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Abstract. I present a new family of analytical flow solutions
to the incompressible Stokes equation in a spherical shell.
The velocity is tangential to both inner and outer boundaries,
the viscosity is radial and of the power-law type, and the so-
lution has been designed so that the expressions for velocity,
pressure, and body force are simple polynomials and there-
fore simple to implement in (geodynamics) codes. Various
flow average values, e.g., the root mean square velocity, are
analytically computed. This forms the basis of a numerical
benchmark for convection codes and I have implemented it
in two finite-element codes: ASPECT and ELEFANT. I re-
port error convergence rates for velocity and pressure.

1 Introduction

The mantle is a very complex region characterized by large
variations in temperature, viscosity, composition (Schubert
et al., 2001; van Keken et al., 2002), phase changes, melt-
ing, and anisotropic structures as revealed by seismic imag-
ing (Lay and Garnero, 2011). As a consequence, the numer-
ical modeling of mantle convection has grown in complexity
(e.g., Tackley, 2012; van Heck et al., 2016; Dannberg and
Heister, 2016) with the advent of ever more refined model-
ing techniques and powerful computers. It has also been rec-
ognized that the mantle exerts a primary control on the evo-
lution of tectonic plates and that both should be simulated
together if one is to build a fully dynamic Earth model (e.g.,
van Hinsbergen et al., 2011; Bull et al., 2014; Bower et al.,
2015; Crameri and Tackley, 2016).

Many codes have been developed in the last 30 years (Ma-
chetel et al., 1986; Glatzmaier, 1988; Bercovici et al., 1989;
Zhang and Christensen, 1993; Zhang and Yuen, 1995; Rat-

cliff et al., 1996; Iwase, 1996; Zhong et al., 2000; Tabata
and Suzuki, 2000; Richards et al., 2001; Kageyama and Sato,
2004; Yoshida and Kageyama, 2004; Choblet et al., 2007;
Tackley, 2008; Davies et al., 2013; Kronbichler et al., 2012;
Burstedde et al., 2013), and spherical shell numerical bench-
marks have been carried out (Zhong et al., 2000; Stemmer
et al., 2006; Zhong et al., 2008; Arrial et al., 2014). Semi-
analytical Stokes flow solutions derived via propagator ma-
trix methods have also been proposed in the past (Busse,
1975; Busse and Riahi, 1982; Hager and O’Connell, 1981;
Richards and Hager, 1984), while Tosi and Martinec (2007)
derived a semi-analytical solution in the case of two eccen-
trically nested spheres. However, semi-analytical solutions
present a major drawback: the solution is given as a func-
tion of spherical harmonic expansions, which are based on
infinite sums and which can prove to be cumbersome to ma-
nipulate and/or implement.

While inter-code comparisons are useful for problems
without an analytical solution (e.g., Arrial et al., 2014; Tosi
et al., 2015), such benchmark studies rely on the comparisons
between a handful of scalar values (e.g., root mean square ve-
locity, Nusselt number), which account for the global charac-
ter of the solution at steady state but do not lend themselves
to error convergence measurements. Fully analytical solu-
tions have also been recently proposed, attempting to rep-
resent a mid-ocean ridge (Burstedde et al., 2013) or being
more abstract in nature (Zhong, 1996; Popov et al., 2014;
Blinova et al., 2016). Actually, any analytical solution to
the Stokes equation in three dimensions could be used in a
spherical shell provided that the velocity is appropriately ap-
plied on the inner and outer boundaries (e.g., Burstedde et al.,
2013), but such solutions usually do not satisfy the condition
v ·n= 0 on the inner and outer boundaries; i.e., there is flow
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through the boundaries. Not only does the presence of a ma-
terial flow through the boundaries make the flow not Earth-
like, but it also precludes its use for particle-in-cell advection
benchmarking (particles would leave and enter the domain).

I propose a new analytical solution for viscous incom-
pressible Stokes flow in a spherical shell. It has been de-
signed with three constraints in mind: (1) the boundary con-
ditions, buoyancy forces, and viscosity fields should be sim-
ple to implement and exact; (2) the solution should also be
smooth and simple enough to be usable; (3) and it should
satisfy tangential slip boundary conditions on both surfaces.
I present in Sect. 2 the simplified Stokes equation in spheri-
cal coordinates under these flow assumptions and outline the
procedure to arrive at the analytical solution for pressure and
velocity in Sect. 3, for both constant and depth-dependent
viscosity profiles. I compute in Sect. 4 the exact analytical
values for the root mean square velocity and various other
averages. In Sect. 5 the two numerical codes are introduced
and the results obtained with these are shown. Finally, these
results are discussed in Sect. 6.

2 The Stokes equations in spherical coordinates

The domain is a spherical shell parameterized by its inner
radius R1 and outer radius R2. For an incompressible fluid,
the Stokes flow equations are given by

∇ · v = 0, (1)
∇ · σ + ρg = 0, (2)

where v is the velocity vector, ρ is the mass density, g is
the gravitational acceleration vector, and σ is the full stress
tensor, which can be split:

σ =−p1+ s, (3)

where p is the pressure, 1 is the unit tensor, and s is the de-
viatoric stress tensor. Equation (2) then becomes

−∇p+∇ · s+ ρg = 0. (4)

In spherical coordinates, Eqs. (1) and (4) become

1
r2
∂

∂r
(r2vr)+

1
r sinθ

∂

∂θ
(vθ sinθ)+

1
r sinθ

∂vφ

∂φ
= 0, (5)

−
∂p

∂r
+
∂srr

∂r
+

1
r

∂sθr

∂θ
+

1
r sinθ

∂sφr

∂φ

+
2srr − sθθ − sφφ

r
+
sθr cotθ
r
+ ρgr = 0, (6)

−
1
r

∂p

∂θ
+
∂srθ

∂r
+

1
r

∂sθθ

∂θ
+

1
r sinθ

∂sφθ

∂φ

+
3sθr + (sθθ − sφφ)cotθ

r
+ ρgθ = 0, (7)

−
1

r sinθ
∂p

∂φ
+
∂srφ

∂r
+

1
r

∂sθφ

∂θ
+

1
r sinθ

∂sφφ

∂φ

+
3srφ + 2sφθ cotθ

r
+ ρgφ = 0. (8)

In this work, the following spherical coordinate conventions
are used: r is the radial distance, θ ∈ [0,π ] is the polar an-
gle, and φ ∈ [0,2π ] is the azimuthal angle. In the case of an
incompressible fluid, the deviatoric stress is simply

s = 2µε̇, (9)

whereµ is the dynamic viscosity, which can depend on space
coordinates, and ε̇ is the (deviatoric) strain rate tensor:

ε̇ =
1
2

(
∇v+∇vT

)
. (10)

In spherical coordinates, the components of the deviatoric
stress tensor are given by

srr = 2µ
(
∂vr

∂r

)
, (11)

sθθ = 2µ
(

1
r

∂vθ

∂θ
+
vr

r

)
, (12)

sφφ = 2µ
(

1
r sinθ

∂vφ

∂φ
+
vr

r
+
vθ

r
cotθ

)
, (13)

srθ = sθr = µ

(
∂vθ

∂r
−
vθ

r
+

1
r

∂vr

∂θ

)
, (14)

srφ = sφr = µ

(
1

r sinθ
∂vr

∂φ
+
∂vφ

∂r
−
vφ

r

)
, (15)

sθφ = sφθ = µ

(
1
r

∂vφ

∂θ
−

cotθvφ
r
+

1
r sinθ

∂vθ

∂φ

)
. (16)

Equations (5)–(8) supplemented by Eqs. (11)–(16) form a
closed set of PDEs that can be solved given an appropriate
set of boundary conditions.

2.1 Assumptions on the flow

In order to derive an analytical solution for the flow velocity
and pressure in the domain, the following assumptions are
made.

– All quantities vr ,vθ ,vφ,p,ρ, and µ are independent of
the azimuthal angle φ. As a consequence, all the terms
containing partial derivatives with respect to φ can be
discarded. This is one of the most stringent limitations
in this work since it implies rotational symmetry with
respect to the vertical axis.

– The polar and azimuthal components of the velocity are
equal and of the form

vθ (r,θ)= vφ(r,θ)= f (r)sinθ. (17)
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– The radial component of the velocity is null on the in-
side r = R1 and outside r = R2 of the domain, thereby
ensuring a tangential flow on the boundaries, i.e.,

vr(R1,θ)= vr(R2,θ)= 0. (18)

– The viscosity is a function of the radial distance only
and takes the form

µ(r)= µ0r
m+1, (19)

where m is an integer (positive or negative). Note that
m=−1 yields a constant viscosity.

– The gravity vector is set to g =−er and is therefore of
unit norm, i.e., |g| = 1.

2.1.1 The set of simplified partial differential equations

Under the above assumptions, it is easy to show that the
Stokes equation in spherical coordinates is given by

1
r2
∂

∂r
(r2vr)+

1
r sinθ

∂

∂θ
(vθ sinθ)= 0, (20)

−
∂p

∂r
+ ρ(r,θ)+µ(r)

(
1vr −

2vr
r2

−
2
r2
∂vθ

∂θ
−

2vθ cotθ
r2

)
+ 2µ′(r)

∂vr

∂r
= 0, (21)

−
1
r

∂p

∂θ
+µ(r)

(
1vθ +

2
r2
∂vr

∂θ
−

vθ

r2sin2θ

)
+µ′(r)

(
∂vθ

∂r
−
vθ

r
+

1
r

∂vr

∂θ

)
= 0, (22)

µ(r)

(
1vφ −

vφ

r2sin2θ

)
+µ′(r)

(
∂vφ

∂r
−
vφ

r

)
= 0, (23)

where 1 is the Laplacian operator:

1=
1
r2
∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2 . (24)

3 Derivation of the analytical solution of the Stokes
equations

My goal is to determine the f (r) function in the context of all
the assumptions made about the flow nature. The following
four steps will then be taken:

1. use the continuity Eq. (20) to arrive at vr(r,θ)=
g(r)cosθ ;

2. use the θ component of Stokes Eq. (22) to arrive at
p(r,θ)= h(r)cosθ ;

3. use the φ component of Stokes Eq. (23) to arrive at f (r)
and g(r) using boundary conditions on vr ;

4. and use the r component of Stokes Eq. (21) to arrive at
the density ρ(r,θ).

3.1 Using the continuity equation to arrive at vr

Inserting Eq. (17) into Eq. (20) yields

vr(r,θ)= g(r)cosθ, (25)

g(r)=−
2
r2

∫
rf (r)dr, (26)

where the integration constant has been set to zero for sim-
plicity.

I then proceed to compute the Laplacian of each velocity
component using Eq. (24), and once again all partial deriva-
tives with respect to φ are neglected:

1vr =

[
g′′+

2g′

r
− 2

g

r2

]
cosθ, (27)

1vθ =

(
f ′′+

2f ′

r

)
sinθ +

f

r2 sinθ

(
cos2θ − sin2θ

)
, (28)

1vφ =

(
f ′′+

2f ′

r

)
sinθ +

f

r2 sinθ

(
cos2θ − sin2θ

)
. (29)

3.2 Using the θ component of Stokes equations to
arrive at the pressure p

Inserting Eqs. (17) and (25) into Eq. (22) yields

∂p

∂θ
=−h(r)sinθ (30)

with

h(r)=−µ(2f ′+ rf ′′)+
2µ+ rµ′

r
(f + g)− rµ′f ′ (31)

so that

p(r,θ)= h(r)cosθ, (32)

where the integration constant has once again been omitted
for simplicity.

3.3 Using the φ component of Stokes equations to
arrive at f (r) and g(r)

Inserting Eqs. (17) and (25) into Eq. (23) yields

µ
(
r2f ′′+ 2rf ′− 2f

)
+ rµ′

(
rf ′− f

)
= 0. (33)

I now make use of Eq. (19) so that Eq. (33) becomes

rm+1
[
r2f ′′+ (3+m)rf ′− (3+m)f

]
= 0. (34)
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This equation has to hold for all r values so that f (r) is the
solution of the second-order ODE:

r2f ′′+ (3+m)rf ′− (3+m)f = 0. (35)

I postulate that the solution is of the form f (r)= ra , which
yields

[a+ (m+ 3)](a− 1)f (r)= 0. (36)

The only two acceptable values for a are the roots of this
second-order polynomial, i.e., a = 1 or a =−(m+ 3). The
general solution of the ODE is then

f (r)= αr−(m+3)
+βr, (37)

where α and β are two constants yet to be determined. Hav-
ing obtained f (r), one can now compute g(r). However, as
will become obvious, one must make a distinction between
m=−1 and m 6= −1.

Note that the case m=−3 should be considered sepa-
rately since Eq. (35) then becomes f ′′(r)= 0 and yields a
solution f (r)= βr .

3.3.1 Case m=−1

In this case the function f (r) is

f (r)=
α

r2 +βr, (38)

and from Eq. (26) one obtains

g(r)=−
2
r2

(
α lnr +

β

3
r3
+ γ

)
, (39)

where γ 6= 0 is a constant. From Eqs. (18) and (25) it follows
that g(R1)= g(R2)= 0, which yields

α =−γ
R3

2 −R
3
1

R3
2 lnR1−R

3
1 lnR2

, (40)

β =−3γ
lnR2− lnR1

R3
1 lnR2−R

3
2 lnR1

. (41)

3.3.2 Case m 6= −1

In this case the function g(r) takes the form

g(r)=−
2
r2

(
−

α

m+ 1
r−(m+1)

+
β

3
r3
+ γ

)
, (42)

and the boundary conditions impose

α = γ (m+ 1)
R−3

1 −R
−3
2

R
−(m+4)
1 −R

−(m+4)
2

, (43)

β =−3γ
Rm+1

1 −Rm+1
2

Rm+4
1 −Rm+4

2

. (44)

Note that this imposes m 6= −4.

3.4 Using the r component of Stokes equations to
arrive at density ρ

Equation (21) contains the term ∂p/∂r = ∂h/∂r cosθ , which
needs to be addressed beforehand:

∂h

∂r
=−µ′(2f ′+ rf ′′)−µ(3f ′′+ rf ′′′)

+
r2µ′′+ 2rµ′− 2µ

r2 (f + g)

+
2µ+ rµ′

r
(f ′+ g′)−µ′f ′− rµ′′f ′− rµ′f ′′. (45)

3.4.1 Case m=−1

In this case, µ′ = 0 and µ′′ = 0 so that ∂h/∂r cosθ simplifies
to

∂h

∂r
=−

(
3f ′′+ rf ′′′

)
+

2
r
(f ′+ g′)−

2
r2 (f + g), (46)

and Eq. (21) becomes

−
∂h

∂r
+
ρ(r,θ)

cosθ
+
1vr

cosθ
−

1
r2 (2g+ 4f )= 0. (47)

I postulate that

ρ(r,θ)= F(r)cosθ, (48)

and by using Eq. (27), the radial function F is given by

F(r)=−rf ′′′− 3f ′′+ 2
f ′

r
− g′′+

2
r2 (f + g). (49)

Inserting the radial functions f (r) and g(r) given in
Eqs. (38) and (39) into Eq. (49) yields

ρ(r,θ)=

(
α

r4 (8lnr − 6)+
8β
3r
+ 8

γ

r4

)
cosθ. (50)

3.4.2 Case m 6= −1

Using Eq. (19) leads to

1
rm

∂h

∂r
=− r2f ′′′− [2m+ 5]rf ′′−m(m+ 3)f ′

+m(m+ 3)(f + g)/r + (m+ 3)g′. (51)

Then Eq. (21) becomes

−
∂h

∂r
cosθ + ρ(r,θ)+µ(r)

[
1vr −

cosθ
r2 (2g+ 4f )

]
+µ′(r)g′(r)cosθ = 0. (52)

I postulate here that

ρ(r,θ)= rmF(r)cosθ (53)
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and arrive at

F(r)=
1
rm

∂h

∂r
− r

[
g′′+

2(m+ 2)
r

g′−
4
r2 (g+ f )

]
(54)

=−r2f ′′′− [2m+ 5]rf ′′−m(m+ 3)f ′,

+ [m(m+ 3)+ 4]
f + g

r
− (m+ 1)g′− rg′′ (55)

=−r2f ′′′− [2m+ 5]rf ′′− [m(m+ 3)− 2],

f ′+m(m+ 5)
f + g

r
, (56)

where I have used

g′(r)=−
2
r
(f + g), (57)

rg′′(r)=−2f ′+
6
r
(f + g). (58)

Inserting f (r) and g(r) expressions into the above equation
yields F(r) so that in the end

ρ(r,θ)=

[
2αr−(m+4)m+ 3

m+ 1
(m− 1)

−
2β
3
(m− 1)(m+ 3)−m(m+ 5)

2γ
r3

]
cosθ. (59)

3.5 The pressure field

The pressure is defined in Eq. (32) and h(r) can now be com-
puted.

3.5.1 Case m=−1

h(r)=−µ0
4
r3

(
α lnr +

β

3
r3
+ γ

)
=

2
r
µ0g(r) (60)

3.5.2 Case m 6= −1

h(r)=−µ(r)
2(m+ 3)
r3

(
−

α

m+ 1
r−(m+1)

+
β

3
r3
+ γ

)
=
m+ 3
r

µ(r)g(r) (61)

4 Additional measurements

4.1 Root mean square velocity

Many benchmark studies (e.g., Blankenbach et al., 1989;
Tosi et al., 2015) report the root mean square velocity quan-
tity, defined as follows:

vRMS =

√√√√ 1
V

∫
V

|v|2dV . (62)

This is a convenient quantity as it captures (in an average
sense) the nature of the velocity field in a single scalar value,

which allows for an easy comparison either with a known
analytical value or across multiple codes.

Since the velocity is known in all of the domain, it is a sim-
ple although tedious exercise to compute the RMS velocity.
I find

vRMS =

√
4π
3V
[B + 4A], (63)

with

A=

R2∫
R1

f 2r2dr, (64)

B =

R2∫
R1

g2r2dr. (65)

The values of A and B depend on the f and g function, so
the distinction must once again be made between m=−1
and m 6= −1.

4.1.1 Case m=−1

A=

[
−
α2

r
+αβr2

+
β2

5
r5
]R2

R1

(66)

B = 4(B1+B2+B3+B4+B5+B6) (67)

B1 = α
2
[
−(X2

+ 2X+ 2)e−X
]lnR2

lnR1
(68)

B2 =
2αβ

3

[
1
2
r2 lnr −

1
4
r2
]R2

R1

(69)

B3 = 2αγ
[
−Xe−X − e−X

]lnR2

lnR1
(70)

B4 =
β2

45

[
r5
]R2

R1
(71)

B5 =
βγ

3

[
r2
]R2

R1
(72)

B6 = γ
2
[
−

1
r

]R2

R1

(73)

4.1.2 Case m 6= −1

A=

[
−

α2

2m+ 3
r−(2m+3)

−
2αβ
m− 1

r−(m−1)
+
β2

5
r5
]R2

R1

(74)

B = 4(B1+B2+B3−B4−B5+B6) (75)

B1 =−
α2

(m+ 1)2(2m+ 3)

[
r−(2m+3)

]R2

R1
(76)

B2 =
β2

45

[
r5
]R2

R1
(77)
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B3 =−γ
2
[

1
r

]R2

R1

(78)

B4 =−
2αβ

3(m+ 1)(m− 1)

[
r−(m−1)

]R2

R1
(79)

B5 =−
2αγ

(m+ 1)(m+ 2)

[
r−(m+2)

]R2

R1
(80)

B6 =
βγ

3
[r2
]
R2
R1

(81)

4.2 Radial averages

The radial average of a quantity χ(r,θ,φ) is defined as fol-
lows:

< χ>R =
1

4π

∫ ∫
χ(r,θ,φ)sinθdθdφ, (82)

and due to symmetry it is trivial to show that< p>R = 0 and
< vr>R = 0. Likewise, one easily arrives at

< vθ>R =< vφ>R =
1
4
f (r). (83)

4.3 Volume averages

The volume average of a quantity χ(r,θ,φ) is defined as fol-
lows:

< χ>V =
1
V

∫
V

χ(r,θ,φ)dV. (84)

Here again, < p>V = 0 and < vr>V = 0, while

< vθ >=< vφ >=
π2

V

R2∫
R1

f (r)r2dr

=


π2

V

[
αr +

β

4
r4
]R2

R1

(m=−1)

π2

V

[
−
α

m
r−m+

β

4
r4
]R2

R1

(m 6= −1)
. (85)

One can also look at the volume averages of the Cartesian
coordinate components of the velocity.

< vx >=
1
V

∫
V

vx(r,θ,φ)dV (86)

=
1
V

∫
V

(
sinθ cosφ vr + cosθ cosφ vθ − sinφ vφ

)
dV = 0 (87)

< vy >=
1
V

∫
V

vy(r,θ,φ)dV (88)

=
1
V

∫
V

(
sinθ sinφ vr + cosθ sinφ vθ + cosφ vφ

)
dV = 0 (89)

< vz >=
1
V

∫
V

vz(r,θ,φ)dV (90)

=
1
V

∫
V

(vr cosθ − vθ sinθ)dV (91)

=
1
V

∫
V

(
g(r)cos2θ − f (r)sin2θ

)
r2 sinθdrdθdφ (92)

=
4π
3V

[∫
g(r)r2dr − 2

∫
f (r)r2dr

]
= 0 (93)

Note that < vx > and < vy > are zero because of symme-
try (

∫ 2π
0 cosφdφ =

∫ 2π
0 sinφdφ = 0), while < vz>=0 (for

all values of m) after tedious calculations using the defini-
tions of α and β.

4.4 Surface averages

The average of a quantity χ(r,θ,φ) on a surface of radius
R is simply the radial average function evaluated at a given
radial distance R. Rather importantly, we have

< p>R=R2 = 0; (94)

i.e., the average pressure at the outside surface is zero.

4.5 Moment of inertia

Because of the expression of the density field, i.e.,
ρ(r,θ,φ)= F(r)cosθ , it is trivial to show that the moment
of inertia of the system with respect to the x, y, and z axis
are identically zero.

4.6 Stress field

Since the velocity and pressure fields are known, I can also
compute an analytical expression for the stress field, and the
stress tensor is given by

σ =

µ(r)

r


−((m+ 7)g+ 4f )cosθ (rf ′ − f − g)sinθ (rf ′ − f )sinθ

(rf ′ − f − g)sinθ −((m+ 1)g− 2f )cosθ 0

(rf ′ − f )sinθ 0 −((m+ 1)g− 2f )cosθ

.

5 Implementation and results

As mentioned earlier, this flow solution was designed with a
geodynamics application in mind. It has therefore been im-
plemented in the state-of-the-art open-source code ASPECT1

(Kronbichler et al., 2012; Heister et al., 2017) and in the
ELEFANT2 code (Thieulot, 2014; Tosi et al., 2015; Lavec-
chia et al., 2017). Both codes solve the incompressible flow
Stokes equations in spherical shell domains but use Cartesian
coordinates.

1https://aspect.dealii.org/
2http://cedricthieulot.net/elefant.html
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Figure 1. Functions f (r) (a), g(r) (b), h(r) (c), and viscosity profile µ(r) (d) as a function of r ∈ [0.5 : 1] for various values of m.

5.1 ASPECT

ASPECT is a finite-element code intended to solve the equa-
tions that describe thermally driven convection with a focus
on doing so in the context of convection in Earth’s mantle.
The default element type Q2Q1 (quadratic velocity, linear
pressure) has been used in this work, but since ASPECT is
based on the deal.ii library (Bangerth et al., 2007, 2016), one
can easily change the element type from the ASCII input file
(“.prm” file), and the Q1P0 (linear velocity, constant pres-
sure) was also used (the same element is used in the CIT-
COM code; Zhong et al., 2008).

I make use of the plugin architecture of the code which
allows users and developers to easily add or switch between
already-implemented features. The flow velocity and pres-
sure solutions, as well as the viscosity and body force expres-
sions, are all encapsulated in a single piece of code alongside
an ASCII input file in which resolution, element type, bound-
ary conditions, and other parameters are set. This benchmark
is now part of the mainline since version 2.0.0-pre (see AS-
PECT manual).

5.2 ELEFANT

ELEFANT borrows largely from the FANTOM code (Thieu-
lot, 2011), but it also brings a number of critical improve-
ments compared to its predecessor, such as spherical shell
geometry and the use of a preconditioned conjugate gradi-
ent scheme for both inner and outer iterations (Braess, 2007;

Elman, 1996). It is a finite-element code based on Q1P0 el-
ements, which is developed and maintained by the author.
It has successfully been benchmarked against a wide range
of analytical problems and also against other codes (includ-
ing ASPECT) in the case of visco-plastic thermal convection
(Tosi et al., 2015).

5.3 Setup

In what follows, I set the inner and outer radii to R1 = 0.5
and R2 = 1, respectively. The functions f (r), g(r), h(r), and
the viscosity function are shown in Fig. 1.

The ASPECT computational grid consists of 12 blocks
making up a hollow sphere (Zhong et al., 2000), with each
block subdivided into (2n)3 elements, where n= 2,3, . . ..
Since elements vary in size in the radial direction, I have cho-
sen to report the average element size in convergence plots,
and it is computed as follows:

< h>=

(
V

Nel

)1/3

, (95)

where V is the volume of the domain and Nel is the total
number of elements. The ELEFANT mesh is also based on
the same 12 blocks, but each block can be subdivided into
nel3 elements, where nel is a positive integer that is not
bound to be a power of 2.

The analytical velocity solution is prescribed on both inter-
nal (r = R1) and external (r = R2) boundaries. Given these
boundary conditions, the pressure is determined up to a con-
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Figure 2. (a–c) Analytical solution for m=−1 (constant viscosity); (d–f) solution for m= 3.
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Figure 3. Root mean square velocity as a function of the average element size for both codes.

stant. Both codes allow for a surface normalization (the aver-
age pressure along the surface has a prescribed value, in this
case zero) and a volume normalization (the average pressure
over the whole volume has a prescribed zero value). Since I
have shown above that both are identically null for the pres-
sure field, the choice of pressure normalization does not mat-
ter. Also, the boundary conditions preclude the presence of
a pure rotational mode of numerical origin (Zhong et al.,

2008). Both codes were run for values of m=−1 (constant
viscosity) and m= 3 (viscosity varies by a factor 16 from
the inside to the outside). The density, velocity, and pressure
fields for both cases are shown in Fig. 2.

Figure 3 shows the relative root mean square velocity error
as a function of the (average) element size for both codes and
both m values. The error is found to quadratically decrease
with resolution for both codes. Likewise, the L2-norm of the
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Figure 4. Velocity L2-norm error vs. average resolution for ELEFANT and ASPECT.
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Figure 5. Pressure L2-norm error vs. average resolution for ELEFANT and ASPECT.

velocity error is found to decrease with resolution, linearly
for Q1P0 elements and quadratically for Q2Q1, as shown in
Fig. 4. Looking at the pressure error convergence, it is found
to decrease quadratically with the resolution for both types
of elements, as shown in Fig. 5. ELEFANT routinely outputs
all three average quantities < u >, < v >, and <w >. All
three values were found to be zero within machine precision
(oscillating around 10−15).

6 Conclusions

I have derived in this paper a family of analytical solutions
to incompressible Stokes flow in a spherical shell under a

few assumptions, such as tangential velocity on the bound-
aries and a radial viscous profile. The velocity, pressure, den-
sity, and viscous fields that satisfy the flow equations at every
point in space are then used to benchmark two multipurpose
geodynamics codes. The L2-norms of the velocity and pres-
sure errors were reported and shown to decrease when the
resolution is increased. Furthermore, various analytical ex-
pressions for flow averages were derived, and it was shown
that the computed solutions converged to these expected val-
ues.

A number of previous studies (Popov et al., 2014) use an
exponential viscosity of the form µ(r)= µ0 exp(α ·r), where
α is a parameter controlling the amplitude of the viscosity
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variations in the system. This approach was tried during the
preparation of the paper, but Eq. (35) then becomes

r2f ′′+ (2+mr)rf ′− (2+mr)f = 0. (96)

Although this equation can be solved, the form of the solu-
tion f (r) involves the exponential integral function Ei(r)=
−
∫
∞

−r
e−t/t dt , which would (a) render the derivations of

g(r) and all subsequent quantities very cumbersome and
(b) make the solution only semi-analytical. This approach
was then abandoned.

Looking at the pressure equation, or rather at Fig. 1c, we
see that the pressure is zero for r = R1 and r = R2. One
simple interpretation is that the pressure in this work should
be interpreted as an over pressure with regards to a back-
ground lithostatic pressure. Likewise, the (complex) density
profiles have to be interpreted as density variations with re-
gards to a background density profile corresponding to the
above-mentioned lithostatic pressure.

Finally, it must be mentioned that the driving density field
and flow solution both consist azimuthally of spherical har-
monic degree 1 and order 0 combined with an azimuthally
constant viscosity. Presumably, the presented solutions are
part of a family of solutions that could also be derived for
other spherical harmonics.

Data availability. This benchmark has been part of the open-
source ASPECT code since version 2.0.0-pre (see ASPECT man-
ual; Bangerth et al., 2017).
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