Supplement of Solid Earth, 8, 1193–1209, 2017 https://doi.org/10.5194/se-8-1193-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing

James Gilgannon et al.

Correspondence to: James Gilgannon (james.gilgannon@geo.unibe.ch)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 Image analysis

The pre-processing workflow was as follows:

- 1. Make image 8 bit
- 2. Despeckle
- 3. Non-local Means Denoise (sigma = 5, smoothing = 1)
- 4. Non-local Means Denoise (sigma = 15, smoothing = 1)
- 5. Threshold (<10)
- 6. Make binary
- 7. Manually erase cross cutting pores

The workflow for the mask used used in figure 2 was as follows:

- 1. Make image 8 bit
- 2. Non-local Means Denoise (sigma = 15, smoothing = 1)
- 3. Remove outliers: Dark (radius = 4, threshold = 50)
- 4. Threshold (<50)
- 5. Make binary
- 6. Remove outliers: Bright (radius = 12, threshold = 50)
- 7. Threshold (<50)
- 8. Make binary

Parameters for kernel density analysis using SciPy and NumPy libraries:

```
Part of script for calculating Kernel density analysis (KDE) using SciPy and NumPy libraries.
NOTE: KDE must be rotated 90 degrees when visualising
# Import Python libraries
from scipy import stats
import numpy as np
# Define objects to preform kernel density analysis on
area_obj = np.asarray(less_1_circ['area'])
angle_obj = np.asarray(less_1_circ['angle_90'])
### Kernel density analysis (KDE) ###
# Make analysis grid
X, Y = np.mgrid[xbnds[0]:xbnds[1]:100j, ybnds[0]:ybnds[1]:100j]
positions = np.vstack([X.ravel(), Y.ravel()])
# Use objects to make stack for KDE
values = np.vstack([area_obj, angle_obj])
# Bandwith for manipulating the kernels shape
bandwidth = 4
# KDE analysis
kernel = stats.gaussian_kde(values, bw_method = bandwidth / values.std(ddof=1))
Z = np.reshape(kernel(positions).T, X.shape)
```

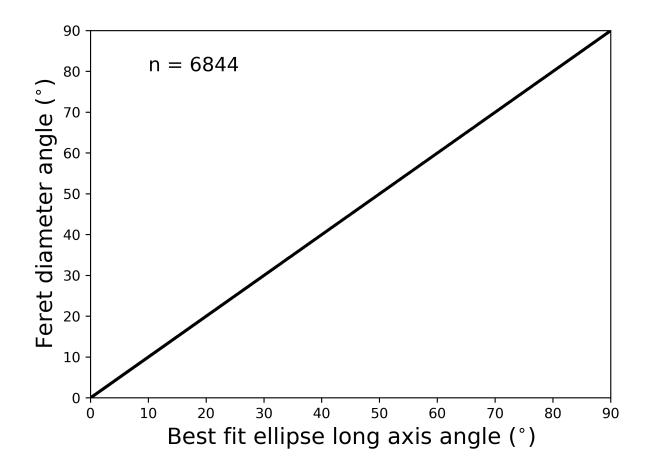


Figure S 1: Comparison of the Feret's diameter and the long axis of the best fit ellipse, for pores with a circularity < 1.