



## Supplement of

## **Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico**

T. van der Werf et al.

Correspondence to: Vasileios Chatzaras (v.chatzaras@uu.nl)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

| Sampla                                                                                                          | Or             | - Total band area (cm <sup>-2</sup> ) |      |       |
|-----------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|------|-------|
| Sample                                                                                                          | х              | У                                     | Z    |       |
| Andesine GRR1389                                                                                                | 2455           | 1064                                  | 596  | 4115  |
| Oligioclase GRR580                                                                                              | 999            | 394                                   | 117  | 1511  |
| Oligoclase GRR1280                                                                                              | 2356           | 1310                                  | 215  | 3880  |
| Sanidine GRR638                                                                                                 | 753            | 269                                   | 542  | 1564  |
| Anorthite GRR1968                                                                                               | 120            | 944                                   | 175  | 1239  |
| Microcline GRR1281                                                                                              | 10917          | 2485                                  | 5986 | 19389 |
| Microcline GRR968                                                                                               | 6892           | 1983                                  | 4704 | 13579 |
| the second se | Lating attacks |                                       |      |       |

Table S1. Estimated absorbance for principal vibrational directions based on Johnson and Rossman (2003)

x, y, z: principal vibrational directions

| SAMPLE                         | SQ-16   | SQW-75 | SQW-110 | SQW-114 | SQW-115 | SQW-76 | SQL-48 |
|--------------------------------|---------|--------|---------|---------|---------|--------|--------|
| OLIVINE                        |         |        |         |         |         |        |        |
| wt. %                          |         |        |         |         |         |        |        |
| SiO <sub>2</sub>               | 40.14   | 38.02  | 33.19   | 38.51   | 36.98   |        | 36.56  |
| FeO                            | 14.89   | 19.61  | 47.78   | 17.82   | 28.38   |        | 29.82  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.000   | 0.56   | 0.33    | 1.22    | 0.33    |        | 0.00   |
| MnO                            | 0.18    | 0.30   | 1.05    | 0.25    | 0.48    |        | 0.40   |
| MgO                            | 44.85   | 40.04  | 16.92   | 41.64   | 33.33   |        | 31.66  |
| CaO                            | 0.22    | 0.25   | 0.40    | 0.26    | 0.27    |        | 0.53   |
| Sum                            | 100.28  | 98.78  | 99.66   | 99.70   | 99.78   |        | 98.96  |
| cations per 4 oxyger           | n atoms |        |         |         |         |        |        |
| Si                             | 1.00    | 0.99   | 0.99    | 0.99    | 1.00    |        | 0.99   |
| Fe <sup>2+</sup>               | 0.31    | 0.42   | 1.20    | 0.38    | 0.64    |        | 0.68   |
| Fe <sup>3+</sup>               | 0.00    | 0.02   | 0.01    | 0.02    | 0.01    |        | 0.00   |
| Mn                             | 0.00    | 0.01   | 0.03    | 0.01    | 0.01    |        | 0.01   |
| Mg                             | 1.67    | 1.55   | 0.76    | 1.59    | 1.34    |        | 1.28   |
| Са                             | 0.01    | 0.01   | 0.01    | 0.08    | 0.01    |        | 0.02   |
| Sum                            | 2.99    | 3.00   | 2.99    | 3.00    | 3.00    |        | 2.97   |
| X <sub>Mg</sub>                | 0.84    | 0.78   | 0.39    | 0.80    | 0.67    |        | 0.65   |
| ORTHOPYROXENE                  |         |        |         |         |         |        |        |
| wt. %                          |         |        |         |         |         |        |        |
| SiO <sub>2</sub>               | 52.57   | 52.53  | 50.31   | 55.75   | 51.71   | 50.33  | 51.41  |
| TiO <sub>2</sub>               | 0.03    | 0.08   | 0.10    | 0.03    | 0.15    | 0.12   | 0.08   |
| Al <sub>2</sub> O <sub>3</sub> | 3.39    | 4.01   | 2.27    | 1.31    | 3.49    | 2.22   | 2.93   |
| FeO                            | 14.59   | 15.01  | 26.42   | 10.95   | 17.64   | 26.15  | 20.27  |
| Fe <sub>2</sub> O <sub>3</sub> | 1.11    | 0.78   | 1.78    | 0.40    | 1.56    | 1.11   | 2.22   |
| MnO                            | 0.36    | 0.32   | 0.79    | 0.24    | 0.38    | 2.11   | 0.48   |
| MgO                            | 26.49   | 26.19  | 17.74   | 29.31   | 24.01   | 17.26  | 22.35  |
| CaO                            | 0.61    | 0.81   | 1.01    | 2.16    | 0.82    | 1.03   | 0.55   |
| Na <sub>2</sub> O              | 0.01    | 0.02   | 0.03    | 0.04    | 0.03    | 0.06   | 0.01   |
| Sum                            | . 99.16 | 99.73  | 100.44  | 100.20  | 99.79   | 100.40 | 100.29 |
| cations per 3 oxygen a         | itoms   | 0.05   | 0.00    | 0.00    | 0.00    | 0.05   | 0.05   |
| 51<br>T:                       | 0.95    | 0.95   | 0.96    | 0.96    | 0.99    | 0.95   | 0.95   |
|                                | 0.00    | 0.00   | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   |
| AI<br>5 - <sup>2+</sup>        | 0.07    | 0.09   | 0.05    | 0.05    | 0.03    | 0.08   | 0.06   |
| Fe<br>r - <sup>3+</sup>        | 0.22    | 0.23   | 0.42    | 0.42    | 0.16    | 0.27   | 0.31   |
| Fe                             | 0.02    | 0.01   | 0.02    | 0.03    | 0.01    | 0.02   | 0.03   |
|                                | 0.01    | 0.01   | 0.03    | 0.01    | 0.00    | 0.01   | 0.01   |
|                                | 0.72    | 0.71   | 0.49    | 0.51    | 0.77    | 0.00   | 0.62   |
|                                | 0.01    | 0.02   | 0.02    | 0.02    | 0.04    | 0.02   | 0.01   |
| Sum                            | 2.00    | 2.00   | 2.00    | 2.00    | 2.00    | 2.00   | 2.00   |
| XMg                            | 0.75    | 0.75   | 0.53    | 0.53    | 0.82    | 0.69   | 0.64   |

Table S2. Representative mineral compositions

| SAMPLE                           | SQ-16  | SQW-75 | SQW-110 | SQW-114 | SQW-115 | SQW-76 | SQL-48 |
|----------------------------------|--------|--------|---------|---------|---------|--------|--------|
|                                  |        |        |         |         |         |        |        |
| CLINOPYROXENE                    |        |        |         |         |         |        |        |
| wt. %                            |        |        |         |         |         |        |        |
| SiO <sub>2</sub>                 | 48.92  | 51.23  | 50.50   | 52.83   | 49.74   |        | 49.93  |
| TiO <sub>2</sub>                 | 0.83   | 0.29   | 0.36    | 0.06    | 0.62    |        | 0.65   |
| Al <sub>2</sub> O <sub>3</sub>   | 7.17   | 4.66   | 3.61    | 3.27    | 5.09    |        | 4.92   |
| FeO                              | 4.63   | 4.16   | 11.80   | 5.71    | 6.41    |        | 6.44   |
| Fe <sub>2</sub> O <sub>3</sub>   | 0.77   | 1.67   | 1.78    | 1.10    | 2.68    |        | 2.44   |
| MnO                              | 0.12   | 0.13   | 0.41    | 0.20    | 0.22    |        | 0.23   |
| MgO                              | 13.67  | 14.37  | 11.76   | 17.24   | 13.19   |        | 12.88  |
| CaO                              | 22.47  | 23.07  | 19.67   | 19.33   | 21.38   |        | 22.38  |
| Na <sub>2</sub> O                | 0.28   | 0.44   | 0.52    | 0.38    | 0.54    |        | 0.44   |
| Sum                              | 98.86  | 100.01 | 100.41  | 100.12  | 99.86   |        | 100.30 |
| cations per 6 oxygen at          | oms    |        |         |         |         |        |        |
| Si                               | 1.82   | 1.88   | 1.90    | 1.93    | 1.85    |        | 1.86   |
| Ti                               | 0.02   | 0.01   | 0.01    | 0.00    | 0.02    |        | 0.02   |
| Al                               | 0.31   | 0.20   | 0.16    | 0.14    | 0.22    |        | 0.22   |
| Fe <sup>2+</sup>                 | 0.14   | 0.13   | 0.37    | 0.17    | 0.20    |        | 0.20   |
| Fe <sup>3+</sup>                 | 0.02   | 0.05   | 0.05    | 0.03    | 0.08    |        | 0.07   |
| Mn                               | 0.00   | 0.00   | 0.01    | 0.01    | 0.01    |        | 0.01   |
| Mg                               | 0.76   | 0.79   | 0.66    | 0.94    | 0.73    |        | 0.71   |
| Са                               | 0.89   | 0.91   | 0.79    | 0.76    | 0.85    |        | 0.89   |
| Na                               | 0.02   | 0.03   | 0.04    | 0.03    | 0.04    |        | 0.03   |
| Sum                              | 3.99   | 4.00   | 4.00    | 4.00    | 3.99    |        | 4.00   |
|                                  |        |        |         |         |         |        |        |
| X <sub>Mg</sub>                  | 0.82   | 0.82   | 0.61    | 0.82    | 0.73    |        | 0.73   |
| SPINEL                           |        |        |         |         |         |        |        |
| WL. 70                           | 0 1 0  | 0.04   |         | 0.02    |         |        |        |
|                                  | 0.10   | 0.04   |         | 0.02    |         |        |        |
|                                  | 00.14  | 0.10   |         | 01.38   |         |        |        |
|                                  | 10.00  | 17.03  |         | 0.90    |         |        |        |
|                                  | 18.98  | 17.04  |         | 14.72   |         |        |        |
| MpO                              | 4.44   | 0.11   |         | 4.45    |         |        |        |
| Mao                              | 14.06  | 15 41  |         | 17.45   |         |        |        |
| MgO<br>CaO                       | 14.90  | 15.41  |         | 17.45   |         |        |        |
| CaU                              | 100.00 | 0.02   |         | 0.04    |         |        |        |
| Sulli<br>sations por 4 ovugan at | 100.08 | 99.50  |         | 99.02   |         |        |        |
| tutions per 4 oxygen at          |        | 0.00   |         | 0.00    |         |        |        |
|                                  | 1.07   | 0.00   |         | 0.00    |         |        |        |
| AI                               | 1.07   | 1.00   |         | 1.89    |         |        |        |
| Cr<br>Fo <sup>2+</sup>           | 0.02   | 0.00   |         | 0.02    |         |        |        |
| Γς<br>Γς <sup>3+</sup>           | 0.42   | 0.39   |         | 0.32    |         |        |        |
| re<br>Ma                         | 0.09   | 0.12   |         | 0.09    |         |        |        |
|                                  |        | 0.00   |         | 0.00    |         |        |        |
|                                  | 0.59   | 0.01   |         | 0.08    |         |        |        |
| Cd<br>Sum                        | 0.00   | 0.00   |         | 0.00    |         |        |        |
| Sull                             | 3.00   | 3.00   |         | 3.00    |         |        |        |
| X <sub>Mg</sub>                  | 0.54   | 0.55   |         | 0.62    |         |        |        |

Table S2. Continued

| SAMPLE            | SQ-16                | SQW-75 | SQW-110 | SQW-114 | SQW-115 | SQW-76 | SQL-48 |
|-------------------|----------------------|--------|---------|---------|---------|--------|--------|
|                   | ecrystallized grain  |        |         |         |         |        |        |
| wt %              | eci ystailizeu graii | 15)    |         |         |         |        |        |
| SiO <sub>2</sub>  | 43.65                | 44 31  |         | 44 31   | 46.23   | 60.08  | 44 58  |
|                   | 36 32                | 34.96  |         | 34 84   | 33 44   | 25.80  | 34 55  |
| FeO               | 0.00                 | 0.00   |         | 0 00    | 0.00    | 0.00   | 0.00   |
| FeaOa             | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.00   | 0.00   |
| MgO               | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.00   | 0.00   |
|                   | 19.00                | 19.01  |         | 19.28   | 17 73   | 7.68   | 19.09  |
| Na <sub>2</sub> O | 0.30                 | 0.77   |         | 0.74    | 1 53    | 7.00   | 0.79   |
| K <sub>2</sub> O  | 0.00                 | 0.00   |         | 0.04    | 0.03    | 0.31   | 0.75   |
| Sum               | 100.18               | 99.06  |         | 99.21   | 99.00   | 100 91 | 99.08  |
| cations per 8 oxy | vaen atoms           | 55.00  |         | 55.21   | 55.00   | 100.51 | 55.00  |
| Si                | 2 02                 | 2 07   |         | 2 07    | 2 15    | 2 65   | 2 08   |
| Al                | 1.98                 | 1.92   |         | 1.91    | 1.83    | 1.34   | 1.90   |
| Fe <sup>2+</sup>  | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.00   | 0.00   |
| Fe <sup>3+</sup>  | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.00   | 0.00   |
| Mg                | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.00   | 0.00   |
| Са                | 0.99                 | 0.95   |         | 0.96    | 0.88    | 0.36   | 0.95   |
| Na                | 0.03                 | 0.07   |         | 0.07    | 0.14    | 0.60   | 0.07   |
| K₂O               | 0.00                 | 0.00   |         | 0.00    | 0.00    | 0.02   | 0.00   |
| Sum               | 5.01                 | 5.01   |         | 5.01    | 5.00    | 4.98   | 5.01   |
|                   | umplectites/melt     | ١      |         |         |         |        |        |
| wt %              | ympicetites/men      | 1      |         |         |         |        |        |
| SiO               | 46 95                | 47 51  |         | 59 98   | 52 72   |        |        |
|                   | 34.06                | 32.66  |         | 15 32   | 28.66   |        |        |
| FeO               | 0.00                 | 0.31   |         | 2 15    | 0.00    |        |        |
| FeaOa             | 0.00                 | 0.00   |         | 3 64    | 0.00    |        |        |
| MgO               | 0.00                 | 0.00   |         | 3.04    | 0.00    |        |        |
| CaO               | 17 37                | 16 73  |         | 6 3 9   | 12 43   |        |        |
| Na <sub>2</sub> O | 1.67                 | 1 90   |         | 5 50    | 4 4 3   |        |        |
| K <sub>2</sub> O  | 0.01                 | 0.02   |         | 1.08    | 0.21    |        |        |
| Sum               | 100.18               | 99.33  |         | 97.26   | 98.61   |        |        |
| cations per 8 oxy | aen atoms            | 55155  |         | 57.20   | 50.01   |        |        |
| Si                | 2 15                 | 2 20   |         | 2 80    | 2 42    |        |        |
| Al                | 1.84                 | 1.78   |         | 0.84    | 1.55    |        |        |
| Fe <sup>2+</sup>  | 0.00                 | 0.00   |         | 0.08    | 0.00    |        |        |
| Fe <sup>3+</sup>  | 0.00                 | 0.01   |         | 0.13    | 0.00    |        |        |
| Mg                | 0.01                 | 0.01   |         | 0.23    | 0.01    |        |        |
| Ca                | 0.85                 | 0.83   |         | 0.32    | 0.61    |        |        |
| Na                | 0.14                 | 0.17   |         | 0.50    | 0.40    |        |        |
| K <sub>2</sub> O  | 0.00                 | 0.00   |         | 0.06    | 0.01    |        |        |
| Sum               | 5.00                 | 5.00   |         | 4 97    | 5.01    |        |        |

Table S3. The volume percentage, magnesium numbers,  $Al_2O_3$  in orthopyroxene and clinopyroxene, CaO in plagioclase and clinopyroxene in samples SQ-16, SQW-75, and SQW-114.

| Xenolith                       | SQ-16 | SQW-75 | SQW-114 |
|--------------------------------|-------|--------|---------|
| Vol%                           |       |        |         |
| Plg                            | 43.8  | 50.1   | 15.9    |
| Срх                            | 19.7  | 32.2   | 19.5    |
| Sp                             | 13.0  | 2.2    | 13.0    |
| OI                             | 22.5  | 2.0    | 23.7    |
| Орх                            | -     | 14.0   | 27.9    |
| Total                          | 99.0  | 100.5  | 100.0   |
| X <sub>Mg</sub>                |       |        |         |
| Срх                            | 0.97  | 0.82   | 0.83    |
| Sp                             | 0.59  | 0.55   | 0.62    |
| OI                             | 0.82  | 0.75   | 0.80    |
| Орх                            | -     | 0.75   | 0.82    |
| Al <sub>2</sub> O <sub>3</sub> |       |        |         |
| Срх                            | 0.16  | 0.10   | 0.07    |
| Орх                            | -     | 0.04   | 0.01    |
| CaO                            |       |        |         |
| Plg                            | 0.85  | 0.94   | 0.96    |
| Срх                            | 0.89  | 0.91   | 0.75    |

Opx is on a 3 oxygen basis

Table S4. Results of two-pyroxene geothermometry

| Tuble 34. Results of two pyroxene geothermometry |                                            |                     |          |           |  |  |  |  |
|--------------------------------------------------|--------------------------------------------|---------------------|----------|-----------|--|--|--|--|
| Comple                                           | T (°C) calculated at a pressure of 600 MPa |                     |          |           |  |  |  |  |
| Sample                                           | 2-Px BK <sup>a</sup>                       | 2-Px T <sup>b</sup> | 2-Px Avg | 1 std dev |  |  |  |  |
| SQ-16                                            | 732                                        | 770                 | 751      | 27        |  |  |  |  |
| SQL-48                                           | 739                                        | 790                 | 765      | 36        |  |  |  |  |
| SQW-75                                           | 741                                        | 777                 | 759      | 25        |  |  |  |  |
| SQW-110                                          | 824                                        | 947                 | 886      | 87        |  |  |  |  |
| SQW-114                                          | 863                                        | 908                 | 886      | 32        |  |  |  |  |
| SQW-115                                          | 834                                        | 874                 | 854      | 28        |  |  |  |  |

<sup>a</sup>Brey and Köhler (1990); <sup>b</sup>Taylor (1998)

| Lithology                  | Deformation<br>Mechanism | A (MPa <sup>-n</sup> μm <sup>m</sup> s <sup>-1</sup> ) | n    | m   | Q<br>(kJ/mol) | V (m³/mol)           | Reference                |
|----------------------------|--------------------------|--------------------------------------------------------|------|-----|---------------|----------------------|--------------------------|
| An100, Dry                 | Dis                      | $5.01 \times 10^{12}$                                  | 3    | 0   | 648           |                      | Rybacki & Dresen (2000)  |
| An100, Dry                 | Dif                      | $1.26 \times 10^{12}$                                  | 1    | 3   | 467           |                      | Rybacki & Dresen (2000)  |
| An100, Wet                 | Dis                      | $3.98 \times 10^{2}$                                   | 3    | 0   | 356           |                      | Rybacki & Dresen (2000)  |
| An100, Wet                 | Dif                      | $5.01 \times 10^{1}$                                   | 1    | 3   | 170           |                      | Rybacki & Dresen (2000)  |
| An25Di <sub>45</sub> , Dry | Dis                      | $6.15 \times 10^{-4}$                                  | 3.03 | 0   | 701           |                      | Dimanov & Dresen (2005)  |
| An25Di <sub>45</sub> , Dry | Dif                      | $1.26 \times 10^{6}$                                   | 1    | 3   | 454           |                      | Dimanov & Dresen (2005)  |
| An25Di <sub>35</sub> , Wet | Dis                      | $5.25 \times 10^{-15}$                                 | 3.01 | 0   | 391           |                      | Dimanov & Dresen (2005)  |
| An25Di <sub>35</sub> , Wet | Dif                      | $1.24 \times 10^{0}$                                   | 1    | 3   | 291           |                      | Dimanov & Dresen (2005)  |
| Olivine, Dry               | Dis                      | $1.1 \times 10^{5}$                                    | 3.5  | 0   | 530           | $1.8 \times 10^{-5}$ | Hirth & Kohlstedt (2003) |
| Olivine, Dry               | Dif                      | $1.5 \times 10^{9}$                                    | 1    | 3   | 375           | $1 \times 10^{-6}$   | Hirth & Kohlstedt (2003) |
| Olivine, Dry               | disGBS                   | $6.31 \times 10^{4}$                                   | 2.9  | 0.7 | 445           |                      | Hansen et al. (2011)     |

Table S5. Experimental flow law parameters

The preexponential parameters (A) in italics are recalculated based on this study (see text for explanation); Dis: Dislocation creep, Dif: Diffusion creep, disGBS: Dislocation accommodated grain boundary sliding

## **Table References**

Dimanov, A., and Dresen, G.: Rheology of synthetic anorthite - diopside aggregates: Implications for ductile shear zone, J. Geophys. Res-sol. Ea., 110(B7), 2005.

Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic - preferred orientation, J. Geophys. Res-sol. Ea., 116(B8), 2011.

Hirth, G., and Kohlstedt, D.: Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Inside the subduction Factory, J. Eiler, American Geophysical Union, Washington, D.C., 83-105, 2003.

Rybacki, E., and Dresen, G.: Dislocation and diffusion creep of synthetic anorthite aggregates, J. Geophys. Res-Sol. Ea., 105(B11), 26017-26036, 2000.