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Abstract. Performance and accuracy of machine learning
techniques to segment rock grains, matrix and pore voxels
from a 3-D volume of X-ray tomographic (XCT) grayscale
rock images was evaluated. The segmentation and classifi-
cation capability of unsupervised (k-means, fuzzy c-means,
self-organized maps), supervised (artificial neural networks,
least-squares support vector machines) and ensemble classi-
fiers (bragging and boosting) were tested using XCT images
of andesite volcanic rock, Berea sandstone, Rotliegend sand-
stone and a synthetic sample. The averaged porosity obtained
for andesite (15.8± 2.5 %), Berea sandstone (16.3± 2.6 %),
Rotliegend sandstone (13.4± 7.4 %) and the synthetic sam-
ple (48.3± 13.3 %) is in very good agreement with the re-
spective laboratory measurement data and varies by a factor
of 0.2. The k-means algorithm is the fastest of all machine
learning algorithms, whereas a least-squares support vector
machine is the most computationally expensive. Metrics en-
tropy, purity, mean square root error, receiver operational
characteristic curve and 10 K-fold cross-validation were used
to determine the accuracy of unsupervised, supervised and
ensemble classifier techniques. In general, the accuracy was
found to be largely affected by the feature vector selection
scheme. As it is always a trade-off between performance and
accuracy, it is difficult to isolate one particular machine learn-
ing algorithm which is best suited for the complex phase seg-
mentation problem. Therefore, our investigation provides pa-

rameters that can help in selecting the appropriate machine
learning techniques for phase segmentation.

1 Introduction

Micro X-ray computer tomography (XCT) images of a rock
sample help in classification of pore space and assist in mod-
eling of pore-network geometries. Pore-network geometries
give an insight into the evolution of permeability and porosity
of a rock sample. Image segmentation is the first step toward
pore-network modeling. While developing this pore-network
model discrimination between porous space and throat has
to be resolved to the best possible extent. Currently this dis-
crimination is still subjective (Piller, et al., 2009 and De
Boever et al., 2012). A well-segmented 2-D or 3-D image
of porous geometry provides a good foundation to obtain ef-
fective permeability and porosity trends.

Accurate segmentation of different phases from XCT rock
images is a well-know and complex problem in the digital
rock physics community (DRP). In general, tomography is
a technique that generates a dataset (images), called a to-
mogram, which is a three-dimensional representation of the
structure and variation of composition within a rock speci-
men. Each three-dimensional data point in the tomogram is
called a voxel and contains a coefficient value associated with
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Figure 1. The top panel shows the andesite and Rotliegend sandstone rocks used for XCT measurements. Middle panel shows the raw
images of andesite (16 bit), Rotliegend sandstone (16 bit), synthetic sample (16 bit) and Berea sandstone (16 bit). Mineral composition of
andesite and Rotliegend sandstone was determined from thin sections using a polarized microscope. Bottom panel shows histogram plot of
the respective samples. Mineral composition of Berea sandstone is based on Madonna et al. (2012) and Andrä et al. (2013).

the density of the specimen. X-ray micro computed tomog-
raphy involves collecting a tomogram using high-energy X-
rays to achieve very high voxel resolution.

Segmentation is the partitioning of a tomogram (grayscale
image) into disjoint regions that are homogeneous with re-
spect to some characteristic. Porous materials like sedimen-
tary and volcanic rocks contain areas of void, called the pore
space, as well as a number of distinct mineral components,
each with a comparatively uniform density. These different
components are referred to as phases. Segmentation of a
porous rock means deciding to which phase each voxel be-
longs. Tomographic images of such materials consist of a
cubic array of reconstructed linear X-ray attenuation coef-
ficient values each corresponding to a voxel of the sample.
Ideally, one would wish to have a multi-modal distribution
giving unambiguous phase separation of the pore and various
mineral phase peaks. For flow properties, in particular, one
would like to obtain a clear distribution separating the pore
phase from mineral phase peaks. Unfortunately, the presence
of low-density pore inclusions (e.g., microporosity, clays) be-
low the image resolution can lead to a spread in the low-
density signal making it difficult to unambiguously differen-
tiate the pore from the microporous and solid mineral. As
a consequence, significant features can be lost, and macro-
scopic properties of the segmented image can vary greatly
with small changes in the segmentation parameters.

There have been extensive studies in various international
groups to improve segmentation methods for better quan-
titative characterization of pore space feature. Iassonov et
al. (2009) in their survey broadly classified segmentation al-
gorithms into two types: (i) global thresholding segmentation
scheme and (ii) local adaptive segmentation schemes.

The fundamental concepts behind global thresholding
schemes is the histogram representation of the intensity and
variation of all the gray pixels in a scene. There are many
subcategories in the scheme, and the most commonly used
are the histogram shape (triangulation) (Zack et al., 1977;
Rosin et al., 2001 and Sund and Eilertsen, 2003) or the sig-
nal entropy consideration (Pal and Pal, 1989 and Pal, 1996).

The local adaptive segmentation scheme is governed by
the fact that segmentation decision is made for each pixel in
the scene. Utilization of local information generally provides
better segmentation quality and account for some image ar-
tifacts, but it requires higher computation demand and mem-
ory. The most commonly used are locally adapative (LA)-
Kriging (Oh et al., 1999) and probablistic fuzzy c-means
(PMC)-Pham, which uses indicator Kriging, somewhat sim-
ilar to LA-Kriging, except that the final result is obtained
from fuzzy cluster membership (Pham, 2001). PMC-Pham
belongs to the unsupervised segmentation category but due
to the iteration scheme needs more computational power.
Edge detection (ED)-Yanowitz is a technique based on edge
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Figure 2. Relative porosity values obtained using unsupervised, supervised and ensemble classifier techniques for respective samples.

detection and surface procedure proposed by Yanowitz and
Bruckstein (1989). Convergence active countours (CAC)-
Sheppard is a hybrid method developed by Sheppard et al.
(2005) which uses a combination of image enhancement,
thresholding and convergence active contours. Markov ran-
dom fields (MRF)-Berthod is an algorithm for supervised
Baysian image classifaction using Markov random fields de-
veloped by Berthod et al. (1996). The general drawback of
CAC-Sheppard and MRF-Berthod methods can be attributed
to long processing time caused by insufficient ground truth
initialization and long processing time due to the simulated
annealing technique. Jovanovic et al. (2013) proposed a seg-
mentation scheme which can be performed already at the
stage of sinograms. Cortina-Januchs et al. (2011) used a seg-
mentation/classification technique based on a combination of
clustering and artificial neural network (ANN) to segment bi-
nary soil images, whereas Khan et al. (2016) used the super-
vised technique least-squares support vector machine (LS-
SVM) for segmentation of XCT rock images. Therefore, with
the continuously, improving CT technologies and computa-
tional resources, machine learning (ML) techniques can be
an effective tool for segment and classify for phase segmen-
tation of XCT rock images. Based on the heterogeneity of the
sample the user can employ different ML techniques to ob-
tain the best segmented image(s), which can be further used
for simulating physical processes.

In Chauhan et al. (2016), we developed a workflow to seg-
ment XCT images using unsupervised, supervised and en-
semble classifier ML techniques. The focus of this study is to
assess the performance and accuracy of the above mentioned
ML techniques to segment rock grain, matrix and pore phases

in heterogeneous rock samples such as andesite, Berea sand-
stone, Rotliegend sandstone and a synthetic sample contain-
ing microporosities.

2 Experimental approach

For this study andesite (Tongariro National Park, New
Zealand); Berea sandstone (Andrä et al., 2013); Rotliegend
sandstone (Rotliegend, Germany); and the synthetic sample
“Musli” (henceforth referred to simply as Musli; provided by
APS Antriebs, Prüf und Steuertechnik GmbH, Rosdorf, Ger-
many), were used. Figure 2 shows the rock samples and re-
spective histogram plots obtained from the XCT raw files. Ef-
fective porosity of andesite (17± 2 %) and Rotliegend sand-
stone (14± 2 %) was measure using a GeoPyc pycnome-
ter (Micromeritics Instrument Corporation, Norcross, GA,
USA). Thin-section analysis using a polarized microscope
revealed andesite has a porphyritic texture with large plagio-
clase crystals (up to 3 mm in diameter), pyroxene in a cryp-
tocrystalline matrix and isolated vesicles up to 6 mm in di-
ameter (Chauhan et al., 2016). Rotliegend sandstone had dif-
ferent grain size (between 0.5 and 5 mm) of fine sand and
gravel, with 26 % monocrystalline quartz, up to 35 % poly-
crystalline quartz, 8 % feldspar, 9 % sedimentary volcanic
lithoclast grains and 13 % cement (Aretz et al., 2016). An-
drä et al. (2013) confirm that the porosity of the Berea sand-
stone (total porosity 19.97 %; TM Petroleum Cores, Ohio,
USA) was performed using an Helium Pycnometer 1330
(Micrometritics Instrument Corp., Belgium) and a mercury
porosimetry using a Pascal 140+440 Mercury Porosime-
ter (Thermo Electron Corporation, Germany). Madonna et
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al. (2012), using a scanning electron microscope, revealed
Berea sandstone has ankerite, quartz, zircon, K feldspar and
clay. The synthetic sample contained large pores, micropores
and mineral grain.

Andesite volcanic rock and Rotliegend sandstone were im-
aged using a custom-built XCT scanner based on the CT-
ALPHA system (ProCon, Sarstedt, Germany) at the Institute
for Geosciences laboratory in Mainz, Germany. The sam-
ples were scanned by applying X-ray energy of 110 keV
and using a prefilter of 0.3 copper. During the reconstruc-
tion of the projections, a noise filter was not used. The pro-
jections were radon-transformed in sinograms and thereafter
converted through back projection into tomograms. These
stacked tomograms resulted in 16 bit 3-D imagery, with a
resulting voxel resolution of 13 and 21 µm for andesite and
sandstone, respectively. Andesite required no beam harden-
ing correction (BHC), whereas BHC for sandstone was done
based on regression analysis using 2-D paraboloid fitting. Fi-
nally, the tomograms are saved in raw format.

The Berea sandstone dataset was obtained from
the GitHub FTP server (https://github.com/cageo/
Krzikalla-2012). Andrä et al. (2013) performed XCT
scans at the Tomographic Microscopy and Coherent Radi-
ology Experiments (TOMCAT) (Stampanoni et al., 2006)
beamline at the Swiss Light Source (Paul Scherrer Institute,
Villigen, Switzerland). The beam energy was tuned for
best contrast at 26 keV with an exposure time of 500 ms to
retrieve a magnification of factor 10 (Andrä et al., 2013).
The projections were magnified by microscope optics and
digitized by a high-resolution CCD camera (PCO.2000)
to obtain images of dimension 1024× 1024× 1024 with
voxel resolution of 0.74 µm. Tomographic images were
reconstructed from the sinograms by applying Fourier
transform spectroscopy (Marone et al., 2009) and saved in
the desired file formats (Andrä et al., 2013).

2.1 Image pre-processing

Each of the 16 and 8 bit 3-D reconstructed raw images re-
sulted in 20483 and 10243 voxels. The image filtering tech-
niques such as blur, background intensity variation and con-
trast were tested on all the raw images before the segmen-
tation and classification algorithms were initialized. In the
case of Rotliegend sandstone (21 µm), as the XCT images
were noisy, a contrast filter was used to enhance the image;
for other XCT images (Berea, andesite and Musli), as the
resolution and contrast were sufficiently high (7.5 to 13 µm),
using filters did not show any noticeable change. The follow-
ing sections describe the post-processing algorithm and how
these were implemented in our image processing schemes.

3 Machine learning

The main focus of this study is to demonstrate the compu-
tational performance and accuracy of the different ML al-
gorithms to segment/classify different phases in XCT rock
samples – i.e., to map pixels of similar values into respec-
tive classes. ML algorithms rely on features; features are sets
of instances which contain descriptive information based on
which the ML algorithm trains it classification model and
further identifies these features in an unknown dataset and
groups them into respective classes, which in our case are
the associated feature values of noise, rock grain, matrix and
pore voxels. ML algorithms in general fall into categories of
unsupervised, supervised and ensemble classifiers.

3.1 Unsupervised techniques

In the unsupervised technique k-means (MacQueen, 1967),
fuzzy c-means (FCMs) (Dunn, 1973) and self-organized
maps (SOMs) (Kohonen, 1990) were used for segmentation
of pore, mineral and matrix phases. The k-means cluster-
ing algorithm is one of the simplest unsupervised ML al-
gorithms commonly used to address the clustering problem.
The k-means algorithm through an iterative scheme calcu-
lates the Euclidean distance between the data point (pixel
value) and its nearest centroid (cluster). The algorithm con-
verges when the mean square root error of Euclidean distance
reaches minimum; that is, when no further pixel is left to be
assigned to the nearest centroid (cluster). The performance
of the k-means algorithm is strongly governed by the initial
choice of the cluster centres. The k-means has the tendency
to terminate without identifying the global minimum of the
objective function (Chauhan et al., 2016). Therefore, it is rec-
ommended to run the algorithm several times to increase the
likelihood that the global minimum of the objective function
will be identified.

Unlike k-means, in the FCM iterative scheme each data
point can be a member of multiple clusters by varying the
membership function (Jain, 2010 and Jain et al., 1999). The
FCM clustering procedure involves minimizing the objective
function

Jfcm (Z;U ;V )=
∑n

j=1

∑k

i=1
(µij )

m
∥∥∥x(i)i − ck∥∥∥2

, (1)

where ck =
∑n
j=1uijxi ; ck is the kth fuzzy cluster center, m

is the fuzziness parameter (for m= 1 FCM simplifies to k-
means) and m.uij is the membership function. In our con-
text, if we consider the entire raw image as a fuzzy set of
data points (pixel values) which lie very close to each other,
FCM uses membership criteria to “loosely” or “tightly” iso-
late subsets of rock grains, matrix and pore phase. The
membership function influences the segregation of intersec-
tion subsets of values that lie in between rock grains/matrix
phases for densely packed pixels (Rotliegend sandstone) and
pore throat/matrix phases for the micropore dataset (Musli).
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Figure 3. Total volume fraction plotted for respective samples.

FCMs can be a better choice in comparison to k-means, but it
has a tendency to converge to the local minima of the objec-
tive function. Therefore, it is vital to test a range of member-
ship values in combination with several centroids (classes)
for accurate analysis (Cannon et al., 1986).

For a detailed description of SOMs the reader is referred
to Kohonen (1990) and Chauhan et al. (2016). The SOM pro-
cedure uses a competitive learning process based on an ANN
framework. In our context, a raw CT image is considered as
an input pattern, which has to be classified. SOMs first ar-
range nodes (called neurons) in one of the desired topologies
(grid, hexagon or random topology, as specified by the user)
and assigns random weight (values). These nodes are trained
using the pixel value of the CT image(s), iteratively using
the Kohonen rule (Kohonen, 1990). During this competitive
learning process the difference between the nodal weight and
the neighboring pixel(s) is calculated. The iterative process
stops when the difference reaches a minimum. The amount
of adaptation of the nodal weight to its neighboring values
can be influenced and monitored using learning rate parame-
ter α. The nodes that do not change to its surrounding value
are classed as winner nodes. These winner nodes are nothing
but different classes in the segmented image.

The unsupervised algorithms were configured to perform
segmentation of three to seven classes. These classes in one-
dimensional feature space are the non-overlapping segments
of pixel bins in a histogram. Filter-based feature vector (FV)
selection (Euclidian and Manhattan distance function) were
used to initialize centroids for k-means, FCMs and SOMs.
In the case of FCMs different degrees of membership values
[1.10 to 1.85] were tested to loosely or tightly segregate pixel

values between rock grains and matrix phase. Grid topology
was chosen in the case of SOMs.

3.2 Supervised techniques

In the supervised category feed forward artificial neural net-
work (FFANN) (Jain et al., 1999) and LS-SVM (Suykens and
Vandewalle, 1999) were used to classify rock grains, matrix
and pore phases (Chauhan et al., 2016). In general, the su-
pervised algorithms rely on a classification model which has
to be trained using an example set of data that represent each
class.

ANN is an information-processing paradigm that mimics
the behavior of the human brain (Haykin, 1994). FFANN
is based on the ANN framework and uses a so-called er-
ror back-propagation algorithm (Hopfield, 1982). FFANN
can be used for any input–output mapping problem but is
best suited for modeling linear and nonlinear problems. In
our case the XCT dataset was partitioned into a training
and testing dataset. Thereafter, FFANN was set up with
input layer, one hidden layer and output layer. The hid-
den layer was assigned 10 nodes, and the nodes of input
and output layer varied depending on training and testing
slices. The k-means and FCM segmented datasets were used
as a feature vector to train the classification model using
the Levenberg–Marquardt back-propagation method (Leven-
berg, 1944; Marquardt, 1963). The classification model was
tuned using the 10 K-fold cross-validation function (repeated
trained and testing), and the misclassification rate was deter-
mined using mean square root error (MSE). Once the classi-
fication model reached optimal accuracy, it was tested on the
rest of the XCT raw slices.
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Figure 4. The top, middle and last panel show the 2-D segmented images and volume rendered plots of respective samples using unsupervised
networks (andesite figure has been modified after Chauhan et al., 2016).

For LS-SVM a training dataset was created which con-
tained a range of pixel values which best represented pore,
mineral, matrix, cracks, trapped pores and noise regions;
these pixel ranges were further labeled into different classes,
which ranged from one to seven. For FFANN and LS-SVM
the models were tuned using the 10 K-fold cross-validation
function (repeated training and testing), and the misclassifi-
cation rate was determined using mean MSE in the case of
FFANN. Once the classification model reached an optimal
performance threshold, it was tested on the rest of the XCT
slices.

3.3 Ensemble classifier techniques

In the ensemble classifier technique RUSBoost and Bragtree
algorithms are used (Seiffert et al., 2008; Breiman, 1996)
to classify pore, rock grains and matrix phases (Chauhan et
al., 2016). In general ensemble classifiers are a “bootstrap
aggregation” of different weak classifiers. In general, weak

classifiers are algorithms which perform classification with a
substantially high error rate (< 0.5) – but slightly better than
random guessing. The main advantage of bootstraping such
weak learner is to gain speed. The main difference between
bragging and RUSBoost is the way they train their weak clas-
sifiers. Bragtree is an iterative scheme in which classifiers
are trained with randomly chosen samples from the train-
ing dataset; in the second step the misclassified instances are
collected and its classifiers are retrained until the misclassifi-
cation error is minimized. However, RUSBoost sequentially
trains its classifiers using the whole training set, essentially
focusing on retraining inaccurate classifiers with the large
dataset until its misclassification error is minimized. The en-
semble classifiers were trained using the same FV which was
used for LS-SVM. During the training process the ensemble
models (of type RUSBoot and Bragtree) were parameterized
using a (weak) classifier of type “Decision Tree” with a leaf
size of five and trained up to 1000 training cycles. The learn-
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ing rate, which is a parameter from a [0.0, 1.0] control over-
fitting range, was set to 0.1. Smaller values of learning rate
require large numbers of weak learners to maintain a constant
training error. Empirical evidence suggests that small values
of learning rate favor better test error, as the constraint on the
given number of weak learners maintains a constant training
error.

3.4 Feature selection

In a practical rock CT segmentation/classification task, a pri-
ori information representing different phases (pore, matrix,
rock, cracks, trapped pores etc.) in the XCT image is given
to ML algorithms for segmentation or training the classifi-
cation model. The dataset used as a priori information con-
tains pixel values representing different phases in the XCT
image, termed feature vectors. For unsupervised k-means,
FCMs and SOMs, 10 slices from a XCT images were used to
develop the FVs. For FFANN 5 images out of 10 were used
to train the network; for LS-SVM and ensemble based classi-
fiers different subset of pixels representing the pore, mineral,
matrix, cracks, trapped pore and noise regions were used as
feature vectors. The total number of pixels used to train and
test each ML algorithm is shown in Table 1.

3.5 Performance

Computational performance was measured in terms of the
segmentation and classification speed of the ML algorithms.
Tests were performed on a Windows Server 2008 R2 Stan-
dard 64 bit operating system, with two six-core Intel Xeon
processors, CPU (E645, 2.40 GHz) and installed memory
(RAM) of 48.0 GB.

3.6 Accuracy

There is a wide set of evaluation metrics available to compare
the quality of clustering and classification algorithms. For
unsupervised clustering techniques accuracy can be evalu-
ated intrinsically; i.e how close are the elements to each other
within a cluster and how far apart from elements of other
clusters (Amigó et al., 2009). Extrinsic metrics, on the other
hand, are a comparison between the output of the clustering
system and the gold standard usually built using human as-
sessors (Amigó et al., 2009). Stehl (2002), Meilǎ (2003) and
Amigó et al. (2009) proposed several types of cluster eval-
uation metrics tested on different mathematical constraints.
However, the appropriate metrics for cluster evaluation is
nontrivial and is still a subject of discussion. In this work,
we use extrinsic evaluation metrics “purity” and “entropy”,
which are most commonly used for clustering problems. The
idea is to identify ideal class(es), representing the “best”
porosity values, and to compare the clustering algorithm.

Any supervised classification is incomplete until the as-
sessment of its accuracy has been performed. The super-
vised classification models are trained with a priori informa-

Figure 5. The pore size distribution of different rock samples using
a watershed technique.

tion which is almost a subset of classes under investigation.
Stehman et al. (2003) pointed out the accuracy assessment of
a supervised classification problem can be assessed in three
different steps: (1) the design of the model, (2) the response
of the designed model to obtain the true classification rate
(minimum error rate) and (3) the analysis of the classified
data. The most common methods used for the analysis of
the classified data are confusion matrix or κ – error statis-
tics introduced by Fleiss et al. (1969). For our accuracy as-
sessment study we have used step 2, the response of the de-
signed model, to obtain the true classification rate: namely,
metrics such as MSE, ROC and 10 K-fold cross-validation
for AANN, LS-SVM and ensemble classifiers, respectively.

Subsections below illustrate all the metrics used for evalu-
ating unsupervised, supervised and ensemble classifiers.

3.6.1 Entropy and purity

The entropy of a class reflects how the members of the k pix-
els are distributed within each class; the global quality mea-
sure is by averaging the entropy of all classes:

entropy=−
∑

j

nj

n

∑
i
P (i,j)× log2P(i,j), (2)

where P (i,j) is the probability of finding an item from the
category i in the class j , where nj is the number of items in
class j and n the total number of items in the distribution.

Purity focuses on the frequency of the most common cat-
egory in each class. If C is the set of pixels to be evaluated
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Table 1. The number of pixels used for training and testing the classification model.

Type of classifiers Andesite Rotliegend sandstone

No. of training pixels No. of testing pixels No. of training pixels No. of testing pixels

K-means 31 577 290 13 681 600
Fuzzy c-means 31 577 290 13 681 600
Self-organized maps 31 577 290 13 681 600
Artificial neural networks 15 788 645 31 577 290 6 840 800 13 681 600
Least-squares support vector machine 2077 31 577 290 1511 41 943 040
Bragging and boosting 2077 31 577 290 1511 41 943 040

Type of classifiers Synthetic sample (Musli) Berea sandstone

No. of training pixels No. of testing pixels No. of training pixels No. of testing pixels

K-means 10 000 000 4 056 000
Fuzzy c-means 10 000 000 4 056 000
Self-organized maps 10 000 000 4 056 000
Artificial neural networks 5 000 000 10 000 000 20 28 000 4 056 000
Least-squares support vector machine 1655 10 000 000 1366 4 056 000
Bragging and boosting 1655 10 000 000 1366 4 056 000

Figure 6. Entropy values of unsupervised techniques plotted for respective samples.

and L the set of classes,

purity=
∑

i

|Ci |

N
max
j

precision(CiLj ), (3)

where the precision of a pixels Ci for a given classes Li is
defined as

precision
(
CiLj

)
=

∣∣Ci ∩Lj ∣∣
|Ci |

. (4)

Purity is a real number within [0, 1]; the larger the purity val-
ues, the better is the clustering method. Conversely, the lower
the entropy value, the better is the clustering performance.
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Figure 7. Mean square root error values of feed forward artificial neural network (FFANN) obtained for respective samples. FFANN was
trained using segmented datasets of k-means, fuzzy c-means with a membership function of 1.10 and 1.85

3.6.2 Mean square root error

The most commonly used error metrics to assess the accu-
racy of the FFANN are the MSE, the mean square relative
error (MSRE), the coefficient of efficiency (CE) and the co-
efficient of determination (R2), shown in the equations be-
low:

MSE=
∑n

i=1

(
Qi − Q̃i

)2
Q2
i

, (5)

MSRE=

∑n
i=1

(
Qi−Q̃i

)2
Q2
i

n
, (6)

CE= 1−

∑n
i=n

(
Qi − Q̃i

)2∑n
i=n

(
Qi − Q̄i

)2 , (7)

R2
=


∑n
i=1

(
Qi − Q̄i

)(
Q̃i − Q́i

)
√∑n

i=1
(
Qi − Q̄i

)2∑n
i=1

(
Q̃i − Q́i

)2


2

, (8)

where Q̃i are the classified images by FFANN. Qi are the
images used for training the FFANN (k-means and FCM im-
ages), Q̄i is the mean of the images used for training FFANN
and Q́i is the mean of the classified images To evaluate accu-
racy of our FFANN model, we looked at the MSRE values.
The lower the MSRE value, the higher is the accuracy of the
prediction.

3.6.3 Receiver operational characteristics

Receiver operational characteristic (ROC) curves have long
been used in the signal detection theory (Bradley, 1997). It is

a good way of cross-validation of classifiers’ accuracy (prob-
ability of classifiers correct response P(C)).

accuracy (1− error)=
Tp+ Tn

Cp+Cn
= P(C), (9)

sensitivity (1−β)=
Tp

Cp
= P(Tp), (10)

specificity (1−α)=
Tn

Cn
= P(n), (11)

where Tp and Tn are the true positive and true negative exam-
ples and Cp and Cn are total number of true positive and true
negative examples.

Probability of false positive is P(Fp)= α

Probability of true positive is P(Tp)= (1−β)

The accuracy is determined by calculating the area under the
curve (AUC), and the simplest was to do that is by using
trapezoidal approximation.

AUC=
∑

i

{
(1−βi ·1α)+

1
2
(1(1−β) ·1α)

}
(12)

In our case the AUC was determined using the trapezoidal
approximation for each exponential curve, and the values
were the fraction multiplied by 100 to obtain the value in
percent.

3.6.4 10 K-fold cross-validation

The idea for cross-validation was first proposed by Lar-
son (1931). Cross-validation is a statistical method of eval-
uating and comparing learning algorithms by dividing data
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Figure 8. Receiver operational characteristic curves depicting
the accuracy of the least-squares support vector machine multi-
classification scheme for class four. A few curves which appear in
the legend have close proximity to the x axis and lie behind other
curves and therefore are invisible.

into two segments: one used to learn or train a model and the
other used to validate the model. The problem with evaluat-
ing such a model is that it may demonstrate adequate predic-
tion capability on the training data, but it might fail to predict
future unseen data. Cross-validation is a procedure for esti-
mating the generalization performance in this context.

Later, Kohavi (1995) and Dietterich (1998) investigated
several approaches to estimate the accuracy of classifiers
using different combinations of 10 K-fold cross-validation
techniques; they recommended 10 K-fold cross-validation as
one of the best cross-validation techniques, as it mitigates
biases despite variances in the size of training and testing
datasets.

At the onset of 10 K-fold cross-validation, the dataset is
initially stratified and partitioned into 10 equal (or nearly
equal) segments or folds. Subsequently 10 iterations of train-
ing and validation are performed such that within each iter-
ation a different fold of the data is held out for validation,
while the rest of the folds are used for learning.

4 Results and discussions

4.1 Porosity and pore size distribution

The porosities which were determined from the stack of 10
XCT slices for three to seven classes using different ML
techniques are shown in the Fig. 2. The estimated porosity
is the ratio between the pore phase voxels and entire sam-
ple volume multiplied by 100. In general, the porosity us-
ing unsupervised ML techniques agrees well for all the four
samples within ±1.2 % for each class. For andesite, Berea,
sandstone, Rotliegend sandstone and Musli, the average esti-
mated porosity sum over all classes is 15.8± 2.5, 16.3± 2.6,
13.4± 7.4 and 48.3± 13.3 %, respectively. This is in good
agreement with the experimental porosity values obtained for
andesite and Rotliegend sandstone using a GeoPyc pycnome-
ter and Berea sandstone as reported in Andrä et al. (2013).
The large standard deviation in the case of sandstone and
Musli is caused by the FCM segmentation scheme. When the
membership function is tightly constrained [1.10, 1.35], the
segregation between pore phase voxels and pore throat vox-
els is underestimated, contributing to the increase in porosity.
Conversely, when the membership function is loosely con-
strained [1.60, 1.85], pore throat and micropores are seg-
mented as matrix phases, resulting in a decrease in porosity
and increase in matrix phase, which is clearly visible in the
volume fraction plot of sandstone and Musli in Fig. 3. The
low standard deviation in the estimated porosity values of
andesite is due to the absence of microporosity and intercon-
nected pores. The pore, mineral and matrix phases are dis-
tinct from each other; therefore the ML techniques have less
difficulty in segmentation and classification. Figure 4 shows
the segmented images using unsupervised technique and re-
spective volume rendered images.

Pore size distribution (PSD) of andesite, sandstones and
Musli was computed using the method suggested by Rab-
bani et al. (2014). The segmented grayscale images where
first converted to binary images using thresholding tech-
nique. Morphological and filtering operations were per-
formed based on the complexity of the segmented images.
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Figure 9. Accuracy of ensemble classifiers boosting and bragging calculated using 10 K-fold validation for respective samples.

Distance transform to convert the bright area into catchment
basin and later watershed transformation was performed to
segment the pore boundaries. Figure 5 shows the PSD and
average pore radius of andesite, Berea sandstone, Rotliegend
sandstone and Musli from k-means segmented images.

4.2 Performance and accuracy analysis

Performance in the form of computational time is tabulated
in Table 2. The k-means algorithm is the fastest among all the
ML techniques because segmentation of phases into different
classes is based on nearest-neighborhood distance measure-
ments, unlike other ML techniques (exception: FCM), where
the classification is governed by classification models.

In the case of supervised techniques the computational
speed is correlated with the size of the feature vector used
for training the classification model and post-processing of
the unknown dataset. One reason is that supervised tech-
niques are based on a “single” classification model; train-
ing and cross-validation of the model with a large amount
of feature vectors consumes time. This can be related to
the high computational time of the andesite sample using
FFANN, where five slices were used to train the classifica-
tion model compared to other samples where the classifica-
tion model was trained using only one slice. For LS-SVM –
as feature vector pixels are less than 1 % of the total pixel
values for the all the samples – the training of the classifi-
cation model took 1 to 10 min. The high computational time
was consumed in post-processing, where a large unknown

dataset was subjected to the trained model. In the case of en-
semble classifiers the post-processing of an unknown dataset
took longer compared to the training of the respective (boot-
strapped weak) classification schemes. As the Rotliegend
sandstone is densely packed with very low porosity, it re-
sulted in low contrast and a badly resolved XCT dataset.
As a consequence, the individual (weak) classification mod-
els required more computational time to achieve a consoli-
dated, nearly accurate, well-classified result. Therefore, the
processing time of Rotliegend sandstone images by ensem-
ble classifiers was higher compared to other XCT samples.

Our clustering problem is to determine the most appropri-
ate class for each pixel. That is, we wish to identify which of
the unsupervised ML techniques satisfies properties of “clus-
ter homogeneity” (i.e., not mixing items belonging to dif-
ferent categories) and “cluster completeness” (i.e., how well
items belonging to same categories are grouped together) de-
fined by Amigó et al. (2009). Therefore, the metrics entropy
and purity were chosen to evaluate the accuracy of unsuper-
vised ML techniques. The entropy values were calculated us-
ing Eq. (2) on the 3-D stack of 10 slices for each class and are
shown in Fig. 6. In general class three and four have the low-
est entropy values compared to other classes. This shows that
if cluster homogeneity and cluster completeness get violated
this may lead to misclassification. Among the three unsuper-
vised ML techniques, k-means has the lowest entropy values;
therefore it can be assumed that k-means performs the best
segmentation compared to SOMs and FCMs.
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Table 2. The computational time for processing 10 slices.

Machine learning techniques CPU: time (h:min:s)

Andesite Rotliegend sandstone Synthetic sample (Musli) Berea sandstone

K-means 00:15:35 00:12:04 00:10:59 00:05:33
FCM 00:29:19 00:56:03 00:42:21 00:41:05
SOM 01:07:06 1:41:47 01:11:23 00:33:32
FFANN (training using k-means) 08:58:18 00:11:50 00:10:40 00:11:12
LS-SVM* 63:29:35 03:22:58 03:02:15 01:45:17
Bragging 05:57:05 07:32:22 12:19:40 03:51:13
Boosting 07:47:05 09:52:56 06:14:58 03:20:42:

* Open-source public library provided by the University of Leuven’s Department of Electrical Engineering (ESAT) SCD-SISTA division was used:
http://www.esat.kuleuven.be/sista/lssvmlab/.

Figure 10. Mean porosity value obtained using supervised and en-
semble classifiers as well as unsupervised machine learning tech-
niques.

For FFANN the accuracy was interpreted using Eqs. (6)
and (8) and the MSE shown in Fig. 7. FFANN was trained
using k-means and FCM and was tested on raw XCT im-
ages of the respective samples. The testing dataset (3-D stack
of raw images) was scaled between three and seven class
values before the start of the testing cycle. In the case of
Berea, Rotliegend and the synthetic sample, when the mem-
bership function was tightly constrained to 1.10, FCM was
able to segment pore, matrix and mineral grain phases into a
maximum of three and four classes. Similarly, on a moder-
ate (1.60) and loosely constrained (1.85) membership func-
tion FCMs yield a maximum of five, six and seven classes,
respectively. This explains the variance in the number of
datasets used for validation of FFANN. The lower the MSE
value, the better is the accuracy; the accuracy decreases with
over-classification (for class five to six). Different settings,
such as increasing the number of training slices up to five and
increasing the number of neurons from 10 to 30, did not show
any significant improvement in the accuracy. Among all the
XCT samples, the worst accuracy was found for Rotliegend
sandstone. Based on our analysis, we suggest that FFANN
may not be the best-suited ML technique for clustering anal-
ysis.

In the case of LS-SVM, the low variance seen in the poros-
ity values up to class six, is the indication that LS-SVM is one

among the most suitable ML techniques for phase segmen-
tation analysis of XCT images. As the hand-picked feature
vector dataset of class four had an appropriate mix of all the
phases and the desired amount of noise, it gave the best trade-
off between quality and speed. Hence we show the accuracy
of LS-SVM for classification of class four using the ROC
curve (Metz, 1978) in Figure 8. The slope of the ROC curve
gives the accuracy of classification which was computed us-
ing Eq. (12). The accuracy ranges from 77 % for Berea sand-
stone to 88 % for Rotliegend sandstone and 90 % for andesite
and Musli. Up to 100 % accuracy is achieved in discriminat-
ing the pore phase with respect to mineral and matrix phases.

Ensemble classifiers also show low variance in the poros-
ity values as LS-SVM because of the same feature vectors
used. The accuracy of the ensemble classifiers tested using
the 10 K-fold cross-validation technique (Quinlan, 1996) is
shown in Fig. 10. Both Bragging and Boosting classifiers
where trained using the training dataset. The training dataset
comprises the pixel values representing pore, mineral, ma-
trix, noise phases and feature vectors. The initial growth of
the leaf size was started with 5, and the corresponding weak
classifiers were trained up to 1000 iterations (Breiman et al.,
1996). The accuracy was determined by 10 K-fold cross-
validation techniques. The best accuracy was achieved for
andesite and Musli XCT (with an exception for class six) im-
ages, and the worst for Rotliegend sandstone, going up to
0.56.

5 Conclusions

In this study the performance and accuracies of ML tech-
niques were validated, and relative porosity and pore size
distribution of andesite (altered minerals), Berea sandstone,
Rotliegend sandstone (interconnected pores) and Musli (mi-
croporosity) rock samples were computed. The total aver-
aged porosity values obtained using unsupervised, super-
vised and ensemble classifiers are shown in Fig. 10 and are
in good agreement with the experimental values obtained us-
ing the GeoPyc pycnometer and data reported in Andrä et
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al. (2013). The high standard deviations up to 13 % seen in
the case of Musli can be attributed to the misclassification
caused by ensemble classifiers at class six. This can be seen
in the porosity value of Musli in Fig. 2. The feature vector set
corresponding to class siz introduces noise information in the
form of 73 pixels. When the training/testing was performed
using feature vector up to class six, the ensemble classifiers
showed high misclassification. Thereafter, when additional
information on cracks and specks represented as 300 and 97
pixels is introduced as class seven (feature vector), the en-
semble classifier stablizies. It is difficult to speculate why
this happens.

Our analysis shows unsupervised ML techniques perform
well with filter-based feature extraction techniques. In terms
of computational time, k-means outperforms all the other
ML techniques. Fuzzy c-means can distinguish well between
pore and pore-throat boundaries, given that the membership
function is loosely constrained between 1.60 and 1.85. It
was found that different tuning parameters (such as differ-
ent FCM membership criteria and different SOM topologies
and distance functions) need to be tested for the unsupervised
techniques. A SOM topology “grid top” layout (neurons ar-
ranged in a grid format) and a SOM Manhattan distant func-
tion (sum of the absolute difference) gave consistent results,
and FCM membership function within [1.35–1.85] gave con-
sistent results. Low entropy values of k-means indicate that
k-means is more accurate compared to fuzzy c-means and
self-organized maps.

In the case of supervised techniques the computational
time was significantly improved by reducing the training
dataset of FFANNs and by careful selection of feature vector
dataset for LS-SVM. Based on our analysis we conclude that
FFANNs may not be best suited for clustering analysis; due
to difficulty in scaling the training dataset (XCT raw files),
the interpretation of clustering labels and accuracy becomes
extremely difficult. Additionally, the accuracy in terms of
mean square root error of the validation cycle (training and
repeated testing) is largely regularized by fine and coarse
scaling of the testing dataset, which may not always corre-
spond to the image classification. As a consequence, there
were cases where despite low accuracy (high MSE) the clas-
sification performed by FFANN was good. LS-SVM, how-
ever, proved to be one of the best and accurate supervised
ML techniques for phase segmentation problem. However,
it strongly relies on the craft with which the feature vec-
tor dataset is constructed. The user has the flexibly to de-
cide which phases or feature are most relevant for phase seg-
mentation. The authors suggest using the histogram plot of
the raw image or k-means (or any other unsupervised ML
technique) as an orientation for feature vector selection. It
is further recommended that the first and second class la-
bels (e.g., class three and class four) should contain pre-
dominantly phases such as pore, matrix, mineral and noise
pixels. Consequently, other interesting feature pixels can be
included. A suitable balance has to be found, such that the

classifier is not excessively trained on one particular feature
and does not get stuck in local minima. Thereafter, the ROC
curve validation technique is best suited for accuracy assess-
ment of LS-SVM.

Ensemble classifier can be the second-best alternative to
tackle phase segmentation problems as it also relies on the
feature vector dataset to train the classification model; there-
fore, the user has more control over the classification scheme.
However, the weak learners involved in the ensemble clas-
sification scheme remain as a black box to a large extent;
therefore, appropriate tuning of the individual weak learners
to optimize computational speed and accuracy may be cum-
bersome. To have a better control over the ensemble classifi-
cation scheme, and for future work, we suggest an ensemble
classifier with k-means, FCMs and LS-SVM as weak learn-
ers.
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