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Abstract. Paleopiezometry and paleowattometry studies are

essential to validate models of lithospheric deformation and

therefore increasingly common in structural geology. These

studies require a single measure of dynamically recrystal-

lized grain size in natural mylonites to estimate the mag-

nitude of differential paleostress (or the rate of mechanical

work). This contribution tests the various measures of grain

size used in the literature and proposes the frequency peak

of a grain size distribution as the most robust estimator for

paleopiezometry or paleowattometry studies. The novelty of

the approach resides in the use of the Gaussian kernel den-

sity estimator as an alternative to the classical histograms,

which improves reproducibility. A free, open-source, easy-

to-handle script named GrainSizeTools (https://sourceforge.

net/projects/grainsizetools/) was developed with the aim of

facilitating the adoption of this measure of grain size in pa-

leopiezometry or paleowattometry studies. The major advan-

tage of the script over other programs is that by using the

Gaussian kernel density estimator and by avoiding manual

steps in the estimation of the frequency peak, the repro-

ducibility of results is improved.

1 Introduction

Dynamic recrystallization was originally defined by Poirier

and Guillopé (1979) as “a deformation-induced reworking

of grain sizes, shapes and/or orientations with little or no

chemical change”. Because this definition does not make a

clear distinction of how to discriminate between dynamic re-

crystallization and metamorphic reaction in some cases (e.g.

feldspar neocrystallization during deformation), it was later

re-defined by Stunitz (1998) as “the reconstruction of crys-

talline material without a change in chemical composition

driven by strain energy in the form of dislocations”. Two

processes of dynamic recrystallization have been identified

(see a review in Urai et al., 1986 and references therein):

(1) grain boundary migration (Poirier and Guillopé, 1979)

and (2) progressive sub-grain rotation (Poirier and Nicolas,

1975). The activation of these recrystallization processes de-

pends on several factors, such as temperature, pressure, strain

rate and presence of fluids. The interaction between both re-

crystallization types produces three identifiable types – when

host grain occurs – of dynamic recrystallization microstruc-

tures: (1) bulging recrystallization, (2) sub-grain rotation and

(3) grain boundary migration (see Stipp et al., 2002 for de-

tails).

Paleopiezometers are structural features of deformed rocks

that vary with the magnitude of the applied differential

stress under which they formed and that therefore provide

a means of determining the magnitude of the paleostress

(Twiss and Moores, 2007). Specifically, these methods ap-

ply to rocks deformed by dislocation creep, a dominant de-

formation mechanism in the mid-lower crust. Three differ-

ent microstructural elements can be potentially used to in-

fer stress: (i) the dislocation density (Goetze and Kohlstedt,

1973; Mercier et al., 1977; Kohlstedt and Weathers, 1980),

(ii) the mean sub-grain diameter (Bird et al., 1969; Twiss,

1977; Mercier et al., 1977; Karato et al., 1980) and (iii)

the mean dynamically recrystallized grain size (Twiss, 1977;

Mercier et al., 1977). The recrystallized grain size is the most

reliable and easily measurable microstructural feature and by

far the most frequently used feature to estimate paleostress in

mylonites.
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The estimations of differential stress assume that rocks un-

der study deform by dislocation creep at constant stress and

that they reach a mechanical steady-state creep. During this

stage, rocks evolve to a stable mean grain size, as it has been

experimentally demonstrated in different materials and rocks

(Means, 1983; Ree, 1991; Pieri et al., 2001; Barnhoorn et al.,

2004; Stipp et al., 2006) as well as inferred in natural my-

lonites (e.g. Michibayashi, 1993; Herwegh et al., 2005).

Currently, there is no universally accepted theory to ex-

plain the relationship between dynamically recrystallized

grain size and deformation conditions (see De Bresser et

al., 2001; Austin and Evans, 2007; Shimizu, 2008; Platt

and Behr, 2011). Some experimental studies suggest an in-

versely related relation between the mean grain size (D) and

the differential stress of the type D = Aσ−m, where A and

m are material and mechanism-specific constants, with the

mean grain size independent of temperature, water content,

strain rate and total strain (Luton and Sellars, 1969; Nicolas

and Poirier, 1976; Twiss, 1977; Gillopé and Poirier, 1979;

Schmid et al., 1980; Rutter, 1995; Stipp and Tullis, 2003;

Stipp et al., 2006). In contrast, other authors suggest that dy-

namically recrystallized mean grain size shows a tempera-

ture dependency (e.g. Mercier et al., 1977; Ross et al., 1980;

Tungatt and Humphreys, 1984; De Bresser et al., 1998; Ter

Heege, 2002; Ter Heege et al., 2005; Shimizu, 2008) or that it

is determined by the rate of mechanical work (i.e. the prod-

uct of stress and strain rate) (Ter Heege, 2002; Austin and

Evans, 2007). The latter implies that the estimation of the

mean grain size is not a paleopiezometer but a paleowattome-

ter (Austin and Evans, 2007).

Despite the disagreement in establishing the controlling

variables and the differences in understanding of the under-

lying physical processes, the estimation of a representative

measure of grain size and the grain size distribution in dy-

namically recrystallized mylonites remains two of the most

important microstructural features to determine. The mean

grain size or other single measures of grain size are necessary

for paleopiezometer or paleowattometer studies, while the

grain size distribution provides additional rheological infor-

mation to unravel the contribution of different deformation

mechanisms during deformation (e.g. Ter Heege et al., 2002;

Herwegh et al., 2005). Given that direct measurement of dif-

ferential stresses within the lower crust or the lithospheric

mantle remains elusive (see Kozlovsky, 1987, and Emmer-

mann and Lauterjung, 1997, for the current limits reached

so far), paleopiezometry and paleowattometry studies of an-

cient mylonitic rocks, being meanwhile exhumed, are the key

to constrain indirectly overall strength in the lower crust and

the lithospheric mantle and, therefore, to provide mechanical

constraints in the modelling of lithospheric deformation.

Briefly, the methods for measuring grain size can be sep-

arated into three groups (Berger et al., 2011): (i) 1-D data

(i.e. line intercept methods, number of grains per unit area or

grain boundary density), (ii) 2-D data (based on the estima-

tion of individual grain features using image analysis tools)

and (iii) 3-D methods (computed tomography, serial section-

ing). In the early studies, dominated by 1-D methods, usually

the mean grain size was reported. This established a tendency

and nowadays the mean grain size is by far the most used pa-

rameter in paleopiezometry studies. Other parameters were

also used, such as the median grain size (geometric mean)

and lately, with the rise of 2-D methods, the peak of the fre-

quency of the distribution (usually poorly referred to as the

mode). A question remains about which single measure of

grain size is the best estimator for paleopiezometry or pa-

leowattometry studies. As an example, Ranalli (1984) pro-

posed the use of the median over the mean grain size based

on probabilistic considerations, but the median grain size is

barely used in the literature (e.g. Post and Tullis, 1999; Stipp

and Tullis, 2003; Ter Heege et al., 2005; Shimizu, 2008). Be-

cause the key in paleopiezometry is reproducibility across

studies (see for example Stipp et al., 2010), it is necessary to

address this question.

The main objective of this study is to decide which single

measure of grain size, obtained by 2-D methods, is the best

for paleopiezometer or paleowattometer studies. The starting

point of the analysis are the different measures of grain size

that can be obtained once the data have been acquired from

thin sections. For data acquisition, segmentation of grains

and the derivation of the actual grain size distribution from

thin sections the reader is referred to the extensive litera-

ture in the topic (e.g. Heilbronner and Bruhn, 1998; Hig-

gins, 2000, 2006; Berger et al., 2011; Heilbronner and Barret,

2014).

To test the different measures of grain size previously used

in literature, we propose a new tool – a script – to process

the data produced by any image analysis software (ImageJ

or equivalent). There are free software or scripts to estimate

the grain size population and other parameters based on 2-D

approaches and stereological considerations; for example the

StripStar script (Heilbronner and Bruhn, 1998) and the CSD-

Corrections program (Higgins, 2000). However CSDCorrec-

tions is neither open source, which limits the implementation

of new methods, nor cross-platform. The StripStar script is

written in a programming language (Fortran) that needs to be

compiled each time a modification is introduced, which even-

tually penalizes productivity. In addition, it requires the use

of other applications to obtain the graphical output or to al-

low further data treatment. Finally, both applications are not

specifically designed to generate a single measure of grain

size from the grain population but to derive the actual grain

size population from 2-D measures.

The script implemented meeting the following criteria: (i)

it is written in a free and easy-to-access programming lan-

guage that runs all different platforms (Windows, Mac OS

X, Linux, Unix); (ii) its use does not require any knowledge

of programming to use (i.e. user-friendly); (iii) it provides a

free and open-source code organized in a modular way, mak-

ing it easier to modify, reuse or extend the code; and (iv) it
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produces the numerical results required and ready-to-publish

figures.

2 Deriving grain size from thin sections: a brief review

The following provides a review of how to describe the grain

size of individual grains in dynamically recrystallized my-

lonites, which are the effects of cutting grains in thin sec-

tions and the parameters of which can be used to measure

the grain size population for paleopiezometric studies. The

selected examples introduce some important concepts, such

as the cut-section or the intersection probability effects. The

reader is referred to the following textbooks for more details

(Higgins, 2006; Heilbronner and Barret, 2014).

2.1 Why a 2-D approach?

Since we are dealing with real volumes, 3-D grain size esti-

mation would be most desirable. However, 3-D methods are

still far from being standard techniques mainly due to be-

ing very time consuming and involving relatively expensive

data acquisition equipment (synchrotron- or X-ray-based to-

mography). In addition, 3-D methods are not always appli-

cable, especially in dynamically recrystallized mylonites in

which most of the grains in contact are of the same phase

(although synchrotron can discriminate crystallographic ori-

entations and therefore deal with this issue).

The most widely used analysis techniques in literature to

measure the mean grain size in dynamically recrystallized

rocks, ceramics or alloys are 1-D methods, especially the

line intercept method (e.g. Abrams, 1971; Karato, 1980; Rut-

ter, 1995; Post and Tullis, 1999). However, these methods

only report one value (1-D), usually the mean grain size,

without considering the distribution of apparent grain sizes.

As shown below, this circumstance severely limits its util-

ity, since the knowledge of the distribution of grain sizes (or

apparent grain sizes) allows the user to anticipate some pos-

sible issues, such as multimodal population or outliers, that

may result in misleading interpretations (e.g. Heilbronner

and Bruhn, 1998; Higgins, 2000, 2006; Berger et al., 2011).

Another severe limitation is that 1-D methods only apply in

case of monomineralic aggregates or samples (at thin-section

scale). Finally, 1-D grain size measures cannot be used to de-

rive the actual distribution of grain sizes from thin sections.

Nowadays, with the increase in computer power, the more

efficient way to estimate the grain size features in deformed

rocks is the use of 2-D methods (see Heilbronner and Bruhn,

1998; Herwegh, 2000; Berger et al., 2011). These methods

segment grain sectional areas, allowing the calculation of

grain area, grain orientations, grain elongations and grain

surfaces via image analysis techniques. To perform this task,

there are several free image-processing programs available,

such as ImageJ (Scheider et al., 2012). These programs

generate the full distribution of grain sectional diameters –

strictly speaking very close to full due to optical and image

resolution limitations (Heilbronner and Bruhn, 1998; Heil-

bronner, 2000; Herwegh, 2000; Berger et al., 2011). This 2-

D approach has well-known limitations in order to obtain 3-

D grain size information from 2-D measures (see Higgins,

2000, 2006; Heilbronner and Barret, 2014). It requires the

assumption that all crystals have the same simple shape. Fur-

thermore, if considered objects have shapes more complex

than a sphere, there is a non-unique solution to derive the ac-

tual distribution of grain sizes from 2-D measurements (e.g.

Higgins, 2000).

3 Defining the size of individual grains

To obtain a grain size value from a thin section it is first nec-

essary to choose a correct parameter to describe the 2-D size

of the grains. There are several parameters, such as the mean

calliper diameter, the major or minor axis of an ellipse fit-

ted to an individual grain or the maximum length (see Exner,

1972; Higgins, 2006; Heilbronner and Barret, 2014). When

particles are expected to be spherical or close to a spherical

shape (near-equant grains), its 3-D size can be uniquely char-

acterized by diameter (or the average diameter when they are

not perfect spheres). In this case, a common way to proceed

is to convert the cross-sectional area of each individual grain

into an individual 1-D length via the equivalent circular di-

ameter (d) (Heilbronner and Bruhn, 1998; Herwegh, 2000;

Berger et al., 2011):

d = 2

√
area

π
. (1)

This assumption is acceptable most of the time for some

of the most common dynamically recrystallized non-tabular

grains in crustal and mantle shear zones, such as olivine,

quartz, feldspar or calcite, at least when the main type of dy-

namic recrystallization is not “fast” grain boundary migra-

tion. The limitation of the latter consideration is due to the

potential formation of lobate-shaped grains. For this reason,

the equivalent circular diameter seems to be a good descrip-

tor of grain size in such cases and it is often used in studies

dealing with dynamically recrystallized grain size (e.g. Heil-

bronner and Bruhn, 1998; Berger et al., 2011).

3.1 Measuring the grain size in monodisperse

populations: the cut-section effect

The simplest end-member distribution where all grains have

identical shape (in this case spheres) and size is called a

monodisperse distribution. In this model, it is also assumed

that the grains are randomly distributed within the rock

volume (statistically homogeneous) and with no interaction

between them (i.e. there is no “grain packing”). When a

monodisperse aggregate of grains is cut randomly, as may

be the case in a thin section, the intersection plane rarely cuts
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Figure 1. (a) Possible sections through a circle (sphere projection).

R is the radius, a the section or chord length of a random section and

r the apothem, this is, the distance from the centre of the circle to the

midpoint of the section length. The chord length corresponds with

the apparent diameter and ranges between 0 and the actual diameter

of the grain when the section cuts through the centre of the circle.

(b) Example showing an apparent section that corresponds to half of

the actual diameter. The sketch illustrated that when a sphere is cut

through randomly, it is most likely (P = 0.87) to obtain diameters

larger than half of the diameter than the opposite.

exactly through the centre of each grain and the cut-section

effect occurs (Fig. 1). In this case, the diameters obtained

from the sectional areas represent a population of apparent

diameters that can theoretically vary between 0 and the ac-

tual diameter of the grains (Fig. 1). In perfect monodisperse

populations, the maximum diameter obtained from the data

set would be the closest to the actual 3-D diameter. In fact,

when monodisperse populations of grains are expected, the

largest grain size in thin section can be theoretically used as

a single measure of grain size. The accuracy of this estimate

depends on choosing an appropriate sample size for the ac-

curacy we are looking for (see Appendix A for details). Un-

fortunately, dynamic recrystallization in rocks, ceramics and

alloys produces a continuous range of dynamically recrys-

tallized grain sizes instead of a unique grain size (see later).

Hence, this parameter is not useful as a single descriptor of

grain size and will not be considered anymore.

An alternative approach is to look at the distribution of

apparent grain diameters obtained from thin sections. There

are several ways to represent this type of data (see Hig-

gins, 2006); here two of the most typical will be consid-

ered: the numerical density distribution of apparent diam-

eters obtained in a histogram plot, known as the number-

weighted plot (Fig. 2a), and the area percentages of equiv-

alent diameters in a bar plot (i.e. the sum of the areas of the

grains respect to the total for each grain size interval defined)

(Fig. 2b), known as the area-weighted plot (Herwegh, 2000;

Berger et al., 2011). A number of parameters can quantify

the grain size from the apparent grain size populations: the

mean grain size and the median grain size, both common us-

ing 1-D methods, but also the area-weighted grain size or the

frequency peak of the distribution. In contrast to 1-D meth-

ods, the representation of data from the 2-D approach allows

to envisage additional features of the complete population of

apparent grains. As it will be shown later, this is a clear ad-

vantage allowing, for example, to visualize whether there is

more than one population of grains or other possible sources

of bias.

Following the example of a monodisperse population of

grains, Fig. 2 shows that when a group of spheres is cut

through randomly and assuming that there is no packing,

the probability of cutting sections at different size intervals

is not equal. This situation does not produce a uniform dis-

tribution of grain sizes but a unimodal one (Fig. 2). Fig-

ure 2a also reveals that the probability of cutting sections

with lengths close to the actual diameter of the grain is al-

ways higher. These theoretical distributions show an extreme

case of negative skewness (also known as J-shape distribu-

tion) due to the ceiling effect caused by the measured grain

sections not being able to exceed a value: the actual diameter.

As an example, the probability of obtaining apparent diame-

ters larger than the half of the actual diameter for a random

cut is P = 0.87 (Fig. 1b).

Another feature of a population of apparent grain sizes

from a monodisperse distribution is that the actual diame-

ter of the grain population is always within or close the most

frequent class (or bin) of the histogram, that is, the modal

interval (Fig. 2). Even when smaller bin sizes are selected,

there is a significant difference between the modal interval

and the next closest, the effect being more pronounced in

the case of the area-weighted plot (Fig. 2b). As previously

mentioned, the mean, the median, the area-weighted and the

frequency peak can all be calculated from this distribution of

apparent grain sizes. Their values are not equivalent to each

other (see Fig. 2), but when the data set is representative there

are quantifiable relations between them. For example, it can

be proved that in the case of monodisperse distribution of

spheres the actual diameter is 1.28 times the mean of the en-

tire apparent diameter population (or the mean 0.79 times the

actual diameter) or the area-weighted mean 0.88 times the

actual diameter. This is also the reason why the mean or the

median grain size obtained with 1-D methods was sometimes

multiplied by a factor to estimate the actual (3-D) size (i.e. to

convert the mean grain size into the actual size) (e.g. Exner,

1972; Panozzo, 1982). This strategy is erroneous not only

because, as previously pointed out, grain size in dynamically

recrystallized mylonites does not follow a monodisperse dis-

tribution but also due to other issues that will be seen later

(see also Heilbronner and Bruhn, 1998).

The frequency peak of a grain size distribution by the

modal interval is one of the statistical parameters also used

to characterize the dynamically recrystallized grain size (e.g.

Berger et al., 2011). However, the estimation of the modal in-

terval compared to the mean or the median has the drawbacks

inherent to the use of histograms: (1) it is necessary to define

the same left edge of the bin and the same bin size/width

(or number of classes) to yield reproducible results in simi-

lar populations, and (2) they are not smooth (i.e. exact values

are not known as the data are grouped into classes). To use

the frequency peak over the mean, the median or the area-

weighted mean grain size in a distribution of grain sizes, it
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Figure 2. Grain size distribution plots produced by cutting a sphere of the same size randomly (monodisperse system). (a) Histogram of

apparent diameters from a population of spheres of size 1 showing different number of classes or bin sizes. The actual diameter of the grain

is always within the most frequent class of the histogram, the modal interval – in fact, in its upper limit. The mean and the median grain size

of the population is always respectively 0.785 and 0.865 times the actual grain size for a representative sample size. (b) Same population as

(a) but a bar plot showing the area percentages of equivalent diameters (i.e. the sum of the areas of the grains with respect to the total for each

grain size interval defined). The area-weighted mean of the population is 0.88 times the actual grain size for a representative sample size.
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Figure 3. Plots showing the effect of choosing different bin sizes

for the same data set. The monodisperse data set is formed by 5997

measurements. The actual grain size, taken as a reference point, was

set at 100 and the absolute maximum uncertainty in measure within

the data was set at ± 4 (4 % of the actual size). For clarity, only the

bins surrounding the actual grain size are shown. The left edge of

the histogram was set at 0 and four different bin sizes were used.

Note that the middle value of the modal interval is different in all

cases although the population is the same.

would be useful to overcome these constraints. In practice

the actual left edge of the bin is set by the optical and im-

age resolution limitations of the technique applied (Higgins,

2006), which means that varies across different studies. How-

ever, the actual theoretical left edge of the bin is 0, so that by

setting this lower boundary reproducibility is improved.

The discrete nature of histograms implies that the fre-

quency peak relates to a modal interval instead of to a single

value. To convert this interval into a single measure of grain

size we have to choose which value within the interval is

best. However, in real cases there is no best value within the

modal interval and therefore any value can be used (Fig. 3).

Some programs (e.g. CSDCorrections) or studies (Berger et

al., 2011) take the middle (or central) value of the modal in-

terval.

The other critical factor to consider in histograms is the bin

size/width. This parameter is directly related with the preci-

sion of the frequency peak in a distribution of grain (or appar-

ent grain) sizes (Fig. 3). If the bin size is large, a gain or loss

of accuracy occurs at the expense of precision. However, if

a small bin size is selected, then misleading results are more

likely (e.g. the bin size must not exceed the measurement un-

certainty in data).

In summary, for a particular population of apparent sizes

of grains, when the left edge of the bin and the bin size are

the same, the limits of the modal interval will also be the

same (Fig. 3). If the frequency peak is used as estimator of

grain size, these values may be fixed for all apparent grain

size populations to improve reproducibility. However, estab-

lishing a fixed bin size can produce misleading results due to

over- or under-smoothing the appearance of the population.

It is necessary to find an adequate balance between repro-

ducible results and a bin size that allows to envisage impor-

tant features of the population. For this, the implementation

of an automatic process – an algorithm – that sets an optimal

bin size based on the features of the population under study

is ideal.

3.2 The Gaussian kernel density estimator (KDE) as an

alternative to the histogram

To avoid the implicit discontinuous nature of histograms in

identifying the frequency peak in a distribution of grains

sizes, an alternative approach is proposed: the Gaussian ker-

nel density estimator. The Gaussian KDE is, like the his-
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togram, a non-parametric density estimator, but it is smooth

and independent of end points (Fig. 4). The interpretation

of the data distribution still depends on the bandwidth cho-

sen (the equivalent to the histogram’s bin size/width), which

strongly influences the shape of the Gaussian KDE and,

therefore, the location of the peak value. It is therefore nec-

essary to implement a reliable method to perform this task.

In any event, there are plenty of methods to find the optimal

kernel bandwidth in literature depending on the expected fea-

tures of the data set (see Scott, 1992; Turlach, 1993; Bashtan-

nyk and Hyndman, 2001). The use of the Gaussian KDE also

has the advantage that it does not provide an interval, as in

the case of histograms, but a unique value (the peak value)

that represents the most likely value of dynamically recrys-

tallized grain size in a population of grains. This approach

prevents from having to choose a value within the modal in-

terval to estimate the frequency peak, ultimately improving

reproducibility.

3.3 Polydisperse populations: the intersection

probability effect

Ideal monodisperse grain size populations, such as the one

described in Sect. 2.3, do not exist in natural or experimen-

tally deformed samples. In fact, previous grain size studies

of dynamically recrystallized mylonites never show number-

weighted plots of apparent grain sizes with J-shaped distri-

butions but just the opposite, i.e. long tailing distributions

skewed to the right (see examples in Heilbronner and Bruhn,

1998; Heilbronner and Tullis, 2006; Berger et al., 2011; Heil-

bronner and Barret, 2014). This indicates that naturally de-

formed mylonites are systems that show a continuous range

of grain sizes instead of a unique value of grain size.

Populations of grains that show similar shapes but differ-

ent values of grain size are referred to as polydisperse sys-

tems (e.g. Higgins, 2000). These distributions can be uni-

modal or multimodal, depending on the number of local fre-

quency peaks within the distribution. When we try to derive

3-D parameters from 2-D measurements in polydisperse sys-

tems, another effect to be considered beside the cut-section

effect is called the intersection-probability effect (e.g. Hig-

gins, 2000). This effect refers to larger grains being more

likely to be represented on a plane section since they are more

likely to be hit by the section plane. In other words, grains are

hit by the section plane with a probability that is proportional

to their diameters.

The case of the multimodal distributions of grain size in

mylonites is common in the literature. For example, bimodal

distributions are typical of two-phase mylonites, in which

the two phases reach under similar deformation conditions a

different dynamically recrystallized steady-state mean grain

size. Other examples of bimodal distributions at thin-section

scale have been reported in monomineralic samples, such as

in experimentally deformed Carrara marble samples at large

strains and high temperature (Barnhoorn et al., 2004) or in
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Figure 4. The Gaussian kernel density estimator is a function that

stacks a Gaussian “bell curve” on top of each measurement and

whose standard deviation, determined by the local probability den-

sity, defines the bandwidth (the equivalent to the histogram’s bin

size/width).

quartzitic mylonites with different slip systems operating si-

multaneously, in which quartz grains with c-axis close to y-

axis (prims) are larger than others with a different crystal-

lographic orientation (Knipe and Law, 1987; Mancktelow,

1897; Heilbronner and Tullis, 2006). The best approach in

these cases is to deal with the different populations of grains

separately (see examples in Herwegh, 2000; Heilbronner and

Bruhn, 1998). However, as discussed below, for some pur-

poses it is useful to represent the area-weighted plot of the

two or more mineral phases within the same plot.

So far it is not clear what type of continuous polydis-

perse distribution best describes the steady-state dynami-

cally recrystallized grain size population. Log-normal distri-

butions appears to be one of the most suitable candidates (e.g.

Ranalli, 1984; Michibayashi, 1993; Newman, 1994). How-

ever, the lack of sufficient studies in this regard prevents us

from simulating log-normal grain size population for now,

given that the typical parameters that describe natural or ex-

perimentally deformed dynamically recrystallized mylonites

are unknown and the issue on how grain packing affects the

distribution of apparent grain sizes remains unresolved.

For simplicity, a discrete population of grains with two

sizes will be considered and then the cut-section and intersec-

tion probability effects will be applied to generate a bimodal

population of apparent grains (see Appendix B for details).

This bimodal discrete model, although unrealistic for dynam-

ically recrystallized mylonites, is useful to show some of the

consequences of the application of both effects in the acqui-

sition of size parameters. Another advantage of this model,

despite its simplicity, is that the interpretations apply to real

cases.

Figure 5 shows that the relative abundance of two sizes of

grains in a rock is not equal to the relative frequency with

which these grains will be observed on a section plane. Thus,

the relative frequency of the modal interval, which represents

60 % of the population in number, is not 1.5 times the rel-
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Figure 5. Grain size distribution plots of a bimodal discrete population consisting of a 60 / 40 % mixture of spherical particles with sizes 100

and 120 respectively. The contribution in volume is 46.5 / 53.5 % respectively. The two local maxima in both plots indicate the existence of

two populations of spheres with sizes specified by the local maxima. Both plots show different modal intervals due to the different approaches

(see Sect. 2.2). The area-weighted plot locates the modal interval in the population that represents the major/main phase (i.e. the volumetric

contribution).

ative frequency of the local modal interval that represents

the 40 % fraction in number. This is Delesse’s principle (De-

lesse, 1847, 1848), which shows that Vv = AA, where Vv is

the average volume fraction in the solid rock that is occu-

pied by a mineral (or grain size population) of interest, and

AA is the average area fraction on a plane section that is oc-

cupied by the same mineral (or grain population). Another

consequence is that the modal intervals in number- and area-

weighted plots are not the same in this example (Fig. 5), since

the area-weighted plot accounts for the area of the grains. In

conclusion, the area-weighted plot informs about which of

the two populations of grain size is the predominant phase

in volume (i.e. the volumetric contribution), which matters

for rheology considerations (Heilbronner and Bruhn, 1998;

Herwegh et al., 2005, 2014).

Figure 5 also shows that in bimodal (or multimodal) dis-

tributions the mean, the median or the area-weighted mean

grain size becomes a meaningless parameter to describe the

grain size. In contrast, the local modal intervals (i.e. the lo-

cal maxima) reflect the frequency peak of the different grain

size populations, provided that the resolution of the method

allows it.

4 The script

The script is written in Python, a general-purpose high-level

interpreted programming language characterized by a clear

syntax and ease of learning. The main advantages of Python

programming language are that (i) Python is free and open-

source; (ii) the underlying computer language runs on all

platforms (Windows, Mac OS X, Linux or Unix); (iii) there

is a large number of open and freely available scientific li-

braries providing an environment for algorithm development,

data analysis, data visualization and numeric computation;

and (iv) the use of Python is becoming increasingly popular

in academia.

The script, named GrainSizeTools, can be downloaded

from the permanent site https://sourceforge.net/projects/

grainsizetools/ and requires the three following scientific

Python libraries: Numpy and Scipy (Oliphant, 2007) for data

analysis and MatplotLib (Hunter, 2007) for plotting. The

script produces several types of output, allowing to save the

graphical output as bitmap (eight file types to choose) or vec-

tor images (five file types to choose). Although the script

is designed to produce figures ready for publication, they

can be easily customized within the MatplotLib environment

(i.e. when the figure is shown by the script and prior to be

saved as a file) or by post-editing the vector image in vector-

graphic applications such as Adobe Illustrator, ACDSee Can-

vas or Inkscape. Another important point is that to use the

script there is no need for prior knowledge of the Python

language. The steps to estimate the recrystallized grain size

are straightforward and a quick tutorial can be found online

(http://sourceforge.net/p/grainsizetools/wiki/Home/).

4.1 Brief description of the script

The script is organized in a modular way using Python func-

tions. This facilitates the modification, reuse or extension the

code and allows specifications of each function. In the speci-

fications, the user will find the assumptions made, the condi-

tions that must be met for the inputs and the result/s obtained

for each one.

The script can be divided into three main parts or functions

with intuitive and self-explanatory names.

The first part is a function called “importdata” responsi-

ble for loading the data set into the memory for subsequent

treatment. The data have to be previously stored in a text file

such as txt (a datum on each line) or csv (comma-separated

values).
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The second part is a function called “calc_diameters” that

returns an array of the diameters calculated from the sec-

tional areas, assuming that the grains are near-equant objects.

If applicable, it also allows us to correct the grain sizes cal-

culated by adding the perimeter of the grains not previously

included in the image analysis.

The third part is a function called “find_grain_size” that

returns the number and area-weighted plots. It can also pro-

duce the mean, the median and the area-weighted mean, the

location of the Gaussian kernel density estimator peak, the

modal intervals and their middle values produced by both

approaches. Additional relevant information such as the bin

size and the Gaussian KDE bandwidth estimated are also

provided.

The procedure implemented within the script to estimate

the frequency peak of the population is briefly explained be-

low.

As portrayed above and shown in Fig. 3, choosing a differ-

ent bin size (or number of classes) could lead to a different

interpretation of the distribution of data and, therefore, dif-

ferent results. To ensure reproducibility, the idea behind the

script is that for similar populations similar bin sizes need to

be used. As far as possible manual data manipulation steps is

kept to a minimum and an algorithm estimates on its own the

optimal bin size. Although there is no best number of bins,

there are some guidelines or rules of thumb to determine

the optimal number of bins. GrainSizeTools implements two

of the most commonly used rules of thumb: the Scott rule

(Scott, 1979), based on the sample standard deviation, and

the Freedman–Diaconis rule (Freedman and Diaconis, 1981),

based on the sample interquartile range. The rule used by de-

fault within the script is the Freedman–Diaconis rule since

it is less prone to outliers in comparison to Scott rule. The

script also allows to set a user-defined bin size if desired.

The same rules apply for the area-weighted approach, based

on Herwegh (2000), which uses the sum of the areas respect

to the total area (area percentages) of cross-sectional shapes

for each grain size interval defined. Such procedure allows

the comparison in number and area-weighted plots between

distributions in order to obtain complementary information

about the data set. The script returns the modal intervals and

the middle values of the modal intervals in both cases. It also

returns the area-weighted mean of the data set.

The script implements the Gaussian kernel density es-

timator within the number-weighted plot. It finds and re-

turns the peak value of the KDE function; this is, the most

likely value of dynamically recrystallized grain size in a

number-weighted frequency plot. To estimate the optimal

bandwidth of the Gaussian KDE we use the Silverman rule of

thumb method (Silverman, 1986), since such a method works

well for univariate systems with unimodal densities (Turlach,

1993; Bashtannyk and Hyndman, 2001). The implementation

also allows to use the Silverman rule multiplied by a constant

to modify the bandwidth for comparative purposes.

5 Discussion: evaluation of different measures of grain

size

To test which measure of grain size gives the best estimate of

the differential stress (or rate of mechanical work), the first

step is to estimate how the introduction of different errors af-

fect the different measures of grain size implemented within

the script. For this purpose, the strategy is to simulate popula-

tions of apparent grain sizes with the introduction of different

sources of errors and then see how the results depart from the

expected values.

For simplicity and to take advantage of the model pre-

sented in Fig. 2, the populations of grains considered will

be discrete monodisperse 3-D populations of grain size. As

previously explained, although this model is unrealistic to

simulate grain size populations of real dynamically recrys-

tallized mylonites, its simplicity is convenient to show the

effects of different sources of error and the interpretations

made can be transferred directly to real cases. A calibration

of the different measures of grain size against a real sample

will be shown later. The details of the simulation of apparent

grain size populations from the discrete monodisperse 3-D

populations with different sources of errors can be found in

Appendix B.

5.1 Sources of error

The introduction of non-recrystallized grains within the pop-

ulation of apparent grains is likely to bias the distribution of

grain sizes. These grains have actual sizes larger than the re-

crystallized fraction but, due to the cut-section effect, may

reach sizes similar to the apparent grain size population. Fur-

thermore, assuming that the recrystallization is not complete,

these larger grains are expected to be more likely in thin sec-

tions due to the intersection probability effect. Figure 6a and

b illustrate a situation in which 20 % of the grains are non-

recrystallized grains (i.e. larger in 3-D than the recrystallized

grains) which were randomly cut and introduced in the pop-

ulation of apparent grain sizes. The mean, the median and

the area-weighted mean are affected by the introduction of

these outliers, shifting these parameters to higher values. In

contrast, the frequency peak remains fixed provided that the

bin size and/or the bandwidth chosen are the same (in case

of histograms also the left edge of the bin).

Another non-negligible artefact arises when the smallest

grain sizes are not measured due to optical and image res-

olution limitations of the technique applied (Higgins, 2006;

Berger et al., 2011). In real distributions the smallest values

reflect the resolution limitations of the applied techniques to

acquire the data instead of tending to 0 as they would in

theory. This effect tends to systematically slightly shift the

mean, the median and the area-weighted mean grain size to

higher values (Fig. 6c). The amount of shifting is variable

across studies since it depends on the technique (optical mi-

croscopy or SEM) and the image resolution chosen. How-
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Figure 6. (a, b) Number- and area-weighted plots showing the distribution of apparent diameters of a population of spheres of size 100 in

which the 20 % of the data are outliers (not fully recrystallized grains; see Appendix B for details). (c, d) Number- and area-weighted plots

showing the distribution of apparent diameters of a population of spheres of size 100 with uncertainty in the measure. The maximum uncer-

tainty during the outline of the grains was set in ±10 (10 % the actual size). This uncertainty limit also sets a theoretical optical/resolution

limitation of the measure (i.e. simulates that the technique does not allow measuring grains below the set limit). The mean, the median, the

area-weighted mean and the modal interval grain sizes are provided.

ever, the frequency peak is not affected by this source of er-

ror.

Figure 6c and d show another non-negligible source of er-

ror in real samples: the effect of uncertainty in grain measure-

ment (see Appendix B for details). In this case, the apparent

population of grain sizes shows sizes above the actual diam-

eter of recrystallized grains, modifying the ideal J-shape dis-

tribution. The introduction of uncertainty in grain measure-

ment does not affect the estimation of the mean, the median

and the area-weighted grain sizes. In fact, the results obtained

in Fig. 6c and d for these grain size parameters are similar to

those expected in a population without error measurement

(cf. Figs. 2a and 6c), just slightly shifted to higher values be-

cause of the resolution limitation imposed in the acquisition

and translated to the model. The uncertainty in measure is

assumed to be random, which means that the errors will be

compensated if the sample size chosen is large enough. As in

previous examples, the frequency peak remains unaffected

by this source of error.

It is important to note that the examples portrayed here

are just end-member situations. In the study of real samples

a combination of different sources of bias in the determina-

tion of dynamically recrystallized grain size is expected. To

conclude, the variations in the estimate of the mean, the me-

dian and the area-weighted mean shown in Fig. 6 are proof

that these parameters are not reliable when the presence of

outliers is significant. In contrast, the frequency peak (either

modal interval or Gaussian KDE) is less prone to errors intro-

duced by outliers and by the limitations of resolution in the

technique applied to acquire the data compared to the other

parameters. However, the methods to estimate the frequency

peak suffer from its own limitations, especially the method

based on the modal interval (see Sect. 2).

5.2 How many grains are needed to achieve

reproducibility?

Before testing the script in natural samples and against other

software available, it is necessary to consider the number

of grains needed to achieve reproducibility. Previous stud-

ies stated that more than 500 grains are necessary for dy-

namically recrystallized grain size analysis (Heilbronner and

Bruhn, 1998; Heilbronner, 2000). Since these studies did not

explicitly address how they estimated the minimum number

of grains needed for dynamically recrystallized grain size

www.solid-earth.net/6/475/2015/ Solid Earth, 6, 475–495, 2015
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Figure 7. Results of the Monte Carlo simulations to find the number of grains necessary to achieve reproducibility using a natural dynamically

recrystallized mylonite (sample MAL-05) and the mean grain size. (a) Evolution of the mean and the standard deviation during the increase

of sample size. Note that the mean barely changes its value due to the large number of runs (5000) used in each sample size while the

standard deviation declined monotonically as we increased the number of grains. (b) Evolution of the coefficient of variation (σ /mean) using

the sigma-2 and sigma-3 values during the increasing of sample size. In this particular simulation, the plot shows that when 428 (for 2-sigma)

or 953 (for 3-sigma) grains are measured, the coefficient of variation of the mean grain size obtained is below 4 %. The inset in (b) shows a

linear scale. (c, d) Minimum number of grains obtained by repeating the previous simulation 250 times and using the 2-sigma and 3-sigma

values to estimate the coefficient of variation respectively. Pdf means probability density function.

analysis, we assume these numbers rely solely on practical

experience and are not derived by some theoretical underly-

ing principle.

With the aim of solving this issue a Monte Carlo simu-

lation was implemented to determine the minimum neces-

sary sample size from a theoretical point of view. As stated

above, at present we do not have sufficient knowledge about

the type of distribution and the typical values that charac-

terize the recrystallized grain size population in mylonites.

Therefore, it is not possible to simulate in a reliable way syn-

thetic populations of dynamically recrystallized grain sizes.

To overcome this, a large data set of natural dynamically re-

crystallized deformed aggregate can be used. The strategy –

known as bootstrapping – is to perform a random resampling

of the data set chosen. For this approach, we use a popula-

tion of dynamically recrystallized quartz grains measured in

a naturally deformed granite with a population of 2945 grains

(sample MAL-05, see below for details; Sect. 6). The sam-

ple is expected to contain a number of grains well above the

minimum required. The next step is to test how the number of

grains measured (or sample size) affects the estimation of the

mean grain size by comparing all the results obtained for a

particular sample size estimating the coefficient of variation.

The given condition of the Monte Carlo simulation is

based on the typical uncertainty of grain measurements.

Berger et al. (2011) found that when repeating the measure-

ment procedure in the same targeted grain, the error margins

in the diameters calculated ranged between 1 and 4 %. Tak-

ing the 4 % error, the goal is to find the minimum number of

grains needed so that if the measurement is repeated a large

number of times, nearly 95 % (2-sigma) or 99 % (3-sigma) of

the time the mean grain size obtained shows a variation equal

or less than 4 %. The condition is satisfied when the number

of analyzed grains are 433 for sigma-2 (∼ 95 % of the time)

and 965 for sigma-3 (∼ 99 % of the time) (Fig. 7).

It needs to be taken into account that if anyone performs

the same simulation only one time they would probably ob-

tain slightly different a number of grains. This variability is

Solid Earth, 6, 475–495, 2015 www.solid-earth.net/6/475/2015/



M. A. Lopez-Sanchez and S. Llana-Fúnez: An evaluation of different measures of grain size 485

Table 1. Steps for obtaining the cross-sectional areas of the grains using the ImageJ application.

1. Several light microscopy digital images were acquired from four different areas of the thin section using

cross-polarized light with or without the gypsum plate inserted. In two of the four areas chosen, four different

images were taken at the same location, a pair of cross-polarized and cross-polarized with the gypsum plate

inserted and a similar set of images (i.e. in the same area) but rotated 45◦. Then the images were superimposed to

facilitate the identification of grain boundaries. The images in the four different areas were taken with different

resolutions for comparison, varying from 0.72 to 0.35 micron pixel−1.

2. Processing of digital images to enhance grain boundaries. The data treatment consisted of setting a correct

contrast/brightness ratio and applying a high-pass filter to enhance boundaries if necessary.

3. Quartz grain segmentation was performed by manual outlining using a vector-graphics application. Each

grain was converted into a closed polygon filled with black colour and making the boundary lines white. In this

step, grains not considered dynamically recrystallized or cut by the image margins were discarded.

4. Generation of grey-scale raster image with the same resolution of the original image. It is ensured that the

grain boundaries have a width of 2–3 pixels. This will be used later to correct the diameters obtained from the

areas by adding the grain boundaries taking into account the resolution of the digital images.

5. Measurement of cross-sectional areas using an image analysis program, in this case ImageJ. Basically, the

steps were as follows: (i) convert the image into an 8 bit binary image; (ii) set the scale of the image; (ii) set

the type of measure/s to be done, which includes the area and other parameters of interest; and (iv) measure the

area of each grains individually using “analyze particles”.

6. The cross-sectional areas obtained were saved as a text file to analyze subsequently the data using the Grain-

SizeTools script.

explained by the random noise that shows the coefficient of

variation line (see the inset in Fig. 7b), which is nearly par-

allel to the x-axis when approaching the value of 4 %. The

stochastic nature of the experiment implies that a particular

outcome cannot be predicted but rather the statistics of pos-

sible outcomes. A total of 250 runs were performed to es-

timate the mean, standard deviation and the 2-sigma errors

based on the standard deviation. Error intervals of 414 to 433

grains (using the 2-sigma coefficient of variation; Fig. 7c)

and 925 to 965 grains (using the 3-sigma coefficient of vari-

ation; Fig. 7d) were obtained. The higher values within these

error intervals were taken as the minimum number of grains

necessary to perform a reproducible and robust grain size

analysis.

5.3 Testing different measures of grain size for

reproducibility

To test whether the different measures of grain size imple-

mented within the script yield reproducible results, a data set

from a natural mylonitic granite sample (named MAL-05)

was used. The mylonite comes from a crustal-scale exten-

sional shear zone, the Vivero fault (Lopez-Sanchez, 2013),

deforming a coarse-grained two-mica granite with quartz

(∼ 35 %), feldspar (microcline and plagioclase; ∼ 60 %) and

muscovite plus biotite (≤ 5 %) as main constituents. My-

lonitic samples show quartz aggregates with complete or

quasi-complete dynamic recrystallization dominated by sub-

grain rotation (Fig. 8) (Lopez-Sanchez, 2013). In contrast,

feldspar shows cataclasis with syn-tectonic crystallization

of very fine albite–oligoclase, K-feldspar and biotite grains

along fractures as well as at the feldspar rims (Lopez-

Sanchez, 2013). The thin sections were cut parallel to the

mineral and stretching lineation and perpendicular to the my-

lonitic foliation (XZ sections). The procedure to acquire and

measure the areas of the dynamically recrystallized grains is

summarized in Table 1.

The strategy to check reproducibility was as follows. Dy-

namically recrystallized grain size areas were measured and

their apparent diameters derived from four different locations

belonging to two thin sections of the same sample (sam-

ple MAL-05). There are no significant differences in the

grain size population between the different selected locations

within the thin section. The number of grains measured in

each image meet the requirements portrayed in Sect. 5. The

reproducibility was tested by comparing the results obtained

in each of the images measured (or a combination thereof).

The results of the comparison between parameters in terms

of stability and robustness to estimate the dynamically re-

crystallized grain size are summarized in Table 2 and Figs. 9

and 10.

The worst results were obtained using the middle values

of the modal intervals, with variations from 3.3 to 5.0 % in

average and coefficients of variation from 0.039 to 0.058

(Table 2). In some cases errors obtained were up to 10.6 %.

In contrast to this, the Gaussian KDE peak, the mean, the

median and the area-weighted yield better reproducible re-

sults, with variations from 0.3 to 1.3 % in average (Table 2).

The Gaussian KDE peak, the median and the area-weighted
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Figure 8. Quartz microstructure in sample MAL-05. (a) Generic

view of Penedo Gordo mylonites under the optical microscope

(crossed polars, gypsum plate inserted). Note that original quartz

grains are almost fully recrystallized and have a strong lattice pre-

ferred orientation. (b) Optical micrograph (crossed polars) showing

dynamically recrystallized quartz grains. (c) Digitized quartz grains

from the micrograph (b). This is data set 02 in Fig. 10.

mean yielded similar results in average (1.0–1.3 %), while

the mean yielded in this case slightly better results (0.3 %).

The maximum errors obtained were always below 4 %: 3.8 in

the area-weighted mean, 2.6 in the median, 1.9 in the Gaus-

sian KDE peak and 0.8 in the mean (Table 2).

The results show that the Gaussian KDE peak, the mean,

the median and the area-weighted grain size have comparable

quality as grain size estimators. Therefore, any of them can

be theoretically used for paleopiezometry or paleowattome-

try studies. This finding contrasts with the results obtained in

the simulations performed in the Sect. 4.1, which indicated

that, because of the introduction of different sources of error,

the Gaussian KDE would theoretically produce the best re-
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Table 3. Results produced by the different script/software’s considered using the whole data set of sample MAL-05.

Software/ Best SD Credible Range best estimation

script estimation intervals d (area/volume

weighted)

GrainSizeTools a 33.5 46.4

StripStarb 33.4 2.82 31.4–35.4 29.6–39.5 53.5 (51.6–55.4)d

CSD correctionsc 34.3 2.39 33.0–35.7 31.6–38.5

a Best estimation based on Gaussian KDE’s peak (number-weighted) and the middle of the modal interval

(area-weighted).
b Best estimation based on the mean of the middle of the modal intervals considering different number of classes

(between 10 and 20).
c Best estimation based on the mean of the middle of the modal intervals considering different number of classes

(between 5 and 20).
d Bayesian credibility interval (i.e. there is a 95 % probability that the true value falls within the credible region).

Figure 9. Results of GrainSizeTools script using the full data set from the natural sample MAL-05.

sults. This result might be explained by the fact that when the

sample size chosen is large enough, the effects by outliers are

significantly reduced.

5.4 Testing the script against other software available

The results obtained with the GrainSizeTools using the whole

data set of sample MAL-05 and the Gaussian KDE peak es-

timator are compared to those obtained with StripStar (Heil-

bronner and Bruhn, 1998) and CSDCorrections (Higgins,

2000) (Table 3; Fig. 11). In the latter, which allows us to

set different shape parameters for the grains, the grains were

assumed to be perfect spheres and the type of measurement

to be the ellipse major axis. Since both programs were de-

signed to derive the actual grain size distribution from the

sectional 2-D data instead of obtaining a single value, the

middle value of the modal interval of the actual (3-D) dy-

namically recrystallized grain size distribution was selected

for comparison. Both programs do not provide an automated

process to estimate the number of classes (or the bin size)

and, therefore, the results can vary depending on the number

of classes chosen. To overcome this, all the results obtained

in a defined range of number of classes were used, so that the

mean and other statistical parameters of interest can be cal-

culated (Table 3). As can be seen in Fig. 11 and Table 3, the

outcomes obtained by the Gaussian KDE peak are similar

– within the credible intervals – to those produced by esti-

mating the frequency peak using the StripStar and CSDCor-

rections. In the case of the area-weighted mean grain size,

the frequency peak yielded a slightly different result to that

obtained by StripStar using the volume-weighted approach

(Table 3), although this was also previously demonstrated in

Heilbronner and Barret (2014).

A remarkable inference can be drawn from this compara-

tive. Although the relative probability of the frequency peak

between the populations of apparent (2-D) and actual (3-

D) grain size distributions is different, its location coincides

within the error. In other words, the location of the Gaus-

sian KDE peak in the apparent grain size populations indi-

cates the actual location of the frequency peak of the 3-D

grain size population. In consequence, the frequency peak as

a grain size estimator produces similar results whether ob-

tained from apparent (2-D) or actual (3-D) grain size distri-

butions. In contrast, the other grain size parameters produce

different results, depending on whether grain size popula-

tions derive from 2-D or 3-D observations.
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Figure 10. Testing reproducibility of GrainSizeTools script using different sub-data sets from the natural sample MAL-05.

6 Concluding remarks and future development

Several measures of grain size have been tested in order to

discriminate the best estimate for paleopiezometry or pale-

owattometry studies, including for the first time the peak of

the Gaussian KDE. The simulations performed on a natu-

ral sample indicated that the grain size parameters based on

the modal intervals of the histogram yield the worst estima-

tions, while the mean, the peak of Gaussian KDE, the median

and the area-weighted mean grain size are equally well suited

for describing grain size. However, the peak of the Gaussian

KDE has several advantages over the others parameters.

1. It is potentially less prone to be shifted by the presence

of outliers or due to resolution limitations in the acqui-

sition of the data.

2. It yields comparable results, either considering a pop-

ulation of apparent 2-D grain sizes or the actual pop-

ulation of 3-D grain sizes. This could be useful in the

future for comparative purposes if a method capable of

measuring directly the actual 3-D grain size distribution

becomes mainstream.
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Figure 11. Estimated actual 3-D grain size distribution from sample MAL-05 performed with CSD Corrections (left) and StripStar (right).

To draw the lines, the middle values of each bin estimated by the applications were used, taking into account different number of classes.

The frequency peak grain size and other statistical parameters of interest were calculated using all the middle values of the modal intervals

obtained. The inset (on the right) is the curve estimated by StripStar considering 20 classes but using on the vertical axis a linear scale instead

of logarithmic. Note that the actual 3-D grain size curve shows similarities to a log-normal grain size distribution.

3. In case of multimodal grain size distributions in which

the different populations of grain size cannot be sepa-

rated, only the frequency peak is useful.

A free, open-source, easy-to-handle script, named GrainSize-

Tools, is introduced with the aim of facilitating the adop-

tion of the peak of the Gaussian KDE for paleopiezometry

or paleowattometry studies. The script is written in Python,

a cross-platform interpreted programming language. To use

the script no previous knowledge of the Python language

is necessary. The main advantage of the script compared to

other software or scripts available is that it uses the Gaus-

sian KDE and avoids manual steps to find the frequency peak

of the grain size distribution, improving reproducibility as a

consequence.

The results produced by the Gaussian KDE peak are differ-

ent to those obtained in the past, aiming to establish a correla-

tion between dynamically recrystallized grain size and differ-

ential stress in experiments that mainly used logarithmic and

square root mean grain size using 1-D methods. Therefore,

the use of this measure of grain size requires the recalibra-

tion of the paleopiezometer (or paleowattometer). As shown

in Berger et al. (2011), an option in these cases is to use an

empirical conversion matrix to relate the different parame-

ters of grain size. However, as shown in Fig. 6, this is not an

optimal approach since different measures of grain size are

affected in a different way by different source of errors. The

consequence is that no fully reliable correlation can be estab-

lished among them since the introduction of errors change

across studies. In conclusion, the best practice would be to

create a database using the frequency peak and following a

strict protocol in different deformed minerals and deforma-

tion conditions from laboratory published experiments.
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Appendix A:

In the case of a perfect monodisperse population, the cross-

section size probability can be directly estimated using the

following equation (Sahagian and Proussevitch, 1998):

P (r1 < r < r2)= 1/R

√
R2− r2

1 −

√
R2− r2

2 , (A1)

where R is the radius of the sphere, r1 and r2 are the lower

and upper limits of the apparent section interval defined, and

P is the probability to cut sections within the interval defined.

If we take a sphere of unit radius the equation simplifies to

P (r1 < r < r2)=

√
1− r2

1 −

√
1− r2

2 . (A2)

The aim is to find the number of grains needed to know with

a certainty of 99 % that at least one of the grains measured

in the data set have a size similar or within an error less than

4 % compared to the actual size. Assuming a sphere of unit

radius and according to the equation shown above, the oppo-

site can be calculated; this is, the probability that all sections

obtained have a diameter shorter than 0.96 (an apparent di-

ameter shorter or equal than 4 % with respect to the actual

size) is

P (0< r < 0.96)=
√

1−
√

1− 0.962
= 0.72. (A3)

If the sample size is increased (i.e. the number of random

cuts), the probability that at least one random section shows

lengths larger than 0.96 is

Ptotal = (1−P
n), (A4)

where n is the number of random cuts (i.e. the sample size)

and Ptotal the probability that at least one apparent section

is larger than 0.96 for any given n. The next step is to find

when at least one of the lengths of the sections randomly cut

is larger than 0.96 with a certainty of 99%. When the sample

size is 15 the Ptotal is 99.28 %. This means that if just 15

grains are measured, the chance of finding a section whose

diameter has an error less than 4 % of the actual size of the

grains in a monodisperse non-packed system is greater than

99 %.

Appendix B: A stochastic model to simulate grain size

distributions (Monte Carlo approach)

To simulate the cut-section effect, a user-defined number of

random cuts are generated (depending on the sample size de-

sired) on a circle of unit radius. The Python built-in function

called random.random generates a random irrational (float-

ing point) number between 0.0 and 1.0. This represents any

possible cut from the centre of the circle to its edge (Fig. B1).

Then, following the Pythagorean theorem the length of the

R

ar

R

0 1

a/2

ri
a =  2   R2 - r2

a =  2   1 - ri
2

Figure B1. Model to generate apparent random sections through

a sphere to calculate the apparent diameter. Following the

Pythagorean theorem, it is necessary to know the radius (R) and

the apothem (r) to calculate the chord or section length through

a sphere. Taking a sphere of radius 1, the first random apothems

(ri) between 0 and 1 are generated and then the apparent diameters

(from 2 to 0) are calculated and saved.

section (also known as chord length) is calculated using the

following relationship:

section length= 2
√

1− d2. (B1)

The apparent diameters obtained can be corrected – if neces-

sary – according to a selected diameter. The Python function

implemented to simulate this effect is called generateRan-

domSections (see Supplement, SourceCode_AnexoB.py file).

Because monodisperse systems are only affected by the cut-

section effect, this Python function can be used to simu-

late perfect monodisperse systems. This process is repeated

a number of times, as many as required to be reproducible

within the level of confidence desired (see Appendix C). The

data generated are stored and then plotted on a histogram (see

Figs. 2 and 6 within the manuscript for examples). Accord-

ing to the law of large numbers (or Bernoulli’s law), when

sample size is large enough the Monte Carlo Simulation will

produce the same results for a given accuracy obtained by the

Eq. (A1) by Sahagian and Proussevitch (1998) shown in the

Appendix A.

In the case of simulating a monodisperse data set with out-

liers (e.g. Fig. 6a, b), the procedure was as follows: first, the

grain size, the sample size and the ratio between the correct

measures and the outliers are established. Once the number

of outliers that need to be added to the data set are calcu-

lated, the code generates a defined number of grains with a

random size ranging from 1.01 to 1.5 times the recrystallized

grain size defined (e.g. if the actual grain size is set to 100

microns, the outlier grains will range between 101 to 150

microns). The maximum limit has been set arbitrarily at 1.5

times. Then, for each random grain created, a random section

is generated and added to the data set (see function generate-

Sample_withOutliers within the SourceCode_AnexoB.py file

in the Supplement).

To generate a data set simulating uncertainty during mea-

surement – as in the Fig. 6c and d within the text– there

are two approaches. One assumes that the uncertainty of the
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data is independent of the size considered and the other as-

sumes that the measurement error is size dependent. Stud-

ies showed that the last approach is the correct one (Gualda,

2006; Berger at al., 2011). Berger et al. (2011) carried out a

study involving repeated measurements on several grains and

found that the error in grain size varies between 1 and 4 %

for targeted grains but up to 15 % for smaller grains. This

tendency is in part due to optimizing the resolution for the

targeted grain sizes, resulting in considerable errors for the

smallest grain sizes. Taking this behaviour into account, the

procedure simulates such uncertainty as follows. First, it es-

tablishes the grain size, the sample size and the uncertainty

expected for the sectional areas. Then it creates a number

of random sections defined by the user. To generate the un-

certainty within the data set, (i) the maximum absolute er-

ror is calculated taking into account the uncertainty desired,

(ii) all the values below this maximum error are removed to

prevent negative values within the data set during the addi-

tion of random errors (there is also a practical reason fol-

lowing this strategy, since the uncertainty obtained during

measurements limits the actual optical and resolution limi-

tations of the technique applied) and, finally, (iii) a random

error between 0 and the maximum absolute error estimated

with a random sign (i.e. positive or negative) is generated

and added for each value. It is assumed that the expected

error has a normal (Gaussian) distribution. Hence, the re-

sult is closer to the actual value than the extreme values de-

fined (see function generateSample_withUncertainty within

the SourceCode_AnexoB.py file in the Supplement).

To simulate the intersection probability effect in case of

polydisperse populations, a large population of grains (say

a million) is generated with a defined distribution and then

the individual volumes of each grain and the total volume

are calculated. At that point, assuming that the probability of

intersecting a particular grain is directly proportional to its

volume with respect to total volume, the individual volumes

of the grains are normalized with respect to the total volume.

Finally, an array of data with the cumulative sum of the ele-

ments is created. As an example, imagine a list of three grains

with diameters 2, 3 and 5 (i.e. [2, 3, 5]). The volume of grains

([0.52, 4.19, 14.14]) is then normalized it to the total volume

(18.85), obtaining the following array [0.028, 0.222, 0.750].

Finally, a cumulative sum of elements is calculated [0.028,

0.25, 1.0]. Once this array is created, a desired number of

random values between 0.0 and 1.0 is generated. Each value

obtained is used to find which grain is going to be sectioned

according to its probability (i.e. volume) using the list of cu-

mulative sum of elements created. Returning to the given ex-

ample, when a random value of 0.21 is obtained, the position

in the cumulative list that meets the following criteria value

> 0.21 is 0.25, the second position in the list. Therefore the

grain to be picked and sectioned from the original list of grain

sizes is the grain located in the second position, which has a

diameter of 3. This procedure was repeated 5000 times to

create a large population of grains affected by the intersec-

tion probability and, later, by the cut-section effect. Due to

the notable differences between the original population (106)

and the new one (5000), it is highly unlikely (< 0.05) that the

same grain is chosen twice in the simulation process.

The simulation of a bimodal discrete distribution (Fig. 6),

uses a Python function named generate_bimodal_sample.

This function first generates two populations of grains with

different sizes and in a proportion defined by the user. The

function takes the probability section and the cut-section ef-

fects into account to generate a population of apparent diam-

eters of the grains. The generate_bimodal_sample requires

that the user introduces the following parameters: (i) the

grain size of the population A, (ii) the grain size of the pop-

ulation B, (iii) the sample size and (iv) the ratio between the

two populations (e.g. when ratio = 0.8 it means that popula-

tion A represents 80 % – in number – of the total population).

The function returns a text file with the random apparent di-

ameters (2-D) generated.

The code implemented to perform this task is shown in the

Supplement file SourceCode_AnexoB.py.

Appendix C: A stochastic model to find the minimum

number of grains necessary to achieve reproducibility

(Monte Carlo approach)

The Monte Carlo simulation operates as follows:

1. Performing a random resampling (bootstrapping) of a

large data set of apparent grains belonging to a real my-

lonite, a representative number of samples (say 2× 105

or more) of a given size is generated. It usually begins

with a sample size as small as possible. For each sample

generated, the mean, the median and the peak of Gaus-

sian KDE grain size is calculated and saved.

2. To test the reproducibility of the results, the mean and

the standard deviation of the data set for the current

sample is calculated (i.e. the mean value and the stan-

dard deviation of the grain sizes obtained for each sam-

ple created).

3. In order to compare samples with different mean values,

it is necessary to view the standard deviation in the con-

text of the mean. Hence, to normalize the data obtained,

a modified version of the coefficient of variation (origi-

nally the standard deviation divided by the mean; σ /µ)

is calculated. We use the sigma-2 and sigma-3 values in-

stead of the standard deviation (sigma-1). Based on the

study of Berger et al. (2011), the errors in the diameter

measurements are up to 4 % for targeted grains. There-

fore, the modified coefficient of variation has to meet

the following condition:

2σ/mean or 3σ/mean< 0.04 (C1)
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When the condition is not satisfied, the sample size is

increased (with a step size defined by the user) and the

process initiates again until the condition is satisfied.

4. When the condition is satisfied, the sample size for the

defined condition is reported and a number of plots

showing the evolution of the mean, the standard devia-

tion and the modified coefficient of variation throughout

the process of increasing the sample size are generated.

5. Finally, due to the stochastic nature of the process, it

was repeated 250 times to obtain the statistics of possi-

ble outcomes. On this basis, we estimated the 2-sigma

standard deviation to set the minimum number of grains

needed.

The code implemented to perform this task is shown in

the attached file: SourceCode_AnexoC.py
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The Supplement related to this article is available online

at doi:10.5194/se-6-475-2015-supplement.
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