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Abstract. The quality of a 3-D geological model strongly
depends on the type of integrated geological data, their inter-
pretation and associated uncertainties. In order to improve an
existing geological model and effectively plan further site in-
vestigation, it is of paramount importance to identify existing
uncertainties within the model space. Information entropy, a
voxel-based measure, provides a method for assessing struc-
tural uncertainties, comparing multiple model interpretations
and tracking changes across consecutively built models. The
aim of this study is to evaluate the effect of data integration
(i.e., update of an existing model through successive addi-
tion of different types of geological data) on model uncer-
tainty, model geometry and overall structural understanding.
Several geological 3-D models of increasing complexity, in-
corporating different input data categories, were built for the
study site Staufen (Germany). We applied the concept of in-
formation entropy in order to visualize and quantify changes
in uncertainty between these models. Furthermore, we pro-
pose two measures, the Jaccard and the city-block distance,
to directly compare dissimilarities between the models. The
study shows that different types of geological data have dis-
parate effects on model uncertainty and model geometry. The
presented approach using both information entropy and dis-
tance measures can be a major help in the optimization of
3-D geological models.

1 Introduction

Three-dimensional (3-D) geological models have gained im-
portance in structural understanding of the subsurface and are
increasingly used as a basis for scientific investigation (e.g.,
Butscher and Huggenberger, 2007; Caumon et al., 2009; Bis-

tacchi et al., 2013; Liu et al., 2014), natural resource explo-
ration (e.g., Jeannin et al., 2013; Collon et al., 2015; Hassen
et al., 2016), decision making (e.g., Campbell et al., 2010;
Panteleit et al., 2013; Hou et al., 2016) and engineering appli-
cations (Hack et al., 2006; Kessler et al., 2008). Overall, 3-D
geological models are usually preferable over 2-D solutions
because our object of study is intrinsically three-dimensional
in space and, therefore, they offer a higher degree of data
consistency and superior data visualization. Moreover, they
enable the integration of many different types of geological
data such as geological maps, cross sections, outcrops, bore-
holes and data from geophysical (e.g., Boncio et al., 2004)
and remote-sensing methods (e.g., Schamper et al., 2014).
Nevertheless, input data are often sparse, heterogeneously
distributed or poorly constrained. In addition, uncertainties
from many sources such as measurement error, bias and im-
precisions, randomness, and lack of knowledge are inher-
ent to all types of geological data (Mann, 1993; Bárdossy
and Fodor, 2001; Culshaw, 2005). Furthermore, assumptions
and simplifications are made during data collection, and sub-
jective interpretation is part of the modeling process (Bond,
2015). Hence, model quality strongly depends on the type of
integrated geological data and its associated uncertainties.

In order to assess the quality and reliability of a 3-D
geological model as objectively as possible, it is essen-
tial to address underlying uncertainties. Numerous meth-
ods have recently been proposed that enable estimates,
quantification and visualization of uncertainty (Tacher
et al., 2006; Wellmann et al., 2010; Lindsay et al.,
2012, 2013, 2014; Lark et al., 2013; Park et al., 2013;
Kinkeldey et al., 2015). A promising approach is based
on the concept of information entropy (Shannon, 1948).
Wellmann and Regenauer-Lieb (2012) applied this concept
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to 3-D geological models. In their study, they evaluated un-
certainty as a property of each discrete point of the model
domain by quantifying the amount of missing information
with regard to the position of a geological unit (Wellmann
and Regenauer-Lieb, 2012). They consecutively added new
information to a 3-D model and compared uncertainties be-
tween the resulting models at discrete locations and as an
average value for the total model domain using information
entropy as a quantitative indicator. Through their approach,
they addressed two important questions: (1) how is model
quality related to the available geological information and its
associated uncertainties, and (2) how is model quality im-
proved through the incorporation of new information?

Wellmann and Regenauer-Lieb (2012) illustrated their ap-
proach using synthetic 3-D geological models, showing how
additional geological information affects model uncertainty.
The present study goes a step further. It applies the concept
of information entropy as well as model dissimilarity to a
real case, namely the city of Staufen, Germany, at the east-
ern margin of the Upper Rhine Graben. In contrast to the
previous study, the present study evaluates the effects of the
consecutive addition of data from different data categories to
an existing model on model uncertainty and overall model
geometry. We hypothesize that disparate effects of different
data types on model uncertainty exist and that the quantifica-
tion of these effects provides a trade-off between costs (i.e.,
data acquisition) and benefits (i.e., reduced uncertainty and
therefore higher model quality). Thus, several 3-D geolog-
ical models of the study site were consecutively built with
increasing complexity; each of them based on an increasing
amount of (real) categorized data. An approach was devel-
oped that uses information entropy and model dissimilarity
for the quantitative assessment of uncertainty in the consec-
utive models. Results indicate that the approach is applicable
for complex and real geological settings. The approach has
large potential as a tool to support both model improvement
through successive data integration and cost–benefit analyses
of geological site investigations.

2 Study site

The city of Staufen suffers from dramatic ground heave that
resulted in serious damage to many houses (southwest Ger-
many, Fig. 1). Ground heave with uplift rates exceeding
10 mm month−1 started in 2007 after seven wells were drilled
to install borehole heat exchangers (BHEs) for heating the lo-
cal city hall (LGRB, 2010). After more and more houses in
the historic city center showed large cracks, an exploration
program was initiated by the state geological survey (LGRB
– Landesamt für Geologie, Rohstoffe und Bergbau) in order
to investigate the case. Results showed that the geothermal
wells hydraulically connected anhydrite-bearing clay rocks
with a deeper aquifer, and resulting water inflow into the an-
hydritic clay rock triggered the transformation of the min-

eral anhydrite into gypsum (Ruch and Wirsing, 2013). This
chemical reaction is accompanied by a volume increase that
leads to rock swelling, a phenomenon typically encountered
in tunneling in such rock (e.g., Einstein, 1996; Anagnostou
et al., 2010; Butscher et al., 2011b, 2015; Alonso, 2011),
but recently also observed after geothermal drilling (Butscher
et al., 2011a; Grimm et al., 2014). The abovementioned ex-
ploration program was aimed not only at finding the cause of
the ground heave but also at better constraining the complex
local geological setting. The hitherto existing geological data
were not sufficient to explain the observed ground heave, lo-
cate the geological units that are relevant for rock swelling,
and plan countermeasures.

Staufen is located west of the Black Forest at the east-
ern margin of the Upper Rhine Graben (URG). It is part
of the “Vorbergzone” (Genser, 1958), a transition zone be-
tween the eastern main border fault (EMBF) of the graben
and the graben itself. This zone is characterized by stag-
gered fault blocks that were trapped at the graben margin
during opening and subsidence of the graben. The strata of
this transition zone are often steeply inclined or even vertical
(Schöttle, 2005) and are typically displaced by west-dipping
faults with a large normal displacement. The fault system,
kinematically linked to the EMBF, has a releasing bend ge-
ometry and today experiences sinistral oblique movement
(Behrmann et al., 2003). The major geological units at the
site comprise Triassic and Jurassic sedimentary rocks, which
are covered by Quaternary sediments of an alluvial plain in
the south (Sawatzki and Eichhorn, 1999) (Fig. 1).

Three geological units play an important role for the
swelling problem at the site: the Triassic Gipskeuper
(“Gypsum Keuper”) formation, which contains the swelling
zone, and the underlying Lettenkeuper formation and Up-
per Muschelkalk formation, which are aquifers providing
groundwater that accesses the swelling zone via pathways
along the BHE. The Gipskeuper formation consists of marl-
stone and mudstone and contains the calcium-sulfate min-
erals anhydrite (CaSO4) and gypsum (CaSO4+H2O). The
thickness of this formation varies between 50 and 165 m,
with an average thickness of 100–110 m (LGRB, 2010),
depending on the degree of leaching of the sulfate min-
erals close to the ground surface. It is underlain by the
Lettenkeuper formation (5–10 m thickness), consisting of
dolomitic limestone, standstone and mudstone, and the Up-
per Muschelkalk formation (≈ 60 m thickness) dominantly
consisting of limestone and dolomitic limestone.

3 Methods

3.1 Input data

Input data for the 3-D geological modeling include all avail-
able geological data that indicate (1) boundaries between
geological units, (2) the presence of geological units and
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Figure 1. Study site and location of the model area and area of interest (AOI).

faults at a certain positions, and (3) orientation (dip and az-
imuth) of the strata. These data were classified into four cat-
egories (Fig. 2): (1) non-site-specific, (2) site-specific, (3) di-
rect problem-specific data and (4) indirect problem-specific
data.

The non-site-specific data category comprises geologi-
cal data that are generally available from published maps
(Sawatzki and Eichhorn, 1999), the literature (Genser, 1958;
Groschopf et al., 1981; Schreiner, 1991) and the database
of the state geological survey, LGRB. Furthermore, a digi-
tal terrain model (DTM) of 1 m grid size is included in the
non-site-specific data. Outcrop and borehole data are mostly
scarce and irregularly distributed in space. The site-specific
data comprise drill logs of the geothermal drillings, which
provided a pathway for uprising groundwater that finally
triggered the swelling. Problem-specific data comprise all
data collected during the exploration program that was con-
ducted after heave at the ground surface caused damage to the
local infrastructure (LGRB, 2010, 2012). This exploration
program was initiated because geological knowledge of the
site was insufficient for an adequate understanding of the
swelling process in the subsurface and for planning and im-
plementing suitable countermeasures. The problem-specific
data were further divided into direct data from drill cores of
the three exploration boreholes (Fig. 2; EKB 1+2 and BB 3),
which add very accurate point information, and indirect data
from a seismic campaign (Fig. 2; Profile 1–5), which add
rather “fuzzy” 2-D information that has to be interpreted.

3.2 3-D geological modeling

The 3-D geological models were constructed using the geo-
modeling software SKUA/GoCAD® 15.5 by Paradigm. They
cover an area of about 0.44 km2 and have a vertical extent
of 665 m. A smaller area of interest (AOI, 300 m× 300 m,
250 m vertical extent) was defined within the model domain,
including the drilled wells and the area where heave at the
ground surface was observed and the problem-specific data
were collected.

The strata of the models cover 10 distinct geological
units including Quaternary sediments, Triassic and Jurassic
bedrock, and crystalline basement at the lower model bound-
ary (Fig. 3). The Triassic strata are further divided (from top
to bottom) into four formations of Keuper (Steinmergelke-
uper, Schilfsandstein, Gipskeuper and Lettenkeuper), two
formations of Muschelkalk (Upper Muschelkalk, Middle to
Lower Muschelkalk) and the Buntsandstein formation. Fig-
ure 3 provides an overview over the modeled geological units
and average thicknesses used in the initial models.

Four initial models were consecutively built, according to
the four previously described data categories. Model 1 was
constructed based only on non-site-specific data (maps, lit-
erature, etc.); Model 2 additionally considered site-specific
data (drill logs of the seven geothermal drillings); Model 3
also included “direct” problem-specific data (exploration
boreholes); and finally, Model 4 included “indirect” problem-
specific data (seismic campaign). Through this approach,
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data density and structural model complexity increase from
Models 1 to 4 and the models required successively higher
efforts in data acquisition in the field.

First, an explicit modeling approach (Caumon et al., 2009)
was used to create representative boundary surfaces for the

geological units and faults of the initial model because
the available input data were, in terms of spatial coverage,
not sufficient to directly use an implicit approach. Discrete
smooth interpolation (DSI) provided by GoCAD® was used
as the interpolation method (Mallet, 1992), which resulted in
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Delaunay-triangulated surfaces for both horizons and faults.
Subsequently, based on the explicitly constructed surfaces, a
volumetric 3-D model was built by implicit geological mod-
eling, implemented in the software SKUA®. The implicit
modeling approach uses a potential field interpolation con-
sidering the orientation of strata (Frank et al., 2007), and is
based on the U -V -t concept (Mallet, 2004), where horizons
represent geochronological surfaces.

3.3 Uncertainty assessment

3.3.1 General approach

Our approach for assessing uncertainties in the 3-D geologi-
cal models consists of four distinct steps (Fig. 4):

i. Building the initial 3-D geological models of increasing
data density and structural complexity (see above).

ii. The definition of fault and horizon uncertainties. Hori-
zon uncertainties were specified in SKUA® by a max-
imum displacement parameter or by alternative sur-
face interpretations, resulting in a symmetric envelope
of possible surface locations around the initial surface.
To constrain the shape of generated horizons, SKUA®

uses a variogram that spatially correlates perturbations
applied to the initial surfaces (Paradigm, 2015). Fault
uncertainties were defined by a maximum displace-
ment parameter and a Gaussian probability distribution
around the initial fault surface (Caumon et al., 2007;
Tertois and Mallet, 2007).

iii. The creation of 30 model realizations for each initial
model based on the surface variations defined above, ap-
plying the Structure Uncertainty workflow of SKUA®.

iv. The extraction of the geological information from all
model realizations for analysis, comparison and visual-
ization. For this purpose, the AOI was divided into a reg-
ular 3-D grid of 5 m cell size, resulting in 180 000 grid
cells. The membership of a grid cell to a geological unit
was defined as a discrete property of each grid cell and
extracted for all 30 model realizations. Based on these
data, we calculated the probability of each geological
unit being present in a grid cell in order to derive the
information entropy at the level of (1) a single grid cell,
(2) a subset representing the area of extent of a geologi-
cal unit and (3) the overall AOI. Furthermore, the fuzzy
set entropy was calculated to determine the ambiguous-
ness of the targeted geological units Gipskeuper (km1),
Lettenkeuper (ku) and Upper Muschelkalk (mo) within
the AOI. Calculations were conducted using the statis-
tics package R (R Core Team, 2016). The underlying
concepts and equations used to calculate probabilities
and entropies are described in the following section.

3.3.2 Information entropy

The concept of information entropy (or Shannon entropy)
was first introduced by Shannon (1948) and is well known
in probability theory (Klir, 2005). It quantifies the amount
of missing information and hence, the uncertainty at a dis-
crete location x, based on a probability function P of a finite
data set. When applied to geological modeling, information
entropy expresses the “degree of membership” of a grid cell
to a specific geological unit. In other words, information en-
tropy quantitatively describes how unambiguously the avail-
able information predicts that unit U is present at location
x. Information entropy was recently applied to 3-D geolog-
ical modeling by Wellmann et al. (2010) and Wellmann and
Regenauer-Lieb (2012) in order to quantify and visualize un-
certainties introduced by the imprecision and inaccuracy of
geological input data. A detailed description of the method
can be found in the cited references and is briefly summa-
rized here.

By subdividing the model domain M into a regular grid, a
discrete property can be assigned to any cell at location x in
the model domain. In a geological context, the membership
of a grid cell to a geological unit U can be defined as such a
property by an indicator function:

IU (x)=

{
1 if x ∈ U

0 otherwise, (1)

Applied to all n realizations k of the model space M , the
indicator function yields a set of n indicator fields I with each
of them defining the membership of a geological unit as a
property of a grid cell. Considering the combined informa-
tion of all indicator fields, it follows that membership is no
longer unequivocally defined at a location x and hence has to
be expressed by a probability function PU :

Px(U)=
∑
k∈n

IUk
(x)

n
. (2)

From the probabilities of occurrence Px(U) the uncer-
tainty (or amount of missing information) associated with a
discrete point (grid cell) can be obtained by calculating the
information entropy Hx (Shannon, 1948) for a set of all pos-
sible geological units U :

Hx =−

∑
U∈U

Px(U)× logPx(U). (3)

In a next step, information entropy HM can be calculated
as an average value of Hx over the entire model space:

HM =
1
|M|
×

∑
x∈M

Hx, (4)

where |M| is the number of elements within M , HM = 0
denotes that the location of all geological units is precisely
known (no uncertainty) and HM is maximal for equally dis-
tributed probabilities of the geological units (PU1 = PU2 =
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Figure 4. Uncertainty assessment workflow with four distinct steps. This workflow is applied to four initial models that are based on the
different data sets illustrated in Fig. 2.

PU3 = . . .), which means that a clear distinction between ge-
ological units within the model space is not possible. Simi-
larly, average information entropy can also be applied to only
a subset of the model space (S ⊆M):

HS =
1
|S|
×

∑
x∈S

Hx . (5)

HS can be used to evaluate the contribution of a specific
sub-domain to overall uncertainty. In the case of a drilling
campaign, for example, the sub-domain can comprise a tar-
geted depth or a geological formation of specific interest. In

this study, we used the probability function Px(U) with HS

conditioned by Px(U) > 0 to define subsets within the model
space. Thus, each subset represents the probability space of
a geological formation of interest, namely the Lettenkeuper
(Sku), Gipskeuper (Skm1) and Upper Muschelkalk (Smo) for-
mation.

Wellmann and Regenauer-Lieb (2012) also adapted fuzzy
set theory (Zadeh, 1965) in order to assess how well-defined
a single geological unit is within a model domain. A fuzzy
set of n model realizations introduces a certain degree of in-
definiteness to a discrete property (e.g., membership of a ge-
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ological unit), resulting in imprecise boundaries which can
be referred to as fuzziness. The fuzziness of a fuzzy set (De
Luca and Termini, 1972) in the context of a geological 3-D
model can be quantified by the fuzzy set entropy HU (Leung
et al., 1992; Yager, 1995):

HU =−
1
N
×

N∑
x=1

[
Px(U) logPx(U)+ (1−Px(U))

log(1−Px(U))
]
, (6)

where the probability function Px(U) with an interval [0,1]
represents the degree of membership of a grid cell to a fuzzy
set. HU equals 0 when Px(U) is either 0 or 1 everywhere
within the set; and HU equals 1 when all cells of the set have
an equal probability of Px(U)= 0.5.

3.4 Model dissimilarity

The stepwise addition of input data to the models (see
Sect. 3.1) not only affects uncertainties associated with a ge-
ological unit but also the geometry of the units and therefore
their position, size and orientation in space. New data may
significantly change the geometry of a geological unit but
only marginally change the overall uncertainty. Thus, both
model uncertainty and dissimilarity should be evaluated. In
order to quantify the dissimilarity d between consecutive
models in terms of the probability of a specific geological
unit occurring in a given voxel, two measures, the Jaccard
and the city-block distance (Fig. 5), are proposed to comple-
ment information entropy. However, dissimilarities between
models, and therefore, uncertainties, have recently also been
addressed very effectively using geo-diversity metrics such
as formation depth and volume, curvature and neighbor-
hood relationships together with principal component anal-
ysis (Lindsay et al., 2013) and through topological analysis,
which quantifies geological relationships in a model (Thiele
et al., 2016a, b).

The set of locations for which the probability Px(U) of
belonging to a particular geological unit U is greater than a
threshold value t can be defined by

Qt
M = {x}Px (U)>t . (7)

A threshold value of t = 0 was applied in order to capture
and consider the same sample space as in HU . This defini-
tion is highly sensitive to outcomes of small probability and
might, in some cases, be more robust using a threshold value
greater than 0 (e.g., t > 0.05). The Jaccard similarity mea-
sure (Webb and Copsey, 2003) is then defined as the size
of the intersection divided by the size of the union (overlap)
of two sample sets (M1, M2), which in our case represent
the similarity in position of a geological unit U between two
models:

sJAC =
|Qt

M1 ∩Qt
M2|

|Qt
M1 ∪Qt

M2|
. (8)

NCB distance

M1 M2

P (U)x

1

0

(b)

Jaccard distance

M2M1

P (U) > 0x

(a)

dJAC

dNCB

P (U)x = 0

Figure 5. Distance measures used to calculate dissimilarities be-
tween models (M1, M2). (a) Jaccard distance (dJAC) using a
true/false binary function and (b) normalized city-block distance
based on a probability function.

Accordingly, the dissimilarity between models can be ex-
pressed by the Jaccard distance:

dJAC = 1− sJAC, (9)

where dJAC = 1 indicates maximum dissimilarity (no match
in position of a geological unit U between two models) and
dJAC = 0 indicates complete overlap.

Even though the use of binary dissimilarities is straight-
forward and suitable to quantify absolute changes in posi-
tion of a geological unit between models, it does not ac-
count for fuzziness (see Sect. 3.3.2). Hence, the dissimilar-
ity may be overestimated by the Jaccard distance. In order
to include fuzziness, the normalized city-block distance was
employed, adopting the probability function Px(U) as a di-
mension to compare dissimilarities between the two sam-
ple sets (M1,M2) (Webb and Copsey, 2003; Paul and Maji,
2014):

dNCB =
1
N
×

N∑
x=1
|P M1

x (U)−P M2
x (U)|, (10)

where N is the size of M1∪M2 (i.e, number of grid cells
present within the union). The distance is greatest for dNCB =

1.

4 Results and discussion

4.1 Initial 3-D models

The four consecutively constructed initial models show a
stepwise increase in structural complexity (Fig. 6). Model 1
was based on non-site-specific geological data, and horizon
orientations were only constrained by regionally available,
isolated outcrop data, which made a general extrapolation of
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structures difficult, especially into depth (Jessell et al., 2010).
Dip and strike were assumed uniform (40 and 35◦) for all
horizons across the model domain (see Fig. 6). Information
from geological maps and outcrop data revealed a normal
fault within the AOI, which was assumed to be ENE–WSW
striking with a moderate displacement of about 50 m.

In Model 2, horizon positions of the Schilfsandsteinkeu-
per (km2), Gipskeuper (km1) and Lettenkeuper (ku) were
locally constrained by site-specific information provided by
drill logs of the geothermal wells, slightly impacting fault
displacement and thickness of the formations. However,
changes in model geometry were minor, as no further infor-

mation on horizon orientations was available and no addi-
tional faults could be located. By adding the direct problem-
specific data from the exploration wells to Model 3, a horst–
graben structure was identified that entailed a considerable
displacement at two normal faults between and to the north-
west of the wells with a displacement of 120 and 70 m, re-
spectively. Furthermore, the drill logs included orientation
measurements of the strata, resulting in a shift in position and
inclination of layers, compared to the previous models. Thus,
large parts of the model domain within the AOI changed from
Model 2 to Model 3, and, as a consequence, dissimilarities
between these models are particularly high (see Sect. 4.4).
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Figure 7. Cross section through Models 1 and 4. The multiple lines show 30 model realizations with shifted faults and horizons (for the
location of the cross sections, see Fig. 6). The horizontal lines indicate the land surface (purple) and the base of the Quaternary (blue).

Finally, Model 4, which included data from a seismic cam-
paign, has the highest degree of structural complexity. The
information provided by seismic sections revealed uncertain-
ties, which were present previously but not captured by the
simpler Models 1 to 3. Ultimately, seismic data force the in-
terpreter to add complexity down to a certain scale. However,
seismic surveys are inherently ambiguous and allow alterna-
tive interpretations, especially concerning the orientation and
number of faults as well as the type of fault contact to a fault
network (e.g., branching) (Røe et al., 2014; Cherpeau and
Caumon, 2015; Julio et al., 2015). In our case, seismic sec-
tions and interpretations were adopted from LGRB (2010).
The indirect problem-specific data from the seismic 2-D sur-
vey located several additional faults within the AOI, and in
some cases caused a shift in position of faults compared to
Model 3. The AOI was strongly fragmented by the added
faults, and the orientation of layers is no longer uniform but
varies strongly between fault blocks. In summary, the step-
wise integration of data according to the four data categories
improved our general knowledge of subsurface structures at
the study site (Fig. 2). In addition, the effect of data integra-
tion from different exploration stages on modeled subsurface
geometry could be evaluated and visualized.

4.2 Multiple model realizations

The multiple (30) model realizations created by the Struc-
tural Uncertainty workflow of SKUA® are illustrated in
Fig. 7 using 2-D cross sections of Models 1 and 4 as exam-
ples. A total number of 30 realizations and a cell size of 5 m
was chosen as a compromise between model detail, lowest
practical limit for statistical viability and data handling. For
the same reason we did not base our number of realizations
on an estimate of convergence. Instead we used the estimate
of 30 realizations for a stable fluctuation in fuzzy entropy
in a model developed by Wellmann et al. (2010) as a guide-
line value to our model. Perturbations in horizon location are
based on (1) alternative surface interpretations, which reflect
a maximum deviation in dip and azimuth (±5◦) from the ini-
tial surface and (2) constant displacement values, which were
assigned in order to account for uncertainties in formation
thickness and boundary location. For a more detailed expla-

nation of our choice of parameters, assigned probability dis-
tributions and specific input modes of the Structural Uncer-
tainty workflow, please refer to the Supplement (Tables S1
and S2). In Model 1, the non-site-specific data set includes
minimal constraints, resulting in faults and horizons of the
realizations that are widely dispersed but parallel. In con-
trast, the faults and horizons of the Model 4 realizations are
more narrowly dispersed where problem-specific data were
available within the AOI. The workflow handles equal un-
certainties consistently across models by producing a similar
pattern of horizontal displacement in Models 1 and 4. This
can be seen in particular for structures located close to the
NW boundary, which were not further constrained by con-
secutively added geological data. However, it is also appar-
ent from the mostly uniform orientation of the surfaces in
the 30 realizations of each model that perturbation measures
implemented in the Structural Uncertainty workflow did not
allow for large variations in dip and azimuth of horizons or
faults. Therefore, uncertainty may be systematically under-
estimated especially at greater depths.

4.3 Uncertainty assessment

4.3.1 Distribution of information entropy

Information entropy, quantified at the level of individual grid
cells, can be visualized in 3-D to identify areas of uncertainty
and evaluate changes in geometry resulting from successive
data integration. Figure 8a shows the distribution of informa-
tion entropy for Models 1 and 4. It can also be seen that the
approach is suitable for locating areas with high degrees of
uncertainty, indicated by dark red colors (hot spots) in this
figure. Furthermore, Fig. 8b highlights where additional con-
straints from the data helped to optimize the model by reduc-
ing uncertainties (1Hx < O) and whether further constraints
are needed in locations of specific interest.

The overall distribution of uncertainty was clearly affected
by additional geological information from site- and problem-
specific input data (Model 4). This effect is highlighted by the
changes in entropy between the models (Fig. 8b). Additional
constraints on horizon and fault boundaries caused a shift
in position and orientation of geological units, followed by a
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Figure 8. 3-D view of the AOI with a discretization of 5 m for (a) average information entropy HM of Models 1 and 4 and (b) change in
entropy 1Hx between both models.

large redistribution of uncertainties, indicated by the changes
in entropy. It can be seen that new hot spots of uncertainty
were introduced in proximity to the faults identified by the
exploration boreholes and the seismic data incorporated into
Model 4 (see Fig. 6). However, these new areas of uncer-
tainty can be considered an optimization of the model be-
cause large parts of the preceding Model 1 did not reflect
the complex local geology. Model 1 (wrongly) predicted low
uncertainties for areas where information on unidentified but
existing structures (i.e., faults) was missing. This illustrates
that epistemic uncertainties at the study site are likely sub-
stantial. Even Model 4 will inevitably still underrepresent the

true structural complexity at this site, especially in areas of
low data density. In a risk-assessment and decision-making
process, this can be problematic because low uncertainty ar-
eas might be in fact no-information areas. In such a case,
the respective model area would actually be highly uncer-
tain. However, ambiguities in data interpretation (e.g., seis-
mic sections) can lead to incorrectly identified structures and
uncertainty in any case, even in areas of high data density.
Nevertheless, the approach allows one to assess and visual-
ize uncertainties related to structures that have been identi-
fied during site investigation. To lessen the limitations posed
by non-sampled locations, Yamamoto et al. (2014) proposed
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a post-processing method for uncertainty reduction, using
multiple indicator functions and interpolation variance in ad-
dition to information entropy. Based on information theory,
Wellmann (2013) further proposed joint entropy, conditional
entropy and mutual information as measures to evaluate cor-
relations and reductions of uncertainty in a spatial context.
However, uncertainty from a lack of evidence of a geological
structure (e.g., fault), known as imprecise knowledge (Mann,
1993), still depends on the density and completeness of avail-
able input data.

4.3.2 Average information entropy

The calculated average information entropy HT of the con-
secutive models steadily decreases with higher data speci-
ficity (i.e., non-site to problem-specific, see Fig. 2) from
Models 1–4 (Fig. 9). Mean values of HM ranged from 0.56
(Model 1) to 0.39 (Model 4), where HM = 0 would denote
no structural uncertainty. The decrease from Models 1 to 4
is approximately linear, indicating that all four categories of
geological data had a similar impact on overall model uncer-
tainty, even though the added information resulted in quite
different model geometries and, as discussed above, in some
cases in a local increase in entropy (see Fig. 8b). A similar
but more pronounced trend was observed for the average en-
tropy HS of the subsets Skm1, Sku and Smo, which represent
the domain of the three geological units that are of particular
importance to the swelling problem. However, entropy, i.e.,
the amount of uncertainty, is considerably higher within the
domain of these geological units than for the overall model
space, especially for the subsets Sku and Smo, identifying
them as areas of a particularly high degree of uncertainty.
Note that these units are the aquifers that have been hy-
draulically connected to the swellable rocks via the geother-
mal drillings. Nevertheless, all entropy values are compara-
bly moderate, considering that a maximum of (only) five dif-
ferent geological units was found in any one grid cell across
all four models, yielding a possible maximum entropy of
HM = 2.32 for an equal probability distribution (P1 = P2 =

P3 = P4 = P5). For comparison: if all 10 geological units
would be equally probable, the maximum entropy would
be 3.32. Furthermore, median values and interquartile range
dropped from 0.51 (0–0.99) in Model 1 to 0 (0–0.84) in
Model 4. This helps to illustrate that the amount of grid cells
with Hx = 0 (indicating no inherent uncertainty), increased
notably by 34.8 % from 40.6 (Model 1) to 54.8 % (Model 4)
and that the remaining entropies in Model 4 are limited to a
considerably smaller number of cells within the model do-
main.

Overall, comparing the pre- to post-site-investigation sit-
uations (Models 1–4), site and problem-specific investiga-
tions were all equally successful in adding information to the
model and reducing uncertainties in the area of the targeted
horizons. While the benefits from the different data are equal,
the costs in data acquisition (i.e., work, money and time re-
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Figure 9. Average entropy HM calculated for the different mod-
els (mean and median) and for subsets of the model space of each
model (Skm1, Sku, Smo).

quired) may vary considerably, depending on the exploration
method (e.g., drillings and seismic survey). An economic
evaluation was not within the scope of this study. Neverthe-
less, the approach presented could improve cost and benefit
analyses by quantifying the gain in information through dif-
ferent exploration stages.

4.3.3 Fuzzy set entropy

The fuzzy set entropy was calculated to indicate how well-
defined a geological unit is within the model space. Applied
to the swelling problem of our case study, a high degree of
uncertainty remains with regard to the position of the rele-
vant geological units (km1, ku, mo) after full data integra-
tion. We obtained fuzzy set entropy values (HU ) ranging be-
tween 0.329–0.504 (Fig. 10). The fuzziness of these geologi-
cal units only slightly changed from Models 1 to 4, indicating
that higher data specificity did not translate into more clearly
defined geological units within the model domain. This can
be partially attributed to the complex geological setting of
the study site. In the process of data integration, additional
boundaries between geological units are created at newly in-
troduced faults, increasing the overall fuzziness of a unit.

In the case of the Lettenkeuper formation (unit ku), bound-
aries are even slightly less well-defined in Model 4 com-
pared to Model 1. This is likely related to the low thickness
of the formation (5–10 m, Fig. 3) relative to the mesh size
(5 m). A finer grid could reduce this effect; however, com-
putation time would increase significantly. Wellmann and
Regenauer-Lieb (2012) propose using unit fuzziness to de-
termine an optimal representative cell size and reduce the
impact of spatial discretization on information entropy. As
previously discussed in Sect. 4.2, our workflow does not ex-
plicitly consider uncertainties through dip and strike varia-
tions by a value indicated for this purpose but through pertur-
bations based on alternative surface interpretations, which in
our case likely underestimates the fuzziness of the targeted
geological units at greater depths. Thus, overall fuzziness,
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Figure 10. Fuzzy set entropy HU of the targeted geological units
km1, ku and mo of the different models.

particularly in Model 1, may be significantly higher than cal-
culated.

4.4 Models dissimilarity

A gain in structural information through newly acquired data
usually not only impacts model uncertainty but is also as-
sociated with a change in model geometry. The calculated
distances between models can identify the data category with
the strongest impact on model geometry and make it possible
to determine whether model geometry and uncertainty are re-
lated. Figure 11 shows the calculated Jaccard and city-block
distances between the models with respect to the targeted ge-
ological units km1, ku and mo.

Calculated distances between models are rather high, with
values of up to 0.78; indicating a pronounced shift in position
of the geological units after data were added. The addition of
both direct and indirect problem-specific data to Model 3 had
a strong impact on model geometry, which can be seen by
comparing the calculated distances between Models 2, 3 and
4 for both Jaccard and city block (Fig. 11). In contrast, site-
specific data had a much lower effect, with less than a 20 %
(0.2) change in unit position, except for ku of the Jaccard
distance (see distance between Models 1 and 2).

Overall, the city-block distance, which considers the fuzzi-
ness of geological boundaries, shows a similar trend to
the Jaccard distance; however, changes are much less pro-
nounced, especially for unit ku. According to the low city-
block distance, absolute changes in probability Px(U) for
each grid cell are small, whereas high Jaccard distances in-
dicate a large number of grid cells being affected through
newly added data. Thus, the Jaccard distance likely over-
estimated the actual dissimilarity between models. Compar-
ing unit ku of both distances; the disparity between values
hints at a large number of low-degree changes in member-
ship of the grid cells (1Px(U)� 1). These predominately
low-degree changes are likely related to the abovementioned
high degree of unit boundary fuzziness and the resulting, ill-
defined, geological unit ku being shifted within the model
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domain. However, a direct comparison of fuzzy set entropy
to the corresponding city-block distance yields no quantifi-
able relationship between model geometry and structural un-
certainty.

Nonetheless, both distance measures allow the quantifica-
tion and assessment of different aspects of dissimilarities and
therefore, changes in geometry across models. Nevertheless,
the city-block distance is preferable when sets of multiple
realizations are compared because it factors in the probabil-
ity of the occurrence of a geological unit at a discrete loca-
tion. In recent years, various distance measures have already
been applied in other contexts to create dissimilarity distance
matrices and compare model realizations in history match-
ing and uncertainty analysis, particularly in reservoir model-
ing (Suzuki et al., 2008; Scheidt and Caers, 2009a, b; Park
et al., 2013). These include the Hausdorff distance which,
similar to our approach, directly compares the geometry of
different structural model realizations but also more sophis-
ticated measures that calculate distances in realizations based
on flow model responses from a transfer function.

5 Summary and conclusions

Prior work has demonstrated the effectiveness of informa-
tion entropy in assessing model uncertainties and providing
valuable insight into the geological information used to con-
strain a 3-D model. Wellmann and Regenauer-Lieb (2012),
for example, evaluated how additional information reduces
uncertainty and helps to constrain and optimize a geological
model using the measure of information entropy. Their ap-
proach focused on a hypothetical scenario of newly added
borehole data and cross-section information to a synthetic
model. In the present study, information entropy and, in ad-
dition, model dissimilarity was used to assess the impact of
newly acquired data on model uncertainties using actual site-
investigation data in the complex geological setting of a real
case.

We presented a new workflow and methods to describe the
effect of data integration on model quality, overall structural
understanding of the subsurface and model geometry. Our
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results provide a better understanding of how model quality
can be assessed in terms of uncertainties in a data acquisition
process of an exploration campaign, showing that informa-
tion entropy and model dissimilarity are powerful tools to
visualize and quantify uncertainties, even in complex geo-
logical settings. The main conclusions of this study are as
follows:

1. Average and fuzzy set entropy can be used to evaluate
uncertainties in 3-D geological modeling and, therefore,
support model improvement during a consecutive data
integration process. We suggest that the approach could
be used to also perform a cost–benefit analysis of explo-
ration campaigns.

2. The study confirms that 3-D visualization of informa-
tion entropy can reveal hot spots and changes in the
distribution of uncertainty through newly added data in
real cases. The method provides insight into how addi-
tional data reduce uncertainties in some areas and how
newly identified geological structures may create hot
spots of uncertainty in others. Furthermore, the method
stresses that parsimonious models can locally underesti-
mate uncertainty, which is only revealed after new data
are available and being considered.

3. Dissimilarities in model geometry across different sets
of model realizations can effectively be quantified and
evaluated by a single value using the city-block dis-
tance. A combination of the concepts of information en-
tropy and model dissimilarity improves uncertainty as-
sessment in 3-D geological modeling.

However, some limitations of the presented approach are
noteworthy. Although it was designed to assess uncertainties
in the position and thickness of horizons, uncertainty in ori-
entation could only be included indirectly through perturba-
tions based on alternative surface interpretations but not by
explicit dip and azimuth parameter values indicated for this
purpose. This may result in a systematic underestimation of
uncertainties at greater depths of the model domain. Further-
more, our study site (Vorbergzone) is a highly fragmented
geological entity, and epistemic uncertainties due to missing
information about unidentified but existing geological struc-
tures are likely substantial.

Future work should therefore aim to include “fault block
uncertainties” more effectively into the workflow, for ex-
ample by including multiple fault network interpretations
(Holden et al., 2003; Cherpeau et al., 2010; Cherpeau and
Caumon, 2015) or by considering fault zones that produce a
given displacement by a variable number of faults. Finally, all
data of the investigated site were collected prior to our anal-
ysis; therefore, additional data were not explicitly collected
in order to reduce detected uncertainties within the consecu-
tive models. Applying this approach during an ongoing site

investigation could improve the targeted exploration and al-
low a well-founded cost–benefit analysis through uncertainty
hot-spot detection.
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