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Abstract. Ground deformation and gravity changes in rest-

less calderas during periods of unrest can signal an impend-

ing eruption and thus must be correctly interpreted for hazard

evaluation. It is critical to differentiate variation of geophys-

ical observables related to volume and pressure changes in-

duced by magma migration from shallow hydrothermal ac-

tivity associated with hot fluids of magmatic origin rising

from depth. In this paper we present a numerical model to

evaluate the thermo-poroelastic response of the hydrother-

mal system in a caldera setting by simulating pore pressure

and thermal expansion associated with deep injection of hot

fluids (water and carbon dioxide). Hydrothermal fluid circu-

lation is simulated using TOUGH2, a multicomponent mul-

tiphase simulator of fluid flows in porous media. Changes

in pore pressure and temperature are then evaluated and fed

into a thermo-poroelastic model (one-way coupling), which

is based on a finite-difference numerical method designed for

axi-symmetric problems in unbounded domains.

Informed by constraints available for the Campi Flegrei

caldera (Italy), a series of simulations assess the influence

of fluid injection rates and mechanical properties on the

hydrothermal system, uplift and gravity. Heterogeneities in

hydrological and mechanical properties associated with the

presence of ring faults are a key determinant of the fluid

flow pattern and consequently the geophysical observables.

Peaks (in absolute value) of uplift and gravity change profiles

computed at the ground surface are located close to injection

points (namely at the centre of the model and fault areas).

Temporal evolution of the ground deformation indicates that

the contribution of thermal effects to the total uplift is al-

most negligible with respect to the pore pressure contribu-

tion during the first years of the unrest, but increases in time

and becomes dominant after a long period of the simulation.

After a transient increase over the first years of unrest, grav-

ity changes become negative and decrease monotonically to-

wards a steady-state value.

Since the physics of the investigated hydrothermal system

is similar to any fluid-filled reservoir, such as oil fields or

CO2 reservoirs produced by sequestration, the generic for-

mulation of the model will allow it to be employed in moni-

toring and interpretation of deformation and gravity data as-

sociated with other geophysical hazards that pose a risk to

human activity.

1 Introduction

Variations in geophysical observables, such as ground defor-

mation at active volcanoes, are useful indicators of subsur-

face mass and density changes and can be evaluated as pre-

cursory signals to an impending eruption via data modelling.

For caldera volcanoes in particular, earlier models focused

on explaining ground deformation by magma emplacement

(Anderson, 1937; Mogi, 1958; Bonafede et al., 1986; Bianchi

et al., 1987; De Natale et al., 1991). Beside this interpreta-

tion, more recently models also consider the perturbation of
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hydrothermal systems (by pore pressure changes, variations

in gas saturation and thermal expansions) as a possible (ad-

ditional) source of spatio-temporal variations in deformation

and gravity signals (Casertano, 1976; Gottsmann et al., 2003,

2006a, b; Todesco et al., 2003, 2010; Chiodini et al., 2007;

Hurwitz et al., 2007; Hutnak et al., 2009; Ingebritsen et al.,

2010; Rinaldi et al., 2010, 2011; Troiano et al., 2011).

The origin of unrest activities is still under debate in many

restless calderas (such as at the Campi Flegrei, Italy), al-

though for pre-eruptive hazard assessment it is fundamen-

tal to disentangle the signals generated by hydrothermal per-

turbations (e.g. Todesco and Berrino, 2005; Hurwitz et al.,

2007; Hutnak et al., 2009; Todesco et al., 2010; Rouwet et al.,

2014) from those related to magma movement towards the

surface (e.g. Amoruso et al., 2008, 2014b; Woo and Kilburn,

2010; Trasatti et al., 2011). Few deformation models account

for significant complexities such as heterogeneities in key

hydrological and mechanical properties of matrix and faults,

which might influence both the path of ascending magma and

the sub-surface circulation of hydrothermal fluids. Here we

present a numerical model to evaluate ground deformation

and gravity changes caused by the hydrothermal fluid cir-

culation in restless calderas, taking into account the above-

mentioned complexities.

2 Background and motivation

Although the model is applicable to any caldera system, the

model parametrisation in this paper is based on data available

from the Campi Flegrei (CF) caldera in Italy. The CF, situ-

ated to the west of Naples, formed as a result of two structural

collapses associated with the eruptions of the Campanian Ig-

nimbrite (39 ka) and the Neapolitan Yellow Tuff (14 ka) (Orsi

et al., 1996; Rolandi et al., 2003; Deino et al., 2004). The CF

has received growing attention from the scientific community

due to its reawakening in the last 50 years after a period of

quiescence since the last eruption in 1538 with background

slow subsidence at a rate of ∼ 1.5 cm yr−1 (Parascondola,

1947). Renewed unrest was associated with two periods of

bradyseism (1969–1972 and 1982–1984), with a total verti-

cal deformation of about 3.5 m (Troise et al., 2008). To date

these uplifts have not culminated in an eruption. After 1984 a

period of more than 20 years of general subsidence followed,

interrupted sporadically by a series of minor uplift events.

Since 2006 the caldera started uplifting again with an in-

creased rate from 2011 (De Martino et al., 2014). Maximum

ground deformation is recorded near the town of Pozzuoli,

while the main fumarolic activities occur ∼ 800 m away at

La Solfatara.

Significant gravity changes associated with unrests are

usually observed in caldera systems (Berrino et al., 1984;

Battaglia et al., 2003; Gottsmann et al., 2003; Todesco and

Berrino, 2005), either at the centre of maximum deformation

or at the structural boundaries of the caldera complex, which

are likely associated with caldera ring faults (e.g. Gottsmann

et al., 2006a).

Ring faults significantly alter strain partitioning and fluid

propagation and hence must be considered for the interpre-

tation of geophysical signals (De Natale and Pingue, 1993;

De Natale et al., 1997; Beauducel et al., 2004; Folch and

Gottsmann, 2006; Troiano et al., 2011; Jasim et al., 2015).

In this paper we explore the impact of vertical and lateral

mechanical heterogeneities in the shallow crust beneath the

CF, including ring faults, on monitoring signals at the surface

(ground deformation and gravity changes) as a consequence

of unrest caused by a perturbation of the shallow hydrother-

mal system. Unrest is modelled by the injection of a mixture

of hot water and carbon dioxide at the centre of the caldera

system, which is associated with the main fumarolic activ-

ity at La Solfatara, and at the base of the ring faults, which

simulates fluid release from a deeper pressurised reservoir

(Jasim et al., 2015). We investigate the separated contribution

of pore pressure and thermal effects to total ground deforma-

tion through a series of generic test cases which compare the

single (central) injection model with the simulation of mul-

tiple injection points. We then show that different injection

rates alter the timescales and amplitudes of deformation and

gravity changes during periods of unrest. A sensitivity anal-

ysis of fault mechanical properties is also provided.

It is important to note that, while models are informed by

data on the solid and fluid mechanics of the CF, we do not

attempt to replicate or fit observations made during the on-

going unrest at CF.

3 Model parametrisation

In order to account for the complex mechanical structure of

the shallow crust and the caldera infill at a restless caldera

(such as CF caldera), the modelling domain is subdivided

into several regions with different hydrological and mechan-

ical properties. The model is 2-D axi-symmetric and defined

by the coordinates (r,z), with r the radial distance and z the

vertical position. The hydrological model is 1.5 km deep and

is closed to heat and fluid flow in the radial direction and to

fluid flow across much of the basal boundary (Fig. 2, detailed

in Sect. 3.1), whereas the mechanical model is unbounded in

the radial and downward vertical direction (Fig. 3, detailed

in Sect. 3.2). Both models are based on information available

for the CF and designed such that a central fumarolic field is

situated on its rotational axis.

Two high-angle faults (Faults A and B) are implemented

with parameters informed by data on the ring faults of the

Neapolitan Yellow Tuff (14 ka) and Campanian Ignimbrite

(39 ka) eruptions, respectively (De Natale and Pingue, 1993;

Orsi et al., 1996; Folch and Gottsmann, 2006; Piochi et al.,

2014). The fault geometry is represented in Fig. 1. Follow-

ing the approach of Jasim et al. (2015), the upper point P

is placed at (r = 3 km, z=−200 m) for Fault A and (r =
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Figure 1. Geometry of a fault. Fault extends from a shallow point

P , over a vertical distance d and forms a dip-angle θ with the hori-

zontal axis. The fault structure comprises two units: a central narrow

core zone surrounded by a wider damage zone. Both units have dif-

ferent hydrological and mechanical parameters to the surrounding

rock.

Figure 2. Heterogeneous hydrological domain. Two transition

zones are placed between the central conduit and Layers A and B,

with intermediate hydrological parameters (Table 1). Atmospheric

boundary conditions are fixed on the top (which is open to fluid

and heat flow), lateral boundaries are assumed to be impervious and

adiabatic, while a heat flux is assigned at the bottom impervious

boundary at a rate of 0.195 W m−2 to ensure a temperature gradi-

ent comparable to that estimated for CF (∼ 130 ◦C km−1, (Rosi and

Sbrana, 1987; De Siena et al., 2010; Piochi et al., 2014)).

6.5 km, z= 0 m) for Fault B. Both faults are steeply inclined

(with dip angles of θ = 80 and θ = 75◦, respectively) and

penetrate the system up to a depth of 3 km (d = 2.8 km for

Fault A and d = 3 km for Fault B). While Fault B extends to

the ground surface, Fault A tips out at a depth of z=−200 m

(Rosi and Sbrana, 1987; Orsi et al., 1996; Jasim et al., 2015).

The fault zone is divided into two sub-zones with different

hydrological and mechanical characteristics: a central narrow

(25 m wide) core zone is bordered on both sides by a wider

(100 m wide) damage zone, the latter having properties inter-

mediate between those of the core and the rock surrounding

the fault zone (Tables 1 and 2).

Figure 3. Heterogeneous mechanical domain. Mechanical param-

eters are reported in Table 1. Inclination and radial placement of

faults are not in scale. The domain extends toward infinity in the ra-

dial and vertical (downward) directions. Free-stress boundary con-

ditions are ascribed at the top boundary, while vanishing displace-

ments are assigned at infinite distances.

3.1 Hydrothermal model

Simulation of the hydrothermal circulation is performed by

the well-known TOUGH2 software, a fluid flow and heat

transport simulator of multiphase multicomponent fluids in

porous media accounting for phase changes, relative perme-

ability of each phase and capillarity pressure (Pruess et al.,

1999). TOUGH2 solves a system of mass and energy balance

equations that can be summarised as follows (for a general

case of a fluid with k components):

∂Qα

∂t
+∇ ·Fα − qα = 0, α =M1, . . .,Mk,E, (1)

where Q is the accumulation term, F the flux and q the

source (or sink) term, while the subscript α =Mi or E refers

to the mass balance equation for the ith component or the en-

ergy balance equation, respectively. The accumulation terms

and fluid fluxes (based on the extended Darcy law) for mass

balance equations are

QMi
=φ

∑
β

ρβSβχ
i
β ,

FMi
=

∑
β

χ iβFβ ,

with Fβ =−K Krβ ρβ µ−1
β (∇Pβ − ρβ ĝ), (2)

where the subscript β = l or g refers to the liquid or gas phase

respectively, φ is the porosity, ρβ the density, Sβ the satu-

ration, χ iβ the mass fraction of the ith component in the β

phase, K and Krβ are the absolute and relative permeability,

www.solid-earth.net/7/557/2016/ Solid Earth, 7, 557–577, 2016
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Table 1. Hydrological parameters for the domain of Fig. 2: rock density ρr (kg m−3), porosity φ, permeability K (m2), thermal conductivity

λ (W (m×K)−1), specific heat capacity Cr (J (kg×K)−1). Matrix permeability is isotropic, but enhanced in the vertical direction kz by

almost 2 orders of magnitude in the fault damage zone and by 3 orders of magnitude in the core of the faults. In other respects the fault zones

have the same hydrological characteristics as the matrix (star symbol ?).

Rock Porosity Permeability Thermal Specific heat

density conductivity capacity

ρr (kg m−3) φ K (m2) λ (W (m×K)−1) Cr (J (kg×K)−1)

Central conduit 1800 0.10 10−14 1.15 900

Layer 1 – Pyroclastic material 1700 0.35 5× 10−15 1.15 900

Layer 2 – Tuffs and marine deposits 2300 0.15 10−15 1.50 1000

Transition 1 1700 0.15 8× 10−15 1.15 900

Transition 2 1700 0.10 5× 10−15 1.50 1000

Faults – damage zone ? ? kz = 10−13 ? ?

Faults – core zone ? ? kz = 10−12 ? ?

Table 2. Mechanical parameters for the domain of Fig. 3: seismic p wave velocity vp (km s−1), rock density ρr (kg m−3), rigidity modulus

µ (GPa), Poisson ratio ν.

Seismic p wave Rock density Rigidity modulus Poisson ratio

velocity

vp (km s−1) ρr (kg m−3) µ (GPa) ν

Layer 1 – Pyroclastic material 1.60 1700 1.24 0.25

Layer 2 – Tuffs and marine deposits 3.44 2300 7.79 0.25

Layer 3 – Thermo-metamorphic rocks 4.78 2490 16.3 0.25

Layer 4 – Crystalline basement 5.76 2650 25.1 0.25

Layer 5 – Melt zone 2.80 2180 4.87 0.25

Layer 6 – Mantle 6.50 2810 33.9 0.25

Faults – damage zone ? ? 0.385 0.30

Faults – core zone ? ? 0.0357 0.40

respectively, µβ the viscosity, Pβ the fluid pressure and ĝ the

gravitational acceleration. For the energy balance equation,

the accumulation term (QE) and the heat flux (FE) are

QE =φ
∑
β

(ρβ eβ Sβ)+ (1−φ)ρr Cr T ,

FE =− λ∇T +
∑
β

hβFβ ,

where eβ and hβ are the specific internal energy and enthalpy

of the phase β, T is the temperature, and ρr, Cr and λ are the

density, specific heat and the thermal conductivity of the rock

respectively.

In this paper we simulate fluids of magmatic origin en-

tering the domain as a mixture of two components (k = 2):

hot water and carbon dioxide. This mixture is simulated by

the EOS2 module of TOUGH2. The depth of the domain for

the hydrological model is 1.5 km, since the focus is the shal-

low hydrothermal activity, maintaining temperature and pore

pressure of the entire simulation within the range considered

by TOUGH2-EOS2 equation of state modules (which does

not extend to super-critical fluids).

Atmospheric boundary conditions (P = 0.101325 MPa

and T = 20 ◦C) are prescribed on the top of the domain

z= 0; lateral boundaries are assumed to be impervious and

adiabatic. A heat flux of 0.195 W m−2 is assigned at the im-

pervious bottom boundary during the entire simulation, spec-

ified in order to sustain a temperature gradient comparable to

that estimated for CF – ∼ 130 ◦C km−1 (Rosi and Sbrana,

1987; De Siena et al., 2010; Piochi et al., 2014).

Cell centres of the finite-volume mesh used in TOUGH2

for the 1.5 km depth domain are shown in Fig. 4a. Hydrolog-

ical parameters (permeability, density and porosity) are ob-

tained from averaging drilling data for AGIP’s report (Piochi

et al., 2014), while the thermal properties of the rocks (ther-

mal conductivity and specific heat) are derived from Rosi and

Sbrana (1987) and Todesco et al. (2010) (see Table 1).

Although all parameter values are specified according to

measured data at CF, the rock permeability may vary over

several orders of magnitude, and this variation may substan-

tially influence the fluid flow and heat transport in all the

simulations. Jasim et al. (2015) explore the sensitivity of the

hydrological system to matrix (caldera fill) and fracture hy-

drological properties. However, exploration of a wide range

Solid Earth, 7, 557–577, 2016 www.solid-earth.net/7/557/2016/
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Figure 4. (a) Cell centres of the quasi-uniform mesh used in TOUGH2 to solve the equations of the hydrological model of Sect. 3.1. It is

composed of 5848 cells, spaced on a basis of a composed exponential distribution in such a way the radial spacing is finer adjacent to the

central conduit and faults and the vertical spacing is finer around injection points and towards the surface. (b) Exponential distribution for

the quasi-uniform mesh used for the unbounded domains of the geomechanical model (Eq. 5), composed of 66 049 grid points. The two ring

faults are shown in red. Yellow box represents the hydrological domain. The same mesh, but extended toward infinity also in the upward

direction, is used for the gravity model (Eq. 7).

of possible hydrological values goes behind the scope of this

paper.

Fault zones are assigned the hydrothermal properties of

the surrounding rock, except for the permeability, which is

represented by an anisotropic tensor K of Eq. (2):

K =
(
kr 0

0 kz

)
, (3)

where kr and kz are the radial and vertical permeabilities, re-

spectively. While kr equals the isotropic permeability of the

surrounding rock (set at 5× 10−15 and 10−15 m2 for layers

A and B), a higher value of kz is chosen for those cells of

the TOUGH2 finite-volume mesh whose centre falls into the

core (kz = 10−12 m2) and damage (kz = 10−13 m−2) zones

of the faults.

In order to simulate the fumarole activities at the centre

of the domain, a central conduit with a higher permeability

is placed at the centre of the domain and represented by a

vertical cylinder with a radius of 200 m. A transition zone is

specified between this conduit and the bulk of the caldera fill

which has intermediate hydrothermal properties, as in pre-

vious simulations of Todesco et al. (2010) and Jasim et al.

(2015) (Table 1).

3.2 Geomechanical and gravity models

The elastic response of a porous medium to pore pressure

and temperature changes associated with the circulation of

hot fluids is modelled by linear thermo-poroelasticity theory.

The thermo-poroelastic effects are taken into account by in-

cluding the pore pressure and temperature terms in Hooke’s

law (Rice and Cleary, 1976; McTigue, 1986):

ε =
1

2µ

(
σ −

ν

1+ ν
tr(σ )I

)
+

1

3

((
1

Kd

−
1

Ks

)
1P +β1T

)
I, (4)

where ε and σ are the strain and stress tensors, respectively,

µ is the rigidity modulus, ν the Poisson’s ratio, tr(σ )=

σxx +σyy +σzz the trace of σ , I the identity tensor, 1P and

1T are pore pressure and temperature changes, respectively,

Kd is the bulk modulus in drained conditions, Ks is the bulk

modulus of the solid constituent (Rice and Cleary, 1976; Ri-

naldi et al., 2010), and β is the volumetric thermal expan-

sion coefficient of the solid matrix. Since we assume that

deformations occur slowly, the governing equations are rep-

resented by the equations of equilibrium ∇ × σ = 0 with σ

obtained by the inversion of Eq. (4), leading to the following

set of Cauchy–Navier equations (Fung, 1965):

∇ · σ = 0,

σ =
2 µ ν

1− 2 ν
tr(ε) I + 2 µ ε−α 1P I −Kd β 1T I,

ε =
1

2

(
∇u+ (∇u)T

)
,

(5)

where α = 1−Kd/Ks is the Biot–Willis coefficient and u

is the deformation vector, and where we have used the re-

lation Kd =
2µ(1+ν)
3(1−2ν)

. The third Eq. (5) represents the linear

approximation of the strain–deformation relation for small

deformations.

www.solid-earth.net/7/557/2016/ Solid Earth, 7, 557–577, 2016
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Free-stress boundary conditions σ ·n= 0 are prescribed on

the surface, where n is the outward unit vector orthogonal to

the surface. Unlike the domain for the hydrothermal model

(Fig. 2), the computational domain of the problem defined

by Eq. (5) is unbounded in the radial r and vertical z down-

ward directions, and a vanishing displacement is assigned at

infinite distance: limr→∞u= limz→−∞u= 0. Since we as-

sume that the problem is axi-symmetric, we solve the 2-D

axi-symmetric version of Eq. (5) in the unknown u= (u,v),

where u and v are the radial and vertical deformation, respec-

tively.

The unbounded domain is discretised by a quasi-uniform

grid (Fig. 4b), whose resolution is finest close to the axis of

symmetry and smoothly decreases toward infinity (Grosch

and Orszag, 1977; Fazio and Jannelli, 2014). In this way

artefacts introduced by artificial truncation of the domain

are avoided. Equation (5) is discretised and solved by ex-

tending the finite-difference numerical method proposed

by Coco et al. (2014) for Cauchy–Navier equations to

thermo-poroelasticity equations.

Heterogeneities in mechanical properties (µ and ν) are

taken into account. In particular, the rigidity modulus µ for

each layer of Fig. 3 is derived from seismic p wave ve-

locity vp data (Orsi et al., 1996; Zollo et al., 2008; Piochi

et al., 2014) by the application of the formula of Mavko et al.

(2009):

µ=
V 2
p ρ (1− 2ν)

2(1− ν)
.

Density values of the porous medium ρ are derived from Vp
by the Brocher equation (Brocher, 2005):

ρ = 1.6612Vp − 0.4721V 2
p + 0.067V 3

p − 0.0043V 4
p + 0.000106V 5

p .

An appropriate value of the Poisson ratio for volcanic re-

gions of ν = 0.25 is specified for the whole domain, except

in the damage and core zones of the fault areas, where higher

values (0.30 and 0.40, respectively) are specified on the basis

of the nature of the rock (Gercek, 2007). Rigidity values are

reduced in the fault zones (µ= 0.385 and 0.0357 GPa for the

fault core and damage zone, respectively, which correspond

to E = 109 and 108, where E is the Young modulus). The

volumetric thermal expansion coefficient is β = 10−5K−1 af-

ter Rinaldi et al. (2010) and Todesco et al. (2010). All values

are reported in Table 2.

In order to separate the contribution of pore pressure to

the total ground deformation from thermal effects, we solve

two different sets of differential equations for the mechanical

simulation:
∇ · σT = 0

σT = σ̃ + 3β1T

σT ·n= 0 on 0

,


∇ · σP = 0

σP = σ̃ +α1P

σP ·n= 0 on 0,

(6)

where σ̃ = λ tr(ε)I + 2µε is the elastic stress tensor

(i.e. without taking into account pore pressure and temper-

ature contributions). Let uT and uP be the solutions of the

two problems Eq. (6), respectively. As a result of the linear-

ity of the stress–strain relationship σ̃ (u) and the divergence

operator, the total ground deformation u can be expressed

as the sum of the solutions to the two problems (namely

u= uT+uP). In practice, it is sufficient to solve only one

of the problems Eq. (6) and obtain the other solution by dif-

ference.

Gravity changes 1g are computed by solving the follow-

ing boundary value problem for the gravitational potential φg
(Currenti, 2014):

∇
2φg =−4 π G 1ρ, φg = 0 at infinity, 1g =−

∂φg

∂z
(7)

where G is the gravitational constant and 1ρ is the density

distribution change. The finite-difference method presented

by Coco and Russo (2013) is applied to solve the problem

Eq. (7) on an infinite domain, using the coordinate transfor-

mation method (Coco et al., 2014).

4 Numerical simulation scenarios and results

The background hydrothermal fluid circulation is driven by

the injection of a mixture of hot water and carbon dioxide

at a temperature of about 350 ◦C from the base of the cen-

tral high-permeable conduit, simulating the input of fluids

of magmatic origin. A heat flux is assigned at the bottom

impervious boundary at a rate of 0.195 W m−2. The steady-

state solution, obtained after a long-lasting injection period

(c. 4000 years), is used as the initial condition for the unrest

simulations (run-up to a final time of 100 years), which are

divided into the three scenarios described below.

4.1 Modelling scenarios

Scenario I: central injection at the base of the conduit (ra-

dius of 200 m) at the same temperature but at an in-

creased rate with respect to that used for the steady-state

quiescent solution (see Table 4);

Scenario II – constant mass rate: Scenario I plus injection

at the bases of each fault core zone of a total mass flow

rate equal to that of the central injection (see Table 3);

Scenario III – constant flux rate: Scenario I plus injection

at the bases of each fault core zone at a specific (per

square metre) mass flow rate equal to that of the central

injection (see Table 3).

Injection at the base of the faults (core zone of Fig. 1, 25 m

wide) for Scenarios II and III simulates the possible release

of gas from a deeper reservoir ascending along preferential

pathways of the fault zone during unrest periods.

4.1.1 Injection rates

Once the rates of the central injection are established, the

corresponding injection rates at the base of the faults are de-

Solid Earth, 7, 557–577, 2016 www.solid-earth.net/7/557/2016/
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Table 3. Different injection values (mass and flux rate) for the central conduit and faults, normalised to the injection of a mass of 1 kg of

fluids. Base area of the central conduit is π × 2002
= 125 664 m2, of the Fault A core zone is 2π × 3000× 25= 471 239 m2, of the Fault B

core zone is 2π × 6500× 25= 1021 018 m2.

Scenario I Scenario II Scenario III

central conduit – mass (kg s−1) 1 1 1

central conduit – flux rate (kg m−2 s−1) 7.96× 10−6 7.96× 10−6 7.96× 10−6

Fault A – mass (kg s−1) 0 1 3.75

Fault A – flux rate (kg m−2 s−1) 0 2.12× 10−6 7.96× 10−6

Fault B – mass (kg s−1) 0 1 8.13

Fault B – flux rate (kg m−2 s−1) 0 9.79× 10−7 7.96× 10−6

termined by Table 3. Rates of hot water and carbon dioxide

central injection for both the steady-state and unrest simu-

lations are selected in order to match observed data at CF,

following other models present in the literature for simulat-

ing the unrest activity associated with the perturbation of the

hydrothermal system (e.g. Chiodini et al., 2003; Todesco and

Berrino, 2005; Rinaldi et al., 2010; Todesco et al., 2010). In

particular, the injection rates for the steady-state simulation

are chosen so that the total flux (3400 tons day−1) and the

molar ratio CO2/H2O of 0.17 (equating to 1000 tons day−1

of CO2 and 2400 tons day−1 of H2O) are based on aver-

age degassing measured prior to the 1982–1984 bradyseis-

mic crisis, while an increased molar ratio of 0.40 is used for

the unrest simulation. Regarding the magnitude of the injec-

tion rates, several values have been adopted in the literature

in different contexts, albeit the rates used in Rinaldi et al.

(2010) and Todesco et al. (2010) (6000 tons day−1 of CO2

and 6100 tons day−1 of H2O) provide a good match to ob-

served data. Recently, a constraint on the magnitude of the

injection rates has been discussed by Afanasyev et al. (2015).

Although there are many other parameters that can influence

the mechanical response (including depth of injection and

temperature of the injected fluid), in this paper we focus on

the influence of the injection rates on the timescale and am-

plitude of the deformation (Table 4). Where not specified, the

injection rates of the unrest× 1 column of Table 4 are used.

4.1.2 Initial conditions

Initial conditions for the unrest simulation are the same for

all scenarios and represented in Fig. 5. Due to the injection

of hot fluids, the central conduit shows a higher tempera-

ture with respect to the rest of the domain, while the pres-

sure approaches hydrostatic, indicative of a steady-state con-

dition. A slight temperature variation is observed at the fault

zones, where the locally increased permeability focuses con-

vective fluid flow, with downward flow of cold water via the

fault (Jasim et al., 2015). A two-phase plume forms close to

the central conduit, according to the results of previous fluid

flow simulations (Chiodini et al., 2003; Rinaldi et al., 2010;

Todesco et al., 2010).

4.2 Pore pressure, temperature and density changes

during unrest

At each time step of the unrest simulations we evaluate

changes in pressure (1P = P −P0), temperature (1T =

T − T0) and density (1ρ = ρ− ρ0), relative to initial con-

ditions (subscript 0) and use these to compute ground de-

formation and gravity changes at the surface by Eqs. (5)

and (7). Density change is in practice computed as 1ρ =

φ
∑
β(ρβSβ − ρβ0Sβ0), where subscript β = l or g refers to

the liquid or gas phase, respectively. We observe that 1ρ

is mainly driven by the gas saturation change, since densi-

ties of liquid and gas do not significantly change during the

simulation. For this reason we plot the gas saturation change

1Sg = Sg− Sg0 rather than 1ρ (Figs. 5 and 6).

Analysing Scenario I (Fig. 5), we observe that after 6

months of simulated unrest the zone of perturbed pore pres-

sure has already approached the surface (z=−500 m) at the

central conduit, with a maximum 1P of about 4 MPa ob-

served at the injection point. Temperature and gas satura-

tion changes remain small and confined to the areas sur-

rounding the injection point. The maximum 1P of the en-

tire simulation (about 5 Mpa) is observed at 3 years. At the

same time, gas saturation changes reach the shallower layer

(z=−400 m), while no changes in temperature are apparent.

After 3 years1P decreases; at 10 years hot fluid (warmed by

up to 1T ∼ 100 ◦C) rises up to about z=−1000 m and the

gas region extends up to the surface. At 100 years, which is

the end of the simulation, 1P continues to decrease towards

a new steady state, while 1T keeps increasing (with a max-

imum 1T ∼ 130 ◦C), extending the central plume laterally

by up to 250 m. Gas saturation changes approach the steady-

state solution, and a single-phase gas region is forming close

to the surface. We do not observe any significant variation

in pore pressure, temperature or density close to the faults,

where the values remain the same as the initial condition.

The location of regions where significant changes in pore

pressure, temperature and density are observed depends on

the background simulation. During the steady-state simula-

tion, fluids are injected only at the centre of the model, and

thus a two-phase plume develops only in the central conduit,
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Table 4. Injection rates (tons day−1) for different unrest simulations. Molar ratio is 0.17 for the Steady-State simulation and 0.40 for all the

Unrest simulations.

Steady-State Unrest ×1 Unrest ×0.5 Unrest ×2 Unrest ×3

H2O (tons day−1) 2400 6100 3050 12 200 18 300

CO2 (tons day−1) 1000 6000 3000 12 000 18 000

Molar ratio 0.17 0.40 0.40 0.40 0.40
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Figure 5. Changes in pore pressure, temperature and gas saturation relative to the steady-state initial condition at different times after the

initiation of unrest. Initial conditions are obtained as the steady-state solutions of central injection of 2400 of H2O and 1000 tons day−1 of

CO2, through a cylindrical conduit with radius 200 m. Unrest is simulated by injecting 6100 of H2O and 6000 tons day−1 of CO2 through

the central conduit (Unrest ×1 column of Table 4) and additionally for Scenarios II and III injecting at the base of the core zone of the two

faults according to Table 3. Note that the colour scale of initial conditions is different from the respective colour scale of unrest plots.

with complete liquid saturation within the fault zones. Dur-

ing the unrest the increased rate of injection at the conduit

leads to an increase in pore pressure most markedly at depth

within the conduit, but increases in temperature and gas satu-

ration occur at the border of the expanding two-phase plume.

If we vary injection rates in Scenario I (Fig. 6), the ampli-

tudes of1P ,1T and1ρ are strongly (nonlinearly) affected.

Regardless of the injection rate, 1T continues to increase

for the entire simulation (100 years), while 1P peaks at ∼ 3

years. Therefore, the timescale for pore pressure changes to

reach the maximum value does not significantly depend on

the injection rate. In particular, the maximum 1P is 2.15 for

Unrest ×0.5, 9.85 for Unrest ×2 and 14.1 MPa for Unrest

×3 (all at t = 3 years). The maximum 1T is observed at the

final simulation time (t = 100 years) and is 92.1 for Unrest

×0.5, 171 for Unrest ×2 and 181 ◦C for Unrest ×3. The ex-

tent of the central plume increases for the entire simulation:

after t = 100 years the plume has extended laterally by up

to 200 m for Unrest ×0.5, 450 for Unrest ×2 and 550 m for

Unrest ×3.

In contrast to Scenario I, in Scenarios II and III injection at

the base of the faults induces a perturbation in pore pressure,

temperature and density at the fault zones (mainly located on

the hanging wall), while the behaviour at the central conduit

is similar in all three scenarios (Fig. 5). Due to the higher

injection rates at the base of the faults, Scenario III shows

more pronounced perturbations than Scenario II. Both faults

behave similarly in Scenario III: the region with significant

pore pressure change approaches the surface after 6 months

(with a maximum 1P of about 2.5 MPa), while temperature
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Figure 6. Changes in pore pressure, temperature and gas saturation relative to the steady-state initial condition at different times after the

initiation of unrest for Scenario I. Initial conditions are obtained as the steady-state solutions of central injection of 2400 of H2O and

1000 tons day−1 of CO2, through a cylindrical conduit with radius 200 m. Unrest is simulated by injecting a mixture of H2O and CO2

through the central conduit. Injection rates for the unrest simulation are listed in Table 4. Note that the colour scale of initial conditions is

different from either the respective colour scale of unrest plots or the colour scale of Fig. 5.

and gas saturation changes remain confined around injection

points for up to 10 years. Similar to the central conduit, 1P

near the faults starts decreasing after 3 years towards a new

steady state condition. For Scenario III, at t = 100 years 1T

has reached 170 ◦C and extends up to 200 m from the faults,

while a single-phase gas region has formed near the sur-

face. Important differences however exist between Scenarios

II and III. In Scenario II, maximum 1P is about 1 for Fault

A and 0.4 MPa for Fault B, and 1T is about 100 for Fault A

and 60 ◦C for Fault B, while gas saturation does not exceed

0.4 for either fault. Hence not only are there differences be-

tween the magnitudes of perturbations near Fault A and Fault

B but also the time needed to observe the perturbations at the

surface is greater than 100 years.

4.3 Ground deformation

At each time step of the unrest simulations, changes in

pore pressure and temperature are interpolated from the

finite-volume mesh of the hydrological model to the finite-

difference mesh of the mechanical model (the two meshes

are represented in Fig. 4) and fed into Eq. (5). This is known

as one-way coupling between hydrological and mechanical

models, as used previously by a number of studies (Hurwitz

et al., 2007; Hutnak et al., 2009; Rinaldi et al., 2010; Tode-

sco et al., 2010). It is a simplified approach compared with a

fully coupled model that also takes into account the influence

of stress and strain on permeability and porosity during the

simulation (Neuzil, 2003; Rutqvist, 2011).

In Scenario I (Fig. 7), for the first 10 years of unrest the

uplift is maximum at the centre of the domain and decays ra-

dially. Vertical and horizontal displacements reflect the Mogi

solution for a small spherical source (Mogi, 1958). The pro-

file obtained at t = 100 years does not reflect a Mogi solution

and presents a maximum total uplift of 21 cm at r = 300 m,

decaying rapidly as radial distance increases. Temporal evo-

lution of the ground deformation at the centre of the domain

throughout 100 years of unrest (Fig. 8) indicates that the con-

tribution of thermal effects (vT) to the total ground deforma-

tion is almost negligible with respect to the pore pressure

contribution (vP) during the first years of the unrest, but in-

creases in time and eventually becomes dominant. In partic-

ular, for lower injection rates (unrest ×0.5 of Table 4) the

vertical deformation due to thermal effects only exceeds the

pore pressure contribution after more than 100 years, while

for higher injection rates (unrest ×2 and ×3 of Table 4)

it takes less than 50 years. The amplitude of the deforma-

tion is nonlinearly dependent on the injection rate, while the

timescale of the first local maximum is largely independent
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Figure 7. Ground deformation computed for Scenario I at the surface after t = 0.5, 3, 10 and 100 years of unrest: total vertical deforma-

tion (a), total horizontal deformation (b), vertical deformation due to pore pressure (c), and vertical deformation due to thermal effects (d).

Vertical lines refer to the boundary of the central conduit and to the injection and shallowest points of faults.
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Figure 8. Computed vertical deformation at the centre of the model

(r = 0,z= 0) over 100 years of unrest for Scenario I with different

injection rates (see Table 4). The solid line is the total vertical dis-

placement v = vP+ vT, while the dashed and dotted lines are the

vertical displacement due to pore pressure vP and thermal effects

vT, respectively.

of injection rate, occurring after ∼ 3 years of unrest in all

simulations. Vertical displacement due to pore pressure ef-

fects (vP) increases very rapidly with the onset of unrest. Af-

ter this strong initial pressurisation (lasting about 3 years),

vertical deformation starts decreasing towards a new steady-

state value. Thermal effects strongly affect the long-term be-

haviour and their importance increases with increasing injec-

tion rates. Consequently, the timing of the local minimum,

prior to the thermally induced later monotonic increase, oc-

curs earlier for higher injection rates. Although we show only

the temporal variation of the vertical deformation at the cen-

tre of the model for Scenario I, a similar pattern is observed

localised around both faults for Scenarios II and III.

In Scenario II (Fig. 9) the deformation profile reflects the

injection of fluids at the fault zones. Maximum vertical de-

formation is observed at the centre of the model and two lo-

cal maxima correspond to the faults (Fig. 9a). Magnitude of

peak displacements both horizontal and vertical reduces from

centre to Fault A and from Fault A to Fault B, reflecting the

different injection rates.

After about t = 3 years the vertical deformation at the cen-

tre of the model reaches a temporary maximum (see solid line

in Fig. 8 for Scenario I), then decreases toward a lower value

(at about t = 10 years) while deformation on faults contin-

ues to increase. At t = 100 years the vertical displacement at

the centre of the model increases again toward a steady-state

solution (solid line of Fig. 8), while deformation on faults de-

creases toward a lower value. We observe in Fig. 9c, d that the
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Figure 9. Ground deformation computed for Scenario II at the surface after t = 0.5, 3, 10 and 100 years of unrest: total vertical deforma-

tion (a), total horizontal deformation (b), vertical deformation due to pore pressure (c), and vertical deformation due to thermal effects (d).

Vertical lines refer to the boundary of the central conduit and to the injection and shallowest points of faults.

vertical deformation profile at t = 100 years is almost exclu-

sively attributable to thermal effects, which are negligible in

the first years of the unrest simulation. Horizontal deforma-

tion (Fig. 9b) shows a Mogi-like pattern close to the central

conduit (Mogi, 1958), while two peaks are observed close

to the fault zones. For both peaks the deformation profile

is steeper on the side towards the centre of the domain due

to the fault inclination (dip-angle smaller than 90◦, Fig. 1),

since the steeper deformation profile is always observed in

the hanging wall.

We finally observe for all the plots that the deformation

profile is relatively smooth above Fault A, while there is a

sharp kink above Fault B, because such fault reaches the sur-

face (Fig. 2). Vertical deformation at the centre of the domain

throughout the entire simulation (100 years) is practically the

same as for Scenario I (Fig. 8), indicating that pore pressure

and temperature changes along the faults do not significantly

affect the mechanical behaviour of the fumarole.

In Scenario III (Fig. 10) vertical deformation on faults is

greater than at the centre of the model (up to t = 10 years).

Although pore pressure change at the faults shows a lower

value compared with that close to the injection point, it is

more vertically extensive (Fig. 5) due to the lower vertical

permeability of the central conduit compared to the faults,

causing a larger uplift. Vertical deformation at the axis of

symmetry is also slightly amplified (by the mechanical influ-

ence of faults) with respect to the one observed in Scenarios

I and II.

Except for faults, the mechanical heterogeneities de-

scribed so far depend only on depth, resulting in a 1-D het-

erogeneity structure. A complex mechanical structure for CF

could be used, taking into account the lateral variation in

mechanical properties to reflect differences between the two

caldera infills, as proposed in the models of Trasatti et al.

(2005), based on tomographic studies of Aster and Meyer

(1988). Some simulations (not shown) have been performed

with different matrix properties around faults, maintaining

the same mechanical properties for fault core and damage

zones. No significant differences were obtained close to fault

areas, highlighting that the amount of deformation is mainly

driven by the values of µ and ν assigned to the fault core

and damage zones, especially when these values are much

smaller than those assigned to the surrounding area (Table 2).

A sensitivity analysis of the rigidity modulus on faults is pro-

vided below.

4.3.1 Sensitivity analysis on fault rigidity modulus

In this section we analyse the influence of rigidity of fault

core and damage zone on ground deformation. For simplic-

ity we restrict our analysis to the vertical component of defor-

mation. In detail, µc, µd and µ̄ are the rigidity values of the

core zone, damage zone and the surrounding rock, respec-
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Figure 10. Ground deformation computed for Scenario III at the surface after t = 0.5, 3, 10 and 100 years of unrest: total vertical deformation

(a), total horizontal deformation (b), vertical deformation due to pore pressure (c), and vertical deformation due to thermal effects (d). Vertical

lines refer to the boundary of the central conduit and to the injection and shallowest points of faults.

tively. We reduce the rigidity on the fault core (and damage)

zone with respect to the surrounding rock by s1 (and s1/2)

orders of magnitude, i.e.

µc =
µ̄

10s1
, µd =

µ̄

10s1/2
.

In the baseline simulation the rigidity of the faults is the same

as the surrounding area (i.e. s1 = 0). For each value of s1
in the range 0≤ s1 ≤ 3 we obtain a variation in the ground

deformation of s2 orders of magnitude, i.e.

v = v0× 10s2 ,

where v0 is the uplift observed for the baseline simulation

(i.e. s1 = 0). Figure 11 shows the values of s1 and s2 com-

puted at the centre of the model and at faults for simulation

times t = 3 and t = 100 years. Reducing the rigidity values

(i.e. increasing s1), the deformation increases for the sim-

ulations at t = 3 years and decreases for t = 100 years. At

t = 3 years the deformation is mainly driven by pore pressure

changes (Figs. 8 and 10) close to injection points (therefore

at a depth of ∼ 1.5 km), while at t = 100 years deformation

is mainly driven by temperature changes, which constitute a

shallow source of deformation (thermal effects reach the sur-

face at t = 100 years, see Fig. 5). In the latter case, the region

where the rigidity is reduced (fault core and damage zones)

is below the source of deformation, causing less uplift than

that observed for the baseline simulation. After t = 3 years

sensitivity of deformation to fault rigidity is greater for Fault

B than for Fault A, whilst the reverse is true at t = 100 years.

Changes in deformation at the centre of the domain are min-

imal throughout all simulations, showing the limited lateral

influence of the mechanical properties at the faults.

4.4 Gravity changes

The solution of Eq. (7) is the gravity change 1g = g− g0,

where g0 and g are the gravity distributions observed at the

initial condition and at a fixed time of unrest, respectively.

Evaluating 1g at a particular point of the surface (r,z= 0)

means that also g and g0 refer to the same geometric location

(r,z= 0). Gravity change measured in the field1g = g̃−g0

is actually influenced by ground deformation, since g̃ is mea-

sured at the same material point of g0, but at a different geo-

metric (translated) point (r,z= 0)+u(r,z= 0), which takes

into account the absolute movement of the gravimetry associ-

ated with the ground displacement. The value1g = g−g0 is

often referred in literature as residual gravity (Bonafede and

Mazzanti, 1998; Fernández et al., 2005; Gottsmann et al.,

2006a), since it does not include the gravity change asso-

ciated with the ground deformation (Telford and Sheriff,

1990).

Gravity changes computed at the centre of the model (r =

0,z= 0) for different injection rates (Table 4) are reported
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Figure 11. Uplift variations against variations in rigidity at faults for Scenario III. Decreasing the rigidity by s1 orders of magnitude (i.e.

dividing the rigidity by 10s1 ), the corresponding uplift changes by s2 orders of magnitude (i.e. by a factor of 10s2 ). Blue lines refer to

the simulation at t = 3 years, while red lines refer to t = 100 years. Variation in uplift is computed at the centre of the model r = z= 0

(diamonds), Fault A (circles) and Fault B (stars). Linear best fits (constrained through the origin s1 = s2 = 0) are represented by solid,

dashed and dotted lines for the centre of the model, Fault A and Fault B, respectively. The slopes of the best fit lines for simulations at t = 3

years are about 0.0849 for Fault A, 0.149 for Fault B and 0.00756 at the centre of the model, while for simulations at t = 100 years are about

−0.0663 for Fault A, −0.0108 for Fault B and −0.00656 at the centre of the model.

in Fig. 12. After a transient increase (maximum 16.1 µGal

for the Unrest ×1 model) over the first months of unrest

(Fig. 12b), gravity changes become negative and decrease

monotonically towards a steady-state value, although this is

not reached within 100 years (Fig. 12a). The modulus of

the gravity changes is more pronounced for higher injection

rates, with a maximum increase after 0.5 years of 33.9 µGal

for the Unrest ×3 model and a much larger negative value.

The behaviour is, however, nonlinear at a fixed time with re-

spect to injection rates, due to both the change of molar ratio

from the steady state to the unrest phase and the nonlinear-

ity of the hydrothermal model. The increase in injection rate

causes only a minor increase in the time needed to change

sign (from positive to negative, Fig. 12b).

Figure 13 compares the gravity changes computed at the

surface for different simulation times and three injection sce-

narios (D–I) and the associated vertical gravity gradient (A–

C), computed as 1g/v, where v is the vertical deformation

computed in Sect. 4.3. Again, this is usually referred as the

residual gravity gradient, since it does not take into account

the free-air correction (Gottsmann et al., 2006a). Data are

plotted for up to 20 years of unrest, since after a long period

of unrest the gravity gradient becomes unstable in most of the

domain due to very small vertical deformation far from the

faults and central conduit. Maximum values in modulus are

observed at a radial distance of ∼ 570 m at the boundary of

the two-phase plume, and are almost equal for the three sce-

narios. However, local maxima of the modulus of the signals

are present at the faults for Scenarios II and III. The absolute

value is significantly higher for Scenario III, reflecting the

higher mass flux.

The sign of the vertical gravity gradient is the same as that

of the gravity changes, since the sign of ground deformation

is almost always positive (i.e. uplift) in all the simulations.

The pattern observed close to the axis of symmetry is similar

to that for the gravity changes, presenting a local extreme at

the border of the plume. In Scenarios II and III, the gravity

gradient presents local extremes on the faults (most evident

for t > 10 years) because of local extremes in both gravity

changes and vertical deformation (see Appendix). In Sce-

nario II the local extreme on Fault A is a minimum, since the

wavelength of the gravity change profile on Fault A is lower

than that of the vertical displacement, after a proper normal-

isation (see Appendix for more details). Local extreme on

Fault B is a maximum, since 1g has a greater wavelength

than v (see, for instance, the 1g and v profiles at t = 20

years in Fig. 13h). In Scenario III both extremes are min-

ima, since the wavelength of the gravity change profile on

the faults is lower than that of the vertical displacement, after

a proper normalisation (see Appendix for more details). The

value observed at the faults is much greater (due to greater

gravity changes associated with greater injection rates).
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Figure 12. Computed (residual) gravity changes at the centre of the model (r = 0,z= 0) during 100 years on unrest (a) for Scenario I with

different injection rates (see Table 4): unrest×0.5, unrest×1, unrest×2, unrest×3. (b) Close-up of the first 2.5 years of unrest (boxed on a).
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Figure 13. (a, b, c) (residual) gravity gradient 1g/v on the surface after t = 0.5, 1, 3, 5, 10 and 20 years of unrest for Scenarios I, II and III.

The respective (residual) gravity changes 1g (solid lines) and vertical deformation v (dashed lines) are reported in double y axis plots for

t = 0.5, 1 and 3 (d, e, f) and t = 5, 10 and 20 (g, h, i) years of unrest. Vertical lines refer to the boundary of the central conduit and to the

injection and shallowest points of faults. In Scenario I we observe that the gravity gradient starts to oscillate at r ∼ 2500 m. This behaviour

is a purely numerical artefact, since for r > 2500 m the uplift approaches to zero and the gravity gradient becomes singular. For this reason

the plot is limited to 0< r < 3500 m. For the interpretation of the legend the reader is referred to the colour version of the paper.
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5 Discussion

Heterogeneities in hydrological and mechanical properties as

well as the presence of faults within caldera forming volca-

noes in the model substantially affect the hydrothermal circu-

lation of hot fluids and the consequent variation in geophysi-

cal signals.

Models of the CF caldera suggest that the higher perme-

ability of a central conduit at La Solfatara favours the up-

rising of hot fluids from the deep portion of the reservoir

to the surface. Steady-state simulations show formation of a

two-phase plume (Chiodini et al., 2003; Rinaldi et al., 2010;

Todesco et al., 2010), with radius and gas composition that

depend on the permeability structure of the caldera fill (Tode-

sco et al., 2010). According to our simulations the two-phase

plume occupies the entire central conduit and part of the tran-

sition zone, leading to a 300 m radius plume at 1.5 km depth.

The radius of the plume reaches 500 m in a shallow region

close to the surface. Two gas regions form at the edges of

the plume: one surrounding the injection point and a shal-

lower region which extends to the surface, simulating the

gas discharging observed during the fumarolic activities at

La Solfatara. The transition zone of intermediate hydrologi-

cal properties favours pressurisation of the system during the

first 3 years of the unrest and then allows depressurisation as

injected fluids ascend and discharge at the surface (Fig. 5).

This behaviour is reflected by the fast initial vertical defor-

mation at the centre of the domain, which is followed first by

a rapid and then by a slower subsidence period (Fig. 8). This

pattern would not be observed if the permeability contrast

between the central conduit and the rest of the domain was

stronger. The close relationship between deformation and

fluid flow is highlighted in this simulation. If we lower the

permeability of the caldera fill, subsidence after uplift does

not occur. In fact lower-permeability caldera fill would in-

hibit the recharge of cold water to the base of the domain and

the plume would be confined to a considerably narrower area,

resulting in a hotter gas-saturated region, as shown in Tode-

sco et al. (2010). Pressure release after the initial uplifting

would not be present and the following period of subsidence

would not be observed.

Although the deformation profile observed in Scenario I

reflects the solution of a Mogi-type source (Mogi, 1958)

in the first years of the unrest, over time it develops into

a more complex pattern that cannot be explained by a

simple deformation source (Fig. 7). In the long timescale

the ground deformation is therefore mainly driven by the

thermo-poroelastic response of the hydrothermal system.

Usually deformation observed at the centre of the model

and associated with a central source located at the axis of

symmetry is amplified by the mechanical heterogeneities of

lateral fault zones (Folch and Gottsmann, 2006). This be-

haviour is not observed in the simulations of this paper, due

to the small ratio between the central source depth (injec-

tion depth of 1.5 km) and radial distance of the closest fault

(∼ 3 km), although in Scenario III the higher injection rate at

the base of the faults gives a small amplification of deforma-

tion.

Rock expansion due to temperature changes is slower than

that due to changes in pore pressure. Temperature changes

are confined to the areas surrounding the injection points dur-

ing the first 10 years of the unrest and take more than 50 years

to reach the surface. Thermal contribution to the total ground

deformation is therefore almost negligible within the first 10

years but becomes dominant after some decades of unrest

(Fig. 8). Fournier and Chardot (2012) suggest that the rela-

tive contribution of temperature and pore pressure is directly

proportional to the injection depth. Rinaldi et al. (2010) mod-

elled the effect of a short unrest period (20 months) of high

injection rate, and showed that the pore pressure declines im-

mediately after cessation of fluid injection, while the tem-

perature continues to increase until hot fluids discharge at

the surface. Most recently, Chiodini et al. (2015) examined

the accelerating rate of ground deformation affecting CF be-

tween 2005 and 2014, and suggested that the observed defor-

mation pattern requires both an extended period of heating of

the rock and short pulses of injection of magmatic fluids into

the hydrothermal system.

In our simulations, maximum temperature change is lo-

cated close to the edge of the plume (Fig. 5). Consequently,

the maximum uplift observed at t = 100 years is slightly dis-

placed from the centre. The shape of this temperature change

is elongated in the vertical direction, resembling a prolate

source, and causes the rapid decay of the vertical deforma-

tion. The same behaviour is observed for the gravity changes

at the centre of the domain. Density changes are localised

at the boundary of the plume, where replacement of water

by gas over an increasingly large area occurs and gravity

changes present a local extreme. Gas saturation changes are

small during the first years of unrest and restricted to an area

close to the injection point (Fig. 5). As a consequence, grav-

ity changes take about 2 years to exceed 50 µGal in absolute

value (for the Unrest ×1 case). Indeed, the initial period of

the unrest is characterised by an increase in density, since a

substantial amount of water is rapidly introduced to regions

with positive gas saturation, following the increase in injec-

tion relative to the background rate. This perturbation is am-

plified for Unrest ×2 and ×3 models since a larger mass of

water is injected, as inferred by the positive sign of gravity

changes at the beginning of the unrest in Fig. 12. After a tran-

sient period this pattern is inverted, since the higher molar

ratio of CO2/H2O of the fluid injected during unrest pushes

the system toward a steady-state solution in which a substan-

tial amount of gas will replace fluid-saturated regions, caus-

ing a negative change in density and consequently in gravity

changes. In contrast, gravity changes over the fault zones are

negative for the whole simulation time, since the base of the

faults are liquid saturated at the beginning of the unrest (no

background injection is performed at the base of the faults).
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The inclusion of faults in the model fundamentally al-

ters the dynamics of fluid flow and heat transfer in the sur-

rounding of fault areas. Jasim et al. (2015) show that the

permeability contrast between the fault zone and surround-

ing rock affects local temperature gradients, causing faults to

act as preferential pathways for either recharge or discharge

of groundwater, depending both on fault/matrix permeability

ratio and on the vertical extension of the fault. Temperature

changes are more pronounced around the faults than at the

central conduit, since the background hydrothermal circula-

tion in the fault zones is not driven by any fluid injection,

locally enhancing the contrast between the steady-state and

unrest simulations. Gravity change and deformation associ-

ated with thermal effects are thus larger on the faults than

close to the axis of symmetry.

Fault mechanical properties strongly influence the defor-

mation profile in the vicinity of faults. In particular, a lower

rigidity for the fault core and damage zones is associated with

increased uplift on the fault where the source of deformation

is deep (as in the case of pore pressure change during the first

years of unrest, mainly localised around injection points) but

with reduced uplift where the source of deformation is adja-

cent to the surface (as in the case of temperature changes after

a long period of unrest). There is only minor perturbation of

uplift observed at the centre of the domain, showing that me-

chanical properties of faults have a limited lateral influence.

Such influence would be amplified if a deeper domain was

considered (Folch and Gottsmann, 2006).

Fault geometry (inclination, vertical extension, penetration

depth, radial distance, etc.) also influences the amplitude and

pattern of deformation and gravity changes. Profiles of ver-

tical deformation vary smoothly on Fault A, while a sharper

contrast is present at the Fault B, likely because Fault B ex-

tends up to the surface z= 0. This sharp behaviour is mainly

associated with the mechanical heterogeneities of fault core

and damage zones rather than with hydrological causes (it

would not be observed if the mechanical heterogeneities do

not reach the surface).

Although the simulations performed in this paper provide

a qualitative assessment of the contribution of hydrothermal

fluid circulation at restless calderas, a more quantitative study

and comparison with observed data from a particular caldera

(such as the CF) is beyond the scope of this study.

It is important to consider limitations of the approach

adopted in this paper. First, the shallow fluid injection

(only 1.5 km deep) is constrained by the range allowed by

TOUGH2 (which does not account for supercritical fluids),

while several studies at CF have speculated that there is

a deeper source, between 2.7 and 5 km (Gottsmann et al.,

2006a, c; Amoruso et al., 2014a, b). Afanasyev et al. (2015)

recently investigated deep supercritical regions of the hy-

drothermal system at CF using MUFITS, a multiphase mul-

ticomponent fluid flow in porous media simulator that ac-

counts for high-temperature processes (Afanasyev, 2013a,

b), more realistic for representing restless calderas.

In addition, whilst assuming that simple layering of rock

properties is appropriate in the absence of detailed subsur-

face data, in reality it is probable that the stratigraphy of

the caldera fill is more complex. Representing the effects

of such heterogeneity, and in particular the strong local con-

trasts in the vicinity of the faults, is difficult using standard

gridding approaches (Geiger and Matthäi, 2014). Small-scale

geological heterogeneities observed in nature, usually mod-

elled by geostatistical methods (Journel et al., 1998; Stre-

belle, 2002), cannot be correctly represented by a coarse

cell blocks and identifying appropriate upscaling methods

is challenging (Gerritsen and Durlofsky, 2005; King et al.,

2006). On the other hand, using an extremely fine grid would

radically increase the computational cost, making the model

unusable for practical purposes where a number of simula-

tion runs is required, such as optimisation and uncertainty

reduction (Oliver and Chen, 2011).

The 2-D axi-symmetric representation of ring faults is

obviously not able to describe the complex fault networks

which characterise collapse calderas. For example, circula-

tion along fault planes is a purely 3-D phenomenon that can-

not be represented by a 2-D model. However, this study pro-

vides a first approximation of the influence of fluid flow me-

chanics around faults on relevant geophysical observations

and indicates the importance of this area for future research.

Last but not least, the one-way coupling adopted in this pa-

per, although provides a reasonable simplification for short

period unrests, is not appropriate for the simulation of pro-

longed processes, since a significant variation in key hydro-

logical parameters (permeability, porosity) can be induced by

a change in stress and strain (Neuzil, 2003; Rutqvist et al.,

2002), altering the long-term behaviour of fluid flow in the

porous medium and the consequent evaluation of geophys-

ical signals. For example, since an increase in the effec-

tive stress may cause a permeability and porosity reduction

(Davies et al., 1999; Rutqvist et al., 2002), a drop in these hy-

drological parameters is expected where higher deformation

are observed, namely at the centre of the domain and close to

the fault zones. This may reduce the deformation and gravity

change profiles over time. In addition, since these changes in

permeability and porosity would be less pronounced where

deformation is lower, the permeability contrast between the

central conduit and the transition zones would be attenuated,

modifying the dynamics of the rapid uplift and subsequent

deflation observed in Fig. 8. However, a qualitatively analysis

is difficult to perform at this stage for a number of uncertain-

ties, such as the sensitivity to parameters regulating the rela-

tionship between effective stress and permability/porosity.

6 Conclusions

The model proposed in this paper is targeted at evaluating

the variations in geophysical parameters associated with the

perturbation of the hydrothermal system in a restless caldera.
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A correct evaluation is fundamental to discriminate between

magmatic and hydrothermal unrest. Although the model can

refer to a generic system, parameters have been chosen on

the basis of the CF caldera, to simulate a behaviour proposed

to explain the periodic unrests at the CF caldera since 1969.

This periodic behaviour can be explained by a series of brief

injections of hot fluids into the hydrothermal system (Chio-

dini et al., 2003, 2015; Todesco et al., 2010) or after a long

thermal process following an increase in rock heating, as

highlighted by Chiodini et al. (2015). Similarly, Jasim et al.

(2015) show that periodic behaviour of gas composition can

be associated with sharp increase of the heat flux, with peri-

odicity comparable to the decennial cycle observed at CF.

Simulations performed in this paper evaluate the ground

deformation and gravity changes caused by a long period

of unrest associated with a prolonged injection of fluid of

magmatic origin into the shallow hydrothermal system at a

higher rate compared to that of the background simulation.

To represent the inherent complexities at collapse calderas,

we considered the effects of heterogeneities in the vertical

and lateral distribution of hydrological and mechanical pa-

rameters and the effect of faults. Permeability contrasts con-

siderably affect the fluid flow pattern (Todesco et al., 2010;

Jasim et al., 2015) and consequently ground deformation and

gravity changes at the surface.

The presence of the ring faults formed as a consequence of

the episodes of collapse can significantly alter the behaviour

of the system in the surrounding of the fault zones. Higher

permeability parallel to the plane of the fault favours con-

vection and upward discharge of hot fluids from depth, per-

turbing the hydrothermal system by changing pore pressure,

temperature and fluid density, dependent on injection rate

(compare Scenarios II and III). These perturbations, together

with weaker mechanical properties of fault core and damage

zones, substantially alter geophysical signals (ground defor-

mation, gravity changes) at the surface close to the faults;

furthermore, in Scenario III, a minor influence on the centre

of the model is observed.

Investigation of different scenarios shows that the qualita-

tive and quantitative perturbations of the fluid dynamics are

sensitive to fluid injection rates, whose correct evaluation is

one of the key challenges to improve the understanding of

restless caldera systems.
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Appendix A: Gravity gradient extremes (maximum and

minimum) on the faults associated to wavelength of

gravity changes 1g and vertical deformation v

The (residual) gravity gradient is computed as
1g
v

, where1g

is the (residual) gravity change and v is the vertical displace-

ment. In the simulations performed in this paper, we observe

that on the faults (r = 3 and r = 6.5 km) we have

1g < 0, v > 0,
d

dr
1g ≈ 0,

d

dr
v ≈ 0,

d2

dr2
1g > 0,

d2

dr2
v < 0.

After some calculus we obtain

d

dr

(
1g

v

)
=

v
d

dr
1g−1g

d

dr
v

v2
≈ 0,

d2

dr2

(
1g

v

)
≈

v
d2

dr2
1g−1g

d2

dr2
v

v2
,

d2

dr2

(
1g

v

)
> 0⇐⇒

d2

dr21g

d2

dr2 v
<
1g

v
.

Therefore, after rescaling1g (or v) in such a way |1g| = |v|,

we can assert that

d2

dr2

(
1g

v

)
> 0⇐⇒

∣∣∣∣∣ d2

dr2
1g

∣∣∣∣∣>
∣∣∣∣∣ d2

dr2
v

∣∣∣∣∣ .
In conclusion, the gravity gradient profile has a local mini-

mum [maximum] when the curvature of1g is greater [lower]

than the curvature of v (after a proper rescaling in which

|1g| = |v|). Since the curvature is inversely proportional to

the wavelength, we can reformulate the statement as follows:

the gravity gradient profile has a local minimum [maximum]

when the wavelength of1g is lower [greater] than the wave-

length of v.
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