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Abstract. Permafrost-affected soils have accumulated enor-
mous pools of organic matter during the Quaternary pe-
riod. The area occupied by these soils amounts to more
than 8.6 million km2, which is about 27 % of all land ar-
eas north of 50◦ N. Therefore, permafrost-affected soils are
considered to be one of the important cryosphere elements
within the climate system. Due to the cryopedogenic pro-
cesses that form these particular soils and the overlying veg-
etation that is adapted to the arctic climate, organic mat-
ter has accumulated to the present extent of up to 1024 Pg
(1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the
uppermost 3 m of ground. Considering the observed progres-
sive climate change and the projected polar amplification,
permafrost-affected soils will undergo fundamental property
changes. Higher turnover and mineralisation rates of the or-
ganic matter are consequences of these changes, which are
expected to result in an increased release of climate-relevant
trace gases into the atmosphere. The controversy of whether
permafrost regions continue accumulating carbon or already
function as a carbon source remains open until today. An
increased focus on this subject matter, especially in under-
represented Siberian regions, could contribute to a more ro-
bust estimation of the soil organic carbon pool of permafrost
regions and at the same time improve the understanding of
the carbon sink and source functions of permafrost-affected
soils.

1 Introduction

In wide areas of the high latitudes of northern Europe, Green-
land, Canada, Alaska, China and Russia, a particular group
of soils has developed during the Quaternary whose diver-

sity is based primarily on cryopedogenic processes within the
pedosphere of the Earth system. Among the most important
cryopedogenic processes are the cryogenic weathering (frost
wedging), ice segregation and accumulation (by increased
freezing on of water on existing ice lenses), cryoturbation
(mixing of soils by repeated freezing and thaw and, conse-
quently, expansion and contraction processes), cryometamor-
phosis (transformation of soil structures due to ice), gelifluc-
tion (slow, wide-area downflow of soil material of the sea-
sonally thawed layer on slopes with an inclination of> 2◦),
frost heave, frost sorting (material dislocation caused by the
increase in volume during the freezing of water) and frost
crack formation (due to the contraction of the frozen soil at
very low temperatures) (Fig. 1).

The areas of the Northern Hemisphere covered by per-
mafrost extend over almost 23 million km2, approximately
one-quarter of its total land surface (Baranov, 1959; Shi,
1988; Zhang, 1999, 2003; French, 2007). About 60 % of the
Russian land surface is underlain by permafrost (Kudryavt-
sev et al., 1978; Brown et al., 1998; Kotlyakov and Khro-
mova, 2002) (compare Fig. 5). These areas are called per-
mafrost areas if their subsurface soils and sediments main-
tain temperatures of 0◦C or below during at least two con-
secutive years (van Everdingen, 2005) (see Fig. 2a). Under
this definition, the ground water – if it contains many dis-
solved substances or is hold in fine pores – can also exist
in liquid form in permafrost. In order to unambiguously de-
marcate permafrost from the “supra-permafrost” above it, the
term cryotic (temperature< 0◦C) was introduced (French,
2007). In addition to this point of view, which focuses on
the ground temperature regime and designates the boundary
of the ground that is permanently below 0◦C as the so-called
permafrost table, there is another point of view that focuses
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Figure 1. Results of cryopedogenic processes in permafrost.(A)
Segregated ice, Lena River Delta, Siberia 2007.(B) Cryoturbation
in the top soil of a Gelisol (Typic Psammoturbel), Arga Complex,
northwestern Lena River Delta, Siberia 2009.(C) Sorted circles
(frost patterns) formed by frost sorting, Brøgger Peninsula, Spits-
bergen 1999.(D) Ice wedges, cliff exposure at the Olenyokskaya
Channel, Lena River Delta, Siberia 2007. Photo C by Julia Boike.

on the thaw–freeze cycle. In the upper ground zone, this dis-
tinguishes the seasonal thaw layer from the underlying per-
manently frozen ground (Fig. 2b). Frozen ground is defined
as ground material in which part or all of the pore water has
turned into ice (van Everdingen, 2005).

A spatial differentiation of the permafrost areas is based
on the portion of the areas with permafrost in relation to the
total area and classifies continuous, discontinuous, and spo-
radic and isolated permafrost. In addition to the high latitudes
of the Northern Hemisphere, permafrost and permafrost-
affected soils are also found in the mountains of the Earth
and the ice-free areas of Antarctica – there, however, only in
small portions of the surface (0.35 % of Antarctica) (Bock-
heim, 1995; Vieira et al., 2010). The Antarctic permafrost-
affected soils represent special, extremely cold and salt-rich
habitats (Bockheim, 1979, 2002; Bockheim and McLeod,
2008).

The extension of the terrestrial permafrost areas does
not entirely correspond to the extension of the permafrost-
affected soils. These soils form their own class or reference
group of the highest category in the various international soil
systematics.

In current use are primarily the American classification
system “Keys to Soil Taxonomy” (Soil Survey Staff, 2010)
with the so-called Gelisols (gelus, ice) as permafrost-affected
soil class (Figs. 3 and 4), and the international reference
system of the “WRB: World Reference Base for Soil Re-
sources” of the international Food and Agriculture Organiza-
tion (FAO, 2007) with the Cryosol group (cryos, cold). The
diagnostic horizons, or characteristics, of these soils are the
existence of permafrost in the uppermost metre of the soil,
or clear cryoturbation characteristics and/or segregation ice

(gelic material according to US Soil Taxonomy; Soil Sur-
vey Staff, 2010) in the active layer of the soil above the per-
mafrost present within a depth of 2 m (Figs. 2 and 4). An
advantage of using both of these systems is the easy compa-
rability of the various national and international studies on
permafrost-affected soils.

In the morphogenetic Russian soil classification systems,
permafrost is considered as being only a parameter of a soil
thermal regime and not a diagnostic horizon or diagnostic
property. Therefore, only permafrost-affected soils with cry-
oturbated soil profiles, widespread only in the far north of the
Russian Federation, are treated as Cryozems in a separate soil
class (Fig. 5). This soil class covers about 1 % of the Russian
land surface (Stolbovoi et al., 2002), whereas around 60 %
of the land surface is underlain by permafrost (Kudryavtsev
et al., 1978; Brown et al., 1998; Kotlyakov and Khromova,
2002). All other soils of these areas without cryoturbation are
allocated to other soil classes with the additional mentioning
of the subjacent permafrost (such as Gleyzem with underly-
ing permafrost; Shishov et al., 2004). Within the permafrost-
underlain areas, several soil classes can be detected in the
different vegetation zones of the Russian Federation. The po-
lar desert is characterised by Cryozems and “shallow weakly
developed” soils (Leptosols). In the tundra zone, Gleyzems
(Gleysols) dominate, followed by Al-Fe-humic soils (Pod-
zols). In the transition area to the taiga zone the two soil types
of the tundra zone and organic-rich peat soils (Histosols)
dominate. The taiga zone is dominated by Al-Fe-humic soils,
metamorphic soils (Cambisols) and “texture-differentiated”
soils (Albeluvisols) (Fig. 5).

In Germany, permafrost-affected soils only exist as relic-
tic or fossil remnants of periglacial soil formations. In the
current German soil classification (AG Boden, 2005), they
are not independently described, but can be considered as
palaeosoils (such as Podzol on top of buried Turbic Cryosol).
Remnants of these soils are occasionally described in con-
nection with the periglacial layers (AG Boden, 2005; Alter-
mann et al., 2008).

The spatial extension of the Gelisols or Cryosols north
of 50◦ latitude covers 27 % of the land mass (Jones et al.,
2010) and corresponds to approximately 8.6 million km2.
The permafrost-affected soils (here Cryosols according to
the WRB, FAO, 2007) are combined with other impor-
tant soil types of these latitudes such as Podzols (acidified
soils, 15 %), Leptosols (hard rock soils, 8 %) and Cambisols
(brunified soils, 8 %) (Jones et al., 2010).

The properties and the spatial distribution of the
permafrost-affected soils within the various countries were
collected by Tarnocai (2004) and Smith and Veldhuis (2004)
for Canada; by Ping et al. (2004a) for Alaska; by Goryachkin
and Ignatenko (2004), Naumov (2004), Karavaeva (2004),
Sokolov et al. (2004) and Gracheva (2004) for the diverse and
extensive areas of Russia; by Maximovich (2004) for Mon-
golia; and by Ping et al. (2004b) for China and published
as a book titled “Cryosols: Permafrost-Affected Soils” by
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Figure 2. Schematic view of properties of permafrost-affected soils.(A) The soil thermal properties. The permafrost table divides the supra-
permafrost (temperature can temporarily be higher than 0◦C within two consecutive years) and the permafrost (temperature is at least
two consecutive years lower than 0◦C). (B) The freeze–thaw regime of the soils with the seasonally frozen and thawed active layer and
the subjacent perennially frozen soil.(C) Example of a permafrost-affected soil profile. Cryoturbation and segregated ice (gelic material
according to US Soil Taxonomy; Soil Survey Staff, 2010) are indicated.

Kimble (2004). The book contains a comprehensive descrip-
tion of the research into permafrost-affected soils and their
history, as well as the spatial distribution of these soils along
with their properties. It not only addresses the discussion of
the various national and international classification systems,
but also the potential uses as settlement areas, agricultural
land, and as supplier of natural resources. “Permafrost Soils”
by Margesin (2009) is a comprehensive book focusing on the
biology of permafrost-affected soils. Aspects such as biodi-
versity and bioactivity (e.g. Ozerskaya et al., 2009; Panikov,
2009), the effect of global warming (e.g. Wagner and Lieb-
ner, 2009) and the problems of pollutant accumulation in per-
mafrost area (e.g. Barnes and Chuvilin, 2009) are covered in
this book.

2 Permafrost-affected soils as a carbon store

The low average temperatures and the extreme annual tem-
perature differences in the permafrost areas have led to a con-
siderable accumulation of organic matter in the Quaternary.
The biomass, newly formed during the short summer phase,
is initially accumulated after die-off in the uppermost ac-
tive layer of the soil. The annually recurring accumulation
of organic matter – and often also fluvial or aeolian sedi-
mentation of mineral matter – can lead to an upward shift of
the soil surface as well as of the surface of the permanently
frozen ground, so that gradually more and more organic mat-

ter is incorporated. Cryoturbation also leads to the inclusion
of organic matter into deeper soil horizons. Another pro-
cess is the relocation of organic matter in dissolved state and
its precipitation and deposition above the permafrost table,
where it can accumulate in some soils due to the very low
temperatures and low decay rates. The permafrost-affected
soils, therefore, are relevant carbon sinks, which are effec-
tive over long periods of time (Post et al., 1982; Corradi
et al., 2005; Kutzbach et al., 2007; van der Molen et al.,
2007; McGuire et al., 2009). The sink function occurred pri-
marily via the soils near the surface, which incorporate the
biomass of the typical arctic climate-adapted tundra veg-
etation after its die-off as litter in their carbon sink. Ac-
cording to current estimates, 1024 Pg of organic carbon is
stored in permafrost-affected soils down to a depth of 3 m
(Tarnocai et al., 2009). Adding the deep-reaching sediments
rich in organic carbon of the Yedoma landscapes and arc-
tic deltas, the total estimates of the organic carbon stored in
permafrost areas amount to about 1670 Pg (Tarnocai et al.,
2009). These estimates were based on the Northern Circum-
polar Soil Carbon Database (NCSCD, Tarnocai et al., 2007),
the most comprehensive currently available database on or-
ganic carbon in permafrost-affected soils, which has recently
been updated (Hugelius et al., 2013a, b). However, even the
information in this database is still fraught with great uncer-
tainties at the present time. When looking closely at the dis-
tribution of the sites considered so far, it becomes apparent
that when evaluating the reliability of the soil data stored in
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Figure 3. A “non-cryoturbated organic-dominated” permafrost-
affected soil, Typic Historthel(I) and the study area it is from
(II) – Samoylov Island, central Lena River Delta, Siberia 2007.
Historthel , great group:Hist from histos, meaning tissue (plant);
suborder:orth , from Orthels, which are soils with little or no cry-
oturbation, and except for polygons, patterned ground is absent; or-
der: el, formative element of Gelisols, from Latingelu, meaning
frost, coldness. “O” and “B” indicate soil horizons. “O” indicates
an organic matter-dominated horizon that has formed at the soil
surface. It consists of undecomposed or partially decomposed litter
(i.e. needles, twigs, moss, and lichens). “B” indicates a subsurface
horizon that has formed below an “O” or “A” horizon. It shows the
obliteration of all or much of the parent soil material structure. It can
be characterised by many qualifiers. Examples are gleying proper-
ties (suffix “g”) described as formation of grey, greenish and bluish
spots caused by reduced iron. Iron reduction occurs when soils are
water-saturated for long periods. In this case, the soil parent mate-
rial consists of fluvial sands that were deposited during a flood in the
study area. Suffixes “i”, “e” and “a” classify the O horizon’s organic
matter in “slightly”, intermediately” and “highly” decomposed. The
existence of iron and/or manganese concretions is indicated by suf-
fix “c”.

the database (100 % being “reliable” and 0 % “unreliable”,
according to Kuhry et al., 2010), the arctic delta areas and
the Yedoma landscapes with ice-rich permafrost sediments
in Siberia (Fig. 6), based on the very sketchy and difficult-
to-access data situation regarding permafrost-affected soils
of this region until now, can only be assessed with a relia-
bility of less than 33 %. The areas of the North American
region, on the other hand, are very well represented, with
up to 80 % reliability (Kuhry et al., 2010). This can be at-
tributed to the above-average number of published soil stud-
ies in these regions. In publications of recent years, some am-
biguities were apparent in the estimates of the carbon quan-
tities stored in the permafrost-affected soils. These stemmed,
on the one hand, from the unbalanced distribution of exist-
ing soil study data and, on the other hand, the widely varying
definitions of the respective research objects. The number of
publications on carbon contents in permafrost-affected soils
is manageable (Table 1). Using the two most-cited publica-
tions, Post et al. (1982) and Tarnocai et al. (2009), as ex-
amples, these different points of view are easily illustrated:
while Post et al. (1982), in the course of a global determina-
tion of the carbon pools of all life zones, only consider 48 soil
profiles in arctic tundra areas to a depth of 100 cm, Tarnocai

Figure 4. A “sand-dominated and cryoturbated” permafrost-
affected soil, Typic Psammoturbel(I) and the study area it is from
(II) the Arga Complex, northwestern Lena River Delta, Siberia
2009.Psammoturbel, great group:Psamm(o)from psamm, mean-
ing sand; suborder:turb , from Latinturbatio, meaning disturbance;
order:el, formative element of Gelisols, from Latingelu, meaning
frost, coldness. “A” and “B” indicate soil horizons. “A” indicates
a mineral horizon that has formed at the surface or below an or-
ganic horizon. It has accumulated humified organic matter that is
mixed with the mineral fraction. “B” indicates subsurface horizons
(see Fig. 3). Within this profile there are several B horizons with dif-
ferent properties. The suffix “h” indicates an illuvial accumulation
of organic matter or sesquioxides and “jj” stands for cryoturbated
horizons. Suffix “g” is explained in the caption of Fig. 3.

et al. (2009) combined and updated the pedological results of
existing studies from permafrost regions (e.g. Zimov et al.,
2006; Schuur et al., 2008) and supplemented them with their
own data. More than 400 soil profiles were evaluated, and
the pool of organic carbon for various studies objects such
as the permafrost-affected soils to a depth of 3 m, the arctic
delta areas (up to 50 m depth) or the Yedoma landscapes (up
to 25 m depth) were calculated.

Looking at the results compiled in Table 1, one will notice
that the study results can be divided into two main groups:
the results to a depth of 30 cm and those to 100 cm. Another
group comprises carbon studies that limit their sampling to
the active layer that is further defined (depths of 20 cm up
to 50 cm) or only to certain soil horizons. All study results
show that the permafrost-affected soils store a large quan-
tity of carbon per soil surface. The carbon pool fluctuates
between 4 and 25 kg m−2 for the upper 30 cm of the soils.
When the authors (listed in Table 1) inspected the soils to
the maximum thaw depth on the day of sampling, the carbon
pools lay between 13 and 29 kg m−2. The results of the stud-
ies that examined the carbon pool up to a depth of 100 cm
vary between 4 and 71 kg m−2 (Table 1). These carbon pools
derived from small scale field work seem to be lower than
the estimated carbon pools stored in the NCSCD (compare
Fig. 7). Furthermore, the field data reveal the very high fluc-
tuation range of the results from different permafrost regions.

Observing the data of the current literature on the total
mass of organic carbon in the permafrost areas (Table 1),
the problematic aspect of comparability becomes obvious.
The results of the studies refer to very different surfaces in
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Table 1. Overview of carbon studies from different permafrost regions. Only results related to the permafrost-affected soils are presented.
This list shows only some examples and is not intended to be exhaustive. SOC stands for soil organic carbon.

Sampling depth/ SOC pool SOC pool Mass Study sites as described in publication
authors kg m−2 kg m−2 SOC Pg

(min) (max)

Depth 0–30 cm

Stolbovoi (2002a) 11.6 13.3 62 Russia
Tarnocai et al. (2009) 191 Northern permafrost regions
Hugelius et al. (2010) 16.3 Tulemalu Lake, central Canadian Arctic
Zubrzycki et al. (2012a) 4.0 24.0 Latitudinal transect (73.5–69.5◦ N) along the Lena River,

Siberia
Pastukhov and Kaverin (2013) 9.6 24.6 NE European Russia, Rogovaya River and Seida River basins

Active layer depth

Oechel and Billings (1992) 13.0 29.0 55 Tundra
Tarnocai and Ballard (1994) 21.7 26.2 Canadian Arctic/subarctic
Orlov et al. (1996) 14.5 59 Russia
Nadelhoffer et al. (1997) 20.3 Alaska
Gundelwein et al. (2007) 14.5 Taymyr Peninsula, Lake Labaz

Depth 0–100 cm

Post et al. (1982) 21.8 192 Tundra
Tarnocai and Smith (1992) 4.0 63.0 Canada
Desyatkin et al. (1994) 16.0 Yakutian tundra
Matsuura and Yefremov (1995) 11.0 20.0 Russia
Kolchugina et al. (1995) 21.4 Russian tundra soils
Rozhkov et al. (1996) 116 Tundra and northern taiga in Russia
Ping et al. (1997) 31.4 69.2 Tundra in Alaska
Chestnyck et al. (1999) 17.8 Eastern European Russian tundra
Stolbovoi (2002a) 16.6 26.9 107 Russia
Tarnocai et al. (2003) 25.6 59.2 268 Northern permafrost regions
Post (2006) 14.2 Tundra
Gundelwein et al. (2007) 30.7 Taymyr Peninsula, Lake Labaz
Ping et al. (2008) 34.8 98 North American Arctic region
Tarnocai et al. (2009) 22.6 66.6 496 Northern permafrost regions
Hugelius et al. (2010) 33.8 Central Canadian Arctic, Tulemalu Lake
Bliss and Maursetter (2010) 54.5 38 Alaska, Gelisols of Alaska
Ping et al. (2010) 12.6 50.9 Alaska, discontinuous, warm permafrost, boreal forests
Palmtag (2011) 21.7 29.0 NE Siberia, Shalaurovo and Chersky
Ping et al. (2011) 41.0 Alaska, Beaufort Sea coastline, river deltas
Ramage (2012) 27.6 31.3 Taymyr Peninsula, Ari-Mas and Logata
Pastukhov and Kaverin (2013) 16.9 71.3 NE European Russia, Rogovaya River and Seida River basins
Zubrzycki et al. (2013) 6.6 48.0 0.241 Siberia, Lena River Delta, Holocene units

Depth 0–300 cm

Tarnocai et al. (2009) 159.2 358.2 1024 Northern permafrost regions
Pastukhov and Kaverin (2013) 16.9 147.0 NE European Russia, Rogovaya River and Seida River basins

Depth> 300 cm

Tarnocai et al. (2009) 65.0 241 Arctic deltas

Authors OC (min) OC (max) Mass Study sites as described in publication
% wt % wt SOC Pg

Zimov et al. (2006) 2.56 450 Yedoma landscapes in northern Siberia
Tarnocai et al. (2009) 2.6 407 Yedoma landscapes in northern Siberia
Schirrmeister et al. (2011) 1 17 250–375 20 coastal exposures in northern Siberia
Strauss et al. (2013) 0.8 4.6 58–371 Yedoma landscapes
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Figure 5.Distribution of soil types across permafrost-affected parts of the Russian Federation. Soils developing within the area of continuous
permafrost can certainly be assumed as permafrost-affected soils (dominating soil types in the grey box). Soils in the area of discontinuous,
sporadic and isolated permafrost plotted in pastel colours (south of the black limit line of continuous permafrost) are likely to be assumed as
permafrost-affected soils. Based on Stolbovoi et al. (2002) and Brown et al. (1998).

Figure 6.Examples of underrepresented landscapes in the Northern
Circumpolar Soil Carbon Database (NCSCD).(A) Yedoma land-
scape of Kurungnakh Island. An erosional river cliff with exposed
ice-rich sediments.(B) Polygonal tundra of Samoylov Island. Both
islands are located in the Lena River Delta in northeastern Siberia.
Photos 2010.

terms of size. The studied surfaces may be countries, regions
or even vegetation units. Despite the difficult comparabil-
ity, the results of these studies illustrate that the total pool
of the permafrost-affected soils’ organic carbon is very high
at 1024 Pg (Tarnocai et al., 2009) and exceeds the mass of
carbon of the entire global vegetation biomass (650 Pg) as
well as the atmosphere (750 Pg) (IPCC, 2007). The carbon
quantities stored in permafrost-affected soils are therefore
to be considered one important factor for the understanding
and function of the cryosphere within the climate system.
Permafrost-affected soils with their special carbon dynam-
ics are very sensitive to environmental and climatic changes
due to their temperature dependence. It can be assumed – for
the past as well as for the present – that global and regional

Figure 7. Spatial distribution of the soil organic carbon contents
in Russian Federation. The dashed line illustrates the tree limit.
Based on Hugelius et al. (2013a), Stolbovoi (2002b) and Brown et
al. (1998).

environmental and climatic changes, as well as the dynamics
of soil carbon in permafrost areas, interact and will continue
to interact with one another via physical and biogeochemical
feedback mechanisms (McGuire et al., 2009; Grosse et al.,
2011). With the currently predicted climate warming and
its particularly strong effects in the arctic regions (Lembke
et al., 2007) and the concurrent local and regional decline and
degradation of permafrost (Anisimov and Nelson, 1997), the
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Figure 8.Schematic illustration of the carbon and nitrogen dynamic feedbacks and the climate-driven changes within the permafrost-affected
soils. C pools (Tarnocai et al., 2009) and N pools calculated using the C/N ratio of 30. Figure according to Beer (2009).

properties of permafrost-affected soils will undergo a funda-
mental change.

Warming within the permafrost areas can lead to an aug-
mentation of the thickness of the seasonally thawed layer in
the upper soil (Fig. 2) and to a change in its hydrological site
conditions (Koven et al., 2011). This leads to an increased
microbial decay of the organic matter and a more intensive
release of the climate-relevant trace gases carbon dioxide,
methane and nitrogen oxide (Dutta et al., 2006; Wagner et al.,
2007; Khvorostyanov et al., 2008; Schuur et al., 2009; Lee
et al., 2012; Knoblauch et al., 2013).

In other words, if the current warming of the arctic cli-
mate is the cause of an increased decline in the extent of the
permafrost areas, which in turn leads to an increased release
of greenhouse gases in the Earth’s atmosphere, a further rise
in temperatures on a global scale and also in the permafrost
areas themselves might be expected (Fig. 8).

These processes show the potential positive feedback ef-
fects in permafrost landscapes or in the cryosphere of the
Earth system that are not yet sufficiently considered in the
climate models relating to temperature projection. Because
of these complex effects, the permafrost areas are likely to
represent a tipping element of the global climate system, rel-
evant even for politics and society (Lenton and Schellnhu-
ber, 2010). A tipping element is considered to consist of
those components of the Earth system that can essentially
and irrevocably be altered under loads beyond critical limits

(Lenton and Schellnhuber, 2010). Whether the soils of the
permafrost areas already act as carbon sources (Oechel et al.,
1993, 2000; Zimov et al., 1997) or still accumulate carbon
(Corradi et al., 2005; Kutzbach et al., 2007; van der Molen
et al., 2007; Hayes et al., 2011) is not yet clear and has to be
assessed on a regional scale.

The complexity of these carbon source–sink functions of
the permafrost-affected soils is not yet sufficiently under-
stood. There is a lack of measurements as well as robust,
adequately validated modelled projections and predictions to
make reliable prognoses for the development of the carbon
dynamics of permafrost-affected soils in the warming climate
system (McGuire et al., 2009).

3 Current level of knowledge of the carbon pool in
permafrost-affected soils in Russian Arctic

Because of the particular relevance of the cryosphere and
especially the terrestrial permafrost for climate system re-
search, the number of published scientific articles focusing
on carbon in the permafrost regions has dramatically in-
creased over the past 5 years compared to the last 20 years
(Fig. 9).

The largest part of these published articles deals with the
North American region. In recent years, however, areas of
the Eurasian permafrost – especially in the Russian region
– have also been increasingly studied in detail. The data of
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Figure 9. Number of scientific papers published between 1989 and
2013 as a result of a search for the keywords “permafrost + car-
bon” in Web of Science (www.webofknowledge.com) on 14 Jan-
uary 2014.

these small research areas can only be used reliably so far for
local upscaling of the carbon quantities. Special permafrost
phenomena such as “ice-” and organic-rich sediments of the
Yedoma landscapes, which have until now been largely ne-
glected, were increasingly being studied (Zimov et al., 2006;
Schirrmeister et al., 2011; Strauss et al., 2013).

The near-surface soils of the permafrost areas of northern
Siberia have long played a large role in the study of carbon
pools and greenhouse gas emissions by Russian scientists
and, since the 1990s, by large German–Russian cooperation
projects. In addition to the classic soil survey with its genesis
and distribution in permafrost areas (Krasuk, 1927; Ivanova,
1965, 1971; Karavaeva, 1969; Targulyan, 1971; Elovskaya
et al., 1979; Desyatkin and Teterina, 1991; Pfeiffer, 1998;
Pfeiffer et al., 2000, 2002) (for examples see Figs. 3, 4, 10
and 11), numerous physicochemical properties and processes
of permafrost-affected soils were also studied (e.g. Pfeiffer
and Jansen, 1992; Okoneshnikova, 1994; Pfeiffer et al., 1997;
Fiedler et al., 2004; Kutzbach et al., 2004; Desyatkin and
Desyatkin, 2006; Zubrzycki et al., 2008; Sanders et al., 2010)
(for examples see Figs. 11–13 and Table 2).

The turnover of organic matter in the soil and the associ-
ated formation of greenhouse gases in moist tundra areas of
Eurasia were also researched on a small scale as part of field
campaigns (e.g. Wüthrich et al., 1999; Rivkina et al., 2007;
Knoblauch et al., 2008, 2013; Wagner et al., 2009; Lieb-
ner et al., 2011; Shcherbakova et al., 2011). The emissions
of greenhouse gases were initially captured in the north-
ern Siberian Lena River Delta starting in 2000 via small-

Figure 10.A soil map of Samoylov Island as a result of long-term
soil research within this area of the Lena River Delta. Generated
from data by Pfeiffer et al. (2000, 2002) (see Sanders et al., 2010).
Soil classification according to the US Soil Taxonomy (Soil Survey
Staff, 2010). The plotted coast line from July 1964 points out the
high coastal dynamics within the beach and floodplain in the west-
ern part of island.

scale closed-chamber measurements (Kutzbach et al., 2004;
Sachs et al., 2010) and later expanded by eddy covariance
measurements (Kutzbach et al., 2007; Sachs et al., 2008;
Wille et al., 2008; Runkle et al., 2013). The seasonally av-
eraged methane emissions determined via closed-chamber
measurements for polygon rims and centres lay between
4.3 and 28 mg CH4 m−2 d−1 (Kutzbach et al., 2004), and
between 4.9 and 100 mg CH4 m−2 d−1, respectively (Sachs
et al., 2010). The eddy covariance measurements estimated
landscape-scale emissions on the order of magnitude of 0.01
to 0.55 g CO2 h−1 m−2 for releasing carbon dioxide by respi-
ration processes (Kutzbach et al., 2007). The methane fluxes
amounted to 18.7 to 30 mg CH4 m−2 d−1 for averaged daily
emissions within the measuring period (Sachs et al., 2008;
Wille et al., 2008).

First English-language works on the survey of the car-
bon quantities in the permafrost-affected soils of the Siberian
Arctic also exist (Gundelwein et al., 2007; Zubrzycki et al.,
2012a, 2013). Their results determined for small areas of
Siberia are comparable to those of other areas (see Table 1). It
also becomes apparent, however, that inaccuracies can occur
in global extrapolations if the data situation from the indi-
vidual regions is insufficient (Zubrzycki et al., 2012a). The
carbon pools are recorded not only in the Siberian Arctic
but also in the European–Russian Arctic by means of field
work and are extrapolated onto larger areas via remote sens-
ing methods (Mazhitova et al., 2003; Hugelius and Kuhry,
2009; Hugelius et al., 2011).

In addition to the above studies limited to 1 through 3 m of
the carbon pools in the permafrost-affected soils, the study of
permafrost phenomena such as the sediments of the Yedoma
landscapes is important. The studies of Siberian regions show
that these sediments have high gravimetric carbon contents,

Solid Earth, 5, 595–609, 2014 www.solid-earth.net/5/595/2014/

www.webofknowledge.com


S. Zubrzycki et al.: Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic 603

Table 2.Chemical properties of two exemplary soil profiles (see Fig. 11 and Fig. 13) with their horizons according to the US Soil Taxonomy
(Soil Survey Staff, 2010), horizon depth, texture, hydromorphology, pH value, organic carbon content in weight percent, C/N ratio and
rooting.

Glacic Aquiturbel – polygonal rim of a “low-centred” ice wedge polygon

Horizon Depth Texture Red. pH OC C/N Roots
(cm) conditions

Ajj 0–12 Loamy sand No 5.9 1.8 21 Many
Bjjg1 12–15 Sandy loam No 6.2 2.2 21 Frequent
Bjjg2 15–47 Loam Yes 5.5 2.9 24 Frequent
Bjjgf 47–70 Loam Yes 6.0 3.0 20 None

Typic Historthel – polygonal centre of a “low-centred” ice wedge polygon

Horizon Depth Texture Red. pH OC C/N Roots
(cm) conditions

Oi 0–11 Peat No 5.0 22.1 43 Few
OeBg 11–26 Peat + sand Yes 4.8 12.6 35 Many
Bg 26–31 Sand Yes 4.8 2.1 17.5 Frequent
Bgf 31–64 Sandy loam Yes 5.0 4.2 30 None

Table 3.Current projects and programmes with the focus on permafrost-affected regions with their carbon pools and carbon dynamics.

Acronym Project/programme title Website

CAPP Carbon Pools in Permafrost Regions http://www.geowiss.uni-hamburg.de/i-boden/capp
CarboPerm Carbon in Permafrost. Formation, Turnover and Releasehttp://www.carboperm.net
CRAICC Cryosphere-atmosphere interactions in a changing Arctic

climate
http://www.atm.helsinki.fi/craicc

CryoCARB Advancing organic carbon estimates for cryoturbated soilshttp://www.univie.ac.at/cryocarb
DEFROST Impact of a changing cryosphere – Depicting ecosystem-

climate feedbacks from permafrost, snow and ice
http://www.ncoe-defrost.org

GRENE-TEA Change in the terrestrial ecosystems of the pan-Arctic and
effects on climate

NACP North American Carbon Program http://www.nacarbon.org/nacp
NGEE Arctic Next-Generation Ecosystem Experiments http://www.ngee-arctic.ornl.gov
PAGE21 Changing permafrost in the Arctic and its Global Effects in

the 21st Century
http://www.page21.eu

POLYGON Polygons in tundra wetlands: state and dynamics under
climate variability in Polar Regions

http://www.gepris.dfg.de/gepris/projekt/164232461

RCN Vulnerability of Permafrost Carbon Research Coordination
Network

http://www.biology.ufl.edu/permafrostcarbon

TOMCAR Terrestrial organic matter characterization in Arctic Rivershttp://www.2020-horizon.com

which, however, are subject to strong fluctuations depending
on the studied site. They are usually between 1 and 4 %, but
can also reach values of up to 17 % in the case of peaty layers
(Zimov et al., 1997, 2006; Schirrmeister et al., 2011; Strauss
et al., 2013).

4 Research requirements

A significant number of new data records on soils and
the quantities of carbon stored in them from the under-
represented areas of the circumpolar regions – especially the
Siberian Arctic – is necessary to update the Northern Cir-

cumpolar Soil Carbon Database (Tarnocai et al., 2009; Kuhry
et al., 2010; Hugelius et al., 2013a, b). This can only be
achieved by combining measuring fieldwork with modelling
work for the permafrost areas, primarily for the Eurasian and
especially for the Siberian region. Because of the sketchy
data situation, special focus should be directed not only to
the delta deposits, the ice-rich sediments of the Yedoma land-
scapes (see Tarnocai et al., 2009), but also to the permafrost-
affected soils of the hilly and mountainous regions. A more
comprehensive data basis is necessary for a better under-
standing of the interactions between the particular climate,
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Figure 11. Cross section of a low-centred polygon with a surface depression above the ice wedge and another one at the ice wedge’s end.
Soils that have developed in this polygon are a Glacic Aquiturbel at the polygon rim above the ice wedge and a Typic Historthel in the
polygon centre. Scheme compiled from field observations of 22 August 1999.

Figure 12. Chemical analyses of in Figs. 3 and 4 presented permafrost-affected soils.(A) Chart for Typic Historthel.(B) Chart for Typic
Psammoturbel. For better comparison, both charts use the same scaling. The upper scale is for the pH value and electrical conductivity
(µ S cm−1). Both properties were measured in a soil suspension of the soil sample and water. The scale at the bottom represents the contents
of organic carbon (OC) and total nitrogen (TN) in %wt.

Figure 13. Two examples of permafrost-affected soils from Samoylov Island with a brief description of soil properties. The presented soil
complex consisting of Glacic Aquiturbels and Typic Historthels dominates the soils of this island in the Lena River Delta (see Fig. 11).
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soil and vegetation conditions in the permafrost areas. From
this information, a drawing of conclusions will be enabled
regarding the factors of the processes occurring today or
the future remobilisation of the labile organic carbon of the
permafrost-affected soils. The importance of investigations
of carbon-related issues in permafrost regions was recog-
nised. Today, there are several research projects and pro-
grammes collecting and synthesising such data from dif-
ferent permafrost-affected regions (Table 3). For future re-
search projects, it is important to reach high interdisciplinar-
ity among the researchers in one area because only the syn-
thesis of the various research approaches and their results can
lead to an improved understanding of the permafrost-affected
soils and their carbon dynamics.

Since not only the size of the carbon pool in permafrost-
affected soils varies regionally (McGuire et al., 2009), its re-
cent carbon source and sink function is also different from
region to region. In addition, since field research cannot
be carried out everywhere with sufficient intensity, large-
scale thematic soil-type maps should initially be drawn up
on a regional basis. These results, gathered from fieldwork
and shown in maps, may serve as the basis for future ex-
trapolations of various element fluxes. With the help of high-
resolution vegetation and soil-type maps of underrepresented
areas containing soil texture and hydrology, more accurate
estimates of the carbon pool of the circumpolar permafrost
region can be performed using GIS analyses (compare to
Hugelius, 2012; Pastukhov and Kaverin, 2013; Zubrzycki
et al., 2013). To this end, many already existing soil and sed-
iment samples could be reanalysed. Afterwards, new work
areas can be targeted to fill the research gaps.

Data on the carbon pools and processes in the permafrost
areas, obtained via targeted field and lab work, can be inte-
grated into new and more reliable models. Through the syn-
ergistic and interdisciplinary collaboration of measurement
and modelling permafrost researchers, it will be possible to
model the development of these vast areas with their enor-
mous quantities of potentially labile organic carbon and facil-
itate prognoses regarding possible greenhouse gas emissions
from permafrost-affected soils. These, in turn, will lead to
new, more realistic future projections of global temperature
development and reduce the current uncertainty surrounding
the significance of the cryosphere, including the carbon pools
in permafrost-affected soils, for the climate system.
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