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Abstract. The present-day seismic structure of the mantle
under the North Atlantic Ocean indicates that the Iceland
hotspot represents the surface expression of a deep mantle
plume, which is thought to have erupted in the North At-
lantic domain during the Palaeocene. The spatial and tempo-
ral evolution of the plume since its eruption is still highly de-
bated, and little is known about its deep mantle history. Here,
we use palaeogeographically constrained global mantle flow
models to investigate the evolution of deep Earth flow be-
neath the North Atlantic since the Jurassic. The models show
that over the last ∼ 100 Myr a remarkably stable pattern of
convergent flow has prevailed in the lowermost mantle near
the tip of the African Large Low-Shear Velocity Province
(LLSVP), making it an ideal plume nucleation site. We ex-
tract model dynamic topography representative of a plume
beneath the North Atlantic region since eruption at ∼ 60 Ma
to present day and compare its evolution to available off-
shore geological and geophysical observations across the re-
gion. This comparison confirms that a widespread episode of
Palaeocene transient uplift followed by early Eocene anoma-
lous subsidence can be explained by the mantle-driven ef-
fects of a plume head ∼ 2500 km in diameter, arriving be-
neath central eastern Greenland during the Palaeocene. The
location of the model plume eruption beneath eastern Green-
land is compatible with several previous models. The pre-
dicted dynamic topography is within a few hundred metres
of Palaeocene anomalous subsidence derived from well data.
This is to be expected given the current limitations involved
in modelling the evolution of Earth’s mantle flow in 3-D,
particularly its interactions with the base of a heterogeneous

lithosphere as well as short-wavelength advective upper man-
tle flow, not captured in the presented global models.

1 Introduction

The Iceland hotspot is widely recognised as the surface ex-
pression of a deep mantle plume, originating from the core–
mantle boundary (Morgan, 1971), erupting in the North At-
lantic during the Palaeocene (Saunders et al., 1997; White
and McKenzie, 1989). At present day, its buoyancy flux is es-
timated to be the largest of all plumes on Earth (Crosby and
McKenzie, 2009), with its evolution believed to have played
a significant role in the complex continental breakup his-
tory of the northeastern Atlantic (Skogseid et al., 2000) and
the formation of V-shaped ridges preserved within the thick
oceanic crust that characterises the unique seafloor spread-
ing regime of the region (Parnell-Turner et al., 2014; Small-
wood and White, 2002; White et al., 1995). Extrusive vol-
canics peppered across isolated parts of the northeastern At-
lantic have been dated and linked to the arrival and relative
motion of the Iceland plume beneath the region (Tegner et
al., 2008; Storey et al., 2007; Saunders et al., 1998; Upton
et al., 1995; Noble et al., 1988). In addition, numerous off-
shore efforts have focused on investigating the spatial and
transient evolution of the plume since its eruption using tec-
tonic subsidence analysis in Mesozoic basins across the re-
gion, which identify either (1) an absence of thermal subsi-
dence during the Palaeocene (Clift and Turner, 1995, 1998),
(2) an anomalous increase in subsidence during the Eocene
(Stoker, 1997; Joy, 1992), or (3) preserved Palaeocene tran-
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sient uplift (Fletcher et al., 2013; Clift and Turner, 1998).
Previous seismic studies support these findings, interpreting
Palaeocene unconformities buried by deep-water sediment
during the Eocene, reflecting the transient effects of a mantle
plume (Champion et al., 2008; Smallwood and Gill, 2002;
Clift, 1996). Onshore, fission track studies that constrain de-
nudation histories (Green, 2002; Lewis et al., 1992) suggest
that exhumation across northern England can be explained
by topographic doming over a mantle hotspot (Lewis et al.,
1992). The motion path of the Iceland plume is elusive as
large ice sheets over Greenland currently mask geological ev-
idence that could potentially resolve this debate (Rogozhina
et al., 2016). Endmember plume motion paths have been pro-
posed (see Rogozhina et al., 2016 for a discussion) based on a
moving hotspot reference frame constrained by the hotspots
in the Indo-Atlantic oceans (O’Neill et al., 2005) or, alter-
natively, constrained by hotspots in the Indo-Atlantic and
Pacific oceans (Doubrovine et al., 2012). Nevertheless, the
understanding of the time-dependent evolution of the deep
Earth convective engine beneath the region before 60 Ma re-
mains limited.

Over the last 300 Myr the majority of plumes appear to
have originated at the edges of two pronounced LLSVPs
beneath Africa and the Pacific Ocean (Doubrovine et al.,
2016; Burke et al., 2008). The root of the Iceland plume lies
near the tip of the African LLSVP, underlain by ultra-low-
velocity zones (Rost and Earle, 2010) just above the core–
mantle boundary (CMB; French and Romanowicz, 2014; He
et al., 2015). Figure 1 shows the present-day Iceland plume
in three dimensions as imaged by the tomography model
of French and Romanowicz (2014), which is surrounded by
higher than average shear wave velocities in the lowermost
mantle as shown in He et al. (2015). Previous mantle flow
models show that the morphology of the LLSVPs is mod-
ulated by subduction-induced flow in the lowermost mantle
(Bower et al., 2013; Hassan et al., 2015, 2016). These results
indicate that considering the time-dependent evolution of the
lower mantle beneath the North Atlantic and the contribu-
tions of subduction-induced flow in the vicinity may shed
more light on the spatial and the temporal evolution of the
Iceland plume.

Here, we analyse the evolution of global mantle flow
in a series of palaeogeographically constrained geodynamic
models (e.g. Hassan et al., 2015, 2016). We focus on the deep
Earth origins and near-surface arrival of major model plumes
beneath the North Atlantic region, and compute and compare
the motion path of these model plumes through time (Fig. 2).
To understand the deep mantle source of the Iceland plume
beneath the North Atlantic, we analyse the mean flow pat-
terns in a 300 km thick shell above the CMB and evaluate the
stability of the northernmost edges of the African LLSVP
over time (Fig. 2).

Since models’ plumes erupting in the North Atlantic
do not exactly match the arrival of the Iceland plume in
space–time, we apply an innovative approach – described in

Table 1. Model parameters.

Parameter Symbol Value Units

Rayleigh number Ra 5 × 108 –
Earth radius R0 6371 km
Density ρ0 3930 kg m−3

Thermal expansivity α0 1.42 × 10−5 K−1

Thermal diffusivity κ0 1 × 10−6 m2 s−1

Specific heat capacity Cp 1100 Jkg−1 K−1

Gravitational acceleration g 10 ms−2

Surface temperature Ts 300 K
Dissipation number Di 0.8 –
Reference viscosity η0 1× 1021 Pa S
Internal heating H 100 –

Sect. 3.2 – to synthesise dynamic topography evolution as-
sociated with the Iceland plume, which we then compare to
available geological and geophysical observations in the re-
gion, including published tectonic subsidence curves (Jones
et al., 2001; Clift and Turner, 1998; Clift et al., 1998), an-
alytically modelled transient uplift histories (Hartley et al.,
2012), stratigraphically modelled uplift histories (Nadin et
al., 1995), and published locations of plume-related extrusive
volcanics (as compiled in Torsvik et al., 2001 and updated in
Torsvik et al., 2015).

2 Methods

2.1 Numerical models of mantle convection

We devise numerical models of convection within the
Earth’s mantle under the extended-Boussinesq approxima-
tion (Christensen and Yuen, 1985). The Earth’s mantle is
modelled as a spherical shell with depth-dependent thermo-
dynamic properties and temperature- and depth-dependent
rheology, where the deepest lower mantle is chemically het-
erogeneous. We solve the equations for the conservation
of mass, momentum and energy using the parallel finite-
element code CitcomS (Zhong et al., 2008), which has been
extended to allow for assimilation of surface plate motion
and subducting slabs derived based on global plate recon-
structions (Bower et al., 2015).

The underlying assumptions and the choice of model pa-
rameters employed have been outlined in earlier work (Has-
san et al., 2015; Bower et al., 2015). Table 1 lists important
model parameters and additional details can be found in Has-
san et al. (2015).

2.2 Model setup

The spherical mesh representing the Earth’s mantle com-
prises ≈ 12.6 million mesh elements, where radial mesh re-
finement provides a vertical resolution of ≈ 15 and ≈ 27 km
near the top and bottom boundary layers, respectively. The
temperature decreases by 1225 K in both the top and the bot-
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Figure 1. (a) Shear velocity (Vs) variations in model SEMUCB-WM1 (French and Romanowicz, 2014), within a radius of ∼ 1500 km from
the present-day Iceland plume, extending from 200 km below the surface to the CMB, are iso-surfaced at intervals of 0.25, within the range
shown. The Iceland plume can be clearly seen emerging from the deep lower mantle, and extending down to the CMB (grey shell). (b) Same
as in (a), but shown from a different 3-D perspective to better highlight the shear velocity distribution below the surface.

tom thermal boundary layers. Away from the thermal bound-
ary layers, we assume an a priori mantle adiabat with a po-
tential temperature of 1525 K. In all model cases we specify
a non-dimensional internal heat generation rate of 100 and a
reference profile for thermal expansion based on analytical
parameterisations given in Tosi et al. (2013).

We use piecewise Arrhenius laws to describe the variation
in viscosity with temperature, depth and composition in the
Earth’s mantle, which takes the following non-dimensional
form:

η(T ,r)= A(r)ηc exp
(
Ea(r)+ (1− r)Va(r)

T + Toff

−
Ea(r)+ (1− rinner)Va(r)

1+ Toff

)
, (1)

where η is the viscosity, T is the temperature, r is the ra-
dius, A is the pre-exponential parameter, ηc is the intrin-
sic composition-dependent pre-factor, Ea is the activation
energy, Va is the activation volume and Toff is the temper-
ature offset. For the lower mantle, we use a dimensional
activation energy of 320 KJ mol−1 and activation volume
of 6.7×10−6 m3 mol−1, corresponding to non-dimensional
units of 11 and 26, respectively, which are comparable to es-
timates in Karato and Wu (1993). However, since such vis-
cosity parameterisations lead to large viscosity variations that
cause numerical difficulties, we adjust the pre-exponential
parameter A(r) and the temperature offset Toff (Tackley,
1996) to limit the viscosity contrast to 3 orders of magnitude.

The resulting viscosity profile is similar to the preferred vis-
cosity profiles of Steinberger and Calderwood (2006). Ad-
ditional details on model setup can be found in Hassan et
al. (2015).

The initial condition at 230 Ma includes slabs inserted
from the surface down to 1200 km depth, and an anoma-
lously dense thermochemical layer of uniform thickness at
the base of the mantle. We apply kinematic surface boundary
conditions based on surface velocities derived from global
plate tectonic reconstructions at one million year intervals,
with a linear interpolation in between. We assimilate ther-
mal models of inferred subducting slabs into the dynamically
evolving temperature field at each timestep, as the model pro-
gresses towards present day, starting from a given geological
time (see Bower et al., 2015, for more detail).

2.3 Computation of dynamic topography

We compute time-dependent dynamic topography, h, at the
surface at 5 Myr intervals as

h=
σrr

1ρg
, (2)

where σrr and 1ρ are the radial component of stress and the
density difference between the mantle and the overlying ma-
terial, respectively. The radial stresses, σrr, are recomputed
using Stokes flow and the temperature field at a given time.
We exclude buoyancy in the top 350 km of the mantle in the
Stokes flow computations in order to remove the influence of
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Figure 2. (a) In model case C1 (Table 2), the magnitude of mean flow velocity in a 300 km thick shell above the CMB, time-averaged over the
last 100 Myr is shown in grey shading and associated flow directions are shown by white arrows. Flow directions are not shown for regions
where flow magnitudes are smaller than their standard deviation, σ , to avoid visual clutter. The 75 % chemical concentration isosurface of the
dense chemical layer above the CMB, time-averaged over the last 100 Myr, defines the mean location of model LLSVPs over the period. The
red contour shows the mean location of the edges of the northern tip of model African LLSVP, 200 km above the CMB. The black contour
marks the region classified in four out of five tomography models to have a slower than average shear velocity in the lower mantle (Lekic et
al., 2012). The thick multi-coloured trajectory shows the motion of the model plume in the mantle frame of reference since its arrival near
the surface at 60 Ma, while the thin multi-coloured trajectory shows corresponding motion in plate frame of reference – see in text for more
details. (b–d) Same as in (a), but for model cases C2–C4, respectively.

assimilated data. Moreover, to exclude the traction induced
by kinematic plate velocities (velocity boundary condition at
the surface), we impose free-slip boundary conditions at the
surface in these Stokes flow computations.

2.4 Parameter space explored

We interrogate four models described in Hassan et al. (2015,
2016), in which the density contrast (1ρch) of a dense chem-
ical layer above the CMB, the thickness of the dense layer
(1d) and the plate reconstruction that dictates surface plate
velocities and the location of subduction zones was varied,
keeping all other parameters constant. The kinematic surface
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Table 2. Model cases.

Input parameters Output parameters

Case 1ρch % Tectonic 1d [km] Model plume
reconstruction eruption age

(Ma)

C1a 3.0 APM1 100 155
C2b 3.5 APM1 100 155
C3c 2.5 APM2 100 160
C4d 2.5 APM1 Domed 120

a, b Models M4 and M5, respectively, in Hassan et al. (2015). c, d Models M4 and M5,
respectively, in Hassan et al. (2016).

boundary condition depends both on the relative plate mo-
tion model and the absolute plate motion model. In all model
cases, while using the same relative plate motion model, we
test the influences of alternative absolute plate motion mod-
els (APM1 and APM2) – see Hassan et al. (2016), for a de-
scription of the relative and absolute plate motion models
used. The dense layer above the CMB in most model cases
is of uniform thickness in the initial condition. However, the
dense LLSVP material may have already been displaced and
deformed by subducted slabs (McNamara and Zhong, 2004;
Bower et al., 2013) – to test the influences of a deformed
dense layer in the initial condition on model results, we
present a model case where the dense layer is initially con-
fined to two domes resembling present-day LLSVPs. These
domes are also hotter than the ambient mantle – see Hassan
et al. (2016) for more details. Table 2 lists model parameters
that vary across the model cases.

Although Hassan et al. (2015) derived spatial correlations
of distributions of model plume eruption locations with re-
constructed eruption locations of large igneous provinces
(LIPs), their study did not account for temporal misfits be-
tween model plumes at robust plume nucleation sites and re-
lated LIPs. The temporal misfits are partly a consequence
of model initiation times and idealised initial conditions
adopted due to a lack of constraints on the structure of
the mantle in deep geological time and more generally due
to the stochastic nature of plume dynamics. Devising for-
ward mantle convection models that reproduce model plume
eruptions that match associated LIP eruptions in both space
and time would require an elaborate iterative optimisation
scheme. The distribution of thermal and compositional het-
erogeneities in the deep lower mantle would be iteratively
constrained in a bid to reduce space–time misfits between
model plume eruptions and associated LIPs, which is beyond
the scope of this study. Instead, here we compute analytics
of flow in the lowermost mantle beneath the North Atlantic
Ocean and focus on the general trajectory of the model plume
over the last 60 Myr in the different models (Fig. 2).

3 Deep Earth origin of the Iceland plume and
associated dynamic topography evolution

3.1 Predicted spatio-temporal evolution of the deep
mantle flow beneath the North Atlantic

Analytics of flow in the lowermost mantle under the north
Atlantic reveal a consistent pattern of convergent flow over
the last 100 Myr, near the tip of the present-day African
LLSVP (dotted black contours, Fig. 2). In all models the
time-averaged flow directions and contours of the mean loca-
tion of the model LLSVP (red contours, Fig. 2) over the pe-
riod also suggests that a stable plume nucleation site already
prevailed beneath the North Atlantic, near the present-day
Iceland plume, well before its nucleation. Southeasterly flow
from the west, northwesterly flow from the east and weaker
southerly flow from the north converge in a lowermost man-
tle at a quasi-stagnation zone under the British Isles (Fig. 2).
The mean location of the northern extremity of the model
African LLSVP (red contours, Fig. 2) over the last 100 Myr
agrees well with present-day tomography (dotted black con-
tours, Fig. 2), although, in model cases C3 and C4, the mean
location of the model LLSVP necks considerably more at
∼ 45◦ N and is shifted westward compared to those in models
C1 and C2. Nevertheless, the mean location of the northern
tip of the model LLSVP, in all model cases, is generally con-
sistent with the tomography – thus highlighting the robust-
ness of the general trends in the model results and that they
are not particularly sensitive to model parameters, within the
parameter space explored. In case C2, the mean location of
the model LLSVP has the largest spatial overlap with the to-
mography – we therefore choose case C2 as the preferred
model.

3.2 Motion path and dynamic topography signal of
model plume

We extract the absolute motion path of the Iceland model
plume based on a plume detection scheme (described in de-
tail in Hassan et al., 2015) that detects all model plumes at a
given time instance. The spatial locations of model plumes,
throughout the modelled geological time, are then binned
together based on spatio-temporal proximity to derive the
absolute motion paths (for more details see Hassan et al.,
2016). As mentioned in Sect. 2.4, the eruption of the model
plume does not coincide in space–time with the associated
LIP eruptions in the north Atlantic. The model plume erupts
within ∼ 15–20◦ of the present-day location of the Iceland
plume, but between 60 and 100 Myr earlier than that of the
Iceland plume – the eruption ages of the model plume in each
model are given in Table 1. Figures 3 and 4 and animation S1
in the Supplement show the evolution of the model plume in
the preferred model (C2) since eruption at 150 Ma to present
day.
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Figure 3. (a) The non-dimensional temperature field above layer averages, ∂T , is plotted as isosurfaces (coloured by non-dimensional
temperature) in the range 0.08–0.3, delineating the model plume erupting at 150 Ma in case C2 (see Table 2). The top 200 km is excluded
from the rendering to avoid visual clutter. Non-dimensional topography of the 75 % chemical concentration isosurface, above the CMB, is
also shown and reconstructed coastlines are shown for geographical reference. (b–d) Same as in (a), but at labelled ages.

In order to glean insights from dynamically evolving, self-
consistent model plumes that can be validated against the ob-
servational record, we consider the following: (1) although
the model plume in the preferred case at present day it is
∼ 10◦ to the southwest away from the location of the Iceland
plume as inferred by Torsvik et al. (2015), the trajectory of
the model plume over the last 60 Myr is a good proxy for
the motion of the Iceland plume over the same period, given
their close proximity at present day and the structure of time-
averaged flow in the lowermost mantle (Fig. 2b); (2) conse-
quently, the dynamic topography signal associated with the
model plume since eruption at 150 to 90 Ma is also repre-
sentative of that of the Iceland plume over the last 60 Myr.
All subsequent analysis presented in this paper are based on
these key assumptions, which are reasonable given the cur-
rent limitations of the models.

The thick multi-coloured trajectories shown in each panel
of Fig. 2 correspond to the absolute motion (mantle frame
of reference) of the model plume in each model, but rotated
such that the model plume arrives at the inferred location of
the Iceland plume at present day. It is the same approach as

adopted in Hassan et al. (2016) to relate the motion of the
model Hawaiian plume to that of the actual plume. Absolute
motion paths obtained from the different models demonstrate
a general consistency not only across the models presented
here but also when compared to motion paths obtained us-
ing backward advection models (Fig. 6; Torsvik et al., 2015),
such that the net motion of the plume is dominantly west-
ward over the last 60 Myr. Based on these absolute motion
paths, we also compute the trajectory of the Iceland plume
relative to Greenland (thin multi-coloured trajectories shown
in each panel of Fig. 2) using GPlates (Boyden et al., 2011),
for comparison in this frame of reference (e.g. Rogozhina et
al., 2016).

In order to address the space–time offset – based on the
assumptions listed above – between the dynamic topography
signal associated with the model plume and that of the actual
plume, we compute a set of reconstituted dynamic topogra-
phy grids for the preferred model as follows:

1. Demarcate the dynamic topography signal associated
with the model plume, over the last 60 Myr (Fig. 4),
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Figure 4. Same as Fig. 3 but for ages (a) 60 Ma, (b) 40 Ma, (c) 20 Ma, and (d) 0 Ma.

with a contour value of 1 standard deviation above
the mean (h+ σh), within a radius of 2500 km of the
plume axis; exclude it from the global grids; and fill in
the resulting voids using a suite of Generic Mapping
Tools (GMT) programs (Wessel et al., 2013). In other
words the dynamic topography signal associated with
the model plume is “surgically” removed.

2. Extract the dynamic topography signal associated with
the model plume between eruption at 150 and 90 Ma
(Fig. 3) by demarcating the spatial extent of the plume
at a given time with a contour value of (h+ασh), within
a radius, rp of the plume axis, where rp and α are con-
stants that linearly increase between [2.25, 0.35] and
[3500, 2000] from 150 to 90 Ma, respectively. The val-
ues of these constants are chosen such that the gradual
weakening of the plume – since eruption – is taken into
account. A narrow buffer around the dynamic topogra-
phy signal of the plume is also demarcated using a con-
tour value of (h+ α

4 σh) for the purpose of smoothing,
as described in the following step.

3. Rotate the dynamic topography signals, along with the
buffer regions, extracted in step 2 to the spatial loca-
tions along the absolute plume motion path (shown in

Fig. 2b); superpose them on the grids obtained in step 1;
and apply spatial smoothing within the buffer regions.

The sequence of steps outlined above, although not ideal,
yields a space–time varying dynamic topography signal rep-
resentative of the Iceland plume, not just in terms of its ab-
solute motion, which is guided by a global flow field in the
lowermost mantle, but also in terms of the thermal evolution
of the plume, which is expressed in the associated dynamic
topography signal. It is important to note that such insights
are inaccessible to mantle flow models that employ back-
ward advection based on present-day initial conditions de-
rived from seismic tomography (e.g. Steinberger, 2000; Con-
rad and Gurnis, 2003; Moucha and Forte, 2011). Backward
advection models suffer from fundamental theoretical limita-
tions that restrict the time interval over which they can faith-
fully reproduce past mantle structures (Ismail-Zadeh et al.,
2009). Critically, this time interval is short for conduction-
dominated heat transfer, such as during the conductive thick-
ening of the lower thermal boundary layer, associated with
plume nucleation, or the eruption of a plume head below the
lithosphere. In other words, the thermal evolution of a plume
and its associated dynamic topography signal throughout its
lifetime cannot be captured in backward advection models.

www.solid-earth.net/8/235/2017/ Solid Earth, 8, 235–254, 2017
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Figure 5. (a–j) Predicted Cenozoic North Atlantic dynamic topography in the mantle frame of reference extracted from the preferred
reconstituted mantle flow model discussed in text. Circles colour-coded by age represent a compiled set of extrusive volcanics related to
plume activities across the North Atlantic (Spice et al., 2016; Torsvik et al., 2001) in 10 Myr intervals (±5 Myr for each reconstructed time)
and reconstructed in the mantle frame of reference. Positive (red crosses) and negative (blue dashes) signs correspond to the timings in
transient uplift and subsequent subsidence, respectively, based on published observations compiled in Figs. 6–9.

Consequently, our efforts here are the first attempts (to our
knowledge) to compare the space–time varying dynamic to-
pography signal from a fully dynamic model plume to geo-
logical observations associated with the Iceland plume in the
North Atlantic Ocean.

The reconstituted dynamic topography grids imply near-
surface arrival (∼ 60 Ma) of the model plume somewhere be-
neath central eastern Greenland (Figs. 5–6), near Kangerd-
lugssuaq (Fig. 7; inset). The surface expression of the plume
then migrates southeastward toward the eastern Greenland
coastline, arriving there by ∼ 50 Ma (Figs. 5–6). It then con-
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Figure 6. (a) Reconstructed absolute motion paths of the Iceland
plume (solid bold circles) and its reconstructed relative motion
paths to Greenland (solid smaller stars). Black: model motion paths
(Sect. 2.2.3) from this study; green: motion paths of Doubrovine et
al. (2012); blue: motion paths of O’Neill et al. (2005). Underlain
is the 150 km depth slice of a P wave velocity model (Jakovlev et
al., 2012) presented in Rogozhina et al. (2016), showing the veloc-
ity model beneath Baffin Bay and Davis Straight and Greenland,
colour-mapped for percentage velocity anomaly. DI: Disko Island;
BB: Baffin Bay; DS: Davis Straight.

tinues this southeastward motion path towards the present-
day location of its conduit (Fig. 2a). The predicted motion of
the model plume is compatible with the spatial and temporal
evolution of plume-related magmatism within the North At-
lantic (Fig. 5c–h; Torsvik et al., 2015). The evolution of dy-
namic topography magnitudes through time shows maximum
dynamic uplift is spatially largest at ∼ 60 Ma, ∼ 2500 km in
diameter (Fig. 5c; see Fig. 3a for comparison). This is fo-
cused beneath central eastern Greenland (Fig. 5), and extends
across the entire North Atlantic (Fig. 5c). At this time the ef-
fect of the dynamic uplift related to the near-surface arrival
of the model plume encompasses parts of the Artic to the
north, Baffin Bay to the west, most of the Labrador Sea to
the south, and the Norwegian margins and Mesozoic basins
lining the northwestern European margin to the east (Fig. 5c).
After∼ 60 Ma, the maximum magnitude of this dynamic up-
lift is greatly diminished, resulting in dynamic subsidence
of these surrounding regions until ∼ 30–40 Ma (Fig. 5d–f).
By this time, the plume has continued to shrink in extent
(Fig. 5g), migrating eastward and beginning to straddle the
Norwegian margin and Mesozoic basins along the northwest-
ern European margins (Fig. 5g–j) of the early northeastern
Atlantic Ocean. This results in minor positive dynamic re-

bound (∼ 10–50 m) across these major basins, and then a re-
turn to pronounced dynamic subsidence until present day as
the plume migrates further eastward and diminishes in mag-
nitude (Fig. 5g–j).

4 Comparing the predicted Iceland plume motion and
associated topography to geological and geophysical
observations

To evaluate the evolution of dynamic topography through
time (Sect. 3.2) we assess (1) the absolute and relative motion
path of the model plume in the context of previously pub-
lished plume motion paths (Sect. 4.1), (2) the location and
spatial extent affected of its near-surface arrival (Sect. 4.1,
4.2), and (3) its contributions to the regions topographic ver-
tical motions through time via a comparison with tectonic
subsidence histories and other related studies (Sect. 4.2).

4.1 Comparing the plume motion path against
previous Iceland plume motion paths

We compare the absolute motion path of the model plume
to previous efforts (Fig. 6) that have derived its motion
path through generating new global absolute plate refer-
ence frames (e.g. Doubrovine et al., 2012; O’Neill et al.,
2005). Doubrovine et al. (2012) proposed a global moving
hotspot reference frame from backward advected numerical
convection models. This method is constrained by a num-
ber of well-studied hotspot tracks in the Indo-Atlantic and
Pacific and in global plate reconstructions (Doubrovine et
al., 2012). This reference frame challenges the validity of
traditional absolute reference frames that assume hotspots
are fixed through time (Müller et al., 1993; Morgan, 1971).
O’Neill et al. (2005) used Indo-Atlantic hotspot tracks to
produce both a fixed and moving hotspot reference frame,
and found that the two were nearly indistinguishable over
the last∼ 80 Myr, concluding that any hotspot motion within
the mantle was not obvious beyond the uncertainties in the
data (O’Neill et al., 2005). A key difference between the ap-
proach of Doubrovine et al. (2012) and O’Neill et al. (2005)
is the number of hotspots used in each study (Torsvik et
al., 2015). O’Neill et al. (2005) only considered the Indo-
Atlantic hotspots, whereas Doubrovine et al. (2012) included
hotspots from the Indo-Atlantic and Pacific. However, recent
studies show a significant change in the lithospheric net rota-
tion of the O’Neill et al. (2005) model from around 55 Ma
(Williams et al., 2015). We suggest that this large change
in net rotation could have affected the motion path of the
Iceland plume within their model around this crucial time
(Fig. 6), during the near-surface arrival of the plume (Sect. 1).
Tracking past motions of the Iceland plume remains elusive
(O’Neill et al., 2005; Doubrovine et al., 2012; Torsvik et al.,
2015; Rogozhina et al., 2016) because thick ice sheets cur-
rently cover any potentially preserved geological evidence
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Figure 7. Map view locations of the compiled dataset used to compare against the evolution of model dynamic topography. Solid blue
circles: locations of wells that were backstripped for their water-loaded tectonic subsidence histories in Clift and Turner (1998); solid green
circles: locations of wells that were backstripped for their water-loaded tectonic subsidence histories in Jones et al. (2001); solid pink stars are
locations of modelled stratigraphic cross sections from Nadin et al. (1997); solid beige region represents area of 3-D seismic data coverage
used in the analytical modelling approaches of Hartley et al. (2012). Coloured triangles are age-coded plume-related extrusive volcanics from
55 to 65 Ma only (taken from the compilation of Torsvik et al., 2001). MB: Møre Basin; FSB: Faroe–Shetland Basin; RB: Rockall Basin;
PB: Porcupine Basin; NS: North Sea. Lower inset shows an overview of the northeastern Atlantic region and the distribution of age-coded
plume-related extrusive volcanics. Upper inset shows two additional locations (purple squares) discussed in text on the eastern and western
Greenland margins.

of its path beneath Greenland. Therefore, the motion path of
the Iceland plume is inferred in any reference frame, based
on the fit of other hotspot tracks in either the Indo-Atlantic,
or Indo-Atlantic and Pacific, combined with the relative plate
circuits chosen for the North Atlantic.

A comparison between the absolute motion path of the
model plume and Doubrovine et al. (2012) shows reason-
able overall agreement back to 60 Ma (Fig. 6). Both mod-
els predict a general west, then southward, absolute motion
within the mantle from 60 Ma (Fig. 6). Minor discrepancies
between the models concern the timing of this change in di-

rection, with the model predicting this to occur at ∼ 40 Ma,
while Doubrovine et al. (2012) dated this event at ∼ 50 Ma.
In the plate frame of reference, the general southeast rela-
tive motion path of the model plume beneath Greenland ex-
hibits increasing differences as compared with Doubrovine
et al. (2012) and O’Neill et al. (2005) for times older than
∼ 40 Ma (Fig. 6); yet, it still generally supports the plume’s
near-surface arrival beneath eastern Greenland. In the model
of Doubrovine et al. (2012) the Iceland plume is located be-
neath eastern Greenland before ∼ 35 Ma (Fig. 6). Torsvik
et al. (2015) state that this is a remarkably good fit given
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the long-term volcanic activity in the immediate vicinity the
plume between 30 and 60 Ma (Fig. 6). This observation is
consistent with the motion of the model plume, which is also
located beneath eastern Greenland before ∼ 35 Ma (Fig. 6).
Torsvik et al. (2015) also note that the unusually thin litho-
sphere in the region (< 100 km; Rickers et al., 2013) provides
further evidence of long-standing plume–lithosphere interac-
tions, as they attribute this thinning to thermal and mechan-
ical erosion (Steinberger et al., 2014) due to the plume head
(Torsvik et al., 2015). The large spatial extent of the model
plume (Fig. 5c) during its near-surface arrival at∼ 60 Ma can
also account for the contemporaneous eruption of extrusive
volcanics along the western Greenland margin and on Baffin
Island, which have previously been attributed to the arrival
of the Iceland plume (Spice et al., 2016; Stuart et al., 2003;
Chalmers et al., 1995).

Comparing the relative motion path of the model plume
beneath Greenland to that of O’Neill et al. (2005) shows
a general southeastern motion beneath Greenland over the
last 60 Myr, although the relative motion path of the model
plume is further south prior to ∼ 20 Ma (Fig. 6). Rogozhina
et al. (2016) used ice-penetrating radar and ice core drilling
to identify melting beneath the Greenland Ice Sheet, which
they attribute to a large geothermal anomaly beneath Green-
land associated with the Iceland plume track between ∼ 80
and 35 Myr ago (Fig. 6). The moving hotspot path of O’Neill
et al. (2005), which is the northernmost of the currently pro-
posed endmember motion paths, best fits that proposed Ice-
land plume motion path (Rogozhina et al., 2016). This ther-
mal anomaly can be traced continuously westward beneath
Baffin Bay and the Davis Straight (Jakovlev et al., 2012),
a region that reflects a now extinct seafloor spreading sys-
tem (Fig. 6; Oakey and Chalmers, 2012). This outlines the
difficulty involved in defining the true extent of this ther-
mal anomaly, believed to be reflecting the remnants of the
Iceland plume motion path, as its western extent merges
into a recently thinned and heated continental margin region
(Fig. 6). A recent high-resolution S-velocity model of the
North Atlantic region, detailing structural features down to
a depth of 1300 km in the highest resolution to date (Rickers
et al., 2013), does not appear to identify any shallow thermal
anomaly beneath this region of Greenland. Other geological
observations taken from a global compilation indicate that a
thick cratonic root exists within southern Greenland (Fig. 6;
Artemieva, 2006), which may have played a significant role
in plume–lithosphere interactions during the early Cenozoic.
The existence of this craton also suggests that the thin ther-
mal anomaly identified by Rogozhina et al. (2016) could rep-
resent differences in the geological structures across Green-
land rather than the remnants of a plume track. The work
of Kaban et al. (2014), who used a numerical approach to
decouple the effects of lithospheric plates and the observed
geoid globally at present day, indicates that at present day
∼ 500 m dynamic support across central Greenland is con-
fined to the extent of a “thin finger” traversing from the

present-day Iceland plume conduit to Disko Island along cen-
tral western Greenland (Kaban et al., 2014). Fahnestock et
al. (2001) used ice-penetrating radar to reveal that localised
regions in southern Greenland undergoing rapid basal melt-
ing at present day coinciding with magmatic anomalies and
topography associated with volcanic activity (Fahnestock et
al., 2001). The extent and magnitude of this basal melt in
southern Greenland is in close vicinity of the motion path of
the model plume (Fahnestock et al., 2001).

4.2 Comparing predicted dynamic topography to a
compiled set of observables on anomalous uplift
and subsidence in the northeastern Atlantic

4.2.1 Identifying post-rift anomalous subsidence

The stretched continental margins of the North Atlantic re-
gion reflect major episodes of extension since the late Palaeo-
zoic, which have contributed to the evolution of regional sur-
face topography (Skogseid et al., 2000). The spatial and tem-
poral progression of this continental extension can be un-
derstood in terms of evolving patterns of subsidence that
reflect rates of crustal thinning and changes in lithospheric
heat flow (Jarvis and McKenzie, 1980). During extension the
lithosphere thins rapidly, producing rapid subsidence and an
accompanying thermal positive anomaly (Jarvis and McKen-
zie, 1980). Cessation of extension results in the decay of this
thermal anomaly due to thermal re-equilibration, reflected
in the slowing subsidence rates in accordance with a half-
space cooling model (Jarvis and McKenzie, 1980). As the
data compiled in this study is located in major basins across
the northeastern Atlantic region (Fig. 7) we used inferred ex-
tensional histories of these basins to derive theoretical water-
loaded tectonic subsidence histories, identifying any signif-
icant deviations from these as anomalous subsidence (Erratt
et al., 1999). We compiled data from sites in the Porcupine
Basin and North Sea, as well as a location along the west-
ern Greenland margin (Fig. 7). As an example of identify-
ing anomalous subsidence we compare water-loaded tectonic
subsidence derived from a backstripped well in the North
Sea (Fig. 8a; Clift and Turner, 1998) to an expected equiv-
alent water-loaded tectonic subsidence history modelled us-
ing a time-dependent analytical approach assuming different
stretching factors (Fig. 8a; Jarvis and McKenzie, 1980). Well
13-27-1 (Clift and Turner, 1998) shows a syn-rift stage of
subsidence that occurred between 160 and 135 Ma (Fig. 8a).
In the absence of control points after this time period we
assume a change to post-rift at ∼ 135 Ma (Fig. 8a). Dur-
ing the initial post-rift stages subsidence rates decline until
∼ 100 Ma, where an onset in gentle uplift is recorded until
∼ 65 Ma. By this time rapid transient uplift occurs (Clift and
Turner, 1998), peaking at ∼ 62 Ma and declining by 60 Ma,
remaining relatively unchanged until present day. In compar-
ison, theoretical tectonic subsidence histories for well 13-27-
1 (Fig. 8a) predict very low post-rift subsidence, declining in
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Figure 8. (a) An example of comparing a backstripped water-
loaded tectonic subsidence history (solid black curve; Clift and
Turner, 1998) against several corresponding modelled water-loaded
tectonic subsidence histories (light-grey curves; Jarvis and McKen-
zie, 1980) from well 13-27-1 in the North Sea. Deviations between
these curves can be interpreted as anomalous subsidence inconsis-
tent with expected post-rift thermal subsidence (Jarvis and McKen-
zie, 1980). Red bars represent errors in subsidence magnitudes re-
lated to uncertainties in palaeobathymetry depth estimates (Clift and
Turner, 1998). The solid blue curve is the model dynamic topogra-
phy at this well location (Sect. 2.2.3; Fig. 3). The three vertical light-
grey dotted lines represent ages 60, 55, and 50 Ma; the horizontal
grey dotted line is zero elevation. (b) Anomalous vertical motion
(thick black curve) calculated by subtracting the best-fit modelled
tectonic subsidence history (β = 1.11) away from the subsidence
history in (a), focused on the last 70 Myr. Red curves represent er-
rors in anomalous subsidence estimates related to the uncertainty
in palaeobathymetry depth mentioned in (a). Thin grey dotted lines
and blue curve same as in (a).

magnitude throughout the Cenozoic, and continuing like so
until present day. The mismatch between predicted and in-
ferred subsidence for this well, with ∼ 400–600 m less sub-
sidence than predicted at 60 Ma and∼ 150–350 m less subsi-
dence than expected at present day and (Fig. 8a), is attributed
to the influence of the Iceland plume that is not included in
the tectonic subsidence model. Where published well loca-
tions have a reasonably good constraint on synrift and post-
rift stages of a basin, we compute anomalous vertical motion
curves that show the differences between the backstripped
tectonic subsidence histories and forward-modelled tectonic
subsidence history (Figs. 8b, 9g–l). We compute an ideal
stretching factor that best matches either the onset in the syn-
rift or post-rift stage, which is then used to calculate the in-
ferred tectonic subsidence history. Differences taken between
the two curves represent anomalous vertical motions through
time unrelated to thermal cooling of the lithosphere during
the post-rift stages (Figs. 8b, 9g–l). In wells appropriate for
this calculation across the northeastern Atlantic we focus on
anomalous vertical motions for the last 70 Myr only, in ac-
cordance with the temporal extent of the dynamic topogra-
phy model (Sect. 3.2). When using this approach to identify
anomalous vertical motions we note that (1) we expect to ob-
serve a slow decay in low post-rift subsidence rates during
the Cenozoic if extension in a given basin ceased some time
during the Cretaceous, (2) we can investigate the spatial and
temporal links between modelled anomalous vertical motion
curves and the arrival of the Iceland plume (Sect. 3), (3) we
can make spatial inferences about the extent of the Iceland
plume from the anomalous vertical motions calculated where
possible, and (4) we can compare the timing and magnitude
of anomalous vertical motion curves with the predicted dy-
namic topography since the Palaeocene.

4.2.2 Anomalous vertical motions from wells in the
North Sea basins

In the North Sea published backstripped wells include con-
trol points that cover the pre-rift, synrift, and post-rift stages
of basin evolution (Fig. 9a–d; Clift and Turner, 1998). Gener-
ally, subsidence histories in the region indicate a major phase
of extension lasting between ∼ 160 and 135 Ma (Fig. 9a–d).
Following this, each well records a history of post-rift subsi-
dence that is at odds with the theoretical tectonic subsidence
curve (Fig. 9; Sect. 4.2.1). As the basins in the North Sea
did not experience any secondary extensional episodes after
the Late Jurassic (Erratt et al., 1999), we assess the compati-
bility of the model dynamic topography (Sect. 3.2) with this
Cenozoic anomalous subsidence.

In these wells, inferred anomalous subsidence during the
Palaeocene may be recorded either as (1) transient uplift be-
tween ∼ 65 and 62 Ma (13-27-1; Fig. 9a) if enough control
points are available or as (2) anomalous accelerated subsi-
dence from ∼ 60 Ma (14-19-9; Fig. 9b, 21-2-1; Fig. 9c, 15-
17-9; Fig. 9d). We compare the predicted evolution of dy-

Solid Earth, 8, 235–254, 2017 www.solid-earth.net/8/235/2017/



N. Barnett-Moore et al.: The deep Earth origin of the Iceland plume 247

Figure 9. Top panels (a–d): backstripped water-loaded tectonic subsidence histories from wells in the North Sea (locations given in Fig. 6;
Clift and Turner, 1998), and Porcupine Basin (e–f; Jones et al., 2001) presented as in Fig. 7a. Bottom panels (g–l): comparison between model
dynamic topography and anomalous vertical motion curves presented as in Fig. 7b for the last 70 Myr of top panels. Dotted line represents
computed theoretical subsidence history from Jones et al. (2001) using their first-choice stretching factor of 1.27 for that particular well.

namic topography for each of these well locations back to
70 Ma to their respective anomalous vertical motions curves
computed from the differences between the theoretical and
backstripped subsidence histories in Fig. 9g–j (Sect. 4.2.1).
Generally, dynamic topography evolves similarly across all
well locations, which is to be expected given its spatially
long wavelength (e.g. Flament et al., 2013). In this region, the
model predicts ∼ 350 m of dynamic uplift from 65 to 60 Ma,
then ∼ 250 m of rapid dynamic subsidence until 55 Ma, at
which time subsidence of ∼ 100 m slowly continues until
∼ 35 Ma. Following this, ∼ 10–50 m of dynamic uplift oc-
curs until ∼ 25 Ma, then returning to more pronounced dy-
namic subsidence (∼ 250 m) until present day. The evolution
of model dynamic topography can reasonably explain the
timing of anomalous subsidence during the late Palaeocene
and early Eocene for wells 13-27-1, 21-2-1 and 15-17-9
(Fig. 9g, i, j). Dynamic topography agrees temporally with
the cessation in anomalous uplift by ∼ 60 Ma for well 13-
27-1 (Fig. 9g), and with the onset in rapid anomalous sub-
sidence from ∼ 60 Ma for well 21-2-1 (Fig. 9i). Well 13-27-
1 (Fig. 9g) indicates transient anomalous uplift at ∼ 60 Ma,
which is temporally offset from our model results by only
∼ 3 Myr (Sect. 4.2.1). The predicted maximum dynamic up-
lift and subsequent subsidence is overestimated by as much
as a factor of 2 at well 14-19-9 (Fig. 9h); however, it is in
reasonable agreement at well 21-2-1 (Fig. 9i) and 15-17-9
(Fig. 9j), although with an offset in magnitude at 15-17-9 of
∼ 300 m. This is the result of the normalisation of the dy-
namic topography signal set to be zero at present day.

Bertram and Milton (1989) derived a basin history at
a well in the North Viking Graben, assuming two rifting
episodes in the Triassic and Jurassic with a stretching factor

of 1.35, and∼ 300 m of modelled anomalous Palaeocene up-
lift (Bertram and Milton, 1989). The evolution of model dy-
namic topography can explain the timing of this subsidence
history. Given that the location of the Viking Graben is in
relatively close proximity to the wells analysed from other
North Sea basins in Clift and Turner (1998), we use the mag-
nitude of dynamic topography extracted at these well loca-
tions as a proxy for the dynamic effect in the North Viking
Graben as well. This suggests the dynamic model probably
overestimates this anomalous subsidence by a few hundred
metres in this basin, too. This Palaeocene transient uplift
linked to the Iceland plume is also supported by a Palaeogene
unconformity buried by early Eocene deep-water sediments
across the North Sea (Mudge and Jones, 2004; Milton et al.,
1990) and by pulses of coarse clastic sediment deposited in
the northern parts of the North Sea during the earliest Eocene
(Huuse, 2002). Nadin et al. (1997) used forward and inverse
2-D modelling of syn- and post-rift stratigraphy to deter-
mine the timing and magnitude of Palaeocene uplift asso-
ciated with the Iceland plume in major basins across this re-
gion. They estimated∼ 375–550 m of anomalous Palaeocene
uplift and computed its thermal decay through time until
present day (Fig. 10b) at three locations (Fig. 7; pale pur-
ple stars). Comparison of the model dynamic topography
extracted at these three points (Fig. 10b) shows agreement
in the cessation of dynamic uplift and onset in subsidence
at ∼ 60 Ma, and an agreement between two of the sites on
the total amount of predicted dynamic subsidence from the
model since ∼ 60 Ma.

In summary, the duration and magnitude of transient uplift
and subsidence predicted by the model dynamic topography
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Figure 10. (a) Backstripped water-loaded tectonic subsidence histo-
ries for a well in the southern Faroe–Shetland Basin (location given
in Fig. 4; Clift and Turner, 1998). (b) Evolution of decaying up-
lift calculated from modelled stratigraphic sections across the North
Sea reproduced from Nadin et al. (1997). Given the long wave-
length nature of the model dynamic topography and the relatively
close proximity of the three stratigraphic sections (Fig. 6; stars), we
include all three results in this plot. Red error bars represent un-
certainty in uplift decay over time. The blue curve on each plot is
the corresponding time-dependent evolution of dynamic topography
(Sect. 2) for each site (Fig. 4). (c) Backstripped water-loaded tec-
tonic subsidence histories for Nugssuaq along the western Green-
land margin (Fig. 6) from Clift et al. (1998). Blue dynamic topogra-
phy curve through time derived as described in Fig. 7. (d) Modelled
uplift history from Hartley et al. (2012) – see main text for descrip-
tion.

can be considered reasonable in the context of independent
constraints in the North Sea.

4.2.3 Anomalous vertical motions from wells in the
Porcupine Basin

In the Porcupine Basin we compare two subsidence curves
published in Jones et al. (2001) (Fig. 9e–f), as long-
wavelength dynamic topography is not expected to vary (Fla-
ment et al., 2013) over this relatively small basin (Fig. 7).
Generally, in this basin post-rift subsidence histories are es-
timated to indicate 500–800 m of anomalous transient up-
lift followed by subsidence since the Palaeocene–Eocene
boundary (∼ 55 Ma; Fig. 9k–l; Jones et al., 2001). Simi-
larly to the major basins of the North Sea (Sect. 4.2.2),
this basin did not experience any extensional episodes af-
ter the Early Cretaceous (Tate et al., 1993), suggesting that
the Cenozoic anomalous subsidence recorded in each well

across the region is not rift-related. We assess the likelihood
that the dynamic topography model (Sect. 3.2) can explain
this widespread Palaeocene anomalous subsidence. Tempo-
rally, the tectonic subsidence histories commonly show an
onset in anomalous transient uplift from ∼ 60 and 55 Ma,
and maximum magnitudes peaking at times between 50 Ma
(Fig. 9e) and 55 Ma (Fig. 9f). We compute ideal theoretical
subsidence histories for each of these wells using the stretch-
ing factors and periods published in Jones et al. (2001), and
calculate anomalous vertical motion curves as the differ-
ences between this inferred subsidence history and the back-
stripped one (Fig. 9k–l). Generally, these anomalous verti-
cal motion curves show ∼ 300–400 m of transient uplift fol-
lowed by∼ 550–700 m of anomalous subsidence from 60 Ma
(Fig. 9k–l). The maximum model dynamic uplift (∼ 150 m
at∼ 60 Ma) is underpredicted by∼ 450 m, and the following
dynamic subsidence is underpredicted by approximately half
of the computed anomalous subsidence. The dynamic up-
lift predicted in the model beneath this basin is weaker here
than in the North Sea basins because the Porcupine Basin
is on the southeastern edge of the model plume during the
Palaeocene (Fig. 5). However, we suggest caution when in-
terpreting the magnitude of anomalous subsidence computed
in Jones et al. (2001). A sensitivity analysis within this study
showed that a theoretical subsidence history computed with
one stretching event in the Jurassic could fit the backstripped
subsidence history, initially estimating ∼ 300 m of anoma-
lous subsidence (Fig. 9f). Yet, Jones et al. (2001) argued
that this theoretical subsidence history underpredicts the ob-
served post-rift subsidence. As a result, they introduce a syn-
thetic layer to represent the eroded syn-rift section to base-
ment, resulting in an increase in their theoretical subsidence
and thus estimate of anomalous post-rift subsidence by a fac-
tor of nearly 2.5. Here, the accelerated subsidence computed
at each well during the Cenozoic is much larger than the ex-
pected response to the transient uplift associated with the ar-
rival of a plume (Fig. 9e–f; Hassan et al., 2015). Therefore,
we suggest that other processes known to also be at play dur-
ing this time could have contributed to this accelerated sub-
sidence, e.g. propagation of intraplate stresses in the region
(Nielsen et al., 2007), calling into question the justifications
of Jones et al. (2001) to increase their calculated theoretical
subsidence histories. We believe their initial fit between the
theoretical and backstripped subsidence histories, and conse-
quently much smaller estimates of plume-related anomalous
subsidence, is adequate in light of the post-rift subsidence
history of this basin being convoluted by other potential pro-
cesses since the Palaeocene.

This comparison shows the model is reasonably compati-
ble with the duration of Palaeocene transient uplift and sub-
sidence in the Porcupine Basin but underestimates the mag-
nitude of that uplift event and its subsequent subsidence by
several hundred metres, which we believe is related to the
exclusion of other processes potentially at play, contributing
to this post-plume subsidence of this basin.
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4.2.4 Observations of anomalous vertical motions
along the Norwegian margin, eastern and western
Greenland margin, and plume-related transient
uplift across the remainder of the North Atlantic

A structural and stratigraphic analysis along the Norwegian
margin in the Vøring Basin, immediately north of the Møre
Basin (Fig. 7; Planke et al., 1991), showed that its mode of
rifting (Peron-Pinvidic et al., 2013) changed from brittle to
more ductile extensional deformation during the Palaeocene
(Ren et al., 2003). This change is related to the arrival of
the Iceland plume, and the subsequent initiation of associ-
ated igneous activity (Ren et al., 2003). Roberts et al. (2009)
mapped 11 horizons from seabed to base Cretaceous that
they backstripped to produce a series of palaeobathymetry
and palaeostructure maps across the Møre and Vøring basins.
They incorporated a transient dynamic uplift event of the
Norwegian margin during the Palaeocene derived from pre-
vious estimates made in the Faroe–Shetland Basin (Rudge
et al., 2008) as they were unable to distinguish between
extension-related and plume-related surface vertical motions
within the basins along the Norwegian margin at this time
(Roberts et al., 2009, 1997). Nielsen et al. (2002) analysed
the topography, heat flow, crustal structure, and Bouger grav-
ity anomaly of Norway, proposing the region was influenced
by surface uplift in the latest Palaeocene related to plume
emplacement and that its new topography was modulated
by changes in climate and eustasy throughout the remaining
Cenozoic. Given the current uncertainty in quantifying the
magnitude of transient uplift along the Norwegian margin,
we are unable to directly assess the model dynamic topog-
raphy for this region. Nevertheless, the consistency of these
observations along the Norwegian margin with those com-
piled around the remainder of the North Atlantic (Sect. 4.2) is
compatible with the spatial and temporal extent of the model
plume (Fig. 5). In related studies, Fletcher et al. (2013) used
flexural backstripping and decompaction techniques along
stratigraphic sections in the Faroe–Shetland Basin (Fig. 5)
to estimate ∼ 450–550 m of late Palaeocene plume-related
transient uplift in this basin, providing further evidence of
anomalous plume-related topographic motions in the region.

Previous efforts focusing on the sedimentary response of
the western and eastern Greenland landscapes to plume-
driven uplift used fluvial peneplanation, valley incision, and
sediment deposition rates to argue that this uplift was very
short lived (< 5 Myr) prior to plume eruption, with the up-
lift of western Greenland quantified at around several hun-
dred metres, and the eastern Greenland uplift unable to be
quantified (Dam et al., 1998). Apatite fission track data sug-
gest that the present-day high mountains of western Green-
land are erosional remnants of continental uplift during the
Neogene (Japsen et al., 2005). However, Redfield (2010) ar-
gued that the apatite fission track (AFT) sampling used in
this study might be biased. Tectonically, the extensional his-
tories of these margins are temporally offset (Hosseinpour

et al., 2013). Along the western Greenland margin continen-
tal extension started at ∼ 120 Ma (Hosseinpour et al., 2013),
with breakup and seafloor spreading starting in the Labrador
Sea at∼ 60 Ma (Oakey and Chalmers, 2012). Along the east-
ern Greenland margin, extension started at∼ 80 Ma (Barnett-
Moore et al., 2016), and seafloor spreading by ∼ 55 Ma
(Skogseid et al., 2000). Based on these extensional histories
we expect the slow decay of post-rift subsidence rates to start
from continental breakup.

Across the remainder of the North Atlantic we qualita-
tively compare predicted dynamic topography to several ex-
amples of either backstripped water-loaded tectonic subsi-
dence curves (Clift et al., 1998; Clift and Turner, 1998),
which preserve evidence of subsidence histories being “inter-
rupted” by anomalous transient uplift during the Palaeocene
(Fig. 10a, c), or independent studies that have modelled this
plume-related uplift (Fig. 10d). The number of control points
used in the construction of the two tectonic subsidence curves
used in this comparison is generally small for times older
than ∼ 100 Ma (Fig. 10a, c). Therefore, we are unable to
produce forward models of these subsidence histories with
any real confidence given the lack of well constraints com-
pounded by the complexity in the extensional histories of the
basins they are located within (Skogseid et al., 2000; Brekke
et al., 2000). Instead, we make a general qualitative compar-
ison between the dynamic model and these subsidence his-
tories, assessing the match between model dynamic topogra-
phy and the onset and temporal extent of preserved anoma-
lous transient uplift in these basins during the Palaeocene.
At well 164-25-1, located in the southern Faroe–Shetland
Basin (Fig. 5), maximum uplift occurs at∼ 58 Ma (Fig. 10a).
A comparison with the dynamic uplift predicted from the
model shows that plume-related uplift can account for the
duration of transient uplift and the timing in peak uplift dur-
ing the Palaeocene for this well. Along the western Green-
land margin at Nugssuaq (Fig. 5), maximum transient up-
lift occurs first at ∼ 60 Ma followed by a second local max-
imum at ∼ 53 Ma (Fig. 10c). The post-53 Ma tectonic sub-
sidence histories of this basin are unconstrained (Fig. 10c).
The model dynamic topography evolution at this location
reflects the close proximity to the near-surface arrival and
eastward migration of the model plume through time. At
Nugssuaq, the model implies dynamic uplift of ∼ 700 m,
commencing from 70 Ma and transitioning to subsidence by
60 Ma (Fig. 10c). This rapid change in significant dynamic
uplift is still within the large palaeobathymetric errors mar-
gins at peak uplift at 60 Ma (Fig. 10c). In other indepen-
dent studies, three-dimensional seismic reflection data were
used to quantify and temporally constrain the plume-related
transient uplift in the Faroe–Shetland Basin (Hartley et al.,
2012; Champion et al., 2008; Rudge et al., 2008). Cham-
pion et al. (2008) attributed fluvial incisions into marine sedi-
ments buried beneath non-marine sediments dated around the
Palaeocene–Eocene boundary to transient uplift. Both Rudge
et al. (2008) and Champion et al. (2008) estimated ∼ 500 m
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of uplift that peaked and decayed very quickly over∼ 3 Myr,
linking this transient event to the lateral flow of hot mate-
rial at much shallower mantle depths beneath the lithosphere
sourced from a larger mantle anomaly at depth. Hartley et
al. (2012) reconstructed an ancient drainage network from
three-dimensional seismic data in a similar area of the Faroe–
Shetland Basin, and subsequently inverted these ancient river
profiles to derive a surface uplift history. They proposed that
this region was uplifted over three discrete steps of 200–
400 m and then reburied rapidly within ∼ 1 Myr around the
Palaeocene–Eocene boundary (Hartley et al., 2012). A com-
parison between the model and these results shows a mis-
match in the timing of maximum transient uplift of ∼ 4–
5 Myr, as the model predicts this to occur earlier at ∼ 60 Ma;
however, it shows a very reasonable match in magnitudes
of uplift around 1000 m (Fig. 10d). We consider this close
match in magnitudes with the study of Hartley et al. (2012)
to be more important of the two comparisons made above,
given that Hartley et al. (2012) revisited the area studied in
Champion et al. (2008). Hartley et al. (2012) proposed that
series of hot blobs, sourced from the plume conduit, travelled
radially outwards in a horizontal layer in the low-viscosity
mantle beneath the lithosphere. They showed that this can
be considered geodynamically reasonable in the context of
a surface wave tomography model, which images these ther-
mal anomalies maintaining their internal structure up 600 km
from the Iceland plume conduit in the upper mantle beneath
the region (Delorey et al., 2007). However, we suggest, based
on the evolution of the model plume through time (Fig. 5),
that a large component of this transient uplift could be related
to the buoyancy forces associated with the near-surface ar-
rival of the Iceland plume from deeper within the mantle. We
note that the inversion of this ancient landscape constrains
its spatial and temporal evolution of the vertical motion but
not its source, and that tomography models do not provide
insight to the complex time-dependent evolution of mantle
plumes.

In summary, for this set of selective qualitative compar-
isons across the North Atlantic, the model dynamic topogra-
phy can explain the duration of Palaeocene anomalous tran-
sient uplift. The model also predicts plume-related uplift doc-
umented along the Norwegian margin during the Palaeocene;
however, current observations do not constrain the magnitude
of uplift.

4.3 Mismatches between the evolution of the model
dynamic topography and observational constraints

Comparing the model dynamic topography to available pub-
lished geological and geophysical observations (Figs. 7–
10) highlights mismatches in the spatial, temporal, and am-
plitude evolutions (Sect. 4.2). Temporal mismatches are at
most 10 Myr across the North Atlantic (Sect. 4.2). Gener-
ally, maximum uplift associated with the near-surface ar-
rival of the Iceland plume is observed to occur sometime

in the Palaeocene and early Eocene between ∼ 60–50 Ma
(Sect. 4.2; Figs. 7–10), as the model predicts maximum uplift
at ∼ 60 Ma across the region (Figs. 7–10). Since the model
temporal resolution is∼ 5 Myr (Sect. 2), this mismatch of up
to ∼ 10 Myr in the timing of maximum uplift is not unex-
pected.

A qualitative comparison between the evolution of dy-
namic topography amplitudes and the magnitude of pre-
served anomalous subsidence indicates the model under-
estimates dynamic uplift by only a few hundred metres
(e.g. Porcupine Basin; Sect. 4.2.3). The amplitude of pre-
dicted dynamic topography depends on the adopted defi-
nition of dynamic topography (e.g. Flament et al., 2013)
and boundary conditions for the calculation (e.g. Thoraval
and Richards, 1997). Here, we compute water-loaded sur-
face dynamic topography from buoyancy sources deeper than
350 km and with free-slip boundary conditions. Including
shallower buoyancy sources and using no-slip boundary con-
ditions (e.g. Flament et al., 2014) would increase the ampli-
tude of predicted dynamic topography. In addition, the man-
tle flow models used here do not account for the complex
evolution of shallow (< 350 km) asthenospheric flow, or the
complex interplay between mantle, lithosphere, and surface
processes, which are known to have played an important role
in the evolution of the major basins in the North Atlantic fol-
lowing the plume’s arrival during the Cenozoic (e.g. Nielsen
et al., 2002).

A qualitative comparison between the model dynamic to-
pography and the mapped time-dependent trail of extrusive
magmatic rocks constraining the approximate spatial evolu-
tion of the plume beneath the North Atlantic suggests the
evolution of the model plume beneath the plates can be con-
sidered feasible (Fig. 5). The long-wavelength nature of the
model dynamic topography results in the gradual dynamic
uplift of the northwestern European margin since the mid-
Eocene (∼ 40 Ma onwards) related to the continued east-
ward migration, though diminishing spatial extent, of the
model plume (Figs. 7–10). This produces a mismatch be-
tween the subsidence histories of the Porcupine, Rockall,
Faroe–Shetland, Møre, and North Sea basins (except for well
15-17-9; Fig. 9j) and the model dynamic topography evolu-
tion, as these basins do not preserve evidence of dynamic
uplift from the Eocene until the early Miocene (Figs. 7–10).
However, we suggest that the gradual increase in this rela-
tively minor dynamic uplift since this time might be relevant
to the current debate surrounding the explanation of observed
anomalous Eocene uplift as reviewed in Anell et al. (2009) or
younger anomalous uplift in the Neogene (Praeg et al., 2005)
across the northeastern Atlantic Ocean.

In summary, this comparison shows the reconstituted dy-
namic topography model predicts a reasonable spatial and
temporal evolution of the Iceland plume, which accounts
for contemporaneous Palaeocene vertical motions across the
North Atlantic. Mismatches in computed dynamic topogra-
phy are only a few hundred metres, but given the current
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limitations in the modelling approach and the focus of this
study on the deep Earth evolution of the Iceland plume, we
consider this to be reasonable.

5 Conclusions

Analytics of flow in the lowermost mantle indicate that over
the last ∼ 100 Myr a consistent pattern of convergent flow
persists in the lowermost mantle near the tip of the African
LLSVP, which has remained remarkably stable over this pe-
riod, making it an ideal plume nucleation site. From a config-
ured space–time evolution of a fully dynamic model plume
and its associated dynamic topography we showed reason-
able agreement with previous geological models that support
the near-surface arrival of the Iceland plume somewhere be-
neath central eastern Greenland during the Palaeocene and
that the inferred motion path of the model plume is also
in agreement with the regional volcanic record. A compar-
ison between model dynamic topography and published con-
straints shows that widespread Palaeocene and early Eocene
uplift across the region can be explained by the mantle-driven
effects of a large plume∼ 2500 km in diameter. In some parts
of the North Atlantic the mantle flow model underestimates
the magnitude of observed anomalous surface vertical mo-
tions during the Palaeocene by a few hundred metres. We
suggest that these mismatches in magnitude can be related to
the additional effects of shallower upper mantle flow and sur-
face processes responding to those vertical changes, which
are not captured in the modelling approach.

6 Data availability

The data used to generate Fig. 1 can be found via
the in-text citation. All data used in this study to
generate the remaining figures are freely available
upon request by contacting the corresponding au-
thor at nicholas.barnett-moore@sydney.edu.au, or try
n_barnettmoore@hotmail.com.
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Animation S1: Evolution of the model plume since eruption
at 150 Ma to present day – see Fig. 3 for details.
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