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Abstract. In the Erdalen and Bødalen drainage basins lo-
cated in the inner Nordfjord in western Norway the soils were
formed after deglaciation. The climate in the uppermost val-
ley areas is sub-arctic oceanic, and the lithology consists of
Precambrian granitic orthogneisses on which Leptosols and
Regosols are the most common soils. The Little Ice Age
glacier advance affected parts of the valleys with the max-
imum glacier extent around AD 1750. In this study five sites
on moraine and colluvium materials were selected to exam-
ine main soil properties, grain size distribution, soil organic
carbon and pH to assess if soil profile characteristics and
patterns of fallout radionuclides (FRNs) and environmental
radionuclides (ERNs) are affected by different stages of ice
retreat. The Leptosols on the moraines are shallow, poorly
developed and vegetated with moss and small birches. The
two selected profiles show different radionuclide activities
and grain size distribution. The sampled soils on the collu-
viums outside the LIA glacier limit became ice-free during
the Preboral. The Regosols present better-developed profiles,
thicker organic horizons and are fully covered by grasses.
Activity of 137Cs and210Pbex concentrate at the topsoil and
decrease sharply with depth. The grain size distribution of
these soils also reflects the difference in geomorphic pro-
cesses that have affected the colluvium sites. Significantly
lower mass activities of FRNs were found in soils on the
moraines than on colluviums. Variations of ERN activities in
the valleys were related to characteristics of soil mineralog-
ical composition. These results indicate differences in soil
development that are consistent with the age of ice retreat. In
addition, the pattern distribution of137Cs and210Pbex activi-

ties differs in the soils related to the LIA glacier limits in the
drainage basins.

1 Introduction

Glacial retreat in the cold regions of Northern Europe is a
general trend that has intensified over the last decades. In
the Nordfjord region (western Norway) this trend is also ob-
served and the magnitude of glacial retreat in the Erdalen
and Bødalen valleys has reached its fastest rate over the
last century in recent years (e.g. Winkler et al., 2009; Laute
and Beylich, 2013). The retreat of ice from glaciated valleys
(Mavlyudov et al., 2012) causes important changes in geo-
morphic processes of glacial erosion, but also has an impact
on the hydrological resources by changing runoff and asso-
ciated sediment transport as well as on the formation of soils
on the newly exposed surfaces.

The landscapes of Norwegian fjords reveal the inheritance
of glacial processes since the Last Glacial Maximum (LGM).
The Little Ice Age (LIA) glacier advance also affected parts
of the Norwegian valleys (Bickerton and Matthews, 1993;
Laute and Beylich, 2012, 2013). Amongst the main glacial
deposits colluviums and moraines are surface formations
resulting from the evolution of slopes and the ice retreat.
In the glacial valleys these formations are representative of
newly exposed material conditioned by former glaciations
and deglaciation. Moraine ridges formed during and after
the maximum extent of the Little Ice Age (LIA) with the
maximum glacier extent around AD 1750 (Bickerton and
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Figure 1. Location of the Nordfjord region (western Norway),
aerial photograph of the Erdalen and Bødalen glacial valleys and
situation of the study areas.

Matthews, 1993). The soils have been forming on the newly
exposed glacial deposits, and as a result of processes related
to ice retreat, different soil types have developed. Soil prop-
erties might be characteristic of materials and processes and
could reflect different ages of ice retreat. In this study we aim
to characterize the soils formed on colluvium and moraine
material. We applied a multiproxy approach in order to ex-
amine if the soil elemental composition (Li, K, Na, Be, Mg,
Ca, Sr, Cr, Cu, Mn, Fe, Al, Zn, Ni, Co, Cd, Tl, Bi, V, Ti,
Pb, B, Sb, As, P, S, Mo and Se) and radionuclide tracers, en-
vironmental (ERNs:238U, 210Pb, 226Ra, 232Th, 40K, 210Pb)
and fallout (FRNs:137Cs and210Pbex), together with other
properties (grain size distribution, soil organic carbon, pH)
could be indicative of soil development, and if it was re-
lated to stages of ice retreat. To this purpose we selected two
glacial valleys representative of the inner Nordfjord region,
the valleys of Erdalen and Bødalen, and sampled five sites
on two main geomorphic elements, moraine and colluvium,
to examine within the soil profile main soil properties, el-
emental composition and fallout (FRNs) and environmental
radionuclides (ERNs).

2 Material and methods

2.1 The study area

The inner Nordfjord region is located in western Norway on
the western side of the Jostedalsbreen ice cap (Fig. 1). Cli-
mate is sub-arctic oceanic in the uppermost parts of tribu-
tary valleys draining into the fjord. The mean annual air tem-
perature at 360 m a.s.l. is 5.5◦C and the mean annual areal
precipitation is 1500 mm in the drainage basins of Erdalen
and Bødalen (Table 1) (Beylich and Laute, 2012; Laute and
Beylich, 2014).

Figure 2. Geomorphological map of the Erdalen drainage basin
(modified after Laute and Beylich, 2012) and location of the study
profiles 1) PE1 and 2) PE2.

The lithology in the valleys consists of Precambrian
granitic orthogneisses with migmatic and dioritic composi-
tion (Table 1). Within the higher part in Bødalen (glacier
area) there is a small area of quartz monzonite outcrops
(Lutro and Tveten, 1996).

The landforms and processes in the study area are char-
acteristic of glacial valleys. The detailed geomorphological
maps (Laute and Beylich, 2012) shown in Figs. 2 and 3
present the main deposits identified in the valleys and their
genesis. The main contemporary denudational surface pro-
cesses, the limits of the LIA moraines and the soil profiles
studied are identified in the maps.

Based on intensive field pre-investigations and existing
knowledge, sites which are representative for the relevant de-
posits existing in the valleys and which are close to defined
and dated moraine ridges were considered for this prelimi-
nary study. Furthermore, an important criterion for the selec-
tion was that the sampling sites were nearly horizontal, and
no relevant delivery of new material was currently affecting
these sites. A total of five sites corresponding to soils devel-
oped on moraine and colluvium deposits, the most common
formations of the glacier valleys and which represent differ-
ent stages of ice retreat, were selected for collecting soil pro-
files. Two profiles were established on moraines in the Bø-
dalen valley (PB1 and PB2) and the other three profiles were
established on colluvium materials in the Erdalen (PE1, PE2)
and Bødalen (PB3) valleys. The profiles on the moraines are
located inside the LIA glacier limit; the moraine material is
in general characterized by diamicton. The two sites repre-
sent different stages of ice retreat, thus PB1 became ice-free
starting from ca. AD 1930, but PB2 became ice-free earlier,
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Table 1.Physiographic and climatic characteristics of the drainage basins of Erdalen and Bødalen (Nordfjord region, Norway).

Erdalen Bødalen

Geographical coordinates 61◦50′ N, 07◦10′ E 61◦48′ N, 07◦05′ E
Drainage basin area [km2] 79.5 60.1
Elevation min [m a.s.l.] 20 52
Elevation max [m a.s.l.] 1888 2083
Relief [m] 1868 2031
Mean slope [◦] 32 34
Lithology Precambrian granitic orthogneisses
Dominant soils Leptosols, Regosols
Vegetation Birch, grey alder, grass, moos, lichens
Annual precipitation [mm] (at 360 m a.s.l.) 1500 1500
Mean annual air temperature [◦C] (at 360 m a.s.l.) 5.5 5.5
Surface area percentagesa [%]
Glacier 18 38
Bedrock 45 43
Slope deposits/regolith 32 16
Valley infill 5 2
Lake < 1 1

a As % of the total drainage basin surface area.

Figure 3. Geomorphological map of the Bødalen drainage basin
(modified after Laute and Beylich, 2012) and location of the study
profiles 1) PB1, 2) PB2 and 3) PB3.

at about AD 1800 (see Bickerton and Matthews, 1993). Both
sites have a vegetation cover composed of mosses and small
birches and can be considered quite stable regarding surface

soil processes, as they are on gentle slopes. The soils on the
moraines are Leptosols (FAO classification); they are poorly
developed with almost no horizon differentiation and with a
high content of rock fragments.

The colluvium sites, located outside the LIA glacier limit,
are characterized by slope processes accumulating both fine
and coarser material at the slope foot derived from slope
wash, avalanches, debris flows and rock falls. The soils corre-
spond to Regosols that are deeper and better developed than
soils on the moraines and those covered by grass. The sites
became ice-free during the Preboral deglaciation. Consider-
ing the age of ice retreat, the oldest is PB3 in Bødalen, which
became ice-free around 10 000 years ago. This profile, lo-
cated on a hillslope beneath the Tindefjell glacier, is more
influenced by glaciofluvial and outwash processes rather than
rockfall activity and presents high avalanche activity. Of the
studied sites PB3 had the strongest anthropogenic impact
through animal husbandry, as sheep grazing occurred start-
ing from approximately 1800, albeit with less intensity since
1930 (T. Lopez, personal communication, 2011). Of the pro-
files in Erdalen, PE4 had higher rockfall activity and became
ice-free earlier than PE3, which had not been ice-free since
ca. 9800 BP (see Nesje, 1984; Matthews et al., 2008).

2.2 Soil sampling and analyses

To collect the soil samples of the soil profiles, five pits of
20× 20 cm were excavated down to a depth of 20–27 cm.
Samples were extracted at depth intervals of approx. 5–6 cm
by using a 5 cm diameter cylinder. Soils in the study area are
shallow and according to field observations depths vary from
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few centimetres for Leptosols to a range of 30 to 50 cm for
Regosols.

The soil samples were air-dried, ground, homogenized and
quartered to pass through a 2 mm sieve. The grain size frac-
tion > 2 mm containing stones and rock fragments was sep-
arated and weighted to estimate the percentages of coarse
fractions in the soil profiles. General soil properties analysed
in the fraction < 2 mm were pH, soil organic carbon (SOC %)
at 310◦ (active carbon fraction, ACF) and 550◦ (stable carbon
fraction, SCF) and soil texture. Analysis of the clay, silt and
sand fractions was performed using a laser diffraction parti-
cle size analyser. Prior to the analysis the organic matter was
eliminated with H2O2 (10 %) heated to 80◦C and samples
were disaggregated with sodium hexametaphosphate (40 %),
stirred for 2 h and dispersed with ultrasound for a few min-
utes. The pH (1 : 2.5, soil : water) was measured using a pH-
meter.

The contents of SOC, both active and stable carbon frac-
tions, were analysed by the dry combustion method using a
LECO RC-612multiphase carbon analyser designed to dif-
ferentiate forms of carbon by oxidation temperature (LECO,
1996) in a sub-sample of the < 2 mm fraction that had been
ground to a very fine powder with a mortar and pestle. Ac-
cording to López-Capel et al. (2008), the decomposition of
the most thermally labile components of SOC is released
at approximately 300–350◦C during thermal decomposition
because they are rapidly and easily burnable; the active and
decomposable fraction (ACF), while decomposition of more
refractory and stable carbon (SCF), occurs at higher temper-
atures (420–550◦C).

The analysis of the total elemental composition was car-
ried out after total acid digestion with HF (48 %) in a mi-
crowave oven (Navas et al., 2002c). Samples were anal-
ysed for the following 28 elements: Lithium (Li), Potas-
sium (K), Sodium (Na) (alkaline), Beryllium (Be), Mag-
nesium (Mg), Calcium (Ca), Strontium (Sr) (light metals),
Chromium (Cr), Copper (Cu), Manganese (Mn), Iron (Fe),
Aluminum (Al), Zinc (Zn), Nickel (Ni), Cobalt (Co), Cad-
mium (Cd), Thallium (Tl), Bismuth (Bi), Vanadium (V), Ti-
tanium (Ti) and Lead (Pb) (heavy metals), Boron (B), Anti-
mony (Sb), Arsenic (As) (metalloids), and Phosphorus (P),
Sulfur (S), Molybdenum (Mo) and Selenium (Se). Analyses
were performed by atomic emission spectrometry using in-
ductively coupled plasma ICP. Concentrations, obtained after
three measurements per element, are expressed in mg kg−1.

The methods used in the analysis of radionuclides are de-
scribed in detail in previous works (Navas et al., 2005a, b).
Radionuclide activity in the soil samples was measured using
a Canberra high-resolution, low-background, hyperpure ger-
manium coaxial gamma detector coupled to an amplifier and
multichannel analyser. The detector had a relative efficiency
of 50 % and a resolution of 1.9 keV (shielded to reduce back-
ground), and was calibrated using standard certified samples
that had the same geometry as the measured samples. Sub-
samples of 50 g were loaded into plastic containers. Count

times over 24 h provided an analytical precision of about±3–
10 % at the 95 % confidence level. Activities were expressed
as Bq kg−1 dry soil.

Gamma emissions of Uranium-238 (238U), Radium-226
(226Ra), Thorium-232 (232Th), Potassium-40 (40K), Lead-
210 (210Pb), and Cesium-137 (137Cs) (in Bq kg−1 air-dried
soil) were measured in the bulk soil samples. Consider-
ing the appropriate corrections for laboratory background,
238U was determined from the 63 keV line of234Th (lower
limit of detection (LLD): 2.6 Bq kg−1), the activity of226Ra
was determined from the 352 keV line of214Pb (LLD:
0.5 Bq kg−1) (Van Cleef, 1994);210Pb activity was deter-
mined from the 47 keV photopeak (LLD: 3.2 Bq kg−1), 40K
from the 1461 keV photopeak (LLD: 2 Bq kg−1); 232Th was
estimated using the 911 keV photopeak of228Ac (LLD:
0.5 Bq kg−1), and 137Cs activity was determined from the
661.6 keV photopeak (LLD: 0.2 Bq kg−1). The 210Pb (half-
life = 22.26 yr) is integrated by the “in situ”-produced frac-
tion from the decay of226Ra (Appleby and Oldfield, 1992)
and the upward diffusion of222Rn in the atmosphere, which
is the source of210Pbex. Spectrometric measurements were
performed a month after the samples were sealed, which en-
sured a secular equilibrium between222Rn and226Ra. The
210Pbex activities were estimated from the difference be-
tween the total210Pb activity and the226Ra activity.

A one-way analysis of variance (ANOVA) was applied to
analyse the statistical significance of the differences in the
means of the study parameters (p < 0.05) using the least sig-
nificant difference (LSD Fisher) test. The normality of data
was tested using the Wilk–Shapiro test (p < 0.05). Pearson’s
linear correlations were also established to assess the rela-
tionships between the study elements and between the ra-
dionuclides and soil properties and significance was set at
p < 0.05.

3 Results

3.1 Characteristics of the soil profiles

The soil profiles in the Bødalen and Erdalen drainage basins
were acidic, with a pH ranging from 4.45 to 5.85, and the
predominant soil textures were sandy loam. The percentages
of rock fragments and stones (> 2 mm) were much higher
in the moraine than in the colluvium profiles. Contents in
SOC were low on average (2.03 %, SD: 3.16), range be-
tween 0.03 to 14.39 % and had large variability (CV : 156
%). The contents of ACF were always higher than the SCF,
especially in the colluvium profiles. There were differences
between the properties of the soil profiles on the moraines
and on colluviums (Table 2). The latter were significantly
less stony and more acidic. Comparing with the Leptosols
on the moraines that did not present horizon differentiation,
the soils on the colluvium were deeper and better developed
with a rich organic A horizon, and relatively higher SOC and
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Table 2.Summary statistics of main properties in the soil samples on moraines and colluvium. Different letters indicate significant differences
at thep level 0.05 between moraines and colluvium soils.

Morainesn = 9 Colluviumn = 12

Mean SD Min Max CV Mean SD Min Max CV

SOC % 0.48 a 0.44 0.03 1.03 91 3.18 a 3.82 0.43 14.39 120
ACF % 0.28 a 0.31 0.03 0.79 137 2.78 a 3.40 0.38 12.69 123
SCF % 0.07 a 0.05 0.01 0.12 276 0.36 a 0.31 0.03 1.10 84
Stones % 60.21 b 20.30 28.59 87.59 34 18.00 a 23.55 0.13 80.59 131
pH 5.45 b 0.33 5.02 5.85 5 4.80 a 0.24 4.45 5.16 5
2000–50 µm % 72.58 a 21.84 42.40 95.00 30 60.28 a 23.52 13.50 81.60 39
50–2 µm % 23.86 a 18.51 4.60 49.20 78 36.22 a 20.36 17.40 75.70 56
< 2 µm % 3.52 a 3.36 0.40 8.40 96 3.51 a 3.21 1.00 10.80 92

SD: Standard deviation, CV: Coefficient of variation %.

carbon fractions. Soil samples of the moraines had higher
sand contents and lower silt contents than samples of the col-
luvium, but clay contents were similar and low.

The most abundant elements in the studied profiles
were Al, Fe, Na, and K (x: 47 071, 27 608, 25 205 and
23 723 mg kg−1), Ca and Mg were also major components
(x: 10 492, 7497 mg kg−1), followed by Ti, B and P (x: 3942,
1948 and 1068 mg kg−1), Mn, Sr and S (x: 448, 279 and
266 mg kg−1), and Cr, V, Zn, Ni, Tl, Pb and Bi (x: 90, 54,
47, 43, 39, 28 and 23 mg kg−1) whereas Li, Sb, Be and Mo
had the lower contents (x: 8.4, 2.4, 1.3 and 0.7 mg kg−1); As
and Cd were not detected in the study samples (Table 3).

The mean contents of Al were similar in colluvium and
moraine profiles, although the variation range was higher
in the colluvium profiles (Table 3). Of the major elements,
mean Fe, Ca and Mg contents were significantly lower in
the moraine profiles, whereas the opposite was observed for
Na and K. In lower concentration ranges (91–6500 mg kg−1),
the mean contents of Sr, S, Mn, P and Ti were significantly
lower in samples of the moraines than in the colluvium ones,
but the opposite was found for B which was much higher
in the moraine samples. In minor concentrations (ranges be-
tween 5 and 330 mg kg−1), the contents of Tl, V, Zn, Ni and
Cr were significantly lower in moraine samples than in col-
luvium soils. On the other hand, significantly higher contents
of Pb and Be were found in colluvium soils. Other trace el-
ements like Mo and Sb had significantly lower contents in
moraine samples, and likewise for Li, Bi and Cu, although
for the latter differences were not significant. For all samples
most elements were directly correlated among them. How-
ever, Na, K, Pb, and Be were mostly inversely correlated with
the rest of the elements and directly correlated between them
(Table 4). When considering the moraines and colluviums
separately, the Pearson’s coefficients of correlation of the
moraine profiles showed similar patterns (Table 5), although
correlations had lower significances. For the colluvium pro-
files (whilst Pb and Na maintained inverse relationships with

the rest of the elements) Be and K showed different trends
and few correlations were significant (Table 6).

The radioisotope mass activities ranges (Bq kg−1) were
28.1–64.9 for238U, 12.6–47.7 for226Ra, 12.6–83.7 for
232Th, 652–1320 for40K, b.d.l.(below detection limit)–118
for 210Pb, b.d.l.–102.4 for210Pbex, and 1.2–346 for137Cs
(Table 7). The mean contents of FRNs were much lower in
the soils of the moraines, although differences were not sig-
nificant. The range of variation of137Cs and210Pbex in the
samples of the colluviums was much larger than that of the
moraines. Apart from210Pb, the ERN contents were signifi-
cantly higher in the moraine samples.

The correlations established among the FRNs with the soil
properties showed that in the moraine profiles137Cs was re-
lated directly and significantly with SOC, ACF and sand con-
tents, but inversely with the pH and the silt and clay fractions
(Table 8). However, in the colluvium profiles137Cs was only
significantly correlated with SCF content and the correlations
with the fine fractions were direct but not significant. Con-
cerning the210Pbex the only significant correlation was that
with the SCF content in the colluvium profiles.

Few correlations of ERNs with soil properties were signif-
icant in the colluvium profiles (Table 8). The type of corre-
lations were similar for232Th and40K, as both radionuclides
were directly related with the fine fractions but inversely
related with the soil organic carbon and the sand contents;
whereas the opposite was true for226Ra and238U. However,
in the moraine profiles the type of correlations was different
and not significant.

3.2 Distribution of soil properties and elements in the
profiles

The vertical distribution of main soil properties, radionuclide
and element contents in the study soils showed very dis-
tinctive patterns in the moraine and the colluvium profiles.
The SOC distribution down the profiles of moraine soils was
quite homogeneous and contents were much lower than in the
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Table 3. Summary statistics of the elemental composition (mg kg−1) in the samples of the soil profiles of the moraines and colluviums.
Different letters indicate significant differences at thep level 0.05 between moraines and colluvium soils.

Morainesn = 9 Colluviumn = 12
Mean SD Min Max CV Mean SD Min Max CV

Be 1.5 b 0.0 1.4 1.5 2 1.1 a 0.1 0.8 1.3 12
Mo 0.5 a 0.2 b.d.l. 0.7 41 0.8 b 0.1 0.6 1.0 17
Sb 1.4 a 0.3 0.9 1.8 18 3.1 b 1.1 1.6 5.1 35
Li 7.6 a 1.0 5.2 8.5 13 9.0 a 6.0 0.8 17.4 67
Bi 21.6 a 1.6 18.6 23.8 8 24.4 a 7.2 12.1 34.2 30
Cu 17.3 a 10.5 7.1 41.2 61 22.7 a 13.2 5.6 47.3 58
Pb 31.0 b 1.0 29.5 32.6 3 26.6 a 3.6 19.3 31.8 14
Tl 24.6 a 3.4 19.2 29.7 14 49.6 b 26.0 13.0 86.4 53
V 34.9 a 4.9 25.9 40.3 14 69.1 b 21.3 32.8 99.3 31
Zn 29.8 a 2.5 23.9 33.1 8 58.9 b 34.8 9.6 110.0 59
Ni 27.0 a 2.9 22.4 31.4 11 55.6 b 37.7 14.0 121.0 68
Cr 25.1 a 4.6 17.1 30.5 19 139.0 b 99.0 30.6 323.9 71
Sr 241.9 a 16.3 212.7 261.1 30 306.2 a 94.3 172.1 465.5 31
S 125.1 a 37.2 90.8 216.2 30 371.3 b 232.9 191.5 1005.0 63
Mn 275.3 a 40.2 211.7 336.7 15 571.7 b 349.3 117.5 1088.0 61
P 839.3 a 109.3 613.6 942.8 13 1239.9 b 356.0 545.4 1791.0 29
B 3197.8 b 237.5 2970.0 3770.0 7 1010.1 a 796.4 300.7 3090.0 79
Ti 3092.2 a 419.0 2240.0 3840.0 14 4580.0 b 1070.0 2720.0 6500.0 23
Mg 2710.8 a 610.1 1771.0 3633.0 23 11086.1 b 8748.6 1206.0 25100.0 79
Ca 8241.4 a 778.3 6516.0 8982.0 9 12180.0 b 2496.8 6728.0 16140.0 21
K 28358.9 b 1423.5 26140.0 30120.0 5 20246.7 a 3394.7 12810.0 24980.0 17
Na 30607.8 b 1579.4 29000.0 33940.0 5 21153.3 a 4763.4 13520.0 27270.0 23
Fe 19300.0 a 2500.9 15490.0 22960.0 13 33838.4 b 15949.9 9471.0 56000.0 47
Al 45526.7 a 4215.0 40330.0 53590.0 9 48230.0 a 10710.9 27050.0 61550.0 22

SD: Standard deviation, CV: Coefficient of variation %, b.d.l.: below detection limit

Table 4.Pearson correlation coefficients among elements (mg kg−1) in the samples of all soil profiles. Bold face numbers are significant at
the 95 % confidence level, underlined numbers are significant at the 99 % confidence level.

Mo Sb Li Bi Cu Pb Tl V Zn Ni Cr Sr S Mn Pb B Ti Ca Mg K Al Na Fe

Be –0.682 –0.535 0.050 –0.014 –0.150 0.661 –0.360 –0.522 –0.310 –0.363 –0.508 –0.052 –0.817 –0.353 –0.341 0.765 –0.431 –0.337 –0.417 0.914 0.138 0.809 –0.351
Mo 0.573 0.156 0.296 0.088 –0.371 0.466 0.537 0.451 0.426 0.524 0.189 0.548 0.494 0.406 –0.502 0.389 0.433 0.470 –0.565 0.062 –0.755 0.458
Sb 0.702 0.743 0.499 –0.481 0.934 0.935 0.886 0.876 0.952 0.454 0.257 0.885 0.537 –0.659 0.766 0.772 0.944 –0.453 0.635 –0.815 0.895
Li 0.953 0.685 –0.097 0.877 0.720 0.902 0.746 0.726 0.537 –0.134 0.847 0.430 –0.105 0.551 0.490 0.826 0.175 0.895 –0.463 0.893
Bi 0.659 –0.045 0.903 0.794 0.926 0.759 0.745 0.627 –0.119 0.887 0.519 –0.124 0.636 0.638 0.830 0.110 0.916 –0.503 0.913
Cu –0.386 0.658 0.548 0.689 0.663 0.616 0.233 0.096 0.685 0.248 –0.161 0.393 0.316 0.631 –0.109 0.469 –0.465 0.689
Pb –0.357 –0.357 –0.286 –0.418–0.500 0.054 –0.550 –0.331 –0.317 0.681 –0.187 –0.310 –0.413 0.692 0.058 0.642 –0.376
Tl 0.911 0.986 0.919 0.946 0.493 0.149 0.975 0.529 –0.431 0.688 0.699 0.980 –0.263 0.794 –0.744 0.973
V 0.895 0.774 0.864 0.633 0.226 0.892 0.612 –0.658 0.909 0.796 0.892 –0.377 0.676 –0.816 0.910
Zn 0.869 0.896 0.541 0.155 0.978 0.552 –0.384 0.685 0.657 0.953 –0.202 0.796 –0.735 0.980
Ni 0.974 0.145 0.087 0.908 0.223 –0.341 0.489 0.540 0.949 –0.305 0.643 –0.641 0.834
Cr 0.253 0.233 0.921 0.366 –0.519 0.611 0.626 0.976 –0.430 0.620 –0.774 0.882
Sr 0.006 0.428 0.834 –0.352 0.733 0.754 0.357 0.029 0.641 –0.379 0.582
S 0.137 0.423 –0.545 0.162 0.071 0.188 –0.796 –0.310 –0.688 0.219
Mn 0.458 –0.398 0.662 0.621 0.963 –0.239 0.738 –0.742 0.953
Pb –0.530 0.604 0.755 0.420 –0.331 0.464 –0.614 0.630
B –0.677 –0.580 –0.476 0.728 –0.024 0.772 –0.449
Ti 0.749 0.662 –0.278 0.536 –0.668 0.728
Ca 0.615 –0.355 0.624 –0.556 0.681
Mg –0.315 0.708 –0.766 0.944
K 0.246 0.665 –0.227
Al –0.289 0.782
Na –0.782

colluvium profiles (Fig. 4). The PB1 profile had the lowest
SOC (below 0.1 %), most in the active form with almost neg-
ligible amounts of the stable carbon fraction, which was also
very low in PB2. The vertical distribution of SOC contents in
the colluvium profiles showed decreasing trends with depth,
which were more marked in PB3. The PE2 profile showed a

large SOC enrichment at the 10–14 cm interval depth, most
of it in active form (ACF reaches 12.7 %). The pH profiles
showed little variations with depth, both in the moraine and
the colluvium profiles, and values were slightly lower at the
topsoil than at deeper layers.
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Table 5.Pearson correlation coefficients among elements (mg kg−1) in the samples of the moraine profiles. Bold face numbers are significant
at the 95 % confidence level, underlined numbers are significant at the 99 % confidence level.

Mo Sb Li Bi Cu Pb Tl V Zn Ni Cr Sr S Mn P B Ti Ca Mg K Al Na Fe

Be -0.613 –0.632 –0.460 –0.747 0.401 –0.146 –0.784 –0.697 –0.479 –0.178 –0.786 –0.823 –0.062 –0.696 –0.693 –0.311 –0.408 –0.641 –0.745 –0.062 –0.301 0.628 –0.679
Mo 0.890 –0.210 0.293 –0.728 0.521 0.106 0.369 –0.141 –0.615 0.329 0.474 0.108 0.057 0.314 –0.221 0.186 0.487 0.077 0.452 –0.090–0.915 0.135
Sb –0.135 0.483 –0.447 0.317 0.135 0.541 –0.136 –0.378 0.457 0.502 0.351 0.132 0.420 –0.139 0.546 0.651 0.045 0.260 –0.143–0.822 0.374
Li 0.464 0.211 –0.513 0.802 0.280 0.947 0.555 0.491 0.265 0.060 0.798 0.249 0.496 0.058 –0.104 0.784 –0.361 0.468 0.230 0.603
Bi –0.074 0.176 0.787 0.970 0.445 0.422 0.971 0.829 0.098 0.844 0.891 0.639 0.769 0.721 0.671 0.094 0.515 –0.235 0.952
Cu –0.763 –0.132 –0.138 0.176 0.611 –0.185 –0.425 0.580 –0.108 –0.298 0.035 0.288 –0.262 –0.235–0.711 –0.330 0.578 0.152
Pb –0.027 0.296 –0.398 –0.459 0.199 0.414 –0.577 0.007 0.377 0.218 –0.016 0.387 0.0140.786 0.395 –0.323 –0.055
Tl 0.653 0.797 0.560 0.809 0.767 –0.170 0.956 0.684 0.662 0.282 0.409 0.978 –0.118 0.687 –0.070 0.776
V 0.260 0.280 0.962 0.805 0.113 0.738 0.928 0.547 0.810 0.764 0.533 0.256 0.412 –0.336 0.891
Zn 0.502 0.450 0.256 0.067 0.757 0.170 0.572 –0.002 –0.155 0.769 –0.324 0.479 0.208 0.597
Ni 0.340 0.286 0.033 0.514 0.300 0.548 0.358 0.212 0.518 –0.631 0.343 0.505 0.526
Cr 0.831 0.023 0.877 0.934 0.592 0.674 0.673 0.720 0.216 0.516 –0.305 0.908
Sr –0.221 0.710 0.881 0.422 0.499 0.860 0.731 0.123 0.540 –0.455 0.651
S –0.172 –0.173 –0.340 0.511 0.023 –0.336 –0.438–0.699 –0.253 0.262
Mn 0.750 0.742 0.366 0.373 0.919 0.036 0.742 0.018 0.843
P 0.503 0.649 0.802 0.630 0.318 0.518 –0.326 0.746
B 0.271 0.164 0.633 0.150 0.828 0.424 0.686
Ti 0.731 0.107 –0.082 –0.021 –0.233 0.762
Ca 0.333 0.069 0.185 –0.533 0.532
Mg –0.070 0.735 –0.040 0.641
K 0.257 –0.289 –0.048
Al 0.330 0.439
Na –0.086

Table 6.Pearson correlation coefficients among elements (mg kg−1) in the samples of colluvium profiles. Bold face numbers are significant
at the 95 % confidence level, underlined numbers are significant at the 99 % confidence level.

Mo Sb Li Bi Cu Pb Tl V Zn Ni Cr Sr S Mn P B Ti Ca Mg K Al Na Fe

Be –0.486 0.267 0.383 0.448 0.053 0.336 0.270 0.338 0.265 0.071 0.0580.695 –0.777 0.185 0.465 0.077 0.423 0.857 0.129 0.759 0.601 0.401 0.247
Mo 0.157 0.168 0.238 0.532 –0.126 0.315 0.172 0.369 0.398 0.371 –0.262 0.482 0.452 –0.011 0.258 –0.160 –0.216 0.334 –0.416 –0.046–0.618 0.313
Sb 0.891 0.851 0.675 –0.073 0.953 0.875 0.899 0.910 0.946 0.234 –0.308 0.894 0.179 –0.075 0.555 0.518 0.969 0.421 0.827 –0.562 0.892
Li 0.971 0.802 0.018 0.959 0.919 0.964 0.772 0.816 0.531 –0.288 0.901 0.434 0.053 0.644 0.580 0.899 0.628 0.928 –0.600 0.971
Bi 0.795 0.149 0.950 0.922 0.967 0.759 0.781 0.586 –0.351 0.913 0.454 0.190 0.647 0.678 0.863 0.655 0.951 –0.529 0.949
Cu –0.278 0.806 0.729 0.817 0.754 0.756 0.234 –0.108 0.830 0.233 0.090 0.362 0.331 0.762 0.365 0.647 –0.716 0.824
Pb –0.024 0.184 0.042 –0.187 –0.193 0.447 –0.287 –0.030 0.071 0.365 0.433 0.251 –0.113 0.367 0.192 0.352 –0.073
Tl 0.905 0.985 0.901 0.927 0.341 –0.250 0.967 0.295 0.104 0.539 0.535 0.972 0.462 0.881 –0.635 0.966
V 0.916 0.734 0.776 0.520 –0.376 0.898 0.289 –0.076 0.836 0.558 0.873 0.676 0.865 –0.580 0.909
Zn 0.833 0.865 0.426 –0.193 0.972 0.378 0.117 0.578 0.518 0.939 0.489 0.873 –0.677 0.980
Ni 0.990 –0.063 –0.254 0.885 –0.080 0.141 0.283 0.347 0.940 0.193 0.679 –0.542 0.789
Cr –0.013 –0.200 0.900 –0.014 0.055 0.348 0.335 0.970 0.215 0.700 –0.612 0.836
Sr –0.324 0.272 0.804 0.020 0.691 0.717 0.164 0.819 0.655 –0.069 0.465
S –0.219 0.127 –0.081 –0.425 –0.649 –0.191 –0.724 –0.504 –0.468 –0.134
Mn 0.219 0.081 0.528 0.442 0.952 0.406 0.790 –0.685 0.938
P –0.052 0.317 0.568 0.134 0.395 0.461 –0.283 0.458
B –0.297 0.157 –0.001 –0.043 0.199 0.247 0.007
Ti 0.498 0.501 0.793 0.652 –0.308 0.600
Ca 0.388 0.722 0.794 0.083 0.516
Mg 0.337 0.778 –0.679 0.926
K 0.763 0.026 0.497
Al –0.325 0.864
Na –0.736

The abundance of sand fractions was general in the study
profiles, but differences in the depth distribution arose; thus,
sand contents decreased with depth in PB1 that was paral-
leled with clay content increases in this moraine profile and
characterized by diamicton, which is matrix supported. This
pattern was not observed in the other moraine profile (PB2)
which had very high contents of sand with homogeneous
depth distribution. The colluvium profiles of Erdalen had
comparable depth distributions of the grain size fractions,
with large predominance of sand fractions. However, the PB3
profile of Bødalen showed a quite distinct distribution, with
increasing sand contents down the profile and conversely de-
creasing clay contents with depth.

The depth distributions of the chemical elements were
considerably more homogeneous in the soil profiles of the
moraines than those of the colluviums (Fig. 5). The contents
of most chemical elements in the moraine profiles almost did
not vary with depth. Exceptions were some trace elements,

namely Sb, Mo, Cu, and B and major elements K, Al, and
Fe. In the profile PB2 Cu, V and Fe varied more than in PB1,
where Al varied the most with depth. In contrast, the profiles
of the colluviums exhibited larger variations in the element
depth distributions and showed clearly distinctive patterns
among profiles. The profile PB3 showed decreasing trends
in the contents of most elements, apart from Na and B. In
profile PE2 the contents of most elements decreased sharply
at 10–15 cm depth, but the opposite was seen for Mo, Cu and
S, whose contents increased. In profile PE1 the largest vari-
ations in the element contents appeared at the soil surface
where there was high SOC (4 %) in combination with low
sand content. Most elements showed lower contents at the
top layer and decreases were high for Sb, Li, Bi, Tl, V, Zn,
Ni, Cr, Mg, Fe, but conversely, increases were recorded for
B and Pb.

www.solid-earth.net/5/485/2014/ Solid Earth, 5, 485–498, 2014



492 A. Navas et al.: Variations of soil profile characteristics

Table 7. Summary statistics of radionuclide contents in the samples of the soil profiles of the moraines and colluviums. Different letters
indicate significant differences at thep level 0.05 between moraines and colluvium soils.

Bq kg−1 Morainesn = 9 Colluviumn = 12
Mean SD Min Max Mean SD Min Max

137Cs 34.63 a 36.96 2.33 85.10 63.38 a 117.55 1.23 346.00
210Pbex 2.63 a 5.26 b.d.l. 13.00 17.93 a 36.64 b.d.l. 102.40
40K 1177.78 b 142.02 820.00 1320.00 890.42 a 124.45 652.00 1070.00
226Ra 36.84 b 6.68 24.60 47.70 18.68 a 6.87 12.60 30.70
232Th 56.97 b 13.91 33.70 83.70 39.27 a 13.86 12.60 61.20
238U 52.22 b 7.65 41.50 64.90 38.99 a 6.46 28.10 47.10
210Pb 25.82 a 12.74 3.91 45.40 29.65 a 43.13 b.d.l. 118.00

SD: Standard deviation, b.d.l.: below detection limit.

Table 8. Pearson correlation coefficients among soil properties FRN and ERNs in the samples of the soil profiles of the moraines and
colluviums. Bold face numbers are significant at the 95 % confidence level, underlined numbers are significant at the 99 % confidence level.

FRNs, ERNs SOC ACF SCF pH 2000-50 50-2 < 2
Bq kg−1 % % % µm % µm % µm %

Morainesn = 9

137Cs 0.902 0.939 0.929 –0.95 0.822 –0.822 –0.808
210Pbex 0.491 0.264 0.087 –0.32 0.348 –0.342 –0.376
40K –0.185 0.216 0.275 –0.06 0.005 –0.017 0.056
226Ra 0.201 0.524 0.084 –0.37 0.363 –0.368 –0.336
232Th 0.298 0.459 –0.143 –0.5 0.496 –0.503 –0.454
238U 0.101 0.033 –0.259 –0.17 0.24 –0.246 –0.203
210Pb 0.718 0.516 0.057 –0.71 0.731 –0.726 –0.75
Colluviumn = 12

137Cs 0.178 0.211 0.852 –0.39 –0.228 0.218 0.282
210Pbex 0.188 0.211 0.765 –0.46 –0.383 0.371 0.451
40K –0.648 –0.671 –0.275 0.175 –0.485 0.486 0.469
226Ra 0.014 0.047 0.537 0.287 0.503 –0.502 –0.5
232Th –0.043 –0.066 –0.446 –0.2 –0.799 0.811 0.709
238U 0.319 0.334 0.118 0.463 0.358 –0.346 –0.426
210Pb 0.193 0.22 0.809 –0.34 –0.303 0.293 0.361

3.3 The vertical distribution of radionuclides

The mass activities of137Cs and210Pbex down the profiles
showed different patterns in the moraine and the colluvium
profiles (Fig. 6). The moraine profiles did not show expo-
nential decreases of137Cs with depth and lower contents of
137Cs were found in PB1 (range: 2.3–30.2 Bq kg−1) than in
PB2 (20–84 Bq kg−1). The210Pbex that was almost negligi-
ble in the moraine profiles was only detected in the topsoil
of PB1 and at 10–20 cm in PB2. Therefore, the typical decay
pattern of the FRNs mass activities with depth was not found
in these moraine profiles.

The colluvium profiles of137Cs showed an exponential de-
crease with the depth. The decay was more marked in PB3
and PE1 profiles, the137Cs mass activities decreased sharply
from the topsoil that had very high values (266–346 Bq kg−1)

to low values in deeper layers (1.64–2.75 Bq kg−1). The mass
activities of 210Pbex were considerably lower and the ra-
dionuclide was only found in the upper layers, therefore the
penetration of210Pbex was much lower than that of137Cs that
was detected at 25 cm in PE1 (Fig. 6).

The depth distributions of ERNs showed different patterns,
thus that of226Ra and232Th were very similar in the moraine
profiles, but this was not the case in the colluvium profiles
which even exhibited opposite trends in profile PE1. The40K
mass activities varied largely and values were higher in the
profiles of Bødalen. The238U was the lesser variable, and it
did not show any clear pattern in its depth distribution.

All profiles showed disequilibrium in the U-Th series. Un-
der secular equilibrium the activity ratios of238U / 226Ra will
be approximately 1, and 1.1 for232Th /226Ra (Evans et al.,
1997). However, values in the profiles largely exceeded 1
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Figure 4. The study profiles on the Leptosols of the moraines and the Regosols of the colluvium and the depth distribution of main soil
properties.

(range 1.27–2.98) and the colluvium profile PB3 showed
the greater disequilibrium. Similarly, all soil profiles had
232Th /226Ra activity ratios higher than 1.1. Deviations were
much higher in profile PB3 (3.34–4.25) despite the depleted
levels of232Th (Fig. 6) in topsoil layers of the colluvium pro-
files.

4 Discussion

On the colluvium the Regosols are better developed with
a rich organic A horizon, whereas the Leptosols on the
moraines are shallow and do not present horizon differen-
tiation. The higher content of coarse fractions in the Lep-
tosols is related to the original till parent material, but is also
in accordance with the physical processes (such as rock dis-
integration by the action of ice) that are more important in
the moraines than in the colluviums. This is likely because
moraine materials have been subjected until very recently to

ice action, but also because they are more exposed to phys-
ical disintegration, as moraines have less continuous vegeta-
tion cover than colluviums. These features result in distinc-
tive soil properties that affect the pattern distribution of stable
elements and radionuclides in the profiles. In spite of the fact
that studies on the vertical distribution of elements in soils
of cold regions are scarce, results from previous research in
Maritime Antarctica (Navas et al., 2005a, 2008) have also
evidenced the variation of FRN and ERN contents in relation
to processes affecting soils in different morphoedaphic envi-
ronments. Moreover, similar to what it was observed in the
study valleys, the variability in some radionuclides and ele-
ments was also related to the mineral composition of parent
materials and to cryogenic and soil processes influencing the
depth distribution of soil properties, such as that of granulo-
metric fractions and organic matter.

The type of relationship between stable elements (ei-
ther direct or inverse) suggests common or different ori-
gins, respectively, from minerals contained in the granitic
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Figure 5. Vertical distribution of the chemical elements (mg kg−1) in the soil profiles on the moraines and colluviums.

Figure 6. Depth distribution of the mass activities (Bq kg−1) of FRNs and ERNs in the soil profiles on the moraines and colluviums.
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orthogneisses, on which soils are developed. Furthermore,
differences in the development of the study soils might
have an influence on the elements and their abundance.
Thus, elements present in Leptosols would reflect more
closely the composition of parent materials than those in
Regosols, which are more developed soils. This fact may
also have an effect on element accumulation, as most ele-
ments present higher contents in Regosols than in Leptosols.
High correlation coefficients between elements would indi-
cate similar transport, accumulation and sources (Acosta et
al., 2011). The inverse correlations found between Na, K,
Pb, and Be with the rest of elements and the direct correla-
tions between them suggest different mineralogical sources.
These elements, which are more abundant in Leptosols on
the moraines, might be mainly derived from tectosilicates,
whereas the rest of the elements likely originated from other
types of silicates. Evidences of the main control of substrate
mineralogy and on the element transfer from rock to soil
were also found on a variety of substrates and environments
(Wang and Chen, 1998; Navas et al., 2002c). Moreover, sharp
decreases in the contents of most elements, apart from Mo,
Cu and S, are associated with the high increase of SOC con-
tent found at 10–15 cm depth in PE2, supporting the close
links of most elements with the mineral contents.

The range of variation of137Cs and210Pbex is linked to
the high contents recorded in the organic horizons of the
Regosols of the colluviums, while the highest content of
ERNs, in the Leptosols, apart from210Pb, is related to min-
eralogical and geochemical differences in the composition
of the moraine materials. Significant positive correlations of
137Cs with SOC and ACF contents and inverse correlations
with pH and the silt and clay fractions found in Leptosols
were not observed in the Regosols on the colluviums outside
the LIA. Therefore, correlations among the radionuclides
with the soil properties support the different characteristics
of FRNs in the Leptosols of recently deglaciated moraines af-
fected by LIA compared with the Regosols outside the LIA.

In the colluvium profiles the type of correlations that were
similar for232Th and40K suggest that both radionuclides are
related with clay minerals, whereas the opposite was true for
226Ra and238U which might indicate a common and different
mineralogical source to that of232Th and40K. However, in
the moraine profiles the type of correlations was different and
not significant.

The direct and significant correlations among the ERNs
in the moraine profiles denote a common origin (Fairbridge,
1972). However, the contrary was observed in the colluvium
profiles, suggesting that soil processes in the more developed
soils, either by accumulation of the radionuclides associated
with fine minerals or due to differential mobility, have af-
fected the distribution of ERNs. Thus ERNs are not as closely
linked to their primary mineralogical origin as in the moraine
profiles, where radionuclides might be internally bound in
primary minerals as found by Nielsen and Murray (2008) in
sandy sediments of Jutland (Denmark).

The higher values and decreasing distribution of SOC in
Regosols illustrates a higher degree of soil evolution, reflect-
ing the oldest age in terms of ice-free retreat of the colluvium
sites that became deglaciated approximately 10 000 years
ago. This is further confirmed by the higher percentages of
the SCF compared to its content in the moraine profiles. The
SOC-rich layer at the 10–14 cm interval depth in PE2 (see
Fig. 4) might correspond to a buried soil that is likely to have
occurred at this site due to intense and frequent rockfall ac-
tivity.

The grain size distribution in the profiles helps to inter-
pret the role of physical processes such as rock disintegra-
tion on soil development in cold environments (Navas et al.,
2008). In general, these soils are characterized by the abun-
dance of sand content, especially in the topsoil. However,
the low values and increasing contents of sand with depth
in PB3 (see Fig. 4) are related to the decreasing trends in the
contents of most elements, apart from Na and B. This site,
which is in a hillslope located beneath the Tindefjell glacier,
is more influenced by glaciofluvial and outwash processes
rather than rockfall activity that likely affects the particle size
distribution in the profile. In addition, compared to the other
sites, this site is more impacted through animal husbandry, as
sheep grazing has taken place since approximately 1800, but
with lower intensity since 1930.

The reason for the homogeneous vertical distribution of
chemical elements in moraine profiles, rather than the larger
variations observed in colluvium profiles (see Fig. 5), is the
lack of horizon differentiation in the recently formed Lep-
tosols on till material. Under the cold climate existing in the
study valleys, soil processes are limited and slow, resulting
in shallow and poorly developed soils with almost no hori-
zon differentiation. The variations in the depth distribution of
SOC and sand contents are related to the vertical distribution
of the elements and are responsible for the contrasts observed
between colluvial and moraine soil profiles. Furthermore, the
geochemical variability found in the study profiles is linked
with the parent materials and their mineralogical composi-
tion. In agreement with what was found by other authors in a
variety of environments (e.g. Wang and Chen, 1998; Acosta
et al., 2011), relationships between elements evidenced the
key control of the mineralogy of the substrate on the element
transfer from rock to soils.

The contrasting patterns between the vertical distribution
of the mass activities of137Cs and210Pbex in the moraine
and colluvium profiles are likely related to the different pe-
riods of ice retreat. Even for shorter periods, as in the case
of moraine profiles, differences seen between the study pro-
files might be related to the age of ice retreat, as the lower
FRN contents in PB1 (that is the less developed soil since
the site became ice-free at ca. AD 1930) might suggest via
comparison with PB2, which became ice-free earlier around
AD 1800. Furthermore, the absence of the typical decay pat-
tern of the FRN mass activities with depth in moraine profiles
could be due to several reasons. The till material, the lack of
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horizon differentiation, and the predominance of coarse frac-
tions in the soil matrix of the moraines may have favoured
the rapid infiltration of water carrying the FRNs to deeper
layers. In spite that some types of clays may be more effi-
cient in the adsorption of the radionuclides (e.g. Staunton and
Roubaud, 1997) especially in the frayed edge sites (Sawhney,
1972), the fixation of the FRNs by the organic matter that
may inhibit that of clays is an efficient non-specific mecha-
nism fixing137Cs and210Pbex(Takenaka et al., 1998, Gaspar
and Navas, 2013; Gaspar et al., 2013). Therefore, the very
low content of SOC in the moraine profiles would also con-
tribute to the low fixation of the FRNs. Another reason may
be the cryogenic processes and the disturbance of soil by the
ice action, which in the moraine sites can be more intense
than in the colluviums. Meanwhile, the high values of137Cs
mass activity in the topsoil of the exponential decay profiles
in colluvium soils is likely because of the influence of the
Chernobyl accident in 1986 (Gjelsvik and Steinnes, 2013).

In relation to the depth distributions of ERNs, the larger
variability of 226Ra and232Th in this environment can be
explained by the lack of carbonates as opposed to those ob-
served in Mediterranean carbonate-rich soils, where high car-
bonate contents restricted the mobility of these radionuclides
(Navas et al., 2002a, b). The depleted levels of40K at the
topsoil of PB1 are related to lower contents in clay and silt
fractions. As it is widely known in the literature (e.g. Jasin-
ska et al., 1982, Baeza et al., 1995, VandenBygaart and Protz,
1995), the environmental radionuclides are associated with
clay minerals or they are fixed within the lattice structure.
The significantly higher values of40K in the profiles of Bø-
dalen are likely related to differences in mineralogical com-
position, which can be further confirmed by its sharp deple-
tion in the rich organic layer of PE2. Baeza et al. (1995) in-
dicate that radioactivity increases as particle size decreases.
In Antarctica, profile increases in clay contents were paral-
leled with ERN enrichments (Navas et al., 2005a). In gen-
eral, bedrock composition appears to be the main factor of
variation of the ERNs in the study profiles.

Although most environmental samples have232Th /226Ra
activity ratios around 1.1 (Evans et al., 1997) and
238U / 226Ra ratios are approximately 1 under secular equi-
librium, all soil profiles deviated from these values, indicat-
ing disequilibrium in the uranium and thorium series. Dise-
quilibrium can be due to the active hillslope processes such
as intense outwash processes and rockfall. Besides, differen-
tial mobility of the radionuclides (e.g. Collerson et al., 1991)
may have also had an influence. Harmsen and de Haan (1980)
indicate that U and Th form hydrated cations (UO2+

2 , Th4+)

that are easily mobilized over a broad range of soil pH from
less than 4 to 9.

In spite of differences with the climatic conditions existing
in the southern circumpolar region, processes of soil forma-
tion similar as those operating in extreme cold regions (Bock-
heim and McLeod, 2006) can be expected to affect the areas
recently deglaciated in the upper Erdalen and Bødalen val-

leys. Thus, in the LIA moraines (and especially in the areas
that became ice-free in the past century) the role of freeze–
thaw and wetting and drying cycles seems to be more impor-
tant than other weathering mechanisms. In cold regions such
as in Antarctica, freeze–thaw weathering is generally recog-
nized to be the most important process, causing rock disinte-
gration and soil formation (Serrano et al., 1996, Hall 1997;
Navas et al., 2008). However, in the areas outside the LIA
influence, where the colluvium profiles are located physical
processes, as rockfall, glaciofluvial and outwash processes
and chemical weathering are main soil-forming processes.

5 Conclusions

The higher horizon differentiation in the more evolved
Regosols developed on colluvium, in comparison to the Lep-
tosols on the moraines, determine the larger variability in
the elemental composition down the Regosol profiles. Ra-
dionuclide activities in the soils differed as a function of the
characteristics of geomorphic elements and the processes oc-
curring on the different geomorphic elements and substrates
that have became ice-free at different ages. The distribution
of ENRs is linked to the mineral composition of the parent
materials. Geomorphic and soil processes that trigger the en-
richment of the fine fractions containing sheet silicates de-
termine the abundance of40K and 232Th, whereas238U and
226Ra are rather associated to minerals included in coarser
fractions. In this environment the transference of the radionu-
clides and elements down the profile might be time restricted
to the periods in which water circulates down the soil profile,
which can further influence the differences in soil processes
found between colluvium and moraine profiles.

In cold regions, such as the one in this study, information
on the period of ice retreat could be derived by the pattern
distribution of FRNs, as the typical decay pattern of FRN
mass activities with depth is not found in moraine profiles of
the LIA compared to the typical decay patterns found in more
evolved soils of the colluviums that were deglaciated around
10 000 BP. In addition, other soil properties can be combined
to discern the main geomorphic processes related to the ice
age retreat.
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