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Abstract. To establish the horizontal crustal movement ve-
locity field of the Chinese mainland, a Hardy multi-quadric
fitting model and collocation are usually used. However, the
kernel function, nodes, and smoothing factor are difficult
to determine in the Hardy function interpolation. Further-
more, the covariance function of the stochastic signal must
be carefully constructed in the collocation model, which
is not trivial. In this paper, a new combined estimation
method for establishing the velocity field, based on colloca-
tion and multi-quadric equation interpolation, is presented.
The crustal movement estimation simultaneously takes into
consideration an Euler vector as the crustal movement trend
and the local distortions as the stochastic signals, and a ker-
nel function of the multi-quadric fitting model substitutes for
the covariance function of collocation. The velocities of a set
of 1070 reference stations were obtained from the Crustal
Movement Observation Network of China, and the corre-
sponding velocity field was established using the new com-
bined estimation method. A total of 85 reference stations
were used as checkpoints, and the precision in the north and
east component was 1.25 and 0.80 mm yr−1, respectively.
The result obtained by the new method corresponds with the
collocation method and multi-quadric interpolation without
requiring the covariance equation for the signals.

1 Introduction

Horizontal movement velocity fields provide the main ba-
sic data for Earth science research. Because measuring a
station’s velocity by repeated observation is always limited,
with many points that cannot be directly measured, a mathe-

matical velocity field model is always used to obtain the ve-
locity field. How to obtain reliable horizontal velocity fields
from measured points has been the focus of a lot of research
all over the world (Argus and Gordon, 1991; Huang et al.,
1993; Liu et al., 2001, 2002; Chai et al., 2009; Jiang and
Liu, 2010; Hu and Wang, 2012; Zeng et al., 2012, 2013). As
we know, the horizontal velocity of a ground point mainly
consists of two aspects: the overall movement and the local
deformation reflected ground motion. The motion model for
horizontal velocity is often used in geophysical models and
the statistical fitting method. The geophysical model is of-
ten implemented using the Euler vector method (Argus and
Gordon, 1991). Generally, the condition for using the Euler
vector method is to divide the block reliably and treat each
division as a rigid body, but many areas do not satisfy the re-
quirements of a rigid body, which limits the usefulness of the
method. The statistical fitting method mainly includes multi-
quadric functions (Huang et al., 1993; Liu et al., 2001; Zeng
et al., 2013) and collocation (Liu et al., 2002; Chai et al.,
2009; Jiang and Liu, 2010; Zeng et al., 2012). The multi-
quadric functions (Hardy, 1978) can be used for fitting the
parameters of measured points and estimating the parameters
of unmeasured points. The mathematical methods are used in
this case, while their physical meaning is not clearly consid-
ered. The key issues and difficult problems in their applica-
tion are the choice of kernel function, smoothing factor, and
node. Some scholars have systematically researched their ap-
plication in horizontal velocity field models in the Chinese
mainland (Huang et al., 1993; Nie et al., 2007; Zeng et al.,
2013). In order to consider the changing information of ve-
locity fields in different local regions, the least squares col-
location method, whose key problem is to determine the co-
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variance function of signal vectors, can be adopted (Yang,
1992). To balance the contribution of the estimation results
from the signal covariance matrix and observation noise, we
can use the variance components to estimate the colloca-
tion solutions (Yang and Liu, 2002; Yang et al., 2008) or
adaptive collocation solutions (Yang and Zeng, 2009; Yang
et al., 2009, 2011), but both of them require iterative calcu-
lations. Because the collocation covariance function is very
difficult to build, some scholars have analyzed and compared
the relationship between the multi-quadric function and co-
variance collocation (Tao et al., 2002); some scholars, using
the compensation principle of least squares, have pointed out
that choosing the appropriate regularization parameters af-
ter the semi-parametric model may include the collocation
model (Tao and Yao, 2003); and some scholars have estab-
lished a parameter estimation model combining the multi-
quadric function and configuration models and used the dis-
tance function as the signal covariance when estimating the
gravity field to obtain results close to the multi-quadric func-
tion model (Wang and Ou, 2004).

In view of the above-mentioned facts, in this paper, we
take Euler vectors as the long-term overall movement trend
of the function model and regard the local variations of hor-
izontal movements as stochastic parameters. At the same
time, the stochastic characters are taken into account. We
utilize a multi-quadric kernel function to obtain its normal-
ized matrix and combine the characters of the collocation
and multi-quadric functions, which not only avoids having
to establish the covariance function but also achieves an inte-
grated effect using both collocation and multi-quadric func-
tions (Tao and Yao, 2003). On the basis of the method pro-
posed above, we established a Chinese mainland horizontal
movement velocity field by using the velocities of a set of
1041 reference stations, obtained from the Crustal Move-
ment Observation Network of China. In this paper, a new
combined estimation method using the kernel function of a
multi-quadric fitting model to replace the covariance function
of collocation was proposed and tested.

2 Collocation model of horizontal movement

It is well known that the horizontal velocity of a ground point
can be described in two parts. One is the holistic long-term
trend of horizontal movement expressed by the Euler vector,
which is related to the block where the sites are. The other
part is the local movement change, modeled as stochastic sig-
nals, which is mainly affected by local surface displacement
(Freymueller et al., 2013). Therefore, the function model of
point horizontal velocity is

V = Aω̂+BŜ−L, (1)

where A represents the designed matrix of size 2n× 3, B
denotes the coefficient matrix of size n× u, where n and u
are the station number and estimated parameter number, re-

spectively; ω̂ represents the estimation of the Euler vector
because of plate movement, and L is the observation vector
of horizontal velocity on a station; the covariance matrix is
6e = σ

2
0 P−1

e , where Pe denotes its weight matrix. Ŝ is the
signal estimation of observed points, and its covariance ma-
trix is 6S = σ

2
0 P−1

S , where PS denotes its weight matrix.
The relation between the long-term movement trend of

horizontal velocity on a ground station and the Euler vec-
tor of plate movement can be expressed as follows (Jin et al.,
2006; Yang and Zeng, 2009):[
νn
νe

]
=

[
R sinλ −R cosλ 0

−R sinφ cosλ −R sinφ sinλ R cosφ

]

·

 ωx
ωy
ωz

 , (2)

where νe and νn denote the east and north components of
the horizontal velocity of ground stations, respectively, in
a topocentric coordinate system. R represents the radius of
earth, and λ , φ are the latitude and longitude of the ground
point. Thus, the matrix A in Eq. (1) is

A=
[

R sinλ −R cosλ 0
−R sinφ cosλ −R sinφ sinλ R cosφ

]
. (3)

Generally, the measured point signal is the local motion vari-
ation without the plate rigid motion, which is the horizontal
residual velocity in measured points; so B= I (unit matrix)
in Eq. (1).

If we take the local movement variation signal Ŝ′ of a non-
observed point into account and assume that there is a co-
variance matrix 6SS′ =6T

SS′
6= 0 between the non-observed

point’s signal Ŝ′ and the observed point’s signal Ŝ then, if the
covariance matrix is known, the collocation solution consid-
ering the non-observed point’s signal simultaneously (Yang
and Zeng, 2009; Zeng et al., 2012) is

ω̂ =
(
AT PLA

)−1AT PLL
Ŝ =6SBT PL

(
L−Aω̂

)
Ŝ′ =6S′S6−1

S Ŝ

, (4)

where PL =
(
B6SBT +6e

)−1.
The Euler vector estimation ω̂ of plate movement and ve-

locity estimation Ŝ of local movement in the collocation
model above depend not only on the covariance matrix 6e
of observed horizontal velocity L but also on the covariance
matrix 6S of the local velocity signal Ŝ. Before data process-
ing, the covariance matrices 6S and 6SS′ must be known,
which is the key point of the problem. This is the most dif-
ficult aspect of applying the collocation method. In order to
overcome the difficulty, the elements in the covariance matrix
are calculated according to the covariance function. There is
a wide variety of stochastic signal covariance functions, such
as the Gauss exponent function and the Hirvonen function.
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The principles for determining the covariance function are
also diverse. Different covariance functions can be based on
different data and principles (Zeng et al., 2012). The covari-
ance functions are usually dependent on the following three
aspects: (1) the observed data for fitting, (2) the fitting prin-
ciples, and (3) the parameter setting in the fitting process. As
a result, different researchers can obtain different signal co-
variance functions even though the used data and principles
are the same; that is to say, different physical applications
take a lot of effort in determining the covariance function,
which greatly limits the collocation model applications.

3 Multi-quadric function of horizontal movement

In practice, the most difficult aspect of adopting the colloca-
tion method is that the signal’s a priori variance cannot be
determined accurately. The signal covariance functions are
generally built by adopting observed data based on certain
principles (Zeng et al., 2012). Thus, the priori covariance
matrix determined in this way has a strong correlation with
the current measured data. It not only affects the optimality
of collocation, but also reduces its range of application. Al-
lowing for that, the requirements of precision and density of
observed data are relatively high when estimating covariance
functions. At the same time, the user should be well informed
about the physical field that it is used in. Thus, it is difficult
to obtain a general application and influence the optimality
of the collocation model (Tao and Yao, 2003). We noticed
that the signal covariance function of collocation is a kind of
function about distance in general (Zeng et al., 2012). There-
fore, in this paper, we do not look upon the local deforma-
tion parameters as random signals, like the collocation, but
as non-random variables, taking into account their random
nature (Tao and Yao, 2003), reflected by the distance func-
tion, to construct the covariance matrix of the local signals.
The covariance matrix of the local deformation is

GS =


g11 g12 · · · g1m
g21 g22 · · · g2m
· · · · · · · · · · · ·

gm1 gm2 · · · gmm

 , (5)

where g is the value obtained by the distance function.
We still use the Eq. (1) as the observation equation. Be-

cause of this, the distance function does not explicitly con-
sider the physical nature of the local deformation. Using the
compensation least squares method estimation criterion,

V T6−1
e V + ŜTG−1

S Ŝ =min. (6)

Then, according to Tao and Yao (2003) and Wang and
Ou (2004),

ω̂ =

(
AT

(
BGSBT +6e

)−1
A
)−1

AT
(

BGSBT +6e
)−1

Ẋ

Ŝ =GSBT
(

BGSBT +6e
)−1 (

Ẋ−Aω
)
,

(7)

where the matrix A and B are the same as the matrix A and
B in Eq. (1).

Considering the collocation problem of the non-observed
point’s signal parameter S′, we use the distance function to
contact the measured point’s signal parameter S and the un-
measured point’s signal parameter S′; so the 6SS′ in Eq. (4)
is transformed to

GS′S =

gS1
′S1
· · · gS1

′Sm
· · · · · · · · ·

gSp
′S1
· · · gSp

′Sm

 . (8)

Then the estimation of the unmeasured point’s signal param-
eter S′ is

Ŝ′ =GS′SBT
(

BMSBT +D1
)−1 (

Ẋ−Aω
)
, (9)

where matrix MS in Eq. (9) denotes the multi-quadric kernel
function matrix, which here is the same as GS′S in Eq. (8).
We have revised it in the next version. Matrix D in Eq. (8)
represents the variance matrix of observation error.

Thus, the key to the above problem is still to determine
the covariance matrix of the local deformation parameters; in
this paper we will transform the local deformation parameter
covariance matrix to the covariance function to determine it.

Multi-quadric functions were first proposed in 1978 by
Hardy (Hardy, 1978). The basic idea is that any smooth sur-
face can be approached at any precision by using a series
of finite and regular mathematical functions, and the non-
observed points can be estimated by making use of the ob-
served points. Because it can be designed flexibly and the
controllability is strong, the method has been widely used in
the interpolation problems involved in geoscience since the
approach was proposed. Tao and Yao (2003) discussed the
relationship between the multi-quadric function and colloca-
tion in detail and thought that the multi-quadric function is
a kind of special covariance function. Based on this idea, we
introduce a multi-quadric kernel function to determine the
covariance matrix of local deformation. Thus, the covariance
matrix (5) and (8) in Eq. (4) are completely determined by
the multi-quadric kernel function. Currently, the most com-
monly used multi-quadric kernel functions in addition to the
conical surface are positive double curved surface, inverted
double curved surface, positive thrice curved surface, and in-
verted thrice curved surface.

1. Positive double curved surface:

g (x,y,x0i ,y0i)=
[
(x− x0i)

2
+ (y− y0i)

2
+ δ2

]1/2
. (10)

The symbol δ represents the smoothing factor. Obvi-
ously, if δ = 0, the positive double curved surface is a
conical surface.

2. Inverted double curved surface:

g (x,y,x0i ,y0i)=
[
(x− x0i)

2
+ (y− y0i)

2
+ δ2

]−1/2
.
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Table 1. Velocity residuals statistics for different kernel functions (mm yr−1).

East North

Plan Max Min Average RMSE Max Min Average RMSE

Inverted double 4.17 −7.65 0.01 0.56 3.03 −6.49 0.01 0.51
curved surface

Inverted twice 5.75 −11.27 0.02 0.78 3.76 −9.633 0.02 0.73
curved surface

Inverted thrice 11.00 −22.61 0.02 1.46 9.05 −19.52 0.02 1.41
curved surface

Positive double – – – – – – – –
curved surface

Positive twice 21.50 −30.13 0.00 3.79 27.68 −22.94 0.00 4.54
curved surface

Positive thrice 13.25 −22.59 0.00 1.29 5.02 −19.30 0.00 1.14
curved surface

Table 2. External inspection accuracy of different kernel functions (mm yr−1).

East North

Plan Max Min Average RMSE Max Min Average RMSE

Inverted double 5.79 −4.59 0.08 1.38 6.20 −3.32 0.08 1.18
curved surface

Inverted twice 6.21 −4.75 0.00 1.67 7.69 −2.79 0.12 1.45
curved surface

Inverted thrice 7.06 −5.79 0.15 1.93 8.49 −4.22 0.03 1.77
curved surface

Positive double 4.76 −20.83 0.09 2.61 2.59 −3.68 0.49 1.27
curved surface

Positive twice 21.24 −14.73 0.78 5.02 21.71 −12.48 0.34 5.02
curved surface

Positive thrice 3.73 −4.79 0.13 1.25 3.01 −2.61 20.24 0.89
curved surface

(11)

Again, δ represents the smoothing factor, and if δ = 0,
the inverted double curved surface is a conical surface.

3. Positive thrice curved surface:

g (x,y,x0i ,y0i)=
[
(x− x0i)

2
+ (y− y0i)

2
+ δ2

]3/2
. (12)

4. Inverted thrice curved surface:

g (x,y,x0i ,y0i)=
[
(x− x0i)

2
+ (y− y0i)

2
+ δ2

]−3/2
.

(13)

As can be seen, the actual covariance matrix 6S of the signal
is replaced by the matrix GS determined in the multi-quadric
function, which is exactly the same as the standard configu-
ration model in the form; namely, Eqs. (4) and (6) are exactly
identical. Although the two methods are similar in form, their
theoretical basis is different. According to the rule of maxi-
mum posterior estimation, the standard configuration model
obtains the optimal estimate under the condition of the signal
a priori variance being known. However, the latter consid-
ers the randomness of the parameters, gives a certain com-
pensation and balance, and still considers it as a parameter
estimation of non-random parameters, and the optimization
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is better than the previous method (Wang and Ou, 2004). In
this way, we not only overcome the problem that it is difficult
to obtain the covariance function of the classical collocation
model, but also keep the formula of the collocation model
stable. Because of its simplicity and rationality, the applica-
tion range of the model may be greatly expanded (Tao et al.,
2002; Tao and Yao, 2003).

4 Calculation and analysis

We used the same observation data as in Yang and
Zeng (2009), that is, 1041 repeat observation stations of the
Crustal Movement Observation Network project, whose pre-
cision of horizontal velocity is superior to fitting point coor-
dinates’ velocity by 3 mm yr−1. These data include 85 high-
precision points (29 consecutive observation stations and 56
campaign-mode observation stations) as the external inspec-
tion points to assess the accuracy of the constructed velocity
field model, and a net of the remaining 985 regular obser-
vation points after 56 irregular observation basis points are
subtracted from the 1041 repeat observation stations to es-
tablish the velocity field model.

In order to evaluate the internal precision of the model, the
calculation formula for the root-mean-square error (RMSE)
of the horizontal residual velocity of the 985 observation sta-
tions is calculated:

RMSE=

√
V T ·V

985
, (14)

where V is residuum calculated by different solutions, that
is, the station horizontal residual velocity.

The RMSE of the external checkpoint horizontal velocity
can be defined by

RMSE=

√(
Ẋm− Ẋc

)T
·
(
Ẋm− Ẋc

)
85

, (15)

where Ẋm is the measured horizontal velocity of the 85
checkpoints, and Ẋc is the horizontal velocity of the 85 sta-
tions, calculated by different schemes.

4.1 Calculation results for different kernel functions

Since the multi-quadric function is used to determine the sig-
nal priori random information in the multi-quadric colloca-
tion model, different kernel functions have different results.
We use inverted and positive, double curved, twice and thrice
curved surface to obtain results. Table 1 shows statistics for
velocity residuals for the different kernel functions and Ta-
ble 2 shows statistics for the 85 points of external inspection
accuracy of the different kernel functions. It can be seen that
the different kernel functions have different effects on the ac-
curacy of the results.

1. From the 85 external checkpoint precision statistics, the
RMSE for east and north of the positive thrice curved
surface function is 1.25 and 0.89 mm yr−1, respectively,
but from the velocity residuals statistics, it is 1.29 and
1.14 mm yr−1, respectively. The accuracy of the exter-
nal statistics is basically the same as that of the inter-
nal statistics, which shows that the fitting and predic-
tion results are stable. The external precision of the in-
verted double curved surface can also reach 1.38 and
1.18 mm yr−1, but its residual velocity is only 0.56 and
0.51 mm yr−1, and the RMSE is obviously better than
that of the positive thrice curved surface.

2. From the internal and external statistical accuracy, the
positive surface function and the inverse surface func-
tion of the statistical results have obvious differences.
The 85-point accuracy of the inverted double curved
surface and inverted twice and thrice curved surface
in the north direction are, respectively, 1.18, 1.45,
and 1.77 mm yr−1; in the east direction they are 1.38,
1.67, and 1.93 mm yr−1. All of them are superior to
2 mm yr−1. The variation of the different inverse curve
functions is small, and this may be due to the fact that
inverse curve performs as the reciprocal of distance. The
closer the distance, the greater the correlation between
points, and the physical characteristics of the velocity
field are basically identical. However, the 85-point accu-
racy of the positive double curved surface and positive
twice and thrice curved surface in the north and east di-
rections is, respectively, 1.27, 5.02, and 0.89 mm yr−1,
and 2.61, 5.02, and 1.25 mm yr−1. The difference be-
tween different positive surface functions is obvious
which may be due to the positive surface function and
the distance of the positive correlation. The greater the
distance between the points, the larger the correlation,
and this is contrary to the physical characteristics of
the velocity field, which therefore has not been well de-
scribed by the physical properties of the velocity field.

4.2 Comparison with other common methods

As we all know, there are three classical and common
methods for establishing velocity field, i.e., Euler vector
method, the collocation method, and the multi-quadric func-
tion method. In order to examine the effective of the proposed
multi-quadric collocation model in calculating the horizontal
velocity field, the above-mentioned three methods were used
for comparison.

Scheme 1: with the physical significance of the plate tec-
tonics Euler vector model being exact, we utilize the least
squares principle to solve the unified Euler vector and the
local horizontal velocity changes of the GPS stations in the
Chinese mainland.

Scheme 2: we use the collocation method to estimate the
long-term overall movement trend (Euler vector) and the lo-
cal velocity variance of the GPS stations. In the process of
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Figure 1. The velocity residuals statistics of 85 external checkpoints. The horizontal axes represent the horizontal velocity residuals (N: north;
E: east; m yr−1: meters per year) of a checkpoint. The vertical axes indicate the numbers of checkpoints (i.e., Point num) with corresponding
residuals. Schemes 1–4 represent the models using Euler vector method, the collocation method, the multi-quadric function method, and the
proposed multi-quadric collocation model.

Table 3. Euler vectors of Chinese mainland.

Scheme ωx (rad Myr−1) ωy (rad Myr−1) ωz (rad Myr−1) Long λ (◦) Lat φ (◦) ω (◦Myr−1)

1 −0.0004415 −0.0037950 0.0035848 −96.6 43.2 0.300
2 0.0001159 −0.0042049 0.0031925 −88.4 37.2 0.302
4 0.0000206 −0.004275 0.0032031 −89.7 36.8 0.306

Figure 2. 1◦× 1◦ velocity field model.

calculation, we use the Hirvonen function as the stochastic
signal covariance function, and make use of the local veloc-
ities of the 1041 stations, which are obtained by extracting
the regional velocity field, to fit the covariance function. The
covariance functions (Yang et al., 2011) of velocity signal in
the north (CN(d)) and east (CE(d)) respectively were defined
by

CN (d)=
38.33170

1+ 0.651987 · d2 (16)

Figure 3. 1◦× 1◦ velocity field model deducting the Chinese con-
tinental crustal deformation background field.

CE (d)=
21.47733

1+ 1.063019 · d2 . (17)

Scheme 3: the multi-quadric function method, which is the
academic mathematics method and is used to establish the
velocity field, has been systematically researched in other
research (Zeng et al., 2013). Meanwhile, the method does
not have the exact physical significant, which could not be
utilized to solve the Euler vector, and only is used to esti-
mate the coefficient of the node. Because the key issue for
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Table 4. Internal precision of the Euler vectors (mm yr−1).

East North

Scheme Max Min Average RMSE Max Min Average RMSE

1 30.17 −23.30 0.16 4.63 23.48 −27.69 −0.20 6.19
2 30.29 −23.89 0.04 4.89 25.37 24.08 0.24 6.59
4 30.46 −23.53 0.04 4.89 24.69 24.59 −0.17 6.35

Table 5. Velocity residuals statistics (mm yr−1).

East North

Scheme Max Min Average RMSE Max Min Average RMSE

1 30.17 −23.30 0.16 4.63 23.48 −27.69 −0.20 6.19
2 23.12 −13.30 0.03 1.60 19.68 −7.49 −0.03 1.43
3 29.13 −15.20 0.00 2.79 24.54 −9.12 0.00 2.25
4 5.75 −11.27 0.00 0.78 3.76 −9.633 0.00 0.73

establishing a horizontal velocity field model using the multi-
quadric function method is how to ensure the kernel function,
smooth factor, and node number, we take advantage of the
kernel function which defined the hyperbolic function, the
smooth factor which ensured 10, and the node which con-
sisted of the 56 based points.

Scheme 4: the multi-quadric collocation model, being
used to solve the points’ the horizontal velocity, has a spe-
cific physical significance and is utilized to estimate the long-
term overall movement trend (Euler vector) and the velocity
changes of local points, with using Eqs. (7), (9), and the in-
verted twice curved surface, in process of the calculation. We
determined the best value of smoothing factor in the inverted
twice curved surface function based on the actual distribution
of data.

Table 3 lists the Euler vectors of the Chinese mainland cal-
culated by different schemes. Table 4 lists the external pre-
cision of the Euler vectors of the Chinese mainland calcu-
lated by different schemes. Table 5 lists the velocity residuals
statistics for different schemes. Table 6 shows the precision
statistics of 85 external checkpoints. Figure 1 shows the ve-
locity residual statistical results of 85 external checkpoints.
It reveals that for the multi-quadric collocation model pro-
posed in this study, (1) the numbers of external checkpoints
whose velocity residuals were between −0.5 and 0 mm yr−1

in east and north components are 24 and 26, respectively,
and (2) the numbers of external checkpoints whose velocity
residuals were between 0 and 0.5 mm yr−1 in east and north
components are 16 and 17, respectively. These numbers were
obviously higher than the results derived from Euler vec-
tor method, collocation method, and multi-quadric function
method, which demonstrated that the proposed multi-quadric
collocation method outperformed the other three methods.

A comprehensive analysis of the results shows the follow-
ing.

1. As can be seen from Table 3, the Euler vector, calculated
by Euler vector estimation method (Scheme 1), colloca-
tion (Scheme 2), and multi-quadric collocation models
(Scheme 4) are equivalent in magnitude and trends, but
as a result of the difference of the function model and
the signal covariance function between collocation and
the multi-quadric collocation model, they are slightly
different in values and in the estimated remaining hori-
zontal velocity.

2. The least squares model based on the Euler vector only
takes into account the entire horizontal movement of
the Chinese mainland, so its precision is poor. From
the perspective of internal precision (Table 4), hori-
zontal residuals for the east and north directions are
up to 30.17 and 27.69 mm yr−1 maximum, respectively,
and statistical precision for east and north is 4.63 and
6.19 mm yr−1, respectively. Viewed from the external
checkpoint, the external precision (Table 6) of the Eu-
ler vector least squares solutions for east and north are
5.89 and 7.06 mm yr−1, respectively. This is because the
Chinese mainland is not a single block; the Euler vec-
tor least squares solution can only determine the overall
orientation of the Chinese mainland, and does not take
the systemic change of the local area into account.

3. Solving using the collocation method not only takes into
account the overall orientation, but also determines the
local area random effects. It makes a more reasonable
distribution of the residuals (Table 5). The internal pre-
cision is 1.60 for east and 1.43 mm yr−1 1 for north. The
external check precision also improved, to 2.14 for east
and mm yr−1 for north.

www.solid-earth.net/7/817/2016/ Solid Earth, 7, 817–825, 2016
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Table 6. External examination precision (mm yr−1).

East North

Scheme Max Min Average RMSE Max Min Average RMSE

1 13.34 −20.29 −0.05 5.89 16.47 −23.29 1.315 7.06
2 9.10 −8.54 0.00 2.14 3.12 −5.34 0.00 1.47
3 12.48 −3.75 0.00 1.85 4.50 −6.94 0.00 1.40
4 6.21 −4.75 0.00 1.67 7.69 −2.79 0.12 1.45

4. Using a multi-quadric function method can obviously
improve the precision of the velocity model. The inter-
nal residual statistic is 2.79 for east and 2.25 mm yr−1

for north; the external check precision is 1.85 for
east and 1.40 mm yr−1 for north. Theoretically, multi-
quadric functions can approximate the measured surface
with arbitrary accuracy, but in practice, it is impossible
to select all the observation points for the node in order
to improve the fitting internal precision without con-
sidering the estimate precision of the non-observation
points (i.e., the precision of the external checkpoints).
However, extrapolation precision is what we need to fo-
cus on.

5. Synthesizing the collocation method and multi-quadric
function method not only obviously improved internal
precision, with east and north precision reaching 0.78
and 0.73 mm yr−1, respectively, which is obviously su-
perior to the collocation method and the multi-quadric
function method; but external precision has also ob-
viously improved, with east and north direction pre-
cision reaching 1.67 and 1.45 mm yr−1, respectively,
which is slightly superior to the collocation method
and the multi-quadric function method. This approach
integrates the characteristics of the two methods. It
avoids the establishment of the covariance function, and
achieves a combined effect.

6. The Euler vector, collocation, and multi-quadric collo-
cation models have physical meaning, and can work out
the Euler vectors of Chinese mainland blocks. However,
the Euler vector method has larger differences from the
other two methods, which, in particular, have smaller
differences in latitude and longitude components and
rotating angle speed aspects. The Euler vectors deter-
mined by the collocation method and the multi-quadric
function configuration model are very close.

According to the comparison and analysis for the calcula-
tion, we have established a 1◦× 1◦ gridded velocity model
(for details see Fig. 2) and a 1◦× 1◦ velocity field model
deducting the Chinese continental crustal deformation back-
ground field (for details see Fig. 3).

In Fig. 2, the Chinese continental crust shows eastward
movement as a whole. Meanwhile, the China continental re-

gion possesses significantly clockwise rotation, but velocity
values show difference in some parts of China, of the hor-
izontal velocity field, removing the continental movement
background in China, in the Fig. 3. There is an eastward–
southeastward–southwestward movement model with the
feature of higher velocity values in the west by 104 longi-
tude degrees in the Sichuan–Yunnan region. In the northwest
region, the continental crust displays an NNW motion model.
In the Northeast Plain, there was westward movement. Con-
versely, South China represents an SSE motion model with
small velocity values relative to the others in the China.

5 Conclusions

Multi-quadric functions and the collocation method are the
most commonly used methods of fitting the observed points
and estimating the non-observed points. However, it is diffi-
cult to select the kernel function, smoothing factor, and node
when we use the multi-quadric function method. The key to
applying the collocation model is to establish a reliable co-
variance function. Usually, it tends to adopt an empirical for-
mula in a gravitational field, where the majority of applica-
tions are established, by using a measured data covariance
model, which not only affects the optimality of the colloca-
tion method but also reduces its usable area.

Taking into account the establishment of the covariance
function is a relatively high requirement for data, and gener-
ally, it is difficult to achieve. Bearing in mind that the covari-
ance function is a function of the distance, the local defor-
mations covariance matrix is often chosen as a simple func-
tion of distance in multi-quadric functions. The estimating
effects of this integrated approach are similar to the colloca-
tion method. Because the solution is simple and reasonable,
it can greatly expand the scope of application of the colloca-
tion model.
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