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Abstract. Theory and numerical implementation describing
groundwater flow and the transport of heat and solute mass
in fully saturated fractured rocks with elasto-plastic mechan-
ical feedbacks are developed. In our formulation, fractures
are considered as being of lower dimension than the hosting
deformable porous rock and we consider their hydraulic and
mechanical apertures as scaling parameters to ensure contin-
uous exchange of fluid mass and energy within the fracture–
solid matrix system. The coupled system of equations is
implemented in a new simulator code that makes use of a
Galerkin finite-element technique. The code builds on a flex-
ible, object-oriented numerical framework (MOOSE, Mul-
tiphysics Object Oriented Simulation Environment) which
provides an extensive scalable parallel and implicit coupling
to solve for the multiphysics problem. The governing equa-
tions of groundwater flow, heat and mass transport, and rock
deformation are solved in a weak sense (either by classi-
cal Newton–Raphson or by free Jacobian inexact Newton–
Krylow schemes) on an underlying unstructured mesh. Non-
linear feedbacks among the active processes are enforced by
considering evolving fluid and rock properties depending on
the thermo-hydro-mechanical state of the system and the lo-
cal structure, i.e. degree of connectivity, of the fracture sys-
tem. A suite of applications is presented to illustrate the flexi-
bility and capability of the new simulator to address problems
of increasing complexity and occurring at different spatial
(from centimetres to tens of kilometres) and temporal scales
(from minutes to hundreds of years).

1 Introduction

Reliable predictions of reservoirs’ performance, whether for
geothermal and fossil energy extraction, or water, CO2, and
heat storage rely on an accurate representation of the physi-
cal processes responsible for groundwater flow, heat and so-
lute mass transfer, mechanical deformation of the rock solid
skeleton, and, ultimately, chemical feedbacks from fluid–
rock interactions (Stephansson et al., 2004). All of these pro-
cesses occur in a naturally complex geological setting, com-
prising discrete heterogeneities as faults and fractures, span
a relatively large spectrum of temporal and spatial scales and
interact in a highly nonlinear fashion. In natural and engi-
neered systems, onset conditions and the evolution in time
and space of a particular process are affected by the initia-
tion and evolution of all the other processes. Therefore, mon-
itored variations of rock masses to natural and anthropogenic
perturbations cannot be fully reconciled by considering the
causative processes independently. This is particularly the
case for reservoir applications which require a complete un-
derstanding of the multicomponent (fractured) porous rock–
fluid system and its multiphysics dynamics to predict the be-
haviour of a particular reservoir so as to improve its produc-
tivity and sustainability.

To recognize that the majority of geological observations
are the results of nonlinear interactions among classes of
physical processes has justified the recent development and
massive use of so-called multiphysics numerical simula-
tors as complementary tools to classical experimental and
theoretical analyses. Numerical simulations are particularly
adapted to the study of a multicomponent physical system
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since they allow a systematic analysis of the dynamics of sin-
gle processes and their interactions (i) under proper time and
length scales, (ii) within complex geometries, and (iii) also
by considering changing loading conditions. In addition,
given their predictive capabilities, numerical modelling tech-
niques can assist studies aiming at estimating performances
and potential risks related to different operational scenarios
(e.g. Blöcher et al., 2015).

Numerical modelling of fractured reservoirs, whether
petroleum or geothermal, has a long history dating back sev-
eral decades. Starting from the earlier works in the 1970s,
a number of codes have been implemented under various li-
cences by the modelling community (Jing, 2003; Stephans-
son et al., 2004). The majority of these codes rely on mod-
elling techniques that were developed in the late 1980s and
early 1990s, and that can be grossly subdivided into two
classes if based on the approach followed to model coupled
processes.

A first class of approaches, referred to as sequen-
tial/explicit coupling or operator splitting approaches, relies
on splitting the coupled physical problem into classes of pos-
sibly linear sub-problems and to numerically solve for each
process sequentially. During each time step, coupling among
the processes is enforced by passing input/output data among
the respective sub-problems. Usually, external iterations are
adopted for simulations characterized by a high degree of
nonlinearity (Kempka et al., 2016; Chabab and Kempka,
2016). In some cases, sequential coupling is achieved by
relying on different simulators, as for example by coupling
a flow simulator to a mechanical simulator for a thermo-
hydro-mechanical problem (TOUGH-FLAC family of codes,
e.g. Rutqvist, 2011). The main advantage of such approaches
stems from numerically integrating relatively complex prob-
lems within limited computer resources. However, sequential
coupling schemes have important impacts on the efficiency,
stability, and accuracy of the numerical solutions. They usu-
ally introduce a splitting error in the numerical approxima-
tion, which requires a careful monitoring of the nonlinear
residuals within each single time step (Jha and Juanes, 2007;
Preisig and Prévost, 2011). This aspect limits sequential ap-
proaches to what are generally referred to as “loosely cou-
pled problems”, and they show a relatively slow, if at all,
convergence rate for tightly coupled problems. In addition,
conditional stability of semi-implicit approaches impose se-
vere time step restrictions thus increasing computation times.

As an alternative, it is possible to solve the full system of
coupled equations simultaneously, via a fully implicit cou-
pling approach. This requires to solve for all the variables
of the problem simultaneously within an iterative approach,
either (in)exact Newton or simpler Picard methods, for the
resulting algebraic system (Knoll and Keyes, 2004). Simulta-
neous solution schemes demand higher computer storage and
processing times to compute (allocate the memory and fill)
the Jacobian of the problem than explicit approaches. How-
ever, they guarantee higher stability for strongly nonlinear

problems even with relative large time step sizes (Kim et al.,
2015). In addition, recent advances in developing block-type
preconditioners and “super-convergent” methods for systems
of nonlinear equations at reduced memory consumption,
e.g. preconditioned Jacobian free methods, make these ap-
proaches competitive for field-scale applications (Knoll and
Keyes, 2004).

Despite all of this, only few attempts have been made
so far in developing and implementing fully implicit nu-
merical solutions for thermal–hydraulic–mechanical (THM)
problems.

The FRACON code of Nguyen and Selvadurai (1998)
considers a monolithic small strain and non-isothermal im-
plementation, but thermal feedbacks effects on the skele-
ton deformation and pore fluid pressure are only explicitly
integrated. The open-source, object-oriented project Open-
Geosys (Kolditz et al., 2012) provides a parallel platform for
implicit solution of multiphysics problems (Blöcher et al.,
2015) but so far, to the authors’ knowledge, has never been
applied to 3-D THM problem in fractured reservoirs. More
recently, Sun (2015) developed a monolithic framework for
solving coupled THM processes at finite strain. However,
such an approach has only been applied on generic and sim-
plistic models and lacks a description of complex geological
geometries such as fractures and faults. More recent devel-
opments have been published focusing on quantifying chem-
ical feedbacks for tightly coupled problems though mainly
targeting simplistic geometries (Poulet and Veveakis, 2016).

The goal of this paper is not to summarize the state-of-
the-art computational methods for problems that are relevant
for reservoir applications. Our interest herein is rather to-
wards computational reliability and performances when sim-
ulating the behaviour of a particular reservoir in a way that
can be of help to improve scenario-oriented analysis of such
systems. In this context, we address issues related on how
(i) to quantify the nonlinear feedbacks among the differ-
ent physical processes, and (ii) to represent into a computa-
tional model the porous rock–fracture–fluid system by cap-
turing its discontinuous, anisotropic, inhomogeneous, and
non-elastic nature (Hudson and Harrison, 1997). For this
purpose, we give an overview of the methods implemented
into a novel, yet robust and efficient multiphysics and mul-
ticomponent porous media open-source modelling simula-
tor called GOLEM which can deal with all these aspects.
Our emphasis throughout this paper is to simulate THM pro-
cesses of relevance for hydrothermal and geothermal sys-
tems. Though GOLEM can also simulate the transport of
non-reactive chemical species, we do not discuss this aspect
in the present paper. Consideration of additional chemical
(fluid–solid) interactions is the subject of future work.

The remainder of the paper is structured as follows. In
Sect. 2, we introduce the constitutive model for THM pro-
cesses for a two-phase system consisting of a deformable
solid skeleton and fully saturated pores in the presence of dis-
crete heterogeneities as represented by faults and fractures.
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Attention is given to include the important nonlinear feed-
backs among the different processes as well as structure–
property relationships. These latter include links between
fluid properties (e.g. density and viscosity) and problem vari-
ables (e.g. pressure and temperature), as well as evolution of
material properties as a function of variations in the state of
the reservoirs (e.g. porosity and permeability relationships).
In Sect. 3, the numerical implementation of the derived con-
stitutive model is described. In Sect. 4, we apply the simula-
tor to a suite of applications of different level of complex-
ity (from synthetic benchmark cases to prototypical reser-
voir simulations) both in terms of the coupling among the
processes considered as well as in terms of the geometry of
the natural system. A field application related to modelling
the hydromechanical response of a sandy reservoir during
a cyclic injection test will be presented in a separate paper
(Jacquey et al., 2017).

2 Mathematical formulation of the problem

In this section, we present the constitutive model for a porous
medium consisting of a deformable hosting rock and a mo-
bile liquid saturating its pores. In the following we make use
of subscripts f and s to refer to the solid and fluid phase
respectively. Deformation of the solid skeleton is consid-
ered in terms of Biot consolidation theory (Biot, 1956; Biot
and Willis, 1957; Biot, 1973) under non-isothermal loading
(Geertsma, 1957; McTigue, 1986) and its extension to take
into account time- and rate-dependent inelastic behaviour.
The model assumes the existence of a reference elemen-
tary volume (REV) for the porous medium in which the two
components can interact thermo-hydro-mechanically (Bear,
1988). The resulting physical system therefore incorporates
non-isothermal flow of the fluid phase (namely water) within
a porous rock which is free to deform (in)elastically and
in the presence of discontinuities as represented by discrete
fractures (Boley and Weiner, 1960).

Fractures are considered as lower-dimensional elements
embedded in the porous matrix filled with fluid (see Fig. 1).
We consider the length of the discrete fracture as a repre-
sentative measure of the REV of the porous matrix. This al-
lows us to make use of a continuum approach to represent
the porous medium. We also take into account the effects of
micro-defects (fissures and micro-cracks) on the thermal, hy-
draulic, and mechanical behaviour of the porous rock as they
mainly affect the evolution of the system material properties
(e.g. porosity; see Fig. 2).

In the following the main governing equations are derived.
The problem variables considered are the pore fluid pressure
pf, the temperature T , and the solid displacement vector u.
Pore pressure is defined as compression positive for water,
while stress is defined as tension positive for the solid phase.

The mass balance equation for a deformable, saturated
porous medium is described in terms of volumetric averaged

Figure 1. Schematic representation of the approach to model frac-
ture rock masses as based on a superposition of lower- and higher-
dimensional geometric elements, after Cacace and Blöcher (2015):
0-D vertex (point-like sources/sinks), 1-D edge (well paths), 2-D
face (fractures an faults), and 3-D element (porous matrix).

mass conservation equations for the fluid and solid phases.
Mass conservation for the liquid phase therefore requires

∂ (nρf)

∂t
+∇ · (nρfvf)=Qf, (1)

where ρf is the density of the fluid phase, n is the porosity,
vf the fluid velocity, and Qf is a sink/source term considered
null hereafter for the sake of simplicity. In a similar way, for
the solid phase we obtain

∂ ((1− n)ρs)

∂t
+∇ · ((1− n)ρsvs)=Qs, (2)

where ρs is the density of the solid phase, vs the solid ve-
locity, and Qs is a sink/source term (considered as null here-
after). We use Darcy’s law to describe the conservation of
momentum of the fluid phase, which can be expressed in
terms of fluid velocity relative to the solid velocity as

qD = n(vf− vs)=−
k

µf
· (∇pf− ρfg) , (3)

where qD is a volumetric flow rate per unit of surface area
(Darcy velocity), k is the permeability tensor of the porous
medium, µf the fluid viscosity, and g the gravity vector.

Substituting Eq. (3) into Eq. (1) yields

∂ (nρf)

∂t
+∇ ·

(
ρfqD

)
+∇ · (nρfvs)= 0. (4)

The equations of mass conservations can be rewritten by
applying the concept of the Lagrangian (total) derivative with
respect to a moving solid, e.g. D

s(•)
Dt
≡

∂(•)
∂t
+∇(•) · vs, and

Df(•)
Dt
≡

∂(•)
∂t
+∇(•) ·vf for a moving fluid. By expanding the

fluid mass conservation equation and noting that∇·[(•)vf] =

(•)∇ · vf+∇(•) · vf, Eq. (4) can be rewritten as

n

ρf

Dfρf

Dt
+
Dsn

Dt
+ n∇ · vs+∇ · qD = 0. (5)
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Figure 2. Numerical simulations of tri-axial mechanical experiments on a Flechtinger sandstone. (a) Evolution of the mean effective stress
with respect to the volumetric strain. (b) Evolution of the normalized porosity with respect to the mean effective stress. The nonlinear
behaviour at low effective stress as observed in the experimental data (red line after Blöcher et al., 2014) is well captured by the modelling
results which take into account a nonlinear evolution of the elastic moduli resulting from closure of pre-existing micro-cracks and fissures
enhanced by compaction of the porous space followed by stiffening of the rock (increase Hertzian contact surface between solid grains).
The modelling results can also capture the compaction-induced reduction of porosity when compared to experimental data (in red) within
experimental errors (red shaded area). More details on the theory and results can be found in Jacquey et al. (2015).

In a similar way, it is possible to rework the solid mass
balance equation (Eq. 2) to obtain

(1− n)
ρs

Dsρs

Dt
−
Dsn

Dt
+ (1− n)∇ · vs = 0. (6)

From Eq. (6), it can be noticed that even by considering
both the solid skeleton and the pore fluid to be incompress-
ible, the porous rock material will deform (contract or dilate)
when fluid is expelled from or injected into the pore space.

Equation (6) can be used to express the evolution of the
porosity in terms of the Lagrangian derivative with respect to
the solid deformation velocity as

Dsn

Dt
=
(1− n)
ρs

Dsρs

Dt
+ (1− n)∇ · vs. (7)

Substituting Eq. (7) into Eq. (5), one obtains

n

ρf

Df ρf

Dt
+
(1− n)
ρs

Dsρs

Dt
+∇ · vs+∇ · qD = 0. (8)

The first term in the left-hand side of Eq. (8) can be ex-
pressed in terms of the fluid pore pressure and temperature
by thermodynamic differentiation as

Dfρf

Dt
= n

(
1
Kf

Dfpf

Dt
−βf

DfT

Dt

)
, (9)

where 1
Kf
=

1
ρf

(
∂ρf
∂pf

)
T

is the inverse of the fluid bulk modu-

lus and βf =−
1
ρf

(
∂ρf
∂T

)
pf

the fluid volumetric thermal expan-

sion coefficient.

The second term in the left-hand side of Eq. (8) can also
be cast in terms of the problem variables, e.g. pore pressure,
temperature, and solid skeleton displacements, by defining
a proper constitutive mechanical model. The linear momen-
tum balance equation of the mixture in terms of the effective
Cauchy stress tensor σ ′(x, t) takes the form

∇ ·
(
σ ′−αpf1

)
+ ρbg = 0, (10)

where 1 is the rank-two identity tensor, ρb is the bulk den-
sity of the fluid–solid mixture (ρb = nρf+ (1− n)ρs), and
α = 1− K

Ks
is the Biot coefficient, with K being the drain

bulk modulus and Ks the bulk modulus of the solid grains.
The geometrical compatibility condition gives the following
strain–displacement relation:

ε =
1
2

(
∇u+∇T u

)
=∇

su. (11)

Deformation of the solid skeleton is described in terms
of thermo-poroelastic response (Biot’s consolidation theory)
and dissipative plastic behaviour. To simplify the presenta-
tion of the constitutive mechanical model, in the following
we will consider only small strain conditions, but the theory
has also been extended to account for finite deformation. In
addition, due to strain history dependence, we detail the for-
mulation in incremental form. Following Biot’s theory, (ef-
fective) stresses are related to elastic strains via the following
relationship:

σ̇ ′ = σ̇ ′ij = Cijkl ε̇e
kl = C : ε̇e, (12)
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where C= Cijkl = λδij δkl+2Gδikδj l is the rank-four elastic
stiffness tensor, with λ andG being the first (volumetric) and
second (shear) Lamé moduli respectively.

The stress–strain constitutive relation given by Eq. (12),
can then be used to find an expression for the material deriva-
tive of the solid density in terms of the problem variables
(second term in Eq. 8) as

(1− n)
ρs

Dsρs

Dt
=
(α− n)

Ks

Dspf

Dt

− (1− n)βs
DsT

Dt
−

1
Ks

Dsσ ′

Dt
, (13)

where σ ′ indicates the mean effective stress and βs the volu-
metric thermal expansion coefficient of the solid grains.

Substituting Eqs. (9) and (13) into Eq. (8), we obtain

n

Kf

Dfpf

Dt
− nβf

DfT

Dt
+
(α− n)

Ks

Dspf

Dt

− (1− n)βs
DsT

Dt
−

1
Ks

Dsσ ′

Dt
+ ε̇kk +∇ · qD = 0, (14)

where we have expressed the gradient of the solid deforma-
tion velocity in terms of the volumetric component of the
total stain rate tensor, ∇ · vs =∇ · u̇= ε̇kk .

By making use of the definition of the total derivative
and given the stress–strain constitutive equation (Eq. 12),
Eq. (14) can be recast as

1
Mb

∂pf

∂t
−βb

∂T

∂t
− (1−α)ε̇e

kk + ε̇kk +∇ · qD

+
n

Kf
∇pf · vf+

(α− n)

Ks
∇pf · vs

− (nβf∇T · vf+ (1− n)βs∇T · vs)

−
1
Ks
∇σ ′ · vs = 0, (15)

where 1
Mb
=

n
Kf
+
(α−n)
Ks

is the specific storage of the porous
medium (reciprocal of the Biot modulusMb) and βb = nβf+

(1− n)βs is the bulk volumetric thermal expansion coeffi-
cient.

It is possible to rewrite Eq. (15) in terms of the solid ve-
locity only, by integrating the momentum balance equation
(Eq. 3) as

1
Mb

∂pf

∂t
−βb

∂T

∂t
− (1−α)ε̇e

kk + ε̇kk +∇ · qD

+ qD ·

(
1
Kf
∇pf−βf∇T

)
+ vs ·

(
1
Mb
∇pf−βb∇T −

1
Ks
∇σ ′

)
= 0, (16)

where the last two terms can be considered as second-order
correction terms taking into account nonlinear advective ef-
fects.

To quantify any permanent (irreversible) deformation of
the material due to inelastic processes we make use of the
concept of eigenstrain (ε∗) as derived from micromechanics
(Mura, 1987). By assuming small strain approximation, the
total strain of the material ε can be decomposed as the sum
of the elastic strain (εe) and eigenstrain components (ε∗) as

ε = εe
+ ε∗. (17)

Therefore, Eq. (16) can be written as

1
Mb

∂pf

∂t
−βb

∂T

∂t
+αε̇kk + (1−α) ε̇∗kk +∇ · qD

+ qD ·

(
1
Kf
∇pf−βf∇T

)
+ vs ·

(
1
Mb
∇pf−βb∇T −

1
Ks
∇σ ′

)
= 0. (18)

In the present study we focus on two major kinds of
residual deformation, that is, thermal expansion and plastic
flow, i.e. ε∗ = ε∗ij = ε

∗T
ij +ε

∗p
ij = ε

∗T
+ε∗p, though additional

processes including for example swelling, fatigue, or phase
transformations can be relatively easily integrated in the cur-
rent formulation.

Thermal strains are related to deformation induced by tem-
perature changes inside the material, and can be therefore ex-
pressed by

ε̇∗T =
1
3
βbṪ 1, (19)

where Ṫ is the relative temperature rate.
We determine the plastic component of the strain tensor

(Eq. 17) by making use of the normality rule as

ε̇∗p = γ̇
∂Q
∂σ ′

, (20)

where γ̇ = γ̇ (σ ′,κ) is the plastic multiplier satisfying the
classical Kuhn–Tucker conditions (γ̇ ≥ 0,F ≤ 0, γ̇F = 0)
with F(σ ′,κ) being the yield surface. Q=Q(σ ′,κ) is the
plastic potential function giving the direction of the plastic
strain increment, and κ represents the vector of internal vari-
ables affecting the evolution of the yield surface during load-
ing and unloading of the material.

Therefore, Eq. (18) can be finally written for thermal and
plastic eigenstrains as

1
Mb

∂pf

∂t
−αβb

∂T

∂t
+αε̇kk + (1−α) ε̇

∗p
kk +∇ · qD

+ qD ·

(
1
Kf
∇pf−βf∇T

)
+ vs ·

(
1
Mb
∇pf−βb∇T −

1
Ks
∇σ ′

)
= 0. (21)

Similarly, the evolution of porosity can therefore be ex-
pressed using Eqs. (7) and (13) as well as the strain decom-
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position as

∂n

∂t
=
(α− n)

Ks

∂pf

∂t
−βn

∂T

∂t
+ (α− n) ε̇kk + (1−α) ε̇

∗p
kk + vs

·

(
(α− n)

Ks
∇pf− (1− n)βs∇T −

1
Ks
∇σ ′−∇n

)
, (22)

where βn = (1− n)βs− (1−α)βb is the volumetric thermal
expansion coefficient of the pores and the last term can be
considered as being of second order.

The balance of energy for the fluid–rock mixture, assum-
ing local thermal equilibrium between the two phases, and
neglecting the dissipation of mechanical energy due to de-
formation of the solid phase reads as

T
∂(ρc)b

∂t
+(ρc)b

∂T

∂t
+∇·

(
ρfcfqDT − λb∇T

)
−Ḣ = 0, (23)

where (ρc)b = nρfcf+ (1− n)ρscs is the bulk specific heat
of the porous medium, λb = nλf+ (1−n)λs is the bulk ther-
mal conductivity, and Ḣ is a rate of energy production. The
first term of the left-hand side of Eq. (23) takes into account
secondary, non-Boussinesq dissipative effects related to the
pressure temperature dependency of the bulk storage, which
are usually rewritten only considering variable fluid and solid
density as

T
∂(ρc)b

∂t
= (1− n)csT

(
ρs

Ks

∂pf

∂t
− ρsβs

∂T

∂t

)
+ ncfT

(
ρf

Kf

∂pf

∂t
− ρfβf

∂T

∂t

)
. (24)

The use of a conservative finite-element formulation in
Eq. (23) ensures the balance of the fluid enthalpy (ρfcfT )
both at element and node levels. Therefore, it guarantees that
we avoid accumulating in time unbalances in intercell fluxes
as is usually the case when relying on non-conservative
formulations for convective-type problems (Giudice et al.,
1992).

The energy conservation equation as given by Eq. (23) is
valid for a porous medium in the absence of any thermoelas-
tic coupling. Following Biot consolidation theory, it is possi-
ble to consider the effects of the solid elastic deformation on
the temperature distribution by augmenting Eq. (23) with a
thermoelastic dissipation rate term, as

T
∂(ρc)b

∂t
+ (ρc)b

∂T

∂t
+ T0βbε̇

e
kk

+∇ ·
(
ρfcfqDT − λb∇T

)
− Ḣ = 0, (25)

where T0 represents the absolute temperature of the porous
medium in a stress-free state. Equation (25) can be easily
modified to take into account additional thermal effects from
fluid dilation and shear heating stresses.

3 Numerical implementation

In order to solve the system of coupled and nonlinear equa-
tions as described above (Eqs. 10, 21, and 25), a number

of interconnected issues must be taken into account. These
include for example the choice of the spatial discretization
adopted, the time stepping scheme and temporal integration,
iterative solvers, and preconditioners. In what follows, we
describe the methods adopted in GOLEM in order to tackle
these issues. In the next section, we also present some nu-
merical applications that serve as code benchmarking and il-
lustrate the capability of the simulator to solve for problems
of different degree of difficulty at optimal cost.

GOLEM is an open-source simulator specifically devel-
oped for thermo-hydro-mechanical coupled applications in
fractured geological systems, supporting 1-D, 2-D, and 3-
D computations in a single code implementation. It builds
on the object-oriented numerical framework MOOSE devel-
oped at the Idaho National Laboratory (Gaston et al., 2009).
MOOSE provides a flexible, massive parallel (including both
MPI and multithreading) platform to solve for multiphysics
and multicomponent problems in an implicit manner. It re-
lies on state-of-the-art and extensively tested libraries devel-
oped both at universities and national laboratories, as the
libMesh library (Kirk et al., 2006) developed at the Uni-
versity of Austin in Texas for capabilities related to par-
allel finite-element method, and a suite of scalable paral-
lel nonlinear and linear solvers (PETSc: Balay et al., 2016;
Trilinos: Heroux et al., 2005; Hypre: Chow et al., 1998).
The use of different open-source libraries provides a mod-
ular structure to the framework, which allows the developer
of an application to only concentrate on the high-level de-
scription of the multiphysics problem and to maintain the
code relatively compact. Following the basic structure of
the MOOSE framework, GOLEM has also been developed
as a modular application, where each module is responsi-
ble for the solution of a specific physical process. This as-
pect makes easy any further modification, adjustment, and
improvement of the program with limited efforts from the
user’s side. At the present stage, Golem is hosted and will
be made available for download from a GitHub repository
(https://github.com/ajacquey/Golem) and it comes together
with a suite of relatively simple benchmark problems and all
input files for running the applications as presented in the
paper.

3.1 Variational formulation and its numerical solution

The finite-element discretization is based on the weak form,
in an integral sense, of the system of partial differential equa-
tions as derived in the previous paragraph. For this purpose,
we consider the porous matrix to be described by a close do-
main of volume�⊂<n bounded by a boundary 0 ⊂<(n−1).
Given the length/width ratio typical of fractures, a discrete
fracture is represented by a lower-dimensional element of
volume �f ⊂<

(n−1) and surface area 0f ⊂<
(n−2). The cor-

responding weak form of the governing equations are then
derived by applying the method of the weighted residuals as

Solid Earth, 8, 921–941, 2017 www.solid-earth.net/8/921/2017/

https://github.com/ajacquey/Golem


M. Cacace and A. B. Jacquey: Parallel modelling of THM processes 927

∫
�

ω
1
Mb

∂pf

∂t
d�−

∫
�

ωαβb
∂T

∂t
d�

+

∫
�

ω
(
αε̇kk + (1−α)ε̇

∗p
kk

)
d�

−

∫
�

∇ω · qDd�+
∫
0qH

ω
(
qD ·n0qH

)
d0

+

∫
�

ωqD ·

(
1
Kf
∇pf−βf∇T

)
d�

+

∫
�

ωvs ·

(
1
Mb
∇pf−βb∇T −

1
Ks
∇σ ′

)
d�= 0, (26)

∫
�

ω(ρc)b
∂T

∂t
d�

−

∫
�

∇ω ·
(
(ρc)fqDT − λb∇T

)
d�

+

∫
0qT

ω
(
(ρc)fqDT − λb∇T

)
·n0qT d0

+

∫
�

ωḢd�= 0, (27)

∫
�

∇
sω :

(
σ ′−αpf1

)
d�−

∫
�

ω · ρbgd�

−

∫
0

ω ·
(
σ ′−αpf1

)
·n0qM d0 = 0, (28)

where in Eqs. (26), (27), and (28) we have omitted all supra-
(sub)scripting for easiness in the notation.

The equations derived above describe an initial and bound-
ary value problem, for which proper boundary and initial
conditions need to be assigned. These can be set by prescrib-
ing either the value of the problem variables along or their
flux across a portion of the boundary. More precisely, the
model discussed in the previous paragraph must satisfy the
following set of boundary conditions:

– Prescribed displacement, pore pressure and tempera-
ture, i.e. u= u, pf = pf, T = T on 0u, 0pf , 0T respec-
tively.

– Equilibrium of boundary stresses and external loads
(last two terms in Eq. 28).

– Continuity of the fluid flux across the imposed bound-
ary, i.e. qD·n0qH = qH on ∂�qH , where qH is the rate of
in/out flow per unit of area across the boundary surface.

– Continuity of the total (diffusive plus advective) heat
flow, i.e. ((ρc)fqDT−λb∇T )·n0qT = qT on 0qT , where
qT is the rate of in/out heat flow per unit of area across
the boundary surface.

The resulting system of equations together with a proper
choice of boundary and initial conditions is discretized spa-
tially by the finite-element method, while the temporal dis-
cretization is done by traditional finite difference techniques.
The nodal values of the primary variables of the problem,
temperature (T n), pore pressure (pn

f ), and the deformation
vector of the solid skeleton (un) are approximated by linear
Lagrangian interpolation polynomial functions as

T n
=

i=NT∑
i=1

T n
i w

T
i (x)

pn
f =

i=Npf∑
i=1

pf
n
iw

pf
i (x) (29)

un
=

i=Nu∑
i=1

un
iw

u
i (x).

Though higher-order polynomials are also available
through the libMesh library, we rely on linear finite-element
approximation for all variables. Indeed, we have found that,
for the kinds of problems as those that will be presented in
the next paragraph, higher-order approximations do not nec-
essarily guarantee a better convergence of the solution, being
subjected at the same time to severe under- or overshooting
numerical effects in the presence of sharp gradients.

Single-noded, zero-thickness finite elements are used to
explicitly represent individual fractures, the latter assumed
to be clean and fully saturated (i.e. n= 1 and Mb =Kf). It
follows that fractures can be parameterized as based on the
concept of their effective aperture, which provides a quanti-
tative measure of the geometric width of the fracture surface.
The use of single-noded finite elements imposes continuity
of gradients in both pore pressure and temperature across the
fracture width, as well as the absence of any shear and nor-
mal strain acting on the fracture plane. While the latter as-
sumption simplifies the problem formulation, it prevents us
from including the effects of local fracture mechanics in the
current formulation. Therefore, fractures are only considered
as having a distinct hydraulic and thermal behaviour with re-
spect to the porous domain. To extend the current formula-
tion to include mechanical feedback effects from localized
deformation, nucleation, and fracture propagation is part of
ongoing activities.
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The mass balance equation for a discrete fracture then
reads as

∫
�f

b
2∫

−
b
2

ω
1
Kf

∂pf

∂t
dz′d�f−

∫
�f

b
2∫

−
b
2

∇ω · qDdz′d�f

+

∫
0f

b
2∫

−
b
2

ωqD · n̂dz′d0+3+H +3
−

H = 0, (30)

where 3±H are leakage terms (weak form) across each of the
two sides of the fracture surface into the surrounding porous
domain and b is the aperture of the fracture.

In a similar manner, the energy balance equation for a frac-
ture element reads as

∫
�f

b
2∫

−
b
2

ω

(
cfρf

∂T

∂t
+H

)
dz′d�f

−

∫
�f

b
2∫

−
b
2

∇
T
f ω ·

(
cfρfqDT − λf∇fT

)
dz′d�f

+

∫
∂�

b
2∫

−
b
2

ω
(
cfρfqDT − λf∇fT

)
· n̂dz′d�f

+3+T +3
−

T = 0, (31)

where3±T quantify the amount of heat leaking from the frac-
ture surfaces into the porous medium domain.

In Eqs. (30) and (31), integration is done in local coordi-
nates of the fracture tangential and normal directions respec-
tively (x′, y′, z′). This enables us to superimpose the dis-
cretized conservative equations for the porous medium and
the fractures at the nodal location shared by the two ele-
ments, where the fluid mass and heat fluxes also cancelled
out. Therefore the weak form of the conservation equations
can be simplified as∫
�f

bω
1
Kf

∂pf

∂t
d�f−

∫
�f

b∇fω
T
· qDd�f

+

∫
∂�f

bωqD · n̂dSf = 0 (32)

and∫
�f

bω

(
cfρf

∂T

∂t
+H

)
d�f

−

∫
�f

b∇Tf ω ·
(
cfρfqDT − λf∇fT

)
d�f

+

∫
∂�f

bω
(
cfρfqDT − λf∇fT

)
· n̂dSf = 0, (33)

where we have made no distinction between the effective hy-
draulic aperture and the mechanical aperture (bh = bm = b =∫ b

2
−
b
2
dz′).

Derivatives of the test functions and of direction-
dependent material properties with respect to the system
of global coordinates are computed by standard coordinate
transformation, i.e. ∂Ni

∂xi
= J−1

ij

∂Nj

∂x′j
, where Jij is the Jacobian

matrix of the mapping between global (xi) and local (x′i)
coordinates. Transformation in local coordinates for lower-
dimensional elements is achieved by computing the rota-

tional matrix, R=

 cos
(
x′,x

)
cos

(
x′,y

)
cos

(
x′,y

)
cos

(
y′,x

)
cos

(
y′,y

)
cos

(
y′,y

)
cos

(
z′,x

)
cos

(
z′,y

)
cos

(
z′,y

)
,

with cos
(
x′i,xi

)
being the directional cosines. Coordinate

transformation is applied to all direction-dependent (i.e. ten-
sorial) material properties as well as to the directional deriva-
tives as

N= RI fN′ITf RT , (34)

where N and N′ are direction-dependent material properties
in global and local coordinates respectively, and I f is the unit
tangent vector of local coordinates.

The above system of coupled equation can be rewritten in
a more concise form as

S
dx
dt
+Kx−F = R(û), (35)

where S is the nodal coefficient storage matrix, K denotes
the stiffness matrix of the problem, F is the load vec-
tor, x is the vector of the problems variables, and R(û)

is the residual from the discrete approximation. We make
use of an unconditionally stable, backward Euler method
to integrate Eq. (35) in time, and to arrive at the mono-
lithic form of the coupled system. The monolithic form of
Eq. (35) is then solved iteratively by the classical Newton
method, where different linear solvers (e.g. GMRES and its
flexible variant, FGMRES) and preconditioners (including
also Newton–Krylov–Schwartz domain decomposition tech-
niques) are available from the open source algebraic libraries.

3.2 Nonlinearities and their stabilization

The coefficient matrices in Eq. (35) contain off-diagonal
components, thus giving rise to a highly nonlinear problem
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Figure 3. Example of a nonlinear convective flow problem after Elder (1967). A homogeneous, isotropic, and saturated porous medium is
heated from below with fluid density and viscosity being a function of temperature and pressure (IAPWS, 2008a, b). Due to the temporal
evolution in fluid property gradients, thermal buoyant forces develop thus giving rise to an unstable convective flow regime as illustrated by
the temperature isolines. H-mesh adaptive refinement with local error estimate based on the L-2 norm projection of the intercell thermal flux
vectors and a two-refinement cycle per time step has been enforced in order to guarantee numerical stability even in the presence of sharp
thermal gradients (see close-up view).

to be solved for. Nonlinearities arise due the nonlinear con-
stitutive relationship between problem variables and material
properties, as well as to the presence of internal feedback ef-
fects among the different processes. The constitutive relation
linking structure, properties, and primary variables consid-
ered include equation of states for fluid density, thermal com-
pressibility and expansivity, and fluid viscosity with respect
to the pf− T state of the system (IAPWS, 2008a, b), as well
as porosity and permeability relations as a function of vari-
ation in the thermal, mechanical, and hydraulic state of the
system; see Figs. 3 and 2 respectively.

For problems involving heat transport, if the convective
term dominates over the diffusive term, the solution of the en-
ergy transport equation typically contains interior and bound-
ary layers and its solution by the Galerkin finite-element
technique is usually globally unstable (Nield and Bejan,
2012). Numerical instabilities which take the form of spu-
rious oscillations around sharp gradients and boundary lay-
ers and likely lead to nonconvergent solutions have been ob-
served to occur independent of the level of mesh refinement
(Diersch and Kolditz, 1998). In such situations, in order to
enhance the stability and accuracy of the finite-element so-
lution, some sort of stabilization has to be added to the dis-
crete formulation. In GOLEM, we have opted for the stream-
line upwind Petro–Galerkin (SUPG) method, which can be
conceived as adding an upwind perturbation along computed
streamlines to the standard Galerkin formulation (Brooks and
Hughes, 1982). The SUPG discretization of Eq. (27) is ob-
tained by making use of an “enriched” weighting function,

ω∗, as

ω∗ = ω+p, (36)

where ω is the continuous weighting function and p = τ∇ω ·
∇qD‖qD‖ is a discontinuous streamline upwind correction.
Note that by its definition, ω∗ is no longer continuous across
inter-element boundaries. A critical question is related to the
choice of the upwind parameter τ , which might influence the
stability and accuracy of the discrete solution. In all simu-
lations presented in the paper, when needed, we have made
used of the formula as presented in Galeão et al. (2004):

τ =
h

2‖qD‖pp

(
coth(Pe)−

1
Pe

)
, (37)

where h is the diameter of the finite element adopted along
the direction of qD, pp is the order of approximation con-
sidered in the interpolation, ‖ · ‖ is the Euclidean norm, and
Pe =

‖qD‖h
2kp is the local Peclet number. A major disadvan-

tage of the SUPG method is to add numerical diffusion to
all elements characterized by a high Peclet number, even in
the absence of sharp thermal gradients. We leave as a sub-
ject of future studies the implementation of more recent and
more sophisticated damping methods, e.g. entropy viscosity
method as described in Guermond et al. (2011).

3.3 Plasticity and return-map algorithm

We consider plastic deformation in terms of a Drucker–
Prager frictional plastic yield criterion (Drucker, 1950) in
which the onset of yield is a function of the first and sec-
ond invariants of the effective stress tensor J1 = σ

′

kk , J2 =
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1
2 (τij τij ) respectively, where τij is the deviatoric part of the
effective stress tensor (τij = σ ′ij −

1
3J1δij ):

F =
√
J2+ ε

2
0 +

sin(ϕ)
3

J1−C cos(ϕ), (38)

where ϕ and C are the Mohr–Coulomb friction angle and co-
hesion respectively and ε0 is a small non-hardening parame-
ter here introduced to relax the singularity at the cone’s tip of
the Drucker–Prager yield envelope. An important aspect re-
lates to the form of the plastic potential function adopted. It
has been shown that associated flow rules might lead to over-
estimating the dilation of the rocks generally resulting in an
overly weaker response of the rock to loading (Vermeer and
de Borst, 1984; Jiang and Xie, 2011). We avoid these issues
by implementing a non-associated form of Drucker–Prager,
in which the plastic potential function, G, is considered to
depend on the dilation angle, ψ as

G =
√
J2+

sin(ψ)
3

J1 (39)

and, in consequence, the unnormalized flow directions can
be derived as

∂G
∂σ ′ij

=
1

2
√
J2

∂J2

∂σ ′ij
+

sin(ψ)
3

δij . (40)

Note that in our formulation we take also into account
possible degradation of the strength of the rock subjected to
loading in terms of hardening (and softening) of the internal
parameters (friction angle, cohesion and dilation angle) as a
function of the accumulated plastic strain (internal variable
κ).

The stress update procedure is conducted via a return-map
algorithm based on the closest point projection on the yield
surface (Simo and Hughes, 1998) within a Newton–Raphson
procedure. This algorithm is presented in incremental form in
the following. Subscript n refers to a value at the time tn, that
is, σn = σ(tn) and superscript (k) refers to the kth iteration in
the Newton–Raphson procedure. We use the following nota-
tion for sake of simplicity: ∂σ ′ · = ∂·

∂σ ′
.

1. If plastic loading occurs (F trial
n+1 > 0), then the increment

of plastic multiplier is also positive according to the
Kuhn–Tucker conditions, 1γ > 0. Define the system
of equations with the residuals to minimize, the plastic
flow residual Rε,n+1, the internal parameter residuals
Rκ,n+1 and the yield condition for this time step Fn+1
as



Rε,n+1 =−ε
∗p

n+1+ ε
∗p
n +1γ∂σ ′G

=−1ε
∗p

n+1+1γ∂σ ′G

Rκ,n+1 = κn+1+ κn−1γH
=1κn+1−1γH

Fn+1 = F
(
σ ′n+1,κn+1

)
,

where H is the hardening flow rule for the internal pa-
rameter κ , that is, κ̇ =−γ̇H.

2. This system of equations is then linearized as follows:


R
(k)
ε,n+1+ ∂σ ′R

(k)
ε,n+1 :1σ

′(k)
n+1+ ∂κR

(k)
ε,n+1 :1κ

(k)
n+1 = 0

R
(k)
κ,n+1+ ∂σ ′R

(k)
κ,n+1 :1σ

′(k)
n+1+ ∂κR

(k)
κ,n+1 :1κ

(k)
n+1 = 0

F (k)
n+1+ ∂σ ′F

(k)
n+1 :1σ

′(k)
n+1+ ∂κF

(k)
n+1 :1κ

(k)
n+1 = 0

,

which can be expressed as the following matrix system:

Jx =R,

where J is the Jacobian matrix

J=


(
C−1
+1γ

(k)
n+1∂

2
σ ′σ ′

Gk
n+1

)
1γ

(k)
n+1∂

2
σ ′κ
Gn+1(k) ∂σ ′G

(k)
n+1

1γ
(k)
n+1∂σ ′H

(k)
n+1 1+1γ

(k)
n+1∂κH

(k)
n+1 H(k)

n+1

∂σ ′F
(k)
n+1 ∂κF (k)n+1 0

 ,

x is the vector of unknowns to compute,

x =


1σ
′(k)
n+1

1κ
(k)
n+1

12γ
(k)
n+1

 ,
and R is the residuals vector:

R =


−R

(k)
ε,n+1

−R
(k)
κ,n+1

−F (k)n+1

 .
3. The aforementioned matrix system of equation is solved

at each kth iteration using routines from the PETSc li-
brary (Balay et al., 2016) for the increment of stress,
internal parameter, and plastic multiplier (1σ ′(k)n+1,

1κ
(k)
n+1, and 12γ

(k)
n+1).

4. The variables are updated at the end of the kth iteration:

σ
′(k+1)
n+1 = σ

′(k)
n+1+1σ

′(k)
n+1

ε
∗p(k+1)
n+1 = ε

∗p(k)

n+1 −C−1
:1σ

′(k)
n+1

1γ
(k+1)
n+1 =1γ

(k)
n+1+1

2γ
(k)
n+1.

5. Steps 1 to 4 are repeated until the residuals reached min-
imum threshold values.

We have tested and validated the above-described return-
map algorithm to update the elasto-plastic deformation
against available algorithms in the MOOSE tensor mechan-
ics module.
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4 Results

In this section we present five different applications of the nu-
merical simulator. These applications are intended to test the
ability of the simulator to deal both with single processes and
their coupling. By starting with simplistic benchmarks, for
which analytical solutions exist, we gradually increase the
complexity of the problem formulation in order to demon-
strate the applicability of the approach to realistic operational
cases.

4.1 Benchmarks for coupled processes

4.1.1 Thermal and hydraulic processes – heat
transport in a fracture

The first application deals with groundwater flow and (dif-
fusive and advective) heat transport in a fracture, i.e. a TH
application. We assume a fracture which is fully saturated
with water (n= 1), having homogeneous and isotropic prop-
erties. Groundwater flow in the fracture is assumed to be
unidirectional and the average velocity is considered con-
stant throughout the length of the flow field. The initial tem-
perature is set to zero. At time t = 0, a sudden increase
in temperature is imposed along the inlet boundary of the
medium (T = T0). The problem can be formulated as a semi-
infinite medium with a point source at the inlet boundary
(T = T0H(x = 0, t), with H(t) being the Heaviside func-
tion). Under these assumptions, Ogata and Banks (1961)
gave an analytical solution for the variation of the temper-
ature as a function of the position and time as

T (x, t)=
T0

2
erfc

(
x− vx t
√

4kt

)
+
T0

2
exp

(vxx
k

)
erfc

(
x+ vx t
√

4kt

)
. (41)

For the numerical simulation, we consider a fracture of
length L= 100 m, which has been discretized into 1000 line
elements of equal length and subjected to an imposed pres-
sure gradient of ∇pf = 3 Pa m−1. All material properties are
listed in Table 1.

Given the parameters considered, a constant fluid veloc-
ity (vx = 3.0×10−7 m s−1) is obtained. Initial conditions for
the pressure and temperature are pf = 0.1 MPa and T = 0 ◦C
respectively. In this benchmark, we compare the evolution
of the temperature field (normalized by the inlet tempera-
ture value) at four different points along the length of the
fracture with the analytical solution as given by Eq. (41).
Figure 4 shows the comparison between model results (red
curves) and the corresponding analytical solutions (black cir-
cles) during the entire simulation time. There is a general
good fit in terms of the temporal evolution of the advected
front at all locations along the fracture plane, with the mod-
elled thermal front moving slightly faster as visible from the
earlier stepping at the observation points. Based on the ob-

Table 1. Fluid properties for the example of heat transport in a frac-
ture.

Property name Symbol Value SI unit

Fluid density ρf 1000 kg m−3

Fluid thermal conductivity λf 0.65 W m−1 K−1

Fluid heat capacity cf 4000 J kg−1 K−1

Fluid viscosity µf 1.0× 10−3 Pa s
Fluid permeability k 1.0× 10−10 m2

tained results, we can conclude that the TH numerical imple-
mentation is accurate for practical applications.

4.1.2 Hydraulic processes in the presence of discrete
fractures – flow in a fractured porous medium

The purpose of this application is to test the numerical
implementation of the formulation in the presence of dis-
crete fractures. At this purpose, we refer to a relative com-
mon benchmark dealing with uniform, steady-state flow in a
porous medium locally disturbed by the presence of a frac-
ture (Strack, 1982; Watanabe, 2011). The original problem
formulation considers a semi-infinite two-dimensional hor-
izontal section with an embedded fracture located symmet-
rically at its centre. Uniform flow is maintained by impos-
ing a specific discharge (q0) from the left boundary inside
the domain, the value of which is kept constant and equal to
q0 = 1.0× 10−4 m s−1. The fracture is considered to extend
infinitely along the direction normal to the plane, while being
of finite along-plane length (L), with its middle point located
exactly at the centre of the domain. It has a width which can
be varied along its length (though it is assumed to remain
constant in the following), and it is inclined with respect to
the model boundary by a constant angle (α).

We have extended the original formulation to a three-
dimensional case; see Fig. 5 for the model geometry and
boundary conditions. The setup of the problem comprises
a three-dimensional, quadrilateral box (10× 10× 1 m in the
x, y, and z direction respectively) representing the porous
medium. The fracture is implemented as a two-dimensional
surface cutting entirely the model along the vertical and hav-
ing a finite horizontal length of L= 2 m. It is inclined by
an angle α = 45◦ with respect to the model boundaries. In
order to maintain a constant discharge from the left to the
right of the model, constant pressure boundary conditions
are imposed along the same boundaries thus resulting in a
constant pressure gradient along the x axis. The value of the
imposed pressure gradient (1p = 1 MPa) has been enforced
so to match the value of specific discharge of the original
problem as derived by Strack (1982), thus permitting a direct
comparison between the analytical and numerical solution.
No flow conditions are imposed along the other boundaries.
We assume a laminar flow in the fracture plane, and pressure
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Figure 4. Comparison of numerical results (red curves) and analytical solutions (black circles) for heat transport in a fracture. The figure
shows the temperature evolution at different positions along the fracture as a function of time.

Figure 5. Geometry and boundary conditions for the benchmark
case of groundwater flow in a fractured porous medium.

variations across its width are neglected. All relevant param-
eters are summarized in Table 2.

Strack (1982) provided an analytical solution for the one
dimensional version of the problem derived in terms of a
complex potential flow as

�=−A
√
(Z− 1)(Z+ 1)+AZ−

1
2
q0Le

iαZ, (42)

where q0 is the magnitude of the flow occurring within the

model domain (assumed uniform), Z = z− 1
2 (z1+z2)

1
2 (z2−z1)

is the

fracture-related dimensionless variable (z1 and z2 being the

endpoints of the fracture), and A=
1
2Kfh

KmL+Kfh
q0Lcosα.

The numerical solution of the three-dimensional problem
has been obtained by solving a steady-state flow problem
within the matrix–fracture domain. We plot the computed
pressure distribution together with the outline of the geome-
try of the fracture in Fig. 6.

Table 2. Material properties the example of flow in a fractured
porous medium.

Property name Symbol Value SI unit

Fracture Angle α 45 ◦

Length L 2 m
Aperture h 0.05 m
Permeability kf 1.0× 10−10 m2

Viscosity µ
f
f 1.0× 10−3 Pa s

Porous Porosity n 0.15 –
medium Permeability k 1.0× 10−12 m2

Viscosity µf 1.0× 10−3 Pa s

The presence of the discrete fracture disturbed the uniform
horizontal flow in a close domain around its location. There,
the isolines of constant pressure are distorted, resulting in
a faster flow preferentially oriented parallel to the fracture
plane. In order to test the reliability of the numerical solution,
we compare the computed pore pressure extracted along a
diagonal cross section cutting the model domain along its
bottom-left/top-right corners with the pore pressure derived
from the analytical solution. The comparison shows a perfect
fit between the two results, thus proving the applicability of
the discrete fracture approach as implemented in the current
formulation.

The results obtained from a variation of the above-
described problem by considering two self-intersecting frac-
tures embedded in a two-layered matrix are presented in the
Supplement.
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Figure 6. Isolines of pressure computed from the 3-D numerical simulation extracted along a horizontal plane cutting the model domain.
Comparison between simulated (continuous red curve) and analytical derived (empty black circles) pressure distribution along a line through
the model.

Figure 7. Problem formulation and results of the oedometer benchmark. Panel (a) shows the problem formulation. Panel (b) illustrates the
results for different dilation angles with the stress-displacement curves.

4.1.3 Mechanical processes – 3-D elastoplastic
oedometer test

In the following test, we consider a cube of porous medium
with edges of 1 m. The cube is subjected to axial loading
with constant solid velocity vx under the conditions of an
oedometer test (see setup in Fig. 7). The porous material un-
dergoes continuous loading, and it behaves elastically until
the strength of the material is reached. From this time on,
the material undergoes plastic loading. The elastoplastic con-
stitutive laws adopted for this simple problem formulation
is the Drucker–Prager plasticity model. The Drucker–Prager

yield envelope is a smoother version of the classical Mohr–
Coulomb failure criterion. Under these conditions, an analyt-
ical solution for the stress state of the porous material can be
derived as described in Appendix A and serves here as ver-
ification of the numerical implementation of the elastoplas-
tic constitutive laws. The physical properties used for this
benchmark are summarized in Table 3.

Figure 7 shows the evolution of stress for an associative
(red dots) and two non-associative (dilation angle different
from friction angle) plastic potentials (blue and green dots).
The results exhibit a perfect agreement between the analyt-
ical solution and the numerical prediction. In an attempt to
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Figure 8. Results of the modified oedometer test to account for pore pressure coupling. Panel (a) shows the evolution of pore pressure (dia-
monds) and stress (circle) considering either a purely elastic case (red colours) or additional plastic contributions (green colours). Panel (b)
illustrates the evolution of the difference (elastic minus plastic).

better quantify the internal coupling among the elastic and
inelastic component of the deformation, we have modified
the original elasto-plastic oedometer test to include in addi-
tion pore pressure coupling, therefore solving for a coupled
hydraulic–mechanical (poroelasticity plus plasticity) prob-
lem. The aim of this test is to further validate the reliabil-
ity of the implementation of the plastic behaviour with re-
spect to its coupling with the poroleastic response to external
loading of the porous medium. The geometry of the prob-
lem has been kept the same as the one previously described,
as well as the solid material parameters (see Table 3). The
fluid parameters adopted comprise a constant fluid density
(ρf = 1000 kg m−3), fluid viscosity (µf = 1.0× 10−3 Pa s),
porosity (n= 0.1) and permeability (k = 1.0× 10−15 m 2)
and a Biot coefficient of α = 0.6. Pore pressure is initialized
to zero at the beginning of the simulation inside the model
domain and all lateral boundaries are considered to be close
to pressure, thus simulating typical undrained experimental
conditions. The boundary conditions in terms of mechani-
cal displacement have been considered as for the reference
case. Inelastic behaviour is introduced in the form of a non-
associated plasticity with a friction angle of φ = 20◦ and a
dilation angle of ψ = 10◦. Given the setup of the model,
both the stress and the pore pressure increase with time as the
loading from the right lateral boundary continues. Indeed, the
pore pressure evolution is affected by variations in the total
volumetric strain, better quantified in terms of its rates (see
Eq. 27). The onset of plastic behaviour, indicated by a change
in the slope of the stress profile, affects the pore pressure
distribution and evolution, with rates of pore pressure build-
up decreasing due to accumulation of irreversible volumetric
strains, thus validating the poroelastic and plastic coupling as
implemented in the simulator (Fig. 8).

Table 3. Mechanical properties for the oedometer benchmark.

Property name Symbol Value Unit

Bulk modulus K 2.0× 103 MPa
Shear modulus G 2.0× 103 MPa
Cohesion C 1 MPa
Friction angle ϕ 20 ◦

Dilation angle ψ 0, 10 or 20 ◦

Velocity vx 1.0× 10−5 m s−1

Edge of the cube L 1 m

4.2 Reservoir applications

In the following two subsections, we will describe two syn-
thetic examples that deal with applications as considered of
interest in the context of operational geothermal activities.
The examples presented do not address a specific field ap-
plication, though they do bear similarities and links to real
cases. An application to an actual field study case based on an
injection test performed at the Groß Schönebeck geothermal
site (north Germany) is the subject of a separate publication
(Jacquey et al., 2017).

4.2.1 Thermal and hydraulic processes – prototype of
multi-fractured geothermal reservoir

In this example, we present a setup inspired by a typical
geothermal reservoir application. The model aims at simulat-
ing the thermal and hydraulic configuration of the reservoir
during operational activities (injection and production) span-
ning a life time of the reservoir of approximately 100 years.
The model consists of four different geological formations,
two units representing the target reservoir plus an upper and
lower formation acting as cap rocks. The extent of the model
domain is 10× 10× 3 km in the x, y, and z directions. The
target reservoir is located at a depth of approximately 4.6 km
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Figure 9. Problem formulation and results of the prototype of multi-
fractured geothermal reservoir. Panel (a) shows the geometry and
setup of the simulation and panel (b) the distribution of the temper-
ature after approximately 100 years of production.

below sea level, and is cut by a natural fault showing a slip
of some hundreds metres at depths of relevance in the reser-
voir. A doublet system is integrated in the model, consisting
of an injection and a production well. The open-hole sec-
tion of the two wells is kept parallel and extends for approx-
imately 1.5 km horizontally in the reservoir. The open-hole
section of the wells has been integrated as one-dimensional
finite elements and homogenization of the resulting govern-
ing equations is done by considering the surface area of the
well bore as scaling parameter. A system of hydraulically
stimulated fractures is also considered to enhance the hy-
draulic connection between the two wells along their hori-
zontal sections. The multifrac system is intended to represent
a hydraulic stimulation campaign prior to reservoir exploita-
tion. There are a total of 10 fractures, equally spaced every
100 m and all sharing the same geometry and material prop-
erties. A schematic representation of the main geometry is
illustrated in Fig. 9, and all properties are listed in Table 4.

The reservoir boundary conditions adopted for the simu-
lation comprise a constant temperature fixed along the top
of the reservoir (T = 137.5◦, corresponding to a background
thermal gradient of approximately 30◦ per kilometre), heat
input at the base of the model (qT = 72 mW m−2), and hy-
drostatic pressure along all lateral borders of the domain.
The natural system of the reservoir, before stimulation, is de-

scribed by running a steady-state simulation (given the same
boundary conditions as described above) without considering
any operational activity. This was done in order to equilibrate
the fluid density and viscosity, here considered functional of
the primary variables according to IAPWS (2008a, b), thus
avoiding spurious oscillation at the beginning of the transient
simulation

Operational activity is simulated by injecting water at a
fixed temperature, Tin = 55 ◦C, and at a constant rate qin =

30 L s−1 for the entire simulation period. Production rates are
kept equal to injection rates through the operation. Figure 9
illustrates the reservoir state at the end of the simulation (an
animation of the full evolution of the system is provided in
the Supplement). Figure 9 nicely illustrates the evolution of
the reservoir temperature as resulting from the dynamics of
interactions between the different components of the system
(i.e. reservoir matrix, fractures, and geothermal wells) and
shows how the simulator can be effectively applied to 3-D
modelling of complex reservoirs.

4.2.2 Thermal, hydraulic and mechanical processes –
thermo-poroelastic response of a synthetic
geothermal doublet

This example considers operations of a synthetic geothermal
doublet within a low permeability geological formation with
induced fractures located at the two operational wells. The
model aims at describing the thermo-poroelastic response of
the reservoir due to geothermal operations. The extent of the
model domain is 500×500×200 m in the x, y, z directions.
The depth of the target reservoir is approximatively 4 km be-
low sea level. Pore pressure and temperature distributions are
assumed to be homogeneous at the beginning of the simula-
tion, and equal to 40 MPa and 150 ◦C respectively. A regional
stress field is applied as background stress, to simulate a nor-
mal faulting regime with the following magnitudes:

– Vertical stress S1 = 100 MPa in the z direction.

– Maximum horizontal stress S2 = 90 MPa in the y direc-
tion.

– Minimum horizontal stress S3 = 50 MPa in the x direc-
tion.

Two hydraulic fractures are considered for this doublet
system and represent the impacts of a prior hydraulic stimu-
lation campaign to enhance the productivity of the reservoir.
Given the in situ stress conditions, these two hydraulic frac-
tures are orthogonal to the minimum horizontal stress. They
are implemented as squares with edges of 100 m. The dis-
tance between the fractures is 200 m.

In this simulation, we consider additional nonlinear ef-
fects as related to imposed variations in the evolution of
the fluid (i.e. fluid density and viscosity) and rock proper-
ties (i.e. porosity and permeability) as a function of the evo-
lution in the state of the reservoir during operational activ-

www.solid-earth.net/8/921/2017/ Solid Earth, 8, 921–941, 2017



936 M. Cacace and A. B. Jacquey: Parallel modelling of THM processes

Table 4. Material properties for the multifrac reservoir application.

Unit Property name Symbol Value SI unit

Cap rock I Porosity n 0.01 –
Permeability kx 1.0× 10−20 m2

ky 1.0× 10−20 m2

kz 0.25× 10−20 m2

Fluid modulus Kf 1.0× 108 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Rock density ρs 2650 kg m−3

Rock thermal conductivity λs 4 W m−1 K−1

Rock heat capacity cs 920 J kg−1 K−1

Cap rock II Porosity n 0.01 –
Permeability kx 1.0× 10−20 m2

ky 1.0× 10−20 m2

kz 1.0× 10−20 m2

Fluid modulus Kf 1.0× 108 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Rock density ρs 2650 kg m−3

Rock thermal conductivity λs 2.31 W m−1 K−1

Rock heat capacity cs 1380 J kg−1 K−1

Reservoir unit I Porosity n 0.15 –
Permeability kx 1.28× 10−15 m2

ky 1.28× 10−15 m2

kz 3.2× 10−16 m2

Fluid modulus Kf 1.5× 109 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Rock density ρs 2650 kg m−3

Rock thermal conductivity λs 3.18 W m−1 K−1

Rock heat capacity cs 920 J kg−1 K−1

Reservoir unit II Porosity n 0.005 –
Permeability kx 9.87× 10−17 m2

ky 9.87× 10−17 m2

kz 2.4675× 10−17 m2

Fluid modulus Kf 1.0× 108 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Rock density ρs 2650 kg m−3

Rock thermal conductivity λs 2.31 W m−1 K−1

Rock heat capacity cs 1380 J kg−1 K−1

Fault Porosity n 1 –
Aperture h 1.0× 10−2 m
Permeability kx 1.0× 10−15 m2

ky 1.0× 10−15 m2

kz 1.0× 10−15 m2

Fluid modulus Kf 2.5× 109 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Fluid density ρs 1148 kg m−3

Fluid thermal conductivity λs 0.65 W m−1 K−1

Fluid heat capacity cs 4193.5 J kg−1 K−1

Fractures Porosity n 1 –
Aperture h 2.28× 10−4 m
Permeability kx 4.33× 10−9 m2

ky 4.33× 10−9 m2

kz 4.33× 10−9 m2

Fluid modulus Kf 2.5× 109 Pa
Fluid viscosity µf 3.0× 10−4 Pa s
Fluid density ρs 1148 kg m−3

Fluid thermal conductivity λs 0.65 W m−1 K−1

Fluid heat capacity cs 4193.5 J kg−1 K−1
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Table 5. Material properties for the thermo-poroelastic response of a geothermal doublet.

Unit Property name Symbol Value SI unit

Reservoir rock Porosity n 0.1 –
Permeability k 1.0× 10−15 m2

Fluid modulus Kf 1.0× 108 Pa
Rock density ρs 2600 kg m−3

Rock thermal conductivity λs 3 W m−1 K−1

Rock heat capacity cs 950 J kg−1 K−1

Fractures Porosity n 1 –
Aperture h 1.0× 10−2 m
Permeability k 8.333× 10−10 m2

Fluid modulus Kf 2.5× 109 Pa
Fluid density ρf 1000 kg m−3

Fluid thermal conductivity λf 0.65 W m−1 K−1

Fluid heat capacity cf 4200 J kg−1 K−1

Figure 10. Problem formulation and results of the thermo-poroelastic response of a geothermal doublet. Panel (a) shows the problem
formulation. Panels (b) and (c) illustrates the pore pressure (with fluid velocity) and temperature distributions respectively after 50 years of
operations.

ities. Changes in porosity are controlled by Eq. (22), where
we neglected second-order terms for this specific application,
while the evolution in the rock permeability is governed by a
classical Kozeny–Carman-like relation as

k = A
n3

(1− n)2
, (43)

where the coefficient A includes information about the pore
and grain geometries and can be expressed via the initial
value of porosity and permeability: A= k0

(1−n0)
2

n3
0

.

Figure 10 illustrates the model geometry.
Geothermal operations consist of injecting water at Tin =

70 ◦C and at a constant rate qin = 5 L s−1 and producing
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Figure 11. Horizontal slices of the model illustrating the changes in transport properties. Panel (a) shows the distribution of the changes in
porosity and panel (b) the changes in permeability after 50 years of operations.

geothermal fluid at the same rate. Pore pressure and temper-
ature are kept constant on all sides of the model as bound-
ary conditions. All faces are considered as sliding faces for
boundary conditions in terms of displacements. The simula-
tion covers a complete time of 50 years of geothermal op-
erations. All physical properties used for this example are
summarized in Table 5.

Figure 10 shows the distribution of pore pressure and tem-
perature at the end of the simulation. It can be observed that
colder temperature than the reservoir temperature are pro-
duced at the right well after 50 years of operations.

Figure 11 shows horizontal slices at the centre of the do-
main illustrating the changes in porosity and permeability
due to the applied changes in strain, pore pressure, and tem-
perature.

This example illustrates the simulator capability of solving
a full thermo-hydro-mechanical coupled problem as relevant
for geothermal reservoir applications. At the same time, the
formulation adopted to simulate the evolution in time and
space of the system properties enables us to quantify the im-
pact of the mechanical alteration induced by geothermal op-
erations (injection/production of fluid and applied injection
temperature) on both fluid and heat flows within the reser-
voir.

5 Conclusions

In this paper, we have presented a novel but robust sim-
ulator for modelling coupled THM processes within frac-
tured rocks, with specific focus on reservoir applications.
The code, GOLEM, relies on an open-source massive par-
allel finite-element-based numerical framework (MOOSE) to
solve for the coupled problem. It makes use of a fully implicit
approach to treat the nonlinear coupling among the different
processes and their feedback effects on fluid and rock prop-

erties, thus providing higher numerical stability in the con-
text of nonlinear problems. Geological heterogeneities, i.e.
discrete fractures and fault zones, are taken into account in
our formulation. The latter are represented as finite element
of lower geometrical dimension, which allows us to model
focused fluid and heat flows on fractures and faults planes
or well paths. The capability and robustness of the simulator
has been illustrated by means of five numerical examples by
increasing progressively the coupling and geometrical com-
plexity of the considered problem formulations.

Improving the reliability of predictions made for geother-
mal operations at the field scale requires a better description
of the physical phenomena which can alter the reservoir pro-
ductivity as well as the sustainability of the geothermal op-
erations. In this respect, the current framework provides a
powerful tool to analyse the dynamic behaviour of fractured
reservoirs during geothermal operations.

Ongoing activities are towards integration of the details of
the mechanical description of the geological discontinuities
(faults and fractures) either by means of a discrete (XFEM
approach) or continuous (such as phase field) approach. Such
a feature will help to better describe the dynamics defor-
mation in heterogeneous rocks, including localization and
evolution along fault zones, and will also permit to quanti-
tative integrate feedbacks on the hydraulic and thermal be-
haviours of such geological structures. The description of
such processes would help at forecasting environmental im-
pacts of reservoir operations such as induced seismicity from
dynamic reactivation of faults during operational activities.

Code and data availability. The source code and the input files of
the five numerical examples presented in this paper, plus a suite
of specific benchmark cases, are available for downloading from a
GitHub repository (https://github.com/ajacquey/Golem).
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Appendix A: Analytical solution for the oedometer
benchmark

During elastic loading with constant velocity vx , the strain
evolves as

εxx =
vx t

L
, εyy = εzz = 0 (A1)

because of the no-displacement boundary conditions in the y
and z directions. The stress during elastic loading therefore
reads

σxx = (λ+ 2G)
vx t

L
, σyy = σzz = λ

vx t

L
. (A2)

With these expressions of stress, the invariants of the stress
tensor, J1 and J2 can be written as

J1 = (3λ+ 2G)
vx t

L
, J2 =

4
3

(
G
vx t

L

)2

. (A3)

The onset of plastic strain accumulation is reached when
the yield function reaches 0 at a time noted ty , that is,
F(ty)= 0. By using the expressions of the stress invariants
in Eq. (A3), the time for onset of yielding can be expressed
as

ty =
LC cosϕ

|vx |
(

2
√

3
G− sin(ϕ)(λ+ 2

3G)
) . (A4)

The increment of plastic strain accumulation can be ex-
pressed by reinjecting the expressions of the stress invariant
and Eq. (40) into Eq. (20):

1ε
∗p
xx =

1γ
√

3

(
−1+

sin(ψ)
√

3

)
1ε
∗p
yy =

1γ
√

3

(
1
2
+

sin(ψ)
√

3

)
1ε
∗p
zz =

1γ
√

3

(
1
2
+

sin(ψ)
√

3

)
. (A5)

The increment of stress during plastic accumulation can
therefore be written:

1σxx = (λ+ 2G)
vx1t

L
+1γ

[
2
√

3

(
1−

sin(ψ)
√

3

)
G− λsin(ψ)

]
1σyy = λ

vx1t

L
−1γ

[
2
√

3

(
1
2
+

sin(ψ)
√

3

)
G+ λsin(ψ)

]
1σzz = λ

vx1t

L
−1γ

[
2
√

3

(
1
2
+

sin(ψ)
√

3

)
G+ λsin(ψ)

]
. (A6)

Furthermore, the Kuhn–Tucker conditions imply that the
derivative over time of the yield function remains 0 during
plastic accumulation, that is, in incremental form

1F = 0⇔
−1
√

3

(
1σxx −1σyy

)
+

sin(ϕ)
3

(
1σxx + 21σyy

)
= 0. (A7)

By injecting Eq. (A6) into Eq. (A7), one finally obtains the
value for the increment of plastic multiplier as

1γ =

2
√

3
G− sin(ϕ)

(
λ+ 2

3G
)

G+ 2
3 (λ+G)sin(ϕ)sin(ψ)

|vx |1t

L
. (A8)

The solution for plastic strain and stress can therefore be
integrated as

ε
∗p
xx (t)=

γ (t)
√

3

(
−1+

sin(ψ)
√

3

)
ε
∗p
yy (t)=

γ (t)
√

3

(
1
2
+

sin(ψ)
√

3

)
ε
∗p
zz (t)=

γ (t)
√

3

(
1
2
+

sin(ψ)
√

3

)
(A9)

σxx(t)= (λ+ 2G)
vx t

L
+ γ (t)

[
2
√

3

(
1−

sin(ψ)
√

3

)
G− λsin(ψ)

]
σyy(t)= λ

vx t

L
− γ (t)

[
2
√

3

(
1
2
+

sin(ψ)
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3

)
G+ λsin(ψ)

]
σzz(t)= λ

vx t

L
− γ (t)

[
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√
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(
1
2
+

sin(ψ)
√

3

)
G+ λsin(ψ)

]
,

(A10)

with the plastic multiplier as

γ (t)=

2
√

3
G− sin(ϕ)

(
λ+ 2

3G
)

G+ 2
3 (λ+G)sin(ϕ)sin(ψ)

|vx |t

L
. (A11)
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The Supplement related to this article is available online
at https://doi.org/10.5194/se-8-921-2017-supplement.
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