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Abstract. Soil genesis is highly dependent on landforms as
they control the erosional processes and the soil physical and
chemical properties. The relationship between landform clas-
sification and electrical conductivity (EC) of soil and water
in the northern part of Meharloo watershed, Fars province,
Iran, was investigated using a combination of a geograph-
ical information system (GIS) and a fuzzy model. The re-
sults of the fuzzy method for water EC showed 36.6 % of
the land to be moderately land suitable for agriculture; high,
31.69 %; and very high, 31.65 %. In comparison, the results
of the fuzzy method for soil EC showed 24.31 % of the land
to be as not suitable for agriculture (low class); moderate,
11.78 %; high, 25.74 %; and very high, 38.16 %. In total, the
land suitable for agriculture with low EC is located in the
north and northeast of the study area. The relationship be-
tween landform and EC shows that EC of water is high for
the valley classes, while the EC of soil is high in the upland
drainage class. In addition, the lowest EC levels for soil and
water are in the plains class.

1 Introduction

The pedogenesis of the soils is determined by the climate
(Cerdà, 1998a), the parent material (Prosdocimi et al., 2016)
and human management (Debolini et al., 2015; Yan et al.,
2015; Zhao et al., 2015; Cerdà et al., 2016), however also
as a consequence of the landforms and processes that act on
them. Soil features are largely controlled by the landforms

on which they are developed. The physiographic penetra-
tion on soil properties is recognised based on the progress
of the soil–landform relationship (Ali and Moghanm, 2013).
The landforms formed by the same geomorphic processes are
the main key feature because they can easily be identified,
and were responsible for producing the undercoat material
of the soils (Park and Burt, 2002; Henderson et al., 2005;
Mini et al., 2007; Poelking et al., 2015). Previous studies
have shown that there is a clear relationship between land-
form and soils, in that landforms and soil both control hydro-
logical erosional, biological and geochemical cycles. Based
on the type of landform, other parameters of watersheds can
be predicted, such as soil, erosion, biological parameters and
so on (Berendse et al., 2015; Brevik et al., 2015; Decock et
al., 2015; Keesstra et al., 2012; Adugna et al., 2015; Ochoa-
Cueva et al., 2015; Smith et al., 2015).

A geographical information system (GIS), with features
such as the ability to acquire and exchange many differ-
ent sources, organisation, retrieval and display of data, anal-
ysis of numerous data and possibility to provide multiple
services, has been introduced as an efficient tool in plan-
ning. Combining a GIS with fuzzy logic provides a compar-
atively new land evaluation method (Badenko and Kurtener,
2004; Oinam et al., 2014; Wang et al., 2015). Incorporat-
ing both of these methods is more flexible, and reflects hu-
man creativeness and understanding in making decisions.
Fuzzy inference is considered as a deduction for mathemat-
ical modelling in imprecise and vague processes, i.e. uncer-
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tainty about data, and thus creates a context for modelling
uncertainty (Kurtener, 2005).

Ali and Moghanm (2013) studied the variation of soil
properties over the landforms around Idku Lake, Egypt,
with the spatial distribution of CaCO3, electrical conduc-
tivity (EC), organic matter (OM), pH, nitrogen (N), phos-
phorus (P), potassium (K), iron (Fe), manganese (Mn), cop-
per (Cu) and zinc (Zn) over the various landforms discussed
in detail. The results showed that the changes of CaCO3, EC
and OM are minimal in the landforms of sand sheets, ham-
mocks, sabkhas, clay flats and former lake bed.

Aliabadi and Soltanifard (2014) apply a GIS and fuzzy
inference for determination of the impact of water and soil
EC and calcium carbonate on wheat crops. Regarding the
results of the fuzzy inference system, 76 % accuracy was
achieved using the Mamdani’s method and 52 % of accuracy
was achieved for the Sugeno technique.

In addition, El-Keblawy et al. (2015) investigated relation-
ships between landforms, soil characteristics and dominant
xerophytes in the northern United Arab Emirates. Soil tex-
ture, electrical conductivity (EC) and pH were determined in
each sample point. The results showed that soil and land-
forms also control the geomorphological and hydrological
processes (Cerdà and García-Fayos, 1997; Cerdà, 1998b; Dai
et al., 2015; Nadal-Romero et al., 2015).

One of the largest wheat-producing regions in Iran is lo-
cated in the Shiraz Plain, Fars province (Bijanzadeh et al.,
2014). The aim of this study is to investigate the relation-
ship between landform classes and EC of water and soil in
this area using a combination of a GIS and a fuzzy model.
The methodology employed in this study is summarised in
Fig. 1.

2 Material and methods

The study area has an area of 3909 km2 and is located at
a longitude of 29◦06–29◦43 N and a latitude of 52◦18 to
53◦28 E (Fig. 2). The altitude of the study area ranges from
the lowest at 1433 m to the highest at 3083 m. The region is
located in the north of the Fars province, which has cold win-
ters and hot summers. The average temperature for the area
is 16.8 ◦C, ranging between 4.7 and 29.2 ◦C (Soufi, 2004).
The research area demonstrates a biodiversity of mountains,
relief and lithology, and geological characteristics such as,
for instance, sedimentary basin and elevated reliefs (Soufi,
2004). The main agricultural produce consists of grain, fruit
and vegetables, while the partly wooded mountains are used
for pasture. The main land use types of the region are agri-
culture, range land, farming and forests.

In terms of geology, the Precambrian Hormoz series and
the Quaternary units are the oldest and youngest rocks in
the basin, respectively. Spans of outcropped rocks, cover-
ing from the Cretaceous to Quaternary, are carbonate sedi-
ments of deep to shallow marine facies. These sedimentary

Figure 1. Flowchart of the methodology employed to investigate
the relationship between landform classification, and soil and water
EC.

sequences include large and small stratigraphic gaps in the
form of disconformity and sometimes nonconformity (Khak-
sar et al., 2006).

The area is situated in an arid and semi-arid region. Rain-
fall varies from 150 mm on the plains to 650 mm on the high
mountains, with an average of 350 mm. The rainfall is con-
centrated in cold seasons, while the precipitation is very low
from June to October (Sigaroodi et al., 2014).

During winter, several migratory bird species from north
of Caspian Sea, flamingos (Phoenicopterus roseus), common
shelducks (Tadorna tadorna) and mallards (Anas platyrhyn-
chos) spend 4 months in the area feeding on brine shrimp
(Artemia franciscana). Thus, the lake has important ecologi-
cal value (Sigaroodi et al., 2014).

2.1 Inverse distance weighted (IDW) model

An IDW model was used for interpolating the EC properties.
IDW interpolation explicitly implements the assumption that
things that are close to one another are more alike than those
that are farther apart. To predict a value for any unmeasured
location, IDW will be used to measure neighbourhood values
in the predicted location. Assumed value of an attribute f at
any unsampled point is an average of distance-weighted sam-
pled points lying within a defined neighbourhood around that
unsampled point. Basically, it is a weighted moving average
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Figure 2. Location of the study area (DEM with spatial resolution
of 30 m) (source: http://earthexplorer.usgs.gov).

Table 1. Classification of water EC values (Kumar et al., 2003).

Class EC (ds/m)

Low < 0.25
Moderate 0.25–0.75
High 0.75–2.25
Very high > 2.25

(Burrough et al., 1998):

f̂ (x0)=

n∑
i=1

f (xi)d
−r
ij

n∑
i=1

d−r
ij

, (1)

where x0 is the estimation point and xi are the data points
within a chosen surrounding. The weights (r) are related to
distance by dij .

Figure 3. Membership functions.

Figure 4. Position of sample points for (a) water and (b) soil EC.

2.2 Fuzzy method

In research, model functions are accustomed to computing
membership function (MF), as described in Fig. 3 (Burrough
and McDonnell, 1998). According to Fig. 3, an asymmet-
ric function needs to be applied (Models 1 and 2) (Fig. 3).
If MF(xi) shows individual membership value for ith land
property x, then in the computation process these model
functions (Models 1 to 2) show the following form.

For asymmetric left (Model 1),

MF(xi)= [1/(1+{(xi−ai−b1)/b1}
2)] if xi<(a1+b1). (2)

For asymmetric right (Model 2),

MF(xi)= [1/(1+{(xi−a2+b2)/b2}
2)] if xi>(a2−b2). (3)
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Table 2. Classification of soil EC values (Mokarram et al., 2010).

Class EC (ds/m)

Low < 8
Moderate 8–12
High 12–16
Very high > 16

In this study, in order to define fuzzy-rule-based member-
ship functions, the categories shown in Tables 1 and 2 are
used.

2.3 Landform classification

The Topographic Position Index (TPI) (Weiss, 2001) com-
pares the elevation of each cell in a digital elevation model
(DEM) to the mean elevation of a specified neighbourhood
around that cell. Positive TPI (Eq. 4) compares the eleva-
tion of each cell in a DEM to the mean elevation of a defined
neighbourhood around that cell. Mean elevation is subtracted
from the elevation value at the centre (Weiss, 2001):

TPIi = Z0−
∑
n−1

Zn/n, (4)

where Z0 is the elevation of the model point under evalua-
tion, Zn is the elevation of grid and n is the total number of
surrounding points employed in the evaluation.

Incorporating TPI at small and large scales permits a num-
ber of nested landforms to be distinguished (Table 3). The
actual breakpoints among classes can be selected to optimise
the classification for a specific landscape. As in slope posi-
tion classifications, additional topographic metrics, such as,
for example, differences of elevation, slope or aspect within
the neighbourhoods, can help delineate landforms more ac-
curately (Weiss, 2001).

Additionally, the classes of canyons, deeply incised
streams, mid-slope and upland drainages and shallow val-
leys tend to have strongly negative plane form curvature val-
ues. On the other hand, local ridges/hills in valleys, mid-
slope ridges, small hills in plains and mountain tops and high
ridges have strongly positive plane form curvature values.

3 Results and discussion

3.1 Inverse distance weighted (IDW) interpolation

IDW interpolation was used to produce the prediction of soil
and water EC, as shown in Fig. 4. According to Fig. 4, sample
points were selected randomly in the study area. These data
were prepared by the Organization of Agriculture Jahad Fars
province in 2012. The lowest and highest output for IDW
were 0.016 and 14.48 respectively for water EC, while the
lowest and highest soil EC was 0 and 34.5 respectively. The

Figure 5. Interpolated maps of study area for (a) water and (b) soil
EC.

interpolation maps for soil and water EC are shown in Fig. 5.
The statistical properties of the interpolated soil and water
EC are shown in Table 4.

3.2 Fuzzy method

Fuzzy maps were prepared for soil and water EC, as shown
in Fig. 6. The fuzzy values were classified into four classes.
EC < 0.25, EC between 0.25 and 0.5, EC between 0.5 and
0.75 and EC > 0.75 are in the classes of low, moderate, high
and very high respectively (Shobha et al., 2014). The areas
of the classes for soil and water EC are shown in Table 5.

For water EC, the fuzzy model showed that 36.6 % of the
land was in the moderate class; high, 31.69 %; and very high,
31.65 %. In comparison, the results of the fuzzy model for
soil EC showed that 24.31 % of the land was in the low class;
moderate, 11.78 %; high, 25.74 %; and very high, 38.16 %.
Based on the results obtained, the land suitable for wheat
agriculture is located in the north and northeast in the study
area.

3.3 Landform classification

In order to determine of relationship between landform clas-
sification, and soil and water EC, the landform map of the
study area was prepared. Using the TPI, the landform classi-
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Table 3. Topographic Position Index (TPI) thresholds for small and large neighbourhoods used to define landscape feature classes.

Landform TPI
Small neighbourhood Large neighbourhood

Plains −1 < TPI < 1 −1<TPI < 1∗

Open slopes −1 < TPI < 1 −1 < TPI < 1∗∗

U-shaped valleys −1 < TPI < 1 TPI <−1
Mountain tops/high ridges TPI > 1 TPI > 1
Upper slopes/mesas −1 < TPI < 1 TPI > 1
Mid-slope drainages/shallow valleys TPI <−1 −1 < TPI < 1
Canyons/deeply incised streams TPI <−1 TPI <−1
Mid-slope ridges/small hills in plains TPI > 1 −1 < TPI < 1
Upland drainages/headwaters TPI <−1 TPI > 1
Local ridges/hills in valleys TPI > 1 TPI <−1

∗ Plain landform class required a slope of < 0.5. ∗∗ Open slopes landform class required a slope of > 0.5

Table 4. Descriptive statistics of the water and soil EC.

Statistic parameter Water EC Soil EC
(ds/m) (ds/m)

Maximum 14.48 28.25
Minimum 0.016 0.78
Average 3.80 3.91
Standard deviation 6.13 3.82
Skewness 6.54 3.09
Kurtosis 62.97 15.46

Table 5. Areas of the classes for water and soil EC.

Class Area (%) Area (km2)

Water EC Soil EC Water EC Soil EC

Low 0.00 24.31 0.11 950.23
Moderate 36.60 11.78 1430.87 460.63
High 31.69 25.74 1238.91 1006.27
Very high 31.65 38.16 1237.10 1491.86

fication map of the study area was generated. The TPI maps
generated using small and large neighbourhoods are shown
in Fig. 7. The TPI is between −106 to 130 and −334 to 533
for 3 and 45 cells for small and large neighbourhoods re-
spectively (Fig. 8). The landform maps generated based on
the TPI values are shown in Fig. 8. The classification has
10 classes: high ridges, mid-slope ridges, upland drainage,
upper slopes, open slopes, plains, valleys, local ridges, mid-
slope drainage and streams. The areas of the landform classes
are shown in Fig. 9. It is observed that the largest landform
is streams, while the smallest is plains.

The average EC for each landform class was determined,
and the relationship between EC and landform was prepared.
According to Fig. 9, the EC of water is high for the valley

Figure 6. Fuzzy maps of the study area for (a) soil and (b) water
EC.

class while the high EC of soil is in the upland drainage class.
The lowest EC levels for soil and water are in the plains class.

Dazzi and Monteleone (2001) investigated the relationship
between soil properties and landform in Italy. The results
show that in plains, the EC value is greater than the other
landform types that are similar to results of the study area. Ali
and Moghanm (2013), who investigated relationship between
soil properties and landform classes in Idku Lake, Egypt, also

www.solid-earth.net/7/873/2016/ Solid Earth, 7, 873–880, 2016
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Figure 7. TPI maps generated using (a) small (3 cells) and (b) large
(45 cells) neighbourhood.

Figure 8. Landform classification using the TPI method.

found that the lowest EC was in plain class. In fact, there is
a relationship between soil parameters and land use (Wasak
and Drewnik, 2015; Kukal and Bawa Debasish-Saha, 2014).
Yu et al. (2014) showed that there is relationship between
soil parameters (such as soil organic carbon (SOC), soil total
nitrogen (STN)) and types of land cover (grassland, farm-
land, swampland). Niu et al. (2015) and Yu et al. (2015) in-
vestigated the relationship between land use and soil mois-
ture. The results provided an insight into the significance for
land use and farming water management in this area. Saha

Figure 9. Relationship between landform classes.

and Kukal (2015) found that there is a relationship between
soil structural stability and land use. The results indicated
the degradation of soil physical attributes due to the conver-
sion of natural ecosystems to farming system and increased
erosion hazards. In fact the landforms are located at high el-
evation such as in mountains; the leaching process is high,
while in landforms which are located at low elevation such as
plains, the accumulation process is evident. Therefore, in the
study area and similar research, the EC value was recorded
high in lower topographical positions (Walia and Chamuah,
1994; Singh and Rathore, 2015). In fact EC and other soil
properties can be estimated easily and without measuring
salinity in the laboratory using satellite data such as from a
digital elevation model (DEM) that save time and money.

4 Conclusion

In this study, the relationship between classes of landform
and electrical conductivity (EC) of soil and water in the Shi-
raz Plain was investigated using a combination of a geo-
graphical information system (GIS) and a fuzzy model. The
results of the fuzzy method for water EC showed 36.6 % of
the land to be moderately land suitable for agriculture; high,
31.69 %; and very high, 31.65 %. In comparison, the results
of the fuzzy method for soil EC showed 24.31 % of the land
to be as not suitable for agriculture (low class); moderate,
11.78 %; high, 25.74 %; and very high, 38.16 %. In total, the
land suitable for agriculture with low EC is located in the
north and northeast of the study area. The relationship be-
tween landform and EC shows that EC of water is high for
the valley classes, while EC of soil is high in the upland
drainage class. In addition, the lowest EC levels for soil and
water are in the plains class.
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