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Abstract. Image processing of X-ray-computed polychro-

matic cone-beam micro-tomography (µXCT) data of geo-

logical samples mainly involves artefact reduction and phase

segmentation. For the former, the main beam-hardening

(BH) artefact is removed by applying a best-fit quadratic sur-

face algorithm to a given image data set (reconstructed slice),

which minimizes the BH offsets of the attenuation data points

from that surface. A Matlab code for this approach is pro-

vided in the Appendix. The final BH-corrected image is ex-

tracted from the residual data or from the difference between

the surface elevation values and the original grey-scale val-

ues. For the segmentation, we propose a novel least-squares

support vector machine (LS-SVM, an algorithm for pixel-

based multi-phase classification) approach. A receiver oper-

ating characteristic (ROC) analysis was performed on BH-

corrected and uncorrected samples to show that BH correc-

tion is in fact an important prerequisite for accurate multi-

phase classification. The combination of the two approaches

was thus used to classify successfully three different more or

less complex multi-phase rock core samples.

1 Introduction

Advances in the technological (image resolution) and com-

putational (image size) aspects of X-ray computed micro-

tomography (µXCT) technology now enable the acquisi-

tion of three-dimensional (3-D) images down to a submi-

cron spatial resolution, which is sufficient to capture the mi-

crostructure of geological rock cores (Cnudde and Boone,

2013). Recent research on digital rock physics has success-

fully combined microscopic imaging with advanced numer-

ical simulations of physical properties for which labora-

tory measurements are not possible. However, benchmark-

ing tests of commonly used image processing methods have

revealed unacceptably large variations in the results, and

further development and optimization is therefore clearly

warranted (e.g. Andrä et al., 2013). Furthermore, Leu et

al. (2014) determined the importance of image analysis of

µXCT-generated data to provide accurate parameterization

of porosity–permeability relationships. It turned out that this

relationship is highly sensitive towards accurate processing

of the pore microstructure images used. This accuracy is of

great importance in pedohydrology studies of water flux in

the critical zone (e.g. Khan et al., 2012; Kumahor et al.,

2015), reactive transport modelling (e.g. Schwarz and Enz-

mann, 2013; Molins et al., 2014), distributions of multi-

component fluids (e.g. Berg et al., 2013, 2015), contaminant

retardation (e.g. Huber et al., 2012), energy-related activities

such as nuclear waste disposal (e.g. Hemes et al., 2015), and

the geological sequestration of CO2 (e.g. Sell et al., 2013;

Herring et al., 2015), to name just a few examples.

The research aim of image classification optimization is to

obtain representations of structures that can be automatically

used for categorization of samples into a finite set of labels

(i.e. phases in geological materials). As part of the recent

development of computer performance and advanced auto-

mated computer algorithms, the classical machine learning

technique provides a methodology for (non-)linear function

estimation and classification problems (Vapnik, 1995). In

general, the supervised machine learning approach involves

the construction of a convincing model of the distribution

of class labels in terms of predictor features for the whole

image on the basis of a reduced example (i.e. training) data

set (Alpaydin, 2004; Kotsiantis, 2007). The resulting clas-

sifier is then used to optimize a performance criterion and
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assign class labels to the testing data. Representative gener-

alization is an important property of a classifier or classifica-

tion algorithm, because it offers information about as yet un-

known data. The support vector machine (SVM) algorithm

as one capable example of such classifiers was first devel-

oped by Vapnik (1995) as an extension of the generalized

portrait algorithm. The SVM algorithm is firmly grounded in

the framework of statistical learning theory, which improves

the generalization ability of learning machines for unknown

data.

The success with any classification technique depends on

the quality of the µXCT images used as input; therefore, the

utmost care has to be taken to provide less noisy and artefact-

free images. In reality, this is seldom the case when using

conventional bench-top µXCT. In such polychromatic cone-

beam X-ray tomography, the average energy of the X-ray

beam increases and the beam spectrum is successively de-

pleted at lower energies as it passes through the geomaterial.

The spectrum of the X-ray beam thus hardens and becomes

less attenuated by the same phase but further into the mate-

rial. This effect is called beam hardening (BH) and implies

that the grey levels of the projection data are non-linear with

respect to the shape of a cross-sectional linear profile. Con-

sequently, the reconstructed µXCT image features some vi-

sual distortions such as pronounced edges (“cupping effect”)

and other artefacts (Schlüter et al., 2014). This cupping arte-

fact shows an apparently higher attenuation coefficient at the

outer regions than in the inner part of a round rock core, even

if both regions are composed of the same mineral. The pres-

ence of BH artefacts therefore causes problems in 3-D im-

age processing and hampers correct image analysis and phase

quantification due to a biased multi-phase image segmenta-

tion process. Such artefacts apply for polychromatic X-ray

sources only; more recently, monochromatic synchrotron-

based µXCT has been introduced as a powerful tool for ef-

fective BH-free visualization of the microstructural features

of geomaterials at a voxel resolution down to the submicron

level (Fusseis et al., 2014; Leu et al., 2014). However, ac-

cess to this advanced technique is limited by experimental

sites and available beam time. Therefore, mostµXCT studies

must still rely on bench-top devices resulting in the artefacts

mentioned.

A variety of both hard- and software measures have been

developed to eliminate BH artefacts. These include physical

pre-filtering to pre-harden the X-ray photon spectrum, the

dual-energy approach, and a variety of computational pre-

and post-processing image corrections (Schlüter et al., 2014).

A major prerequisite for success with the latter software ap-

proaches is that the correction method should not rely on any

prior knowledge of the material properties; i.e. it should not

depend on known attenuation coefficients. Commonly, there

is no prior quantitative information available on the number

and distribution of phases present in a geological sample. The

most common technique for BH correction in pre-processing

is linearization, but this is preferable for monophasic mate-

rial cases. Although the most commonly used algorithm for

the reconstruction of µXCT data is based on filtered back

projection (Feldkamp et al., 1984), an iterative forward pro-

jection can be used with modern imaging software like Oc-

topus (https://octopusimaging.eu/), which allows in its latest

version 8.9.0 – 64 bit the incorporation of BH modelling al-

gorithms (Brabant et al., 2012). In the latter reconstruction

approach, the attenuation coefficients are not simply added

but multiplied with factors to simulate BH depending on the

accumulated attenuation over the distance the beam has pen-

etrated through the sample. This pre-processing correction

thereby minimizes the underestimation of the attenuation co-

efficient as the beam progresses through it. However, a major

drawback of this promising method is that there is currently

no way to determine the two necessary iterative parameters

α and β automatically (Brabant et al., 2012), resulting in the

manually adjusted output being a time-consuming and sub-

jective iteration result.

In principle, the idea of a surface-fitting approach in

µXCT image post-processing for BH correction has already

been introduced previously (Krumm et al., 2008; Iassonov

and Tuller, 2010; Jovanović et al., 2013), albeit without

a more detailed outline of how to be realized in practice.

Therefore, a quite simple algorithm is suggested that fits

a 2-D quadratic polynomial function for accurate removal

of BH artefacts upon classically filtered back-projection-

reconstructed slices. Our novel BH correction algorithm is

followed by a pixel-based phase classification introducing

the machine learning algorithm approach. A workflow of our

two-stage post-reconstruction image processing approach in-

cluding BH correction and the novel segmentation approach

is presented and validated by three different geological sam-

ples.

2 Material and methods

2.1 Samples and tomographic set-up

The custom-built µXCT scanner used at our laboratory

(ProCon CT-Alpha, Germany) is equipped with a micro-

focus X-ray tube (Feinfocus, Germany) and contains a

diamond-coated anode target with a focal spot size of a

few micrometres. X-ray data acquisition is performed with

a 2048× 2048 pixel (“2 k”) flat-panel CCD detector of size

105 mm× 105 mm (Hamamatsu, Japan). The first test sam-

ple (sample A) is comprised of sand grains filled into a tube

made of Plexi-glass material with 50 mm height and 10 mm

inner diameter. The X-ray source voltage was set to 100 kV,

and the beam was slightly pre-hardened with 0.15 mm alu-

minum foil. A rotation step of 0.45◦ with 2 s exposure time

corresponded to 800 projections for full 360◦ data acquisition

at a spatial resolution of 5.89 µm. The other two geological

samples B and C were cylindrical rock cores composed of

(B) a clay mineral matrix with a network of pores/cracks and
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anhydrite veins, and (C) a clay mineral matrix with halite-

sealed veins. Detailed mineralogical analysis of the samples

was published previously (Enzmann et al., 2009). These two

rock cores were measured at a slightly higher 130 kV source

voltage with a 0.15 mm silver foil. Exposure time was at a

lower 1 s each, but with the same rotation step of 0.45◦ as for

the sample A, which yields 800 projections at a lower reso-

lution of 42 µm per pixel. Precise centro-symmetrical align-

ment of the rock cores along the vertical axis is an important

prerequisite for success with the BH correction procedure.

The reconstruction of the 3-D data set was performed

on the fly by the Feldkamp filtered back-projection algo-

rithm (Feldkamp et al., 1984). This classical 3-D cone-beam

reconstruction algorithm follows three main steps: (i) pre-

weighting the projection rays according to their position

within the beam cone; (ii) filtering the projections along hor-

izontal detector lines using a discrete filtering kernel; and

(iii) performing a weighted back projection of the filtered

projections along the cone with a weighting factor. Raw pro-

jections were corrected for dark current and flat-field vari-

ations, followed by non-local mean filtering, ring removal,

and filtered back-projection reconstruction using the imag-

ing software package Octopus (https://octopusimaging.eu/;

Vlassenbroeck et al., 2007).

The µXCT images are rarely perfect representations of

the attenuation coefficients, because they are also biased

by scatter and noise. Therefore, image denoising was ad-

ditionally performed as an initial correction operation. A

suitable smoothing filter should reduce the noise level with

minimal alteration of edged features in the image. We ap-

plied a 3-D median filter technique with window size mask

(3× 3× 3 in 3-D), which replaces a singular pixel value with

the median value considering the nearest-neighbourhood pix-

els. The median filter acted to smooth noisy regions and to

improve the preservation of their boundary structures (Gal-

lagher et al., 1981), and it is routinely implemented on

µXCT images (Culligan et al., 2004; Kaestner et al., 2008;

Khan et al., 2012; Sell et al., 2013; Landry et al., 2014;

Herring et al., 2015). After reconstruction of the raw data

from all three samples, 2-D digital images of dimensions

x,y = 1327× 1212 pixels of sample A, 1600× 1600 pixels

of sample B, and 1417× 1417 pixels of sample C were cho-

sen to evaluate our image correction and novel classification

scheme.

2.2 Mathematical basis of the surface-fitting algorithm

Our post-reconstruction method corrects the BH artefact by

fitting a 2-D polynomial, i.e. a quadratic surface to the recon-

structed µXCT image data (2-D slice). The surface-fitting

(i.e. second-order polynomial) approach has a mathematical

expression of the form

P(xk,yk)= a1+ a2x+ a3y+ a4x
2
+ a5xy+ a6y

2,

k = 1,2, . . .,N (1)

for some choice of unknown coefficients a1, a2, . . . , a6. The

solution for all an coefficients determines the best fit of the

polynomial of Eq. (1) to a given set of data points (recon-

structed grey-scale values). The final BH-corrected image is

the residual of the data points, i.e. the difference between the

surface elevation values and the original image values. Con-

sider fk ∈ (xk,yk),k = 1,2, . . .N as arbitrary data points on

the 2-D slice (µXCT image); then the normal equations for

fitting a polynomial (Eq. 1) can be expressed in a matrix–

vector form:

M=



1 x1 y1 x2
1 x1 y1 y2

1

1 x2 y2 x2
2 x2 y2 y2

2

. . . . . .

. . . . . .

. . . . . .

1 xN yN x2
N xN yN y2

N


,

a =



a1

a2

a3

a4

a5

a6


,

f =



f1

f2

.

.

.

fN


. (2)

Equation (2) can be solved to yield the solution vector a by

MTMa =MTf . (3)

The solution of Eq. (3) for the vector a determines the best

fit of the polynomial of Eq. (1) to a given set of data points.

The Matlab code of this surface-fitting approach for BH cor-

rection is listed in the Appendix.

2.3 Mathematical basis of the LS-SVM classification

algorithm

Once BH correction of a µXCT image by surface fitting has

been accomplished, a pixel-based multi-classification can ef-

ficiently be performed by utilizing supervised machine learn-

ing of the SVM type. The basic mathematical formulation of

the SVM classifier and its non-linear or least-squares ver-

sions is presented here only in brief. For further details,

please refer to the classical literature and textbooks (Vapnik,

1995; Chapelle et al., 1999; Suykens et al., 2002). In general,

the non-linear support vector machine (NL-SVM) method
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maps the input vector into the high-dimensional feature space

by non-linear mapping associated with a kernel function (of-

ten called “kernel trick”; refer to Eqs. 14 and 15). The aim is

to construct an optimal separating hyperplane, also known as

maximum-margin hyperplane in the higher-dimensional fea-

ture spaces. For classification problems, let {yi,xi}
N
i=1 be a

given training set of N data points (here: each points are ac-

counted as image pixel values), where xi ∈ <
n is the ith input

in n-dimensional vector space, and yi ∈ < is the associated

output class of labels such that yi ∈ {−1,+1}. A graphical

scheme is depicted in Fig. 1 for a better understanding of

the mathematical background of the NL-SVM implementa-

tion. The input data points of two classes {+1, −1} are non-

linearly separable in a feature x space (x1 and x2 in Fig. 1a).

In this scheme, every data point (blue or green colour dot

point in Fig. 1a) has a location in the space and represents a

vector in that space with the assigned class. In other words,

if the features x1 and x2 represent two dimensions, then

each data point represents a two-dimensional vector space.

In Fig. 1b, the data points (vectors) are transformed from the

original input x space into a higher-dimensional z space (z1,

z2). This means that by the induction of non-linear kernel

function the data points, which were not linearly separable in

original x space, are now separated by a linear hyperplane de-

fined by a normal vectorw, with the help of a kernel function

using the kernel trick. In Fig. 1b, the safety space showed by

dotted lines between two classes is a margin, and the points

on the margin are called the support vectors.

The idea of the maximum-margin hyperplane is obtained

from statistical learning theory and provides a probabilistic

test error bound that is minimized when the margin is max-

imized (see graphical representation of NL-SVM, Fig. 1).

The parameters of the maximum-margin hyperplane are de-

rived by solving a quadratic programming (QP) optimization

problem. Suykens and Vandewalle (1999) proposed the idea

of modifying Vapnik’s SVM formulation by adding a least-

squares term to the cost function, which transformed the

problem from solving a QP problem to the practically more

convenient solving of a set of linear equations. This modifi-

cation significantly reduces the effort in complexity and thus

the computational cost, which may otherwise become exces-

sive. Consider the feature (kernel) function φ(xi) : <
n
→

<
nb representing a non-linear mapping to a high-dimensional

feature space which is formulated as

wTϕ(xi)+ b ≥ 1, if yi =+1, (4)

and

wTϕ(xi)+ b ≥−1, if yi =−1, (5)

which is equivalent to

yi
[
wTϕ(xi)+ b

]
≥ 1, i = 1, . . .,N, (6)

where w ∈ <n is an adjustable weight vector parameter, and

b ∈ < is a bias term. The slack variable ξi ≥ 0 is introduced

in the case of the violation of Eq. (6).

yi
[
wTϕ(xi)+ b

]
≥ 1− ξi, i = 1, . . .,N. (7)

In real data classification problems, a perfect linear sep-

aration is impossible due to overlapping classes. There-

fore, a limited number of misclassifications should be tol-

erated around the margin. The simplified least-squares sup-

port vector machine (LS-SVM) algorithm is thus derived

from the general non-linear support vector machine approach

(Suykens and Vandewalle, 1999). In LS-SVM for function

estimation, the following optimization problem is formulated

to minimize the empirical risk of misclassification in Eq. (7):

min
w,b,e

Jp(w,e)=
1

2
wTw+ γ

1

2

N∑
i=1

e2
i , (8)

subject to the equality constraints

yi
[
wTϕ(xi)+ b

]
=−1+ ei, i = 1, . . .,N, (9)

where ei = ([e1,e2, . . . eN ]T) represents the estimation error

for some misclassification tolerance in the case of overlap-

ping distributions and γ is a positive regularization constant

in the cost function defining the trade-off between a large

margin and misclassification error. In the case of the primal

problem expressed in terms of the feature map, the parameter

wmay have a range over an “infinite-dimensional” parameter

set. Therefore, the dual problem for the LS-SVM represents a

solution in terms of the kernel function by means of Lagrange

multipliers αi = γ ei , which can be positive or negative due to

the equality constraints. This means that no sparseness prop-

erty remains in the LS-SVM formulation, and every training

data value is treated as a support vector. The Lagrangian

`(w,b,e;α)= Jp(w,b,e)

−

N∑
i=1

αi{yi
[
wTϕ(xi)+ b

]
− 1+ ei} (10)

is given by the following conditions for optimality:

∂`
∂w
= 0 → w =

∑N
i=1αiyiϕ(xi),

∂`
∂b
= 0 →

∑N
i=1αiyi = 0,

∂`
∂ei
= 0 → αi = γ ei,

∂`
∂αi
= 0 → yi

[
wTϕ(xi)+ b

]
− 1+ ei = 0,

i = 1, . . .,N. (11)

These can be written as a linear system:
I 0 0 −ZT

0 0 0 −Y T

0 0 γ I −I

Z Y I 0



w

b

e

α

=


0

0

0

→

1

 , (12)
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Figure 1. Graphical presentation of the support vector machine

classifier with a non-linear kernel, (a) complex binary pattern clas-

sification problem in input space, and (b) non-linear mapping into

high-dimensional feature space where a linearly separable data clas-

sification takes place.

where Z = [ϕ(x1)
Ty1. . .ϕ(xN )

TyN ]
T, Y = [y1. . .yN ]

T,
→

1 =

[1. . .1]T, e = [e1. . .eN ]
T, and α = [α1. . .αN ]

T. Elimination

of w and e gives[
0−Y T

Y9 + γ−1 I

] [
b

α

]
=

[
0

1

]
. (13)

The kernel trick is applied to the matrix 9 = ZTZ.

Hence,

9il = yiylϕ(xi)
Tϕ(xl)=H(xi,xl), (14)

9il = yiylH(xi,xl), i, l = 1, . . .,N. (15)

According to Mercer’s condition (Aronszajn, 1950), any

positive-definite kernel function can be expressed as the in-

ner product of two vectors in some feature space and can

be used in LS-SVM. This relation is also often termed

kernel trick since no explicit construction of the mapping

φ(xi) is needed. It enables the LS-SVM to work in a high-

dimensional feature space, without actually performing cal-

culation in this space. Computations are done in another

space after applying this kernel trick. In short, one starts

from a formulation in the primal weight space with a high-

dimensional feature space by applying transformations φ(·).

The solution is calculated not in this primal weight space, but

in the dual space of Lagrange multipliers after applying the

kernel trick. In this way, classification is done implicitly in a

higher-dimensional feature space rather than in the original

input space. Hence, the non-linear LS-SVM classifier in dual

space ultimately takes the form

y(x)= sign

[
N∑
i=1

αiyiH(x,xi)+ b

]
, (16)

where the sum is taken over the non-zero αi values which

correspond to N numbers of the training data set.

In our model approach, only the Gaussian radial basis

function (RBF) kernel is implemented in the LS-SVM clas-

sifier due to its high accuracy in function estimation and

data set classification (Van Gestel et al., 2002; Selvaraj et

al., 2007; Caicedo and Van Huffel, 2010; Ghorbanzade and

Fatemi, 2012):

H(x,xi)= exp
(
−||x− xi ||

2/σ 2
)
, (17)

where ||x− xi ||
2 is the squared Euclidean distance between

the two feature vectors x and xi , and σ 2 is the squared vari-

ance of the kernel function. If the kernel results in a higher

value near the point x following the Gaussian with some

spread σ , this indicates similarities between the data points

x and xi in the feature space. The value of the RBF ker-

nel decreases with distance between 0 and 1 in the range

of σ threshold values. In other words, for a large enough

σ value, all data points are similar to the kernel (x = xi),

while, for a small number of σ , only a few points will

be in similarity to any particular data points x. In the LS-

SVM model, the Mercer condition holds for all σ values

of the RBF kernel. Also, the data point x contains only

one data point, whereas xi can have N data points of the

same dimension as x. For the LS-SVM approach to be real-

ized in practice, the public-domain toolbox LS-SVMlab v1.8

is used (http://www.esat.kuleuven.be/sista/lssvmlab/), which

contains Matlab–C implementations for a number of rele-

vant algorithms. The overall workflow of our two-stage post-

reconstruction image processing approach including BH cor-

rection and the LS-SVM segmentation approach is illustrated

in Fig. 2.

3 Results

3.1 Correction for beam-hardening effects

In the presence of a BH artefact, the reconstructed grey-scale

values vary across the rock core from higher values at the

periphery to lower values in the central region for the same

mineral phase. Visual inspection of the images A, B, and

C of our three samples showed that the grey-scale values

of the minerals in the central region may overlap with the

grey-scale values of other minerals at the periphery (Fig. 3),

which would significantly hamper the correct differentiation

between both minerals. In order to adjust unequivocally a

unique grey-scale level for each mineral phase, we applied

the quadratic 2-D polynomial function (Eq. 1) to our images.

This polynomial approximation constructs the surface that

best fits the cloud of data points subject to the coefficients de-

termined by Eq. (3). The residual data values were extracted

as the difference between the values of the original data and

those of the fitted surface (Fig. 4c). Due to the BH effect,

the attenuation cross-section function across a sample is a

parabolic curve rather than a linear line (Fig. 5, light-grey

colour lines). For a better visualization of the fitted surface

to the frequency (distribution) of grey-scale values (cloud

data) of each phase in an image, we illustrated here grey-

www.solid-earth.net/7/481/2016/ Solid Earth, 7, 481–492, 2016
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Figure 2. Workflow chart of our proposed µXCT image post-

processing method that combines BH correction with an LS-SVM

segmentation algorithm.

scale values row-wise at the centre of each image in y direc-

tion (Fig. 5). For image A, the fitted function passed through

the centre of grey-scale values because of equally distributed

phases (sand grains and pores, Fig. 5a). On the other hand,

in the case of images B and C, the function was fitted to the

abundance of the phase grey-scale values (clay minerals in

Fig. 5b, c) and missed out on the fitting to other phases. How-

ever, due to the high-contrast grey values of each phases, the

grey-level differences in residual grey values were possible.

For instance, in the distribution of residual grey-scale values

in a 2-D image (Fig. 4c) and the corresponding plot (Fig. 5c,

single line black colour), the peaks representing a higher

grey-scale level of anhydrite mineral are clearly differenti-

ated from the base level data values representing clay miner-

als. The images were again reconstructed from the residual

data values, which ultimately leads to the efficient removal

of the BH artefact in comparison with the original images

(compare Fig. 4b and d).

3.2 LS-SVM multi-classification for phase analysis

Upon successful removal of the BH artefacts, the LS-SVM

algorithm was tested for the multi-classification task. The

performance of the LS-SVM algorithm was ultimately eval-

uated also in the same image but with uncorrected BH arte-

facts. The two µXCT images B and C were chosen for the

LS-SVM model validation. In our LS-SVM approach, the

direct (voxelized) input of an original µXCT image was

mapped into a feature vector for training and for testing data

points. The rock core µXCT image B was classified into bi-

nary phases: clay minerals and cracks/pores; image C was

classified into the three major phases: halite, anhydride, and

clay minerals. To perform a pixel-based classification, cer-

tain regions at different locations (four for image B and six

for image C) were manually selected, as marked by letters in

Fig. 6a, d. The selection of all pixel values for each phase was

performed carefully to avoid boundaries overlapping with

each other phase and to limit the misclassification rate. For

image B, the total number of data points thus trained for bi-

nary phases was 1190 (training data), which is only 0.06 % of

the entire pixel data set of the rock core in a 2-D slice. The re-

maining 1 905 290 pixels were treated as an unknown data set

(test data). In the case of image C, a total of 1755 pixels were

trained, which is 0.01 % of all object pixels in a 2-D slice, and

the remaining 1 570 149 pixels were used as a test data set.

It is important to include a possible range of grey-scale level

in a training data set, in order to provide maximum informa-

tion with true class labels; otherwise the classifier considers

the output to be undecided. In our LS-SVM approach, the

generalization performance of the algorithm requires tuning

of a set of hyperparameters (e.g. the regularization constant

γ and the RBF kernel parameter σ 2). These tuning param-

eters were obtained by combining a coupled simulated an-

nealing (CSA) and a standard simplex method. First, CSA

was used to determine the appropriate starting points to be

transferred to the simplex optimization routine to tune the re-

sult. Finally, for both images B and C, an optimal value set

of γ = 3.94, σ 2
= 1.62, and γ = 4.6, σ 2

= 1.7, respectively,

was determined in the training data set B and C by applying

a leave-one-out routine with a 10-fold cross-validation score

function and encoding scheme of one versus one. The re-

maining data sets of both images B and C were tested based

on the predictor feature vector (data points) of the training

class labels thus obtained. The output of the data values clas-

sified in this way was again reconstructed to give an image

in which each distinguished attenuation level was labelled

by a single integer value. In Fig. 6b and c, the binary val-

ues of “0” and “1” represent the phases of clay minerals and

cracks/pores, respectively, of a rock core object inside a 2-D

slice. In addition, the labelled values of “1”, “2”, and “3” for

the three phases halite vein, anhydrite, and clay minerals, re-

spectively, are illustrated in Fig. 6e and f. From visual inspec-

tion, the LS-SVM performs quite well on the BH-corrected

image, in which the label class of each phase distribution is
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Figure 3. Reconstruction of a µXCT image of computational domain sizes of (A) a 16 bit image of 1327× 1212 dimensions with each pixel

length 5.9 µm of a sand-filled Plexiglass tube, and of (B, C) 8 bit images of dimensions 1600× 1600 and 1417× 1417 pixels of two different

rock cores (42 µm per pixel).

Figure 4. BH correction after noise filtering, where (a) depicts the

2-D polynomial surface, fitted to the original image grey-scale val-

ues (b). The red–blue colour range in (a) represents the elevation

of the fitted surface from higher to lower grey-scale values. (c) de-

picts the plot representing the residual grey-scale range of values

as a result of the surface fitting, and (d) the reconstruction of the

BH-corrected image.

well matched with the mineral distribution in the original im-

age but fails to perform in this way on the image with BH

artefacts.

4 Discussion

Due to the nature of the BH artefact present inµXCT images,

the reconstructed grey-scale data values for the same mineral

phase show a non-linear (parabolic) attenuation curve from

the periphery to the centre of the rock cores. A 2-D poly-

nomial surface function was fitted to a slice image in order

to extract residual data values in terms of the difference be-

tween the original data values and the fitted surface points.

This BH correction approach is quite flexible for any geo-

material of any shape. In principle, this method could also

be applied to non-cylindrical samples and is computationally

fast. Any further classification results can be biased by the

BH effect if not corrected for, and this bias can be evaluated

by a performance measure based on the receiver operating

characteristic (ROC) method. The ROC is a statistical mea-

sure of the performance of a binary classification test and

provides tools to select optimal models in the analysis of

decision making (Brown and Davis, 2006; Fawcett, 2006).

An ROC curve can be constructed by plotting the specificity

(“false-positive rate”) against the sensitivity (“true-positive

rate”) by varying the decision threshold over its entire range.

In our LS-SVM model scheme, only binary classification

ROC function is integrated. Therefore, the multi-phase clas-

sification problem was first decomposed into binary classi-

fication tasks; i.e. for an image C, phases of anhydrite and

halite were arranged as one class group and compared with

the clay minerals as another phase to measure the ROC re-

lationship for LS-SVM both with and without BH-artefact-

corrected images. Similarly, the ROC method was imple-

mented on image B with binary phases classified as clay

minerals and cracks/pores (see Fig. 6b, c). Note that ROC

was implemented only on the training set data to minimize

computational costs. In addition to the ROC parameters of

www.solid-earth.net/7/481/2016/ Solid Earth, 7, 481–492, 2016
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Figure 5. Plot of grey values of BH correction by our proposed

method. The curves in plot (a), (b), and (c) represent the BH cor-

rection corresponding to the images in Fig. 3a, b, and c, respectively.

The light-grey colours show the grey values of the BH-uncorrected

images, which are extracted row-wise (horizontally) at the centre of

each image. The black solid curves represent the residual grey-scale

range of values as a result of the fitting.

sensitivity and specificity, other important performance mea-

sures calculated were the area under the ROC curve (AUC;

Hanley and McNeil, 1982; Selvaraj et al., 2007; Luts et al.,

2010) and accuracy, which represented the ratio of correctly

assigned classes (Brown and Davis, 2006). A typical plot of

the ROC curve is shown in Fig. 7.

From the performance classification plot in Fig. 7a and b,

the calculated parameters of AUC and accuracy were 0.989

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

A 

B 
C 

D A 
B C D 

E 

F 

Figure 6. Pixel-based image classification using LS-SVM, where

(a) and (d) depict locations of pixels selected for training in

the original µXCT image, (b) and (e) the output of the multi-

classification on the BH-corrected image, (c) and (f) the output

of multi-classification in the presence of BH artefacts. In im-

age (b) and (c), the dark colour represents cracks/pores, while the

light colour shows the clay mineral regions of sample A; in im-

ages (e) and (f), the dark colour represents the halite veins, grey

colour the anhydride phase, and light colour the clay mineral region

of the evaporite rock cores B and C.

and 99.41 % for the BH-corrected image (Fig. 6b), but as

low as 0.901 and 81.10 % in the presence of a BH arte-

fact (Fig. 6c). Similarly, the parameters of AUC and accu-

racy were calculated from the performance classification plot

shown in Fig. 7c and d. The AUC and accuracy were 0.999

and 99.82 % for the BH-corrected image (Fig. 6e) and 0.963

and 88.71% in the presence of a BH artefact, respectively

(Fig. 6f). Therefore, the performance measure results based

on the pixel-based grey value training data set demonstrate

that the probabilistic bias rate was higher in the BH-affected

images, and this consequently caused misclassification of the

test data. This finding provides evidence that BH correction

is an important prerequisite in obtaining a good classifier per-
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Figure 7. ROC curve analysis of LS-SVM classifier performance on

the basis of training set. (a) and (c) are the result of BH-corrected

image, and (b) and (d) are the outcome of BH-uncorrected image.

formance, e.g. by using the LS-SVM approach. For an opti-

mal classification result, it is always desirable to include the

full grey-scale range (“pixel value”) of each individual phase

to be trained in order to avoid misclassification, i.e. an unde-

cided data classification as undesired output.

5 Conclusions

In this study, polychromatic cone-beam X-ray-source-

generated µXCT images of cylindrically shaped samples

(sand-filled tube and rock cores) were evaluated for the effi-

cient removal of the beam-hardening artefact and subsequent

optimized multi-phase classification. A drawback is that in

cases of multi-component geological material of extremely

low contrast between different phases, the fitting of the sur-

face function to the cloud of data points may fit one phase

well but may miss out another one. Consequently, this leads

to over- or underestimation of the range of grey-scale values

of each individual phase in the corrected image, which will

subsequently affect the correct phase classification. There-

fore, it is necessary to apply 2-D-polynomial fitting on the

grey range of each individual phase separately.

The advanced least-squares support vector machine

(kernel-based learning) method is proposed as an efficient

routine to segment the µXCT images on the basis of a di-

rect pixel-based classification task. Without any reduction in

dimensionality, i.e. dealing with the large dimensional classi-

fication problem, the radial basis function kernel yields over-

all good classification results for BH-corrected images with

a high accuracy rate (less misclassification), but it fails to

classify phases in the presence of beam-hardening artefacts

as quantified by a ROC analysis. Our method is sensitive to

the selection of data points (pixels) at different locations, and

to the number of data values of each individual mineral se-

lected for training. Therefore, the presence of artefacts and

inadequate data value selection for a specific mineral may

affect correct image classification and may become compu-

tationally costly as the result of the higher dimensionality of

the feature vector. In a companion paper, a comparison is pre-

sented of our LS-SVM method with other supervised and un-

supervised machine learning techniques to demonstrate that

it is best suited for µXCT image segmentation (Chauhan et

al., 2016).
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Appendix A: Matlab code of beam-hardening (BH)

correction by the quadratic surface-fitting approach

function [M_corr Surfacefit]=BHC_function(A)

% Quadratic surface equation of second-order polynomial

% P(xk,yk)= a1+a2x+a3y+a4x
2
+a5xy+a6y

2, k =

1,2, . . .,N

% To find coefficients “a” of best fit to a function ex-

pressed by MTMa=MTf

% M_corr =BH-corrected image

% Surfacefit =Surface fit values

% First convert µXCT image grey-scale values into a ma-

trix “A”

% Image input parameters

nX=1417; % X dimension of the input

image

nY=1417; % Y dimension

limitval=1;

zshift=15 000; % This can be changed according to im-

age grey-scale range (here 16 bit: 0–65 535)

% Main function

[r,c,v]=find(A> limitval);

M=zeros(size(c,1),6);

M(:,1)=1;

M(:,2)=c; % x indices

M(:,3)=r; % y indices

M(:,4)=c.∧2;

M(:,5)=c.*r;

M(:,6)=r.∧2;

cyl=A> limitval; % To extract the grey-scale value of

only the object material of the 2-D slice.

R=cyl.*A;

[m,n,f]=find(R);

a=(M’*M)∧(−1)*(M’*f);

p=a(1).*M(:,1)+ a(2).*M(:,2)+ a(3).*M(:,3)+

a(4).*M(:,4)+ a(5).*M(:,5)+ a(6).*M(:,6);

corr=f-p+ zshift;

S= sparse(r, c,corr, nX,nY);

M_corr=full(S);

p1=sparse(r, c,p, nX,nY);

Surfacefit=full(p1);

M_corr=uint16(M_corr);

end
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