V —=0. 12
TR 48w =t [ dreromion (L) +bertogn +ca (16)
1

2.2 Linearly varying viscosity
Analogous transformation takes place fQr
To obtain the solutions of Eqs1@-12) we make some as-

sumptions. In particular, in this section we assume, first, that ; dn1 b
the viscosityy is a linear function of the Cartesian coordi- Yy = —a/ H/dflzf(nz) —acilogn +cs,
nates, 1 1
n=ax+by+c, (13) Namely,
n

- ic- n
v_vhere a,b,c_ are non zgro_constants. Second, the restric vy = —a/dnzf(nz) log (_) —acilogn + cs. (17)
tion concerning the gravitational terms takes plag@:G, — J n2

bGy) andp(bG,+aG,) are assumed to be functions of one
variable — viscosity. It means thaiG, and oG, are func-  The expression for the pressure is as follows:
tions ofn only. Introduce functiong, f1:

paGy —bGy)

PGy +aGy)
(a2+b2)2

a2+ b2 (14)

fm)=

n
F=Jd +ea 18
. i) = l/’?lfl(’?l) ca (18)
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In particular, in the case of constant gravitational terms,one obtains the following system of equations:

i.e., forf(n) = A1 =const one has

A =const,f1(n) =

vy =bAn+ bc1logn + ¢,
vy = —aAn —acilogn +cs,
P=Ain+ca.

!/ /!
Consider a more complicated case when the density jg® +ov

a linear function of the viscositys = 11 + B2. Then,

f =am+az, fi(n) =bin+bo,

where constantsy, ay, b1, by are as follows:

wr— @Gy =bGo) @Gy —bG)
(bGy +aGy) (bGy +aGy)

bi=pr—2 X = g2 T

1=ph 2 1? 2=p2 P

Note that in this case the continuity E®) 6hould be rewrit-
ten in a more general form:

d(pvx)  9(pvy) _
ax dy

19)
Equations 16)—(18) gives us

1
vy = —b(a1/2+ az — c1)logn + Zbalnz + bazn
1 b b+
zb —azb+ca,
1
vy =a(a1/2+az —c1)logn — Zaamz —aazn
1
—{—Zala + aza + c3,
= b — by — byt
= 5bun 21— 5b1—ba+ca.
The continuity Eq. 19) gives us the relation betweep, c3:
aco+bcz=0.

2.3 Exponentially varying viscosity

1

Let us construct the second benchmark solution. Now we p

assume that the viscosity is the exponential function of the = b/d
1

Cartesian coordinates:

n = cexp(ax + by). (20)

General consideration up to Eq&0€12) is the same as ear-

lier. By inserting Eq. 20) into Egs. (0-12) and taking into
account that

on an
——=an, —=bny,
ox ay

Solid Earth, 5, 461476, 2014

(2a% + b2 (" 0% + D'n) + ab(V'n? + V'n)

_aPn __IOGX5
ab(®" %+ ®'n) + (@®+ 262 (V'n? + ¥'n)
_an =_pGy1

=0.

Using the last relation, we excludefrom the first two equa-
tions:

@ +b*) (@ n? + ') —aP'n? = —pG,,
3 2
a®+ab -
- T(cb”nz +@'n) —bP'n?=—pG,,
W= —%CD/. (21)

One can see that we obtain a linear algebraic system with
respect ta®”n? + ®'n) and P’. The solution is as follows:

ﬁ/ — f1(27)) ’ (22)
n
"2+ ®'n=bf (n). (23)

Remarklt is interesting that these formulas contain the same
functionsf (), f1(n) as in the previous section.

Equation 23) is a well-known Euler ordinary differential
equation. One can get its solution for arbitrary functitin

U]
uy = od(n) =b/|09<]7 ) f(nl)dn1+bcllogn+cz.
1

(24)

Taking into account the relation in EQ1), one obtains:

U]
/Iog( ) f(nl))dnl—acllogn—i—cg
] ni n

(25)

Uy = Y(n) =

Taking into account Eqs4(5) one obtains,, vy:

F(m2)
n2

1
—bc1— +bcy1+c2
n

d
f(nz) ﬂ—bq +be1+co.

Hence, we get the expression fgrand analogously, for,:

n
— 1
vy = b/dﬂzf(m) =z _ bc1= +bc1+c2, (26)
n2 nn2 n
1
— 1
fm2) n—mn2 27)

vyz—afdnz — +ac1— —acy+c3.
] n2 nnz n

www.solid-earth.net/5/461/2014/
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As for the pressure, we obtain it from E@Z by taking
into account Eq.6):

n
f,:/dnlfl(zl)+
1 g

Hence,

n

/dﬂl

1

(28)

p f1(n) N
1

One can compare EqR6-28) with Eqgs. (L6-18).

For a S|mple particular case (constant gravitational term) dx?

when f(n) = A = const, f1(n) = A1 = const one has
b(A+c1) bAlogn .
Uy = — - + c2,
n n
a(A+c aAlo .
v = ( : 1)+ 977+C3’

P = A1logn+cq— b1,

wherecy = bcy + ¢2, 3 = —acy +c3.

For more a complicated case when the density is a Ilnearavx

function of the viscosity = g1+ B2, i.e.,

fm =am+az, fi(n) =bin+ b2,

where constants, ap, b1, b are the same as in the previous
section. The continuity equation should be written in a more 9y

general form Eq.%9). It is simple to evaluate integrals in
Egs. £6-28). In such a way one obtains

b(a1 —ax—c1)

vy = bazlogn + . —bay + 2,

logn .
n

alai—az—-c lo ~
vy = —aazlogn — G 772 1)+aaz gn+63,

P =bin+bylogn + ¢4,

where ¢ =c2+ bc1 +bas — bay, ¢3 = c3+aal —aaz —
aci, ¢4 = c4 — b1. The continuity Eq. 19) gives us the same
relation as earlier:

aco2+bcz=0.

3 Three-dimensional case

3.1 Formulation of 3-D equations with
variable viscosity

The situation in the 3-D case is similar to that for 2-D. In
particular, we can realize the same procedure as in the 2- |ij ax

www.solid-earth.net/5/461/2014/
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case with some additional restrictions. The initial system of
equations is as follows:

oyl y QM dve 0P 070y By By O duy
9x2 dx dx dy2 8y8x dy dy 9y dx
920, azvZ andvy Odndv, OP
L — 4Gy,
T2 Toex Tz ez ez ax  ax . POF
Py 0P ondu o dn, o dvy 0%,
T ox2 "ayax dx 9y  9x Ox dy dy dy?2
3%vy,  9%v, dndvy, dndv, P
972 dzdy 0z 9z  dz dy  dy
a2uZ 9%v,  Ondv. Oy dvy a vy 9n v,
”azax ox dx  Jdx 0z 818y dy dy
v, | P o P pindu 0P
dy 0z By 972 0z 0z 0z
(29)
dux | dvy | Ovr (30)
ox oy 0z

The replacement of the variables,,v,,v,, P by
ux,uy,uz,ﬁ is analogous to that in the two-dimensional
case:

}Bux Bﬁzli)ux (31)
ax  npax dy nay’
ovy 10uy ovy  10uy
B9z n oz oax g ox
dvy  10uy dvy  10uy
EREC RS
dv;  1du; dv;  1ou;,
EaRrE Al T T
dv, _lou, 19P 9P
Bz naz nox  ax’
19P 9P 13P 93P
nay oy naz dz

The correctness conditions for such replacement are as fol-
lows:

on duy  0n duy on duy  0n duy
dy ax _ ax dy = 0z ox  ox oz’
on duy 0N duy onduy  On duy
9z dy Ay 9z 9y ax  dx dy
onduy  dn duy on duy  0n duy
9z 0x  ox 0z 9z dy 9y 9z
ondu,  0n dug an du,  0n duy
dy ox  ox dy = 09z dax  9x 9z
ondu, Jn du, 817 AP 877 P
Eﬁzﬁa_z’ By ax  ox By
an P _on P an P _ oy P
~ox By 3z 9x  ox 9z

Solid Earth, 5, 46476, 2014
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The characteristic equations for each triplet of equations, i.e., Hence,

foruy,uy,u;, P are the same (analogously to 2-D case). The b o o -

solutions for these conditional equations are O (a”+ b+ %) —naP = —pGy,

o V(@ +b° +c?) —nbP' = —pG,,

= ®0), uy =W, w=T). P=Fm). @) o t
" 2 2 3 1 " 2 2 3

— —d"(ac“+ab“+a>)— -V"(bc“+a“b+b>)

These relations give us correctness of the above introduced ¢ c

replacement for arbitrarily varying viscosity. However, it al- 5/ ;o a_, b,
. . L —ncP ' =—pG,, ["'=——0 — -U',

lows one to obtain the solution of the Stokes continuity equa- c c

tions only under some assumptions concerning the viscosityrhe first three equations gives one a linear algebraic sys-

tem with respect teb”, ¥”, P’ which can be solved with-

out difficulties. Then, one get8” from the last equation of

the system. To be correct, the obtained expressions should be

functions of one variable — viscosity. It is ensured by our as-

n=ax+by+cz+e, (33) sumption concerning the gravitational terms. The result is as
follows:

3.2 Linearly varying viscosity — 3-D case

Below we will assume (analogously to 2-D case, Eg).that

wherea, b, c, e are non-zero constants. Moreover, in the 3-D 2. 2
p(Gyab+ G ac — G (b°+c9))

case we need the following restriction for the gravitational g — - 40
. . 2 2 21N2 fx(n)’ ( )
terms (compare with EdL4): oGy, oGy, pG, are functions (a®+b"+c?)
of one variable — viscosity (for example, these terms may be\p/, _ p(Grab+ G bc— Gy(a2 +c?) _ a1
constant). o _ = (@2 + b2+ 2)2 = Jyn), (41)
M?k|ngfthe Sl'JttiStlttr?tl?n (EaBY) in the system (Eqg29), . p(Grac+Gybe— G.(a2 +b?)) ~ 42
one transforms it to the form, I = PNy = fz(n). (42)
282ux N 3%uy  %uy  %u, pr_ PGrat Gyb+Gxo) _ fr(n) (43)
ax2  9y2  dydx 972 n(a?+b%+c?) n
n 9%u; _ nQ —e Here we defined four functiongt (n), £y (), f:(n), fp(n).
0z0x ax The obtained expressions are analogous to that in E. (
2uy  %uy 3%,  0%u, Correspondingly, the integration is analogous, and one ob-
ax2  3ydx dy?2 072 tains
Pu, 9P G 7 .
ozoy oy OV vy = / dnz fx(n2)log (E) +c1clogn + cav, (44)
%u, 8%y  %uy,  0%u, (34) 1
ax2  0zox = dzdy = 0y A n
924, 9P vy = /dnzfy(nz) log <—) +c1ylogn +czy, (45)
+2—= —n— = —pG., 1 2
072 0z )
n
n
ve= [ dner.rariog (L) +cxlogn +ca. (46)
Quy | Ouy | ouz o (35) 1 "
ox ay 9z n
Substitution of Eq.%2) into Eq. ¢?), Eq. @5) leads to the £ = /dﬁlfp(nl) +cp. (47)
following system ford, W, T, P: 1
" (2a2 + b2+ )+ Wab+T"ac — naP' = —pGy, (36) In particular, in the case of constant gravitational terms,

- i.e., for fy(n) = Ay =const, f,(n) = A, =const, f,(n) =
1"y 2 2 2 " " / ) y z
V(@ +2b°+c) + P ab+T"bc —nbP = —pGy, (37) A, =const, fp(n7) = Ap = const one obtains a result anal-

I (@%+ b2 +2c%) + ®"ac + W"bc — ncP' = —pG,, (38)  ogous to the 2-D case:

’ ’ ’_
®'a+¥'b+T'c=0. B9y, = Aun+évlogn + o,

vy = Ay77~|—51y |Ogi7+52y,
v, = A n+ ¢ logn + ¢z,
P=Apn+cp.

Solid Earth, 5, 461-476, 2014 www.solid-earth.net/5/461/2014/
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The continuity condition gives one the following correla- 3.3 Exponentially varying viscosity — 3-D case

tion between the coefficients:
acyy +bc1y +ccy; =0.

The condition,

aA, +bAy,+cA, =0,

is identically valid (see the expressions @y, f,, f2).

Consider the second benchmark solution (for exponential de-
pendence of the viscosity on the Cartesian coordinates):

n = Cexplax + by + cz). (50)

The assumption concerning the gravitational terms is the
same as earlier. General 3-D consideration is the same. By

Consider a more complicated case when the density isnserting Eq. 82) into the equations far,, uy, u, P and tak-

a linear function of the viscositys = B1n + B2. Then,

bin+ b2,
pin—+ p2,

frm)=amm+az, f,(n)=
e =din+dz, fp(n) =

where constants, ap, b1, b2, d1, d2, p1, p2 are as follows:

(Gyab+ Gzac — G (b? +¢?))

ar=p1 @12 D)2 )
. (Gyab+G.ac— G (b? +c?))
az=P2 (@@ + b2 1 2)2 ’
b — (Gyab + G;bc — Gy(a?+c?))
1=h1 (a?2 4+ b2 4 ¢2)2 ’
by (Gyab + G;bc — Gy(a?+c?))
2=F2 (a2 4 b2+ ¢2)2 ’
4i — g, (Grac+Gybe - G.(a®+b?)
1_/31 (a2+b2+c2)2 k]
b (Gyac+ Gybc — G, (a® +b?))
2=F2 (a%2 4+ b2 4 c2)2 ’
_ g, (Oxa+Gyb+Gyo)
=Tz b1 )
g (Gra+Gyb+Gyo)
ba=Pz (@?2+b2%+c?)
The continuity Eq. 80) in this situation has more general
form:
d(pvy) n d(pvy) n d(pv;) 0
dx Ay dz

ing into account that

an an an
=an, — =bn,
ax ay 9z

one obtains the following system of equations:
(2 + b+ ) (0% + O'n) +ab(¥'n? + W'n)
+ac(T"n*+T'n) —aP’
ab(®" %+ &'n) + (a2 +2b% 4+ ?)(W'n? + W'n)
+be(T"n? +T'y) —bP'n? = —pGy,

ac(®"n’+ d'n) + bc(\IJ”n2 + W) + (@®+b%+ 2%
("2 + ') = cP'y? =
a® +b¥' + I’ =0.

=cn,

712 = _/OGx»

oG,

We can note that the first three equations give us the same
linear algebraic system as in the case of linear viscosity
(Egs. 36-38), if one takes(®"n?+ @'n), (¥"n?+ ¥'n),
(I'"'n2+T'n), nP’ as variables instead @”, ¥, I"”, P in

the linear viscosity case. Hence, the solution of the system is
as follows:

"+ @' = fe(n),
U+ W= fy(n),
2+ = f.(n),
ﬁ fP('?)

0

The definition of the functionsfy, f, f;, f, was given

In this case the formulas for the velocity and the pressureabove, see Eqs4(-43). One can solve these equations by
preserve their form from Eqs44-47) and give us

1 1
vy = —(a1/2+az — c1c)logn + Zd1n2+a277 i

1, 1
vy = —(b1/2+ b2 — c1y) logn + Zbln +bon — Zbl

1, 1
vz=—(d1/2—|—d2—clz)|ogr7+zd1n —}—dzn—zdl

1, 1
P =Spin®+pan—5p1—

2 2

—az + cox,

_b2+C2y9

—do +c2,

The continuity Eq.49) leads to the relation

acay +beay +ccz; =0.

www.solid-earth.net/5/461/2014/

p2+cp.

the procedure used in the corresponding 2-D case (exponen-
tial viscosity). By this method, we come to the result

n
— 1
Ux=/dn2fx(nz)n 2yt (51)
n2 nn2 n
1
F o fe) 1
(nN2) N —n2
vy = fdnz)—n 1 +c1y— +c2y. (52)
n2 nn2 n
1
A 1
v, = /dﬁzz—nz n— 2 +c1,— +c2;. (53)
n2 nn2 n
1
[ fen)
P= /dr}lpn—nl +cp. (54)
1
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Herecyy, c1y, €1z, c2x, €2y, €27, ¢ @re constants. The conti-

nuity equation gives one a relation between the coefficients:

acyy +bciy +ccy; =0.

One can compare Eq$1-54) with the results for the corre-
sponding 2-D case (Eq26-28).

Fora partlcularly simple case (constant gravitational term)

when f.(n) = Ay =const, fy(n) =
A; =const,fp(n) =

Ay =const, f.(n) =
Ap = const one has:

A lo
Ux=_( x‘:]‘clx)_Ax gn+52n
(A +cl) |Ogr;
vy—_ Y Y + 2y7

n
A lo
Uz—_( z‘;clz) —A, gn+52z,

P =Aplogn+c,.

Consider a more complicated case when the density it

a linear function of the viscositys = 11 + B2. Then,

) =an+az2,  f,(n) =
o)y =din+dz, fp(n) =

where constants, az, b1, b2, d1, d2, p1, p2 have been deter-

bin + ba,
pin+ p2,

mined in the previous section. Here we use the continuityso

equation in the form of Eq.4Q). In this case Eqs.5(1-54)
give us

ai—az—c lo -
Ux=allogn+( 1— a2 —C1y) o 9ﬂ+czx’

b1—by—c lo -
vyzbllogn—i-(1 2 1y)—b2 gn+62y,

di—do—c lo -
vz:dllognJr( 1—d2—c1y) & gﬂ_}_czy’

P = pin+ p2logn+cp,

wherecy, = ¢ +c1x +a2 —ai, EZy =y +c1y + by — by,
Co; =cp;+c1.+do—d1, ¢p=c,—p1. The continuity
Eq. 49) leads to the relation

acay +bcoy +cér; =0.

4 Example problems and numerical convergence tests

The scheme of algorithm testing is as follows. Initially, we

Benchmarking of geodynamic Stokes problems with variable viscosity

Viscosity Density
4[] 1
10 20 30 40 30 40

Figure 1. Distribution of viscosityn and densityp; 2-D case, lin-
early varying viscosity, high-viscosity contragb(= n3 = 100).

2
0
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"xe Pe x10"
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Figure 2. Distribution of vy, vy and P; 2-D case, linearly varying
viscosity, high-viscosity contras$ = n3 = 100),vxe = vxp
— Vya, Pre = Prp — Prq.-

—Uxa»

Vye = VUyn

Then, due to the uniqueness theorem, the solution of the
boundary problem in the domain should coincide with our
analytical solution. Let us compute the solution of the bound-
ary problem by a numerical method which is tested. Compar-
ison of the result with the exact analytical solution gives us
the error of the numerical solution and shows the quality of
the numerical algorithm. In the present paper, we used stan-
dard 2-D and 3-D stress-conservative finite-differences on
staggered regularly spaced grid for obtaining numerical so-
lutions (Gerya, 2010). Respective MatLab programs for the
2-D and 3-D cases are provided in the Supplement to this
paper. All results of calculations are presented in the Sup-
plement. In the main text of the paper we show only a few
examples.

have obtained particular solutions of the Stokes and conti-
nuity equations for two types of viscosity variations. Let us
choose a domain, e.g., a rectangle in the 2-D case. We calcu-
late the values for velocity and pressure given by our analyti-
cal solution and take these values as the boundary conditions.
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Figure 3. Logarithm of the relative error (lof) via logarithm of ~ Figure 5. Distribution of vy, vy and P; 2-D case, exponentially
the grid step (logf); 2-D case, linearly varying viscosity, high- Varying viscosity, high-viscosity contrasyA= 73 =100y, =
viscosity contrast ifs = n3 = 100); blue lines — pressure, green Vxn = Vxa, Vye = Vyn — Vya, Pre = Prn — Pra.
lines — vy, black lines —vy; solid lines —L1-error, dashed lines
— Loo-error, solid dotted line £o-error.

solution @y, — Vx,q, Vy,n — Vy.a, Pn — Py) is related to the
Density error of the numerical scheme. We calculate the relative er-

Viscosi
o 4.1 ror norms of three typed. ., L1, L for different viscosity
40 4 contrasts, i.e., different values of the coefficientd. We
test the program Stokes 2-D variable-viscosity 1 filGerya
30 3.9 (2010. Calculations show that the convergence is better for
- the case of low-viscosity contrast (cf., Supplement). The re-
2 ’ sults for high-viscosity contrast are presented in Figs. 1-3:
a7 Fig. 1 shows prescribed viscosity and density distribution,
10 il Fig. 2 presents the pressure and the velocity components dis-
) tributions and Fig. 3 contains the plot of the relative errors
3.5 via the grid resolutions in logarithmic scale. The viscosity
1t 2 30 40 1020 30 40 contrast, i.e., the values of the coefficients in the expression
Figure 4. Distribution of viscosityy and densityp; 2-D case, ex- for the viscosity, is determined by the given values of the
ponentially varying viscosity, high-viscosity contrask & 13 = viscosity at three corners of the model rectangl&he value
100). of the viscosity at the initial rectangle corner is 1, whereas

n2 and nz are the prescribed values of the viscosity at the
upper-left and lower-right corner, respectively. In all figures
4.1 2-D example “n” means “numerical solution”,d” means “analytical so-
lution” (benchmark).
For the case of linearly varying viscosity we made calcu-

lations for the following system parameters:

4.1.1 Linearly varying viscosity

Consider a simple example of such flow in a rectar@le
0 <x < xsize 0 <y < ysize We assume that = ax+by+c.
We will mark the exact solution obtained in Sect. 2 as”
Ur.a, Vy.as Pa. It is the solution of the boundary problem in 71=1,81=1,2=3x 10%,

the rectangle2 with the following conditions at the bound- ¢ = 51, a = (53 — 1) /xsize b = (12 — 71)/ Ysize:

ary9Q2 = {x =0,x = xsize y = 0, y = ysize} : p = Prlax +by+c)+ Bo.

size= Ysize=1,Gx =0,G, =10,

vylag =v a» vx|8Q=vx,a- . .
y 4 One can see that the numerical approach has rather high ac-

Let us compute the velocity and the pressure by the finite-curacy. We observe the conventional situatiohs-error is
difference scheme. The corresponding solution is marked athe largest among the considered errors norms,/arerror
VUx.n, Vy.n, Pn. The deviation of these values from the exact andLo-error are similar.
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L log H
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Figure 6. Logarithm of the relative error (lof) via logarithm
of the grid step (lod7); 2-D case, exponentially varying viscos-
ity, high-viscosity contrastio = n3 = 100); blue lines — pressure,
green lines -vy, black lines —vy; solid lines —Lq-error, dashed
lines —Lo-error, solid dotted lines £5-error.

Viscosity at z=0.5 Density at z=0.5

35
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Figure 7. Distribution of viscosityn and exponentially varying vis-
cosity, high-viscosity contrasi$ = n3 = n4 = 100).
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Figure 8. Distribution ofv, andvy; 3-D case, exponentially varying
viscosity, high-viscosity contrastf = n3 = n4 = 100xe = vxn—
VUxa, Vye = VUyn — VUyq-

(i.e., the values of the viscosity at the rectangle corners):

C=m, a=(og(n3)—109(n1))/xsize
b = (log(n2) —109(11))/ ysize,

n = Cexp(ax + by),

p = pin+ B2,

Xsize= Ysize= 1,

G,=10, G,=10

m=1 p1=1 p=3x10

We examine two cases (low- and high-viscosity contrasts,

To describe in more details the dependence of the error of. Supplement). Figures 4—-6 present the results for high-
the viscosity contrast, we fill tables with errors for different viscosity contrast. There are some similarities with the pre-

values ofn2, n3 (see Appendix, Tables A1-A3).

4.1.2 Exponentially varying viscosity

vious case. In particulat,», error norm gives us the max-
imum relative error value among the three considered error
norms. However, peculiarities are more interesting. Namely,
the numerical scheme works essentially better for the case
of exponentially varying viscosity than for linearly varying
viscosity. We observe good convergence for both low- and

The case of exponentially varying viscosity is treated analo-high-viscosity contrasts (compare Figs. 3 and 6, also cf. Sup-
gously. In order to make a comparison with the case of lin-plement).

early varying viscosity, we take the same system parameters Dependence of the errors on the viscosity contrast for ex-
(geometrical size, gravitational terms and the dependence gionentially varying viscosity is presented in the Appendix
the density on the viscosity) with the same viscosity contrasfTables A3-A6.

Solid Earth, 5, 461-476, 2014
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40 40 of the grid step (lod{); 3-D case, exponentially varying viscosity,
30 30 -100 high-viscosity contrastjp = n3 = n4 = 100); blue lines — pressure,
20 . 20 =200 red lines -y, black lines —vy, green lines -v; solid lines —L1-
10 10 -300 error, dashed lines £ -error, solid dotted lines £»-error.

10 20 30 40 10 20 30 40
ror of the numerical scheme. As in the 2-D case, we con-
sider three error normd. ., L1, L. We examine cases of
low- and high-viscosity contrasts. Coefficieat®, c, e in the
viscosity formula are determined by given viscosity values
(n1 =1, n2, n3, na) at four adjacent parallelepiped vertices.

4.2 3-Dexample We choose the following system parameters:

Figure 9. Distribution of v; and P; 3-D case, exponentially vary-
ing viscosity, high-viscosity contrast{ = n3 = n4 = 100), vz, =
Vzn — Vzas Pre = Prn — Pra-

One can note that benchmark solutions for the 3-D case aré =71, @ = (13— 11)/Xsize.
essentially more rare than for the corresponding 2-D situab = (n2 — n1)/ysize ¢ = (na— 11)/Zsize
tion. It is, therefore, noteworth.y that the suggested approac_:r;] —ax+by+czte,
allows us to obtain such solutions for 3-D Stokes and conti-
nuity equations. As earlier, we consider the cases of Iinearlyo = Bin + 2.
and exponentially varying viscosity. Xsize= Ysize = Zsize= 1,

G,=10, G,=10, G,;=0,

m=1 p1=1 p2=3x10.

The statement of the problem is analogous to the previ-

ous case. In the 3-D space we consider a parallelepipegesu“s are presented in the Supplement. It should be men-
Q:0 < x < Xsize 0 < y < ysize, 0 < 2 < zsize We assume that tioned that the numerical procedure for the 3-D case takes es-

1= ax + by +cz+e. We will mark the exact solution ob- sentially greater time than for the 2-D case. Qualitatively, the

tained in Sect. 3 a8, 4, v, 4, v, 4, Pa. Due to the uniqueness results are similar to that for the corresponding 2-D case. Bet-
. ,a> Vy,as Vz,ar L'a- . . . . .

theorem, it is the solution of the boundary problem in the par_ter numerical convergence is again found for low-viscosity

allelepiped2 with the following conditions at the boundary contrast.

0Q ={x=0,x =xsize y =0,y = ysize 2 = 0, 2 = zsize} :

4.2.1 Linearly varying viscosity

4.2.2 Exponentially varying viscosity

v = Vy g,V =Vy g,V =v,,. . . ) )
xlag = vras vylag = Vy.as viloe = vz As in the 2-D case, we consider also exponentially varying

Let us compute the velocity and the pressure numerically/iSCOSity. The consideration is analogous to that in the re-
using chosen finite-difference algorithm. The correspond-SPective 2-D case. In order to make a comparison we take
ing numerical solution is marked as,,, vy, v;.n, Px. The here the same system parameters. Naturally, the viscosity
deviation of these values from the exact solutiaf {— and, correspondingly, the density distributions are now ex-

Vroas Uy — Uy.as Vo — Vz.ar Py — Py) is related to the er- Ponential.

www.solid-earth.net/5/461/2014/ Solid Earth, 5, 461476, 2014



472 I. Yu. Popov et al.: Benchmarking of geodynamic Stokes problems with variable viscosity

The system parameters are chosen as follows:

C=n1, a=(log(n3) —log(n1))/xsize
b = (log(n2) —109(11))/ ysize:

¢ = (log(na) —log(n1))/zsize

n = Cexplax + by + cz),

p = pin+ B2,

Xsize = Ysize = Zsize= 1,

G,=10, G,=10, G;=0,

m=1 p1=1 p=3x10%

The Supplement related to this article is available online
at doi:10.5194/se-5-461-2014-supplement
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viscosity contrast. Similarly to 2-D results, the numerical

procedure converges better for the exponentially varying vis-€dited by: J. C. Afonso

cosity than for the linearly varying viscosity. The algorithm
convergence, i.e., the dependence of the errors on the grid
resolution is shown in Fig. 10.

5 Conclusions

In this paper, we developed new, specific analytical solutions
for the 2-D and 3-D Stokes flows with both linearly and expo-
nentially variable viscosity. We also demonstrated how these
solutions can be converted into 2-D and 3-D test problems
suitable for benchmarking numerical geodynamic codes. The
main advantage of this new generalized approach is that large
variety of benchmark problems can be easily generated, in-
cluding relatively complex cases with open model bound-
aries, non-vertical gravity and variable gradients of viscosity
and density fields, which are not parallel to Cartesian axes.
These solutions can be very useful for testing numerical al-
gorithms aimed at modeling variable-viscosity mantle con-
vection and lithospheric dynamics. Examples of respective
2-D and 3-D MatLab codes are provided with the paper.
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Appendix A: Error decreasing with decreasing grid res-

Table A3. Tangent of the slope of the curve showing the depen-
olution

dence of the logarithm of.,-error for velocity component, on

the logarithm of the grid step for different viscosity contrasts. Lin-
The dependence of the convergence on the viscosity congarly varying viscosity.

trast is shown in the following tables. Namely, the viscosi-
ties 2, n3 run through a set of values from 2 to 10000. For n2 2 5 20 100 300
each pair ofyz, n3 we perform the benchmarking procedure 73

described above and obtain the curve describing the depen- 2

1000 10000

1.99 153 1.49 114 051 0.07-0.21
dence of the logarithm of the error norm on the logarithm 5 1.99 190 154 161 0.79 0.26-0.19
of the grid resolution. The tangent of the slope angle of this 20 181 180 179 156 124 0.63-0.03
curve gives us an input of the table. Full set of tables are ;88 1-5; i-g; 1-;3 3-82 ;-g}l (1)-2‘3‘ g-gg
given in the Supplement. Below, we show several examples 1000 037 053 080 156 197 203 0.74
of such tables.

10000 0.019 0.04 0.20 054 0.76 0.89 1.23

Table Al. Tangent of the slope of the curve showing the dependence
of the logarithm ofL>-error for pressure® on the logarithm of the Al L | . . .
grid step for different viscosity contrasts. Linearly varying viscosity. Inearly varying viscosity

" 2 = 20 100 300 1000 10000 Tqbles A1—A_3 cont_am log ra_tes @f error norm de_crea_lsmg_

n with decreasing grid resolution (the curve slope in Fig. 3 in
the logarithmic scale) for different viscosity contrasts in the

2 142 114 124 086 046 0.08-0.20 i | ’ : v, Calculati d

5 113 144 103 130 057 023-016 case of linearly varying viscosity. Calculations were made

20 1.23 1.03 139 1.27 0.83 0.43-0.01 for the foIIowmg system parameters:

100 114 121 126 1.36 1.33 050  0.26

300 127 127 129 133 134 117 040

Xsize=Yysize=1, Gx=0, G,=10
1000 056 070 1.03 124 131 136  0.39 ? .
10000 —0.21 -0.19 -0.04 0.23 0.34 043  1.27 m=1 p1=10, B2=3x10,

c=mn1, a=M3—n1)/Xsizee b= (n2—11)/Ysize
p = Bilax + by +c) + Ba.
Table A2. Tangent of the slope of the curve showing the depen-
dence of the logarithm of »-error for velocity component, on

the logarithm of the grid step for different viscosity contrasts. Lin-
early varying viscosity.

n2 2 5 20 100 300 1000 10000
n3
2 1.81 199 181 120 0.70 0.29 0.01
5 153 161 180 179 091 0.47 0.04
20 1.47 154 161 181 109 0.77 0.20
100 1.13 139 154 169 204 0.94 0.53
300 1.64 163 163 161 170 1.49 0.77

1000 0.56 077 123 157 160 115 0.90
10000 -0.19 -0.13 0.01 0.41 0.69 0.96 0.88
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A2 Exponentially varying viscosity Table A5. Tangent of the slope of the curve showing the dependence

of the logarithm ofL-error for velocity component, on the loga-
Tables A4—6 contain log rates df, error norm decreasing rithm of the grid step for different viscosity contrasts. Exponentially
with decreasing grid step (the curve slope in Fig. 6 in the log-varying viscosity.

arithmic scale) for different viscosity contrasts in the case of
exponentially varying viscosity. The system parameters are n2 2 5 20 100
the same as in the case of linearly varying viscosity with re- 73

300 1000 10000

spective changes: 2 192 200 197 203 200 196 191
5 1.66 192 1.93 209 201 1.97  1.90
c=mn1, a=(lognz—Ilogni)/xsize 20 163 184 206 209 201 196  1.87
b= (lodn— lo . 100 171 193 206 204 197 1.90  1.83
(logr2 —logia)/ysize 300 187 1.99 203 200 193 184 174

p = Bicexp(ax + by) + Bo.

1000 193 200 203 200 193 1.84 1.74
10000 1.76 189 196 194 190 1.83 1.67

Table A4. Tangent of the slope of the curve showing the depen-

dence of the logarithm af-error for pressuré® on the logarithm .

of the grid step for different viscosity contrasts. Exponentially vary- 12P1€ A6.Tangent of the slope of the curve showing the dependence

ing viscosity. qf the Iogarlthm osz-error for veloplty cgmponemy on the Ioga.-
rithm of the grid step for different viscosity contrasts. Exponentially

7 2 5 20 100 300 1000 10000  vAryingviscosity.

3 n2 2 5 20 100 300 1000 10000
2 146 103 120 147 156 153 1.40 13

5 1.03 113 123 139 153 151 1.39

20 113 124 131 146 151 1.46 1.31 2 197 166 181 210 201 1.94 1.83
100 1.27 139 139 146 143 1.37 1.23 5 200 193 199 211 210 204 1.94
300 1.37 141 139 140 137 131 1.19 20 1.97 190 209 214 211 2.07 2.00
1000 141 141 136 133 130 1.24 1.11 100 1.89 196 211 2.09 206 204 1.97

10000 137 134 126 117 114 111 1.00 300

203 211 209 201 197 196 1.93
1000 211 206 204 19 191 187 1.86
10000 196 194 193 187 183 1.77 1.71
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