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Abstract. The mechanisms of litter decomposition, translo-

cation and stabilization into soil layers are fundamental pro-

cesses in the functioning of the ecosystem, as they regulate

the cycle of soil organic matter (SOM) and CO2 emission

into the atmosphere. In this study the contribution of litters

of different stages of Mediterranean secondary succession on

carbon sequestration was investigated, analyzing the role of

earthworms in the translocation of SOM into the soil profile.

For this purpose the δ13C difference between meadow C4-

C soil and C3-C litter was used in a field experiment. Four

undisturbed litters of different stages of succession (45, 70,

100 and 120 since agriculture abandon) were collected and

placed on the top of isolated C4 soil cores.

The litter contribution to C stock was affected by plant

species and it increased with the age of the stage of sec-

ondary succession. One year after the litter position, the soil

organic carbon increased up to 40 % in comparison to soils

not treated with litter after 120 years of abandon.

The new carbon derived from C3 litter was decomposed

and transferred into soil profile thanks to earthworms and the

leaching of dissolved organic carbon. After 1 year the carbon

increase attributed to earthworm activity was 6 and 13 % in

the soils under litter of fields abandoned for 120 and 45 years,

respectively.

1 Introduction

The major input of vegetative C to forest soil is represented

by litter; hence changes in litter inputs are likely to have

important consequences for soil C dynamics (Sayer et al.,

2007). Generally, it has been recorded that an accumulation

of litter corresponds to an increase of the carbon storage in

the soil; for instance, an accumulation of litter and a con-

sequent increase in the carbon content of the soil has been

recorded following the processes of abandonment (Costa and

La Mantia, 2005).

Therefore, the mechanisms of litter decomposition,

translocation and stabilization into soil layers are fundamen-

tal processes in the functioning of the ecosystem as they

regulate the cycle of soil organic matter (SOM), CO2 emis-

sion into the atmosphere, carbon sequestration into the soil

and nutrients mineralization (Maisto et al., 2011; Parras-

Alcántara et al., 2015; Smolander et al., 2008; Fioretto et al.,

1998, 2005).

The decomposition of litter is affected by the quality of

the residues (Smith et al., 2008), which determines differ-

ent mineralization rates. Soluble substances and labile com-

pounds of litter are rapidly degraded in the early stages of

decomposition by fast-growing microorganisms that may re-

quire a high concentration of nitrogen (Swift et al., 1979).

Cellulose and lignin, the most abundant components of for-

est litter, are decomposed slowly (Fioretto et al., 2005). To-

gether with bacteria and fungi, invertebrates are responsible

for the main functions of the soil ecosystems, including C cy-

cle (Dix and Webster, 1995; Peng et al., 2015; Schimel et al.,

1999). Several authors have attributed earthworms to the cre-

ation of favorable conditions for microbial activity through

the fragmentation of litter and mixing of organic matter with

soil mineral portion (Tiunov et al., 2001; Wurst et al., 2004).

Earthworms also affect both amount and distribution of

SOM and cause an increase in the rates of SOM decomposi-

tion. Earthworms, in fact, transport large quantities of C from

the surface of the soil to the lower horizons, effectively mix-

ing the soil and significantly increasing both the rates of the

humification trough litter fragmentation and of the overall
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decomposition (Lee, 1985; Alban and Berry, 1994; Edwards

and Bohlen, 1996; Burtelow et al., 1998; Li et al., 2002,

Pulleman et al., 2005). Contrarily, Alban and Berry (1994)

and Burtelow et al. (1998) found that an earthworm invasion

resulted in a C loss in the upper soil layer. Other fundamen-

tal processes for the stabilization of SOM are the leaching of

fresh litter compound and of recently formed dissolved or-

ganic matter (DOM) from organic layers to mineral soil and

the sorption of DOM into mineral surfaces (Sollins et al.,

1996; Kaiser and Guggenberger, 2000; Kalbitz and Kaiser,

2008). In case of prolonged leaching, however, the litter can

become more resistant to decomposition, as a consequence of

the significant loss of soluble organic compounds, and read-

ily degradable (Mangenot et al., 1980).

In this study, the objectives were (i) termining the contri-

bution of litter in soil organic carbon (SOC) sequestration,

(ii) analyzing the mechanisms of C translocation from litter

to soil and (iii) singling out the amount of C leached and the

role of earthworms in this process through isotopic analysis.

2 Material and method

2.1 Experimental layout, soil and litter sampling

The experiment was carried out in the fields of the Depart-

ment of Agricultural and Forestry Sciences, University of

Palermo, Italy (38◦06′ N, 13◦20′ E, 50 m a.s.l.). According to

World Reference Base for Soil Resources (WRB, 2006), the

soil used was shallow Aric regosol, rich in limestone (46 %

of CaCO3) with a pH value of 7.61, a sandy–clay–silty tex-

ture (53.9 % sand, 22.6 % silt and 23.4 % clay) and an organic

matter content of 1.40 %. The climate was semiarid Mediter-

ranean with a dry period of 4–5 months (mean temperature:

minimum 13.7 ◦C, maximum 22.1 ◦C; mean annual rainfall:

531 mm).

The field plot used in the experiment was a Cynodon

meadow. The soil under Cynodon was a C4 soil under iso-

topic steady state because it had been covered with Cynodon

(C4 photosynthetic pathway plant) for more than 15 years.

The δ13C of the experimental soil was−14.5±1.8. Cynodon

meadow was established with an inter-specific bermuda grass

hybrid (C. dactylon x C. transvaalensis), cv Tifway 419.

Agronomic management of the turf grass included

monthly application of 50 kg ha−1 of N, 10 kg ha−1 of P and

40 kg ha−1 of K fertilizer from April to October. Irrigation

was carried out during the spring–summer season with a

sprinkler system in order to reinstate evapotranspiration (de-

termined by a Class A evaporimeter and rainfall). The turf

grass was maintained at a height of 30–35 mm using a reel

lawn mower two to three times a week. The cuttings were

removed without grasscycling or mulching.

Plastic cores (n. 30 samples), 20 cm diameter and 40 cm

height, were installed in the meadow soil after a careful re-

moval of the grasses in March 2013 (Fig. 1). The cores were

Figure 1. Sampling area of litter in Pantelleria secondary succes-

sion (numbers represent litter in field abandoned for 120, 100, 70

and 40 years) and experimental design in meadow field. Numbers

indicate the age since abandon.

buried 30 cm, with a 10 cm surface collar. In 15 of the in-

stalled cores, a grid (0.1 mm) was placed on top of the soil

core to avoid the earthworms crossing. Undisturbed different

litters (four litters of C3 plant) were placed on top of soil. In

all, 30 cores were placed (5 litter treatments (4 litters+ 1 no

litter)× 2 grid (grid and no grid)× 3 replicas). Soil samples

were collected in February 2014. The 30 cm soil core was

divided in four subsamples (each 7.5 cm soil thickness). The

soil was dried and 2 mm sieved, and the organic fragments

were removed.

Litters were collected with cores (20 cm diameter) in

four different successional stages of a secondary succes-

sion in Pantelleria island, Italy (Sicily, 36◦44′/36◦50′ N,

11◦57′/12◦03′ E). The selected stages for litter collection

were: maquis 45 years since abandon (L45), maquis 70 years

since abandon (L70), maquis 100 years since abandon

(L100) and forest 120 years since abandon (L120). The aban-

donment age of the sampled successional stages was deter-

mined by evaluating aerial photographs taken in 1955 and

1968 (produced by Istituto Geografico Militare, Florence)

and 1987 (Regione Siciliana) (La Mantia et al., 2008). The

sampled areas were located in direct proximity to each other

and were characterized by comparable abiotic conditions (as-

pect, slope, soil type, rock outcrop, stone cover, etc.). The

land covers where litters were placed are described in Ta-

ble 1.

2.2 Litter analysis

Dry biomass weight and its chemical composition (acid de-

tergent lignin (ADL), neutral detergent fibre (NDF), cellu-
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Table 1. Characteristics of litter collected in Pantelleria island.

Successional Years since Vegetation (Main species) Soil use during Current

stages abandon the 20th century use

1 45 High maquis (Pistacia lentiscus, Quercus ilex, Phillyrea latifolia, No use after abandon No use

Calicotome infesta, Erica arborea, Cistus salviifolius)

2 70 Maquis forest (Quercus ilex, Pistacia lentiscus, Phillyrea latifolia) Coppice No use

3 100 Forest (Quercus ilex, Pistacia lentiscus) Coppice No use

4 120 Forest (Quercus ilex, Smilax aspera) High forest No use

lose) were determined using Van Soest sequential method for

each collected litter (Van Soest et al., 1991).

The litter respiration rates (mg CO2 day−1 dry litter) were

measured during the incubation experiment using a method

of alkali absorption in a closed chamber. Three replicates

in each litter treatment with three blank samples were mea-

sured. Ten grams of litter were placed inside 1 L glass bot-

tle. A 30 mL 0.1 N NaOH solution was used to trap the CO2

which was released inside the bottle. The CO2-trapped so-

lution titrated with HCl solution using phenolphthalein and

methyl-orange as color indicator. During the 7 days of incu-

bation, CO2 measurements were done after 24, 48, 60 and

96 h and 1 week from the start of incubation. All flasks were

ventilated for 30 min with fresh air 24 h before the CO2 sam-

pling, and an NaOH trap was placed inside the bottle and

then sealed with rubber stoppers. The C mineralization rate

was expressed in mg CO2-C g−1 TOC day−1 and was fitted

to the following first-order decay function:

Mineralized C= Cre
−kt , (1)

where Cr is the readily mineralizable C at time 0 (i.e., the

intercept value), k is the decay rate constant and t is the time.

The amount of total C mineralized was calculated through

the linear interpolation of two neighboring measured rates

and the numerical integration over time as reported in the

following equation:

CO2−C=

n∑
i

[(
ri + ri+1

)
·
d

2

]
+ . . .+

[(
rn−i + rn

)
·
d

2

]
, (2)

where i is the date of the first measurement of CO2-C rate,

n is the date of the last measurement of CO2-C rate, r is the

CO2-C rate expressed as mg CO2-C kg−1 dry soil and d is

the number of days between the two consecutive CO2 rate

measurements.

The mean residence time (MRT) in days was determined

as a reciprocal of the rate constant (k) of first-order decay

(Eq. 1).

2.3 Chemical analysis

For each soil sample the C content and δ13C abundance were

measured. The δ13C isotopic signature of litter biomass was

also analyzed. For SOC and the δ13C analysis, an elemental

analyzer isotope ratio mass spectrometer was used. The refer-

ence material used for analysis was IA-R001 (Iso-Analytical

Limited standard wheat flour, δ13CV-PDB=−26.43 ‰).

IA-R001 is traceable to IAEA-CH-6 (cane sugar, δ13CV-

PDB=−10.43 ‰). IA-R001, IA-R005 (Iso-Analytical Lim-

ited standard beet sugar, δ13CV-PDB=−26.03 ‰) and IA-

R006 (Iso-Analytical Limited standard cane sugar, δ13CV-

PDB=−11.64 ‰) were used as quality control samples

for the analysis. The International Atomic Energy Agency

(IAEA), Vienna, distribute IAEA-CH-6 as a standard refer-

ence material.

The results of the isotope analysis are expressed as a δ

value (‰) relative to the international Pee Dee Belemnite

standard as follows:

δ(‰)=
Rs−Rst

Rst

· 1000, (3)

where δ = δ13C, R=13C /12C, s= sample and st= standard.

2.4 Data calculation

Natural abundance of δ13C was used to determine the pro-

portion of C in SOC derived from the new C input (C3-C).

These proportions were calculated with the mixing equation

(Gearing, 1991) separately for grid and no grid plots:

New carbon derived= f (NCD)(%)=
(δ13Cnew− δ

13Cold)

(δ13Clitter− δ13Cold)
, (4)

where NCD is the fraction of new C derived, δ13Cnew is the

isotope ratio of the soil sample, δ13Clitter is the isotope ra-

tio of different litters and δ13Cold is the isotopic ratio of the

previous vegetation (Cynodon).

Carbon derived from worms was calculated as the differ-

ence between NCD in grid and no grid treatments.

The mass of new carbon additions was calculated accord-

ing to Eq. (5).

New carbon (g kg−1)= (5)

Csoil (g kg−1) · (1− new carbon derived)

The standard deviation of the δ13C and C values were cal-

culated for each depth and treatment. For the average value,

the Duncan test was used at p < 0.05 (SAS Institute, 2001).
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Table 2. Biomass composition (% of dry biomass) of litters in different stages of secondary succession (L45, L70, L100 and L120). Abbre-

viations: ADF= acid detergent fibre, NDF= neutral detergent fibre, C min= readily mineralizable carbon, MRT=mean residence time. In

the same column, different letters indicate differences for P ≤ 0.05.

Litter C min (mg kg−1) MRT days R2 Cellulose ADL NDF

L45 154.1 c 25.0 a 0.92 19.0 28.9 b 44.6 b

L70 163.2 c 26.0 a 0.86 17.6 24.1 c 39.3 c

L100 150.7 b 26.0 a 0.90 18.2 30.5 a 44.4 b

L120 217.0 a 22.0 b 0.92 19.9 31.4 a 51.4 a

Figure 2. C litter content (%) (grey columns) and C litter input (g)

for each core (orange columns) in L45, L70, L100 and L120 treat-

ments.

3 Results

3.1 Litter characteristics

The plant litter collected during the stages of secondary suc-

cession differed in the total weight and C content. The high-

est weight of litter biomass was in L120 with values of

1113± 90 g m−2, followed by L100, L45 and L70 with val-

ues of 1027±77, 915±104 and 946±82 g m−2, respectively.

The highest C content of litter was in L45 and decreased with

the increase of the age of abandon (Fig. 2); however, L120

contributed with the highest C litter input (total C litter/core)

due to the higher weight in comparison to other litters of the

stages of secondary succession.

The results of litter incubation experiment showed the low-

est cumulative CO2 emission for L45 and L100 (32 mg CO2-

C g−1), followed by L70 (35 mg CO2-C g−1) and L120

(40 mg CO2-C g−1).

The MRT was not significantly different among litter ages,

except for L120 (Table 2). These findings were confirmed by

the readily mineralizable C which was highest in L120 (Ta-

ble 2). The composition of litter was not statistically differ-

ent among successional stages regarding cellulose and ADL

content (Table 2). The NDF value was, instead, significantly

higher in L120 in comparison to litters of other successional

stages.

3.2 Soil carbon content and distribution

The total amount of SOC differed under the two treatments

(grid and no grid) and time of abandon. The SOC was signif-

icantly higher in soils where L120 was placed on the top of

soil cores, followed by the other litter treatments (Table 3).

Comparison between grid and no grid treatments showed the

highest C content in soil cores without grid for all litters.

After 1 year of litter permanence, the SOC under L120

increased on average (0–30 cm) by 26 and 40 % in grid and

no grid treatment, respectively, in comparison to the no litter

treatment.

Such C increase was smaller in grid treatment for the other

litters (L45, L70 and L100) with a value of about 12 %. In the

no grid treatment, the SOC increased by 22, 23 and 15 % in

soil under L100, L70 and L45, respectively, in comparison

to the no litter treatment. SOC decreased with the increase

of the soil depth, but on average the difference between the

first and the deepest soil layer was more pronounced in the

no grid treatment (Table 3).

3.3 13C isotopic signature in soil profile

The value of soil δ13C changed significantly after litter posi-

tioning (Fig. 3). The baseline is represented by soil without

litter, where the δ13C values were −14.0± 0.3 and −16.0±

0.4 ‰ in the top and deepest soil layer, respectively. After

litter position, δ13C was depleted due to C3 litter input. The

most depleted soil was L120 with average (grid and no grid

treatment) values of−18.6 and−21.6 ‰ in the top and deep-

est soil layer, respectively (Fig. 3). For the others litter treat-

ments the value ranged between −15.0 and −20.5 ‰.

The effect of litter input on C stock was highlighted by

estimates of C derived from litter (C3 plant) in the meadow

soil (C4 soil). After 1 year of litter permanence, C originated

from litter input was 32.4, 34.2, 38.5 and 49.8 % of total SOC

in L45, L70, L100 and L120, respectively.

The new derived soil C (C3-SOC) was lower for all litter

treatments in soil with grid. The portion of C3-C in soil with

grid was, in fact, 12.4, 23.1, 23.4 and 40.7 % of total C in

L45, L70, L100 and L120, respectively (Fig. 4). Considering

Solid Earth, 6, 425–432, 2015 www.solid-earth.net/6/425/2015/
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Table 3. Average of soil organic carbon (%) at different soil depths. For each treatment different letters indicate differences for P ≤ 0.05.

Grid No grid

Soil depth No litter L45 L70 L100 L120 No litter L45 L70 L100 L120 Grid No grid

(cm) average average

0–7.5 1.5 1.8 1.8 1.8 1.9 1.6 1.9 1.8 2.0 2.4 1.8 a 1.9 a

7.5–15 1.4 1.5 1.6 1.5 1.7 1.4 1.9 1.9 2.0 2.1 1.5 b 1.9 a

15–22.5 1.3 1.6 1.3 1.4 1.6 1.3 1.6 2.1 1.6 1.7 1.4 b 1.7 a

22.5–30 1.2 1.1 1.3 1.2 1.5 1.2 0.9 0.9 1.1 1.4 1.3 b 1.1 b

Average 1.3 d 1.5 c 1.5 c 1.5 c 1.7 b 1.4 a 1.6 c 1.7 b 1.7 b 1.9 a

Figure 3. δ13C value at different depth in no grid (a) and grid (b) treatment. The green line represents no litter treatment, while blue, red,

grey and black represent litter in fields abandoned for 120, 100, 70 and 40 years, respectively.

only the C3-C of SOC for each litter treatment, the contri-

bution of earthworms to the incorporation of new C3-SOC

was in percentage higher in L45, decreased with the age of

litter and decreased for each treatment with the increase of

the soil depth. The difference of C3-C between no grid, grid

treatment and depth assesses the earthworm contribution to

soil C increase and distribution.

4 Discussion

4.1 Litter contribution to SOC stock

Previous studies on the island of Pantelleria demonstrated the

potential of land cover in the change of C stocks (Novara

et al., 2014; Saiano et al., 2013). In fact, land abandonment

determines the increase in litter layer and SOC. In natural

ecosystems, unlike ecosystems on arable lands, litter is not

incorporated into the soil. For this reason it was hypothesized

that SOC increase is due to C leaching and/or to earthworm

contribution. This hypothesis was confirmed by the present

experiment, in which the effect of plant litter contribution

to SOC stock was isolated from other soil and environmen-

tal parameters. In line with several reports in other ecosys-

tems (Lal, 2005; Yu and Jia, 2014), we recorded that the

SOC stock depends on C litter input as well as on litter qual-

ity. The incubation experiment of litters showed differences

in readily mineralizable C, litter composition (NDF %) and

consequently C litter mineralization rate. The litter of L120

had a higher amount of readily mineralizable C in compari-

son to other litters, and it was easily decomposed and trans-

ferred to SOC pool. The faster mineralization rate of L120

could be attributed both to a different composition of plant

species (lower content of sclerophyll) (Gianguzzi, 1999) and

to a variation in the micro-climatic conditions (Wang et al.,

2010; Sheffer et al., 2015) due to a higher accumulation layer

on the soil surface. As far as the effect of plant species on the

litter mineralization rate is concerned, several studies found

a lower litter decomposition rate in Q. ilex in comparison to

other Mediterranean species, like Myrtus and Cistus (Berg at

al., 1996; Fioretto et al., 2005). Likewise, Maisto et al. (2011)

found a slower decomposition of Q. ilex in comparison to

Ph. angustifolia, while no significant difference in the de-

composition rate was recorded between Q. ilex and Pistacia

lentiscus. In these studies the lower decomposition of Q. ilex

was attributed to higher lignin content. Our results confirm

those of other research with regard to the higher lignin con-

tent of Q. ilex, but this was not closely associated to lower

decomposition rates. In fact, L120, where the main species

was Q. ilex, was the litter with a higher decomposition rate.

Therefore, other aspects could explain the differences in the
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Figure 4. Contribution (%) of worm activity (black columns) and DOC (green columns) in C3-C portion at different soil depth. For each

portion, different letters indicate differences for P ≤ 0.05.

Figure 5. C content in each core (L45, L70, L100 and L120) orig-

inated from C4-SOC (grey columns), C3-SOC from worm activity

(yellow columns), C3-SOC from DOC leaching (orange columns)

and C litter (green columns).

decomposition rates, like the percentage of a species in each

stage of succession, the age of litter and the thickness of lit-

ter.

4.2 Influence of earthworm on soil carbon

Plant litter is the main source of SOM in soils under sec-

ondary succession. The transformation of C litter into SOM

is caused by the decomposition of plant biomass and its in-

corporation into the soil profile. Responsible for this mecha-

nisms are bacteria and fungi, forming up to 90 % of the soil

microbial biomass (Dix and Webster, 1995; Schimel et al.,

1999) and faunal groups. Our observations highlighted the

annual contribution to SOM derived from litter and singled

out the activity of decomposition through the difference of

isotopic signature between previous SOC-C (C4 soil) and the

new C3-C input originated from litter. The 13C litter recov-

ery in the soil profile was higher in L120 (89 %), followed by

L45 (63 %), L100 (60 %) and L70 (52 %). Firstly, the activ-

ity of microbial biomass in soil samples where the grid was

placed between litter and soil was highlighted. In this case,

the new C3-C represented the C-pool originated by fungi

and bacterial decomposition, transferred into the soil depth

mainly through dissolved organic carbon. Such decomposi-

tion and incorporation activity contributed to C increase up

to 77.6 g core−1 year−1 in L120 treatment (Fig. 5). However,

the difference between soil core with and without litter gave

information about the contribution of earthworms to litter de-

composition and incorporation into the soil. In several stud-

ies, the introduction of earthworms in cold temperate forests

resulted in a decline of SOC (Bohlen et al., 2004; Alban and

Berry, 1994). The results of the present study instead suggest

that earthworms have the potential to increase SOC. After 1

year, earthworm activity increased SOC by 13.5, 11.3, 11.1

and 5 %, in L120, L100, L70 and L45, respectively. The ef-

fects of earthworm activity on the recovery of soil C released

from litter could be attributed to different mechanisms: (i) the

mixture of undecayed particulate C into the soil, (ii) the cre-

ation of preferential flow paths in the soil increasing nutrient

transportation and (iii) protection of C in soil aggregates cre-
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ated by earthworm feeding (Bohlen et al., 2004; Fahey et al.,

2013; Fonte et al., 2007).

5 Conclusions

This study highlights the effects of vegetation succession on

C dynamics in soil after the termination of its agricultural

use. Based on δ13C signature of C3-C of litter and C4-C of

meadow soil, the annual contribution of vegetation input to C

stock was estimated. Moreover, the effect of DOC leaching

and earthworm activities on C storage in soil depth have also

been evaluated.

Hence in order to understand the ecosystem processes of C

sequestration in semiarid environments, a better understand-

ing of the impact of above-ground biomass on soil commu-

nity is still needed.
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