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Abstract. The development of an efficient algorithm for tele-
seismic wave field modeling is valuable for calculating the
gradients of the misfit function (termed “misfit gradients”) or
Fréchet derivatives when the teleseismic waveform is used
for adjoint tomography. Here, we introduce an element-by-
element parallel spectral-element method (EBE-SEM) for
the efficient modeling of teleseismic wave field propagation
in a reduced geology model. Under the plane-wave assump-
tion, the frequency–wavenumber (FK) technique is imple-
mented to compute the boundary wave field used to con-
struct the boundary condition of the teleseismic wave inci-
dence. To reduce the memory required for the storage of the
boundary wave field for the incidence boundary condition, a
strategy is introduced to efficiently store the boundary wave
field on the model boundary. The perfectly matched layers
absorbing boundary condition (PML ABC) is formulated us-
ing the EBE-SEM to absorb the scattered wave field from the
model interior. The misfit gradient can easily be constructed
in each time step during the calculation of the adjoint wave
field. Three synthetic examples demonstrate the validity of
the EBE-SEM for use in teleseismic wave field modeling and
the misfit gradient calculation.

1 Introduction

The increasing demand for high-resolution imaging of deep
lithospheric structures requires the utilization of teleseis-
mic datasets for waveform inversion. Teleseismic waves pro-
vide tremendous amounts of information for the detection of

crustal and upper mantle structures (Rondenay, 2009). Over
the past forty years, many techniques have been developed to
analyze teleseismic wave datasets, including receiver func-
tion analysis (Langston, 1977; Kind et al., 2012), teleseismic
wave travel-time tomography based on ray theory (Zhang
et al., 2011), teleseismic migration (Shragge et al., 2006),
and teleseismic scattering tomography (Roecker et al., 2010;
Tong et al., 2014a). To achieve the high-resolution imag-
ing of lithospheric structures, the adjoint-state method has
become the state-of-the-art technique for teleseismic wave
imaging (Tong et al., 2014a; Monteiller et al., 2015).

The adjoint tomography technique constructs the Fréchet
derivatives of the objective function with respect to the model
parameters by numerically solving the full seismic wave
equation twice if the forward wave fields are stored on a
computer disk at every given time interval (Tromp et al.,
2005; Liu and Tromp, 2006; Fichtner, 2011). Adjoint to-
mography has been successfully implemented to investigate
crustal (Tape et al., 2009) and continental subsurface hetero-
geneity (Chen et al., 2015). Seismic adjoint waveform to-
mography, which has a greater resolution than the ray-based
travel-time tomography for the same dense seismic ray cov-
erage (Liu and Gu, 2012), is able to image small-scale (half
of the minimum wavelength) heterogeneity (Virieux and Op-
erto, 2009). The main drawback of the adjoint tomography is
its large computational burden. The computational require-
ment is linearly related to the number of earthquakes used
for the tomographic inversion and the iterations required by
the optimization technique. For a typical local-scale model,
such as the southern California region, several thousand 3-D
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full-wave field simulations are required to perform an adjoint
tomography inversion (Tape et al., 2007, 2009).

Because most earthquakes occur in the crust, and seismic
rays cannot easily illuminate the deep lithosphere in local
seismic tomography, imaging the deep lithospheric structures
can be difficult (Tong et al., 2014b, c). Increasing the model
size enables more deep reflections and refractions to be in-
cluded in the inversion dataset; as a result, deep structures
can be inverted by fitting these reflected and refracted wave-
forms (Chen et al., 2015). However, for continental-scale
models, it is difficult to invert short-period seismic data on
a standard computing cluster, such as 1–2 s for P waves and
3–6 s for S waves (Tong et al., 2015).

To reduce the amount of computation involved in solving
the full seismic wave equation, many hybrid methods have
been developed to localize 2-D/3-D numerical solvers. The
boundary conditions for the reduced simulation model are
provided by rapid 1-D analytical solutions for the 1-D back-
ground Earth model (Capdeville et al., 2003; Monteiller et
al., 2013, 2015; Tong et al., 2014a, 2015). The 2-D/3-D re-
sponses to the heterogeneity inside the reduced model con-
tribute to the coda waves of the teleseismic phases, and the 2-
D/3-D effects outside the model are neglected. This assump-
tion of a 1-D background layered Earth model is similar to
that in receiver function analysis and is often effective for
a station that is sufficiently far from the source (Langston,
1977; Rondenay, 2009).

Although the computational requirements can be effi-
ciently reduced by these hybrid methods, the computational
costs are still excessive for a small workstation when we are
faced with the several thousand forward simulations required
in 3-D teleseismic adjoint tomography. To further reduce the
computational costs, Roecker et al. (2010) constructed a fre-
quency domain 2.5-D hybrid method for teleseismic wave
simulations. To simplify the teleseismic wave field invari-
ant along a particular axis, the 2.5-D formulation can sig-
nificantly reduce the computational demands. However, the
2.5-D formulation may restrict the application of the method
in arbitrarily heterogeneous media (Tong et al., 2015).

In addition to the large computational demand (CPU time)
associated with the 3-D hybrid methods, satisfying the mem-
ory requirements for storing the boundary wave fields to con-
struct teleseismic incident boundary conditions is another
important issue that should be carefully considered. Tong et
al. (2015) adapted the Clayton and Engquist-type (CE-type)
boundary condition (Clayton and Engquist, 1977) to inter-
face the 1-D background analytical solution with a numerical
solver on the boundary of a reduced model. This treatment
can both assign the teleseismic incident condition for the
computational domain and absorb the scattered wave field
from the interior of the heterogeneous model. Implement-
ing the CE-type boundary condition is extremely simple and
does not substantially increase the required CPU time. How-
ever, the CE-type boundary condition can efficiently absorb
waves only at approximately normal incident angles, and in-

cident waves at grazing angles may be reflected back to the
model (Yang et al., 2003), which may reduce the accuracy of
the forward and adjoint wave fields in teleseismic adjoint to-
mography and thus decrease the accuracy of the constructed
Fréchet derivatives. Note that the CE-type boundary condi-
tion requires nine wave field components (three displace-
ment components and six stress components) to be stored on
the model boundary; this requirement may be a significant
burden on the computer memory for a relatively large-scale
model decomposed by a dense numerical mesh.

Here, we introduce the element-by-element parallel
spectral-element method (EBE-SEM) for the efficient mod-
eling of teleseismic plane-wave propagation in reduced mod-
els. A significant advantage of the EBE-SEM is the easy par-
allelization of the spectral-element algorithm, which does not
require the assembly of the global stiffness matrix. The spec-
tral elements are equally allocated to every CPU core, and
the product of the stiffness matrix and the solution vector is
calculated element by element; these aspects are quite useful
for ensuring load balance among the CPU cores. The ele-
ment stiffness matrix can be written as the tensor product of
the submatrices, which greatly reduce the computer memory.
In addition, the misfit gradient can be efficiently constructed
because the element matrices for calculating the misfit gra-
dient can also be formulated from the tensor products of the
element submatrices. The perfectly matched layers (PMLs;
Collino and Tsogka, 2001; Komatitsch and Tromp, 2003; Liu
et al., 2014) are formulated by the EBE-SEM to effectively
absorb scattered waves. A detailed discussion is presented
to incorporate the teleseismic incident boundary condition in
the EBE-SEM, and only six components on the interface be-
tween the computational domain and the PML domain must
be stored in the computer memory. The high efficiency of
the EBE-SEM for teleseismic wave modeling and misfit gra-
dient construction is demonstrated by using three numerical
examples.

2 EBE-SEM

A schematic of a teleseismic plane wave entering a local-
ized model is depicted in Fig. 1, where the localized model
is delineated by the blue lines. We first introduce the EBE-
SEM for isotropic elastic wave propagation in an infinite half
space, which includes the localized model. We denote the to-
tal wave field ut, which is the summation of the background
wave field uFK in the layered media and the scattered wave
field us. The wavenumber–frequency (FK) domain method
(Haskell, 1953; Zhu and Rivera, 2002; Tong et al., 2014a)
can be used to efficiently calculate uFK, and us is excited by
the incident plane wave because of the heterogeneity of the
media.
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Figure 1. Schematic of a teleseismic plane wave entering a local
two-layered crust–upper-mantle model. The study area is delineated
by the blue lines. The origin of the Cartesian system is located on
the surface at corner A of the model. The positive x and y directions
point to the east and south, respectively, and the positive z direc-
tion points downward. The inverted red triangle located at (60 km,
60 km, 0 km) represents a seismic station. The plane in the lower
left of the figure denotes the wave front of the incident teleseismic
plane wave. The purple arrows indicates the normal vector of the
plane wave. The incident angle is θ , which is the angle between the
normal vector and –z. The azimuth angle is ϕ, which is the angle
between the projection of the normal vector into the x–y plane and
–y. The azimuth angle is not explicitly shown in this figure.

2.1 EBE-SEM for total wave simulation

We assume that the total wave field obeys the following elas-
tic wave equation (Tong et al., 2014a):

ρüt =∇ ·
[
λ(∇ ·ut) I+µ

(
∇ut+∇uTt

)]
, (1)

where the two dots above ut denote the second-order time
derivative, I is the 3×3 identity matrix, λ and µ are Lamé pa-
rameters, ∇ =

(
ex∂x + ey∂y + ez∂z

)
is the gradient operator,

and the superscript T denotes the matrix transpose operation.
Following the classical SEM (Seriani, 1997; Komatitsch and
Vilotte, 1998; Komatitsch and Tromp, 2002), using an arbi-
trary test vector v to multiply both sides of Eq. (1) and in-
tegrating over the domain �, we obtain the following weak

form wave equation:∫
�

v · ütd�+
∫
�

∇v :
(
λ(∇ ·ut)I+µ

(
∇ut+∇uTt

))
d�

=

∫
∂�

v · σt ·nds, (2)

where n is the normal vector of the boundary ∂�. The defini-
tion of the double dot product can be found in De Basabe and
Sen (2007). Under the natural boundary condition, the right
side of Eq. (2) is 0. If the infinite space is decomposed into
N nonoverlapping hexahedral elements, then Eq. (2) can be
written as

N∑
e=1

∫
�e

v · ütd�+
N∑
e=1

∫
�e

∇v : (λ(∇ ·ut)I

+µ
(
∇ut+∇uTt

))
d�= 0. (3)

Each hexahedral element is mapped to the reference cube
[−1,1]3, and the chosen interpolation points are consistent
with the Gauss–Legendre–Lobatto (GLL) quadrature points
(Cohen, 2002). The interpolation basis functions in each ele-
ment are as follows:

φi (ξ,γ,η)= ϕi1 (ξ)ϕi2 (γ )ϕi3 (η), (4)

where the subscript of φ denotes the ith basis function, ξ ,
γ , and η are the three coordinates in the isoparametric co-
ordinate system, and ϕ is the Lagrange polynomial. The ith
interpolation point in the physical element is mapped to the
(i1, i2, i3)th node in the cube [−1,1]3. Based on Eq. (4) and
the discrete values u

e,i
t and ve,i on the interpolation points,

the continuous values uet and ve in element e can be approx-
imated by

uet ≈
(n+1)3∑
i=1

u
e,i
t φi (x,y,z) ,

ve ≈
(n+1)3∑
i=1

ve,iφi (x,y,z) ,

(5)

where n is the polynomial order of the interpolation ba-
sis. By substituting Eq. (5) into Eq. (2) and using the GLL
quadrature rule, we obtain the ordinary differential equation
in terms of time:

N∑
e=1

MeÜ e
t +

N∑
e=1

KeU e
t = 0, (6)

where Me is the element mass matrix, Ke is the element stiff-
ness matrix, and U e

t is the element solution vector. The ele-
ments of Me and Ke are presented in Appendix A. Because
the interpolation points are consistent with the GLL quadra-
ture points, Me is diagonal, which is one of the advantages
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of the Legendre polynomial-based SEM because the explicit
inverse of the mass matrix can be easily obtained. The as-
sembled global diagonal mass is as follows:

M=
N∑
e=1

Me. (7)

We define the projection operator T e to map the correspond-
ing elements of M back to form an element matrix:

M̃e
= T e (M) , (8)

where the tilde above M̃e is used to distinguish the difference
between the back-projected mass matrix and the element
mass matrix in Eq. (6). Because the elements of the element
mass matrix that correspond to the common points shared by
the adjacent elements are summed to form the global mass
matrix in Eq. (7), some elements of M̃e are greater than those
of Me. The notation of Eq. (8) is important for the discussion
below. If we denote the global solution vector as U t, then the
back-projected element solution T e (U t) is still U e

t because
ut is continuous cross elements. From Eq. (6), we have

Ü t =−M−1
N∑
e=1

KeT e (U t) . (9)

An explicit temporal scheme, such as the Newmark scheme
(Liu et al., 2017a), and structure-preserving schemes (Liu et
al., 2017b) can be adopted for time integration. Here, we sim-
ply use the second-order central difference method (Dablain,
1986) for the time evolution. The product of the stiffness
matrix and the solution vector is calculated element by el-
ement at the element level rather than at the global level.
The computational burden of SEM mainly stems from the
matrix–vector product, and the significant advantage of the
element-by-element scheme of Eq. (9) is the great com-
putational balance among CPU cores when the parallel al-
gorithm is performed on a workstation. Our parallel code
is based on the Message Passing Interface (MPI) library
(www.mpich.org/downloads), and we equally distribute the
spectral elements to CPU cores.

To further increase the computational efficiency of SEM,
the GLL quadrature rule is fully considered in the product
of the stiffness matrix and the solution vector. To simplify
the discussion, the product of Ke

11 in Eq. (A4) and U tx is
presented below, where the subscript x denotes the x compo-
nent of the discrete displacement vector. Based on the tensor
product of matrices (Seriani, 1998), the matrix–vector prod-
uct can be written as

Ke
11T

e (U tx) =

[∫
�e

(λ+ 2µ)
∂φi

∂x

∂φj

∂x

+µ

(
∂φi

∂y

∂φj

∂y
+
∂φi

∂z

∂φj

∂z

)
d�
]
T e (U tx)

= (λ+ 2µ)

[∫
�e

(
∂ξ

∂x

∂φi

∂ξ
+
∂γ

∂x

∂φi

∂γ
+
∂η

∂x

∂φi

∂η

)
(
∂ξ

∂x

∂φj

∂ξ
+
∂γ

∂x

∂φj

∂γ
+
∂η

∂x

∂φj

∂η

)
d�
]
T e (U tx)

+µ

[∫
�e

(
∂ξ

∂y

∂φi

∂ξ
+
∂γ

∂y

∂φi

∂γ
+
∂η

∂y

∂φi

∂η

)
(
∂ξ

∂y

∂φj

∂ξ
+
∂γ

∂y

∂φj

∂γ
+
∂η

∂y

∂φj

∂η

)
d�
]
T e (U tx)

+µ

[∫
�e

(
∂ξ

∂z

∂φi

∂ξ
+
∂γ

∂z

∂φi

∂γ
+
∂η

∂z

∂φi

∂η

)
(
∂ξ

∂z

∂φj

∂ξ
+
∂γ

∂z

∂φj

∂γ
+
∂η

∂z

∂φj

∂η

)
d�
]
T e (U tx)

= (λ+ 2µ)

[
3∑
i=1

3∑
j=1

PTi A1,1
i,j Pj

]
T e (U tx)

+µ

[
3∑
i=1

3∑
j=1

PTi A2,2
i,j Pj

]
T e (U tx)

+µ

[
3∑
i=1

3∑
j=1

PTi A3,3
i,j Pj

]
T e (U tx) ,

(10)

where P1 = D⊗I⊗I, P2 = I⊗D⊗I, P3 = I⊗I⊗D, I is the
(n+1)th order identity matrix, and the (n+ 1)× (n+ 1) ma-
trix D is

[
∂ϕi(ξj )
∂ξ

]
. The superscripts of A represent the phys-

ical coordinates, whereas the subscripts denote the isopara-
metric coordinates. A1,1

1,1 is given by

A1,1
1,1 =

[
δriδsj δtkωiωjωk

∂ξ

∂x

∂ξ

∂x
Det(J)

∣∣∣∣
(ξi ,γj ,ηk)

]
, (11)

where δ is the Kronecker-delta symbol, r , s, and t represents
matrix row indices, i, j , and k denote matrix column indices,
and Det(J) is the determinant of the Jacobi matrix evaluated
at GLL point

(
ξi,γj ,ηk

)
. Equation (11) shows that A is a

diagonal matrix, and only (n+ 1)3 elements need to be stored
for each A. For every hexahedral element, 81 combinations
may appear for A. However, 45 matrices need to be stored
because of the symmetry of the matrices.

2.2 EBE-SEM for the PML formula

In our previous work, a second-order PML absorbing bound-
ary condition (PML ABC) was formulated using the mixed-
grid finite-element method (Liu et al., 2014). Here, we use
this type of PML ABC to absorb the scattered wave field
us =

(
usx,usy,usz

)
. To simplify the discussion, only the for-
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mula of the PML ABC for the displacement of the x compo-
nent is shown below:

ρ
(
üsx,1+ 2dx u̇sx,1+ d

2
xusx,1

)
=
∂

∂x

(
(λ+ 2µ)

∂usx

∂x

)
+ ρPx,1,

ρṖx,1+ ρdxPx,1 =−(λ+ 2µ)d ′x
∂ux

∂x
,

ρ
(
üsx,2+ 2dy u̇sx,2+ d

2
yusx,2

)
=
∂

∂y

(
µ
∂usx

∂y

)
+ ρPx,2,

ρṖx,2+ ρdyPx,2 =−µd
′
y

∂usx

∂y
,

ρ
(
üsx,3+ 2dzu̇sx,3+ d

2
zusx,3

)
=
∂

∂z

(
µ
∂usx

∂z

)
+ ρPx,3,

ρṖx,3+ ρdzPx,3 =−µd
′
z

∂ux

∂z
,

ρ
(
üsx,4+

(
dx + dy

)
u̇sx,4+ dxdyusx,4

)
=
∂

∂x

(
λ
∂usy

∂y

)
+
∂

∂y

(
µ
∂usy

∂x

)
,

ρ
(
üsx,5+ (dx + dz) u̇sx,5+ dxdzusx,5

)
=
∂

∂x

(
λ
∂usz

∂z

)
+
∂

∂z

(
µ
∂usz

∂x

)
,

usx = usx,1+ usx,2+ usx,3+ usx,4+ usx,5,

(12)

where dx , dy , and dz are damping coefficients along the
three coordinate axes, the subscript of d denotes the first spa-
tial derivative of the damping coefficient, usx,1, usx,2, usx,3,
usx,4, and usx,5 are the five split components of ux , and Px,1,
Px,2, and Px,3 are the three intermediate variables. Based on
the natural boundary condition, the corresponding weak form
of Eq. (12) is



∫
�

ρvx
(
üsx,1+ 2dx u̇sx,1+ d

2
xusx,1

)
d�

+
∫
�

(λ+ 2µ)
∂vx

∂x

∂usx

∂x
d�=

∫
�

ρvxPx,1d�,∫
�

ρvx
(
Ṗx,1+ dxPx,1

)
d�

+
∫
�

vx (λ+ 2µ)d ′x
∂usx

∂x
d�= 0,∫

�

ρvx

(
üsx,2+ 2dy u̇sx,2+ d

2
yusx,2

)
d�

+
∫
�

µ
∂vx

∂y

∂usx

∂y
d�

=
∫
�

ρvxPx,2d�,∫
�

ρvx
(
Ṗx,2+ dyPx,2

)
d�

+
∫
�

vxµd
′
y

∂usx

∂y
d�= 0,∫

�

ρvx
(
üsx,3+ 2dzu̇sx,3+ d

2
zusx,3

)
d�

+
∫
�

µ
∂vx

∂z

∂usx

∂z
d�=

∫
�

ρvxPx,3d�,∫
�

ρvx
(
Ṗx,3+ dzPx,3

)
d�

+
∫
�

vxµd
′
z

∂usx

∂z
d�= 0,∫

�

ρvx
(
üsx,4+

(
dx + dy

)
u̇sx,4+ dxdyusx,4

)
d�

+
∫
�

λ
∂vx

∂x

∂usy

∂y
d�+

∫
�

µ
∂vx

∂y

∂usy

∂x
d�= 0,∫

�

ρvx
(
üsx,5+ (dx + dz) u̇sx,5+ dxdzusx,5

)
d�

+
∫
�

λ
∂vx

∂x

∂usz

∂z
d�+

∫
�

µ
∂vx

∂z

∂usz

∂x
d�= 0,

usx = usx,1+ usx,2+ usx,3+ usx,4+ usx,5

(13)
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The discretized version of Eq. (13) is

N∑
e=1

Me
1Ü

e
sx,1+

N∑
e=1

DexU̇ e
sx,1+

N∑
e=1

DexxU e
sx,1

+

N∑
e=1

Ke
xxU

e
sx =

N∑
e=1

Me
1Pex,1,

N∑
e=1

Me
1Ṗex,1+

1
2

N∑
e=1

DexPex,1+
N∑
e=1

Ke
xU

e
sx = 0,

N∑
e=1

Me
1Ü

e
sx,2+

N∑
e=1

DeyU̇ e
sx,2+

N∑
e=1

DeyyU e
sx,2

+

N∑
e=1

Ke
yyU

e
sx =

N∑
e=1

Me
1Pex,2,

N∑
e=1

Me
1Ṗex,2+

1
2

N∑
e=1

DeyPex,2+
N∑
e=1

Ke
yU

e
sx = 0,

N∑
e=1

Me
1Ü

e
sx,3+

N∑
e=1

DezU̇ e
sx,3+

N∑
e=1

DezzU e
sx,3

+

N∑
e=1

Ke
zzU

e
sx =

N∑
e=1

Me
1Pex,3,

N∑
e=1

Me
1Ṗex,3+

1
2

N∑
e=1

DezP
e
x,3+

N∑
e=1

Ke
zU

e
sx = 0,

N∑
e=1

Me
1Ü

e
sx,4+

N∑
e=1

Dex,yU̇ e
sx,4+

N∑
e=1

DexyU e
sx,4

+

N∑
e=1

(
Ke
xy +Ke

yx

)
U e

sy = 0,

N∑
e=1

Me
1Ü

e
sx,5+

N∑
e=1

Dex,zU̇ e
sx,5

+

N∑
e=1

DexzU e
sx,5+

N∑
e=1

(
Ke
xz+Ke

zx

)
U e

sz = 0,

U sx = U sx,1+U sx,2+U sx,3+U sx,4+U sx,5,

(14)

where Ke
x , Ke

y , Ke
z, Ke

xx , Ke
yy , Ke

zz, Ke
xy , Ke

yx , Ke
xz, and Ke

zx

are element stiffness matrices and Dex , Dey , Dez, Dexx , Deyy , Dezz,
Dexy , Dexz, Dex,y , and Dex,z are the element damping matrices.
The detailed expressions of these element matrices are pre-
sented in Appendix B. The damping matrices are also diago-
nal matrices, whose element values are scaled by a constant
compared with the element values of Me. If we denote the
global damping matrices as Dx , Dy , Dz, Dxx , Dyy , Dzz, Dxy ,
Dxz, Dx,y , and Dx,z, then we obtain the element-by-element
scheme for Eq. (14):



Ü sx,1+
N∑
e=1

T e(M1)
−1T e (Dx) U̇ e

sx,1

+

N∑
e=1

T e(M1)
−1T e (Dxx)U e

sx,1

+(M1)
−1

N∑
e=1

Ke
xxU

e
sx = Px,1,

Ṗx,1+
1
2

N∑
e=1

T e(M1)
−1T e (Dx)Pex,1

+(M1)
−1

N∑
e=1

Ke
xU

e
sx = 0,

Ü sx,2+
N∑
e=1

T e(M1)
−1T e

(
Dy
)
U̇ e

sx,2

+

N∑
e=1

T e(M1)
−1T e

(
Dyy

)
U e

sx,2

+(M1)
−1

N∑
e=1

Ke
yyU

e
sx = Px,2,

Ṗx,2+
1
2

N∑
e=1

T e(M1)
−1T e

(
Dy
)

Pex,2

+(M1)
−1

N∑
e=1

Ke
yU

e
sx = 0,

Ü sx,3+
N∑
e=1

T e(M1)
−1T e (Dz) U̇ e

sx,3

+

N∑
e=1

T e(M1)
−1T e (Dzz)U e

sx,3

+(M1)
−1

N∑
e=1

Ke
zzU

e
sx = Px,3,

Ṗx,3+
1
2

N∑
e=1

T e(M1)
−1T e (Dz)Pex,3

+(M1)
−1

N∑
e=1

Ke
zU

e
sx = 0,

Ü sx,4+
N∑
e=1

T e(M1)
−1T e

(
Dx,y

)
U̇ e

sx,4

+

N∑
e=1

T e(M1)
−1T e

(
Dxy

)
U e

sx,4

+(M1)
−1

N∑
e=1

(
Ke
xy +Ke

yx

)
U e

sy = 0,

Ü sx,5+
N∑
e=1

T e(M1)
−1T e

(
Dx,z

)
U̇ e

sx,5

+

N∑
e=1

T e(M1)
−1T e (Dxz)U e

sx,5

+(M1)
−1

N∑
e=1

(
Ke
xz+Ke

zx

)
U e

sz = 0,

U sx = U sx,1+U sx,2+U sx,3+U sx,4+U sx,5.

(15)
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From Eqs. (B11) to (A20), Eq. (15) can be rewritten as

Ü sx,1+
N∑
e=1

2dexU̇
e
sx,1+

N∑
e=1

(
dex
)2

U e
sx,1

+(M1)
−1

N∑
e=1

Ke
xxU

e
sx = Px,1,

Ṗx,1+
N∑
e=1

dexPex,1+ (M1)
−1

N∑
e=1

Ke
xU

e
sx = 0,

Ü sx,2+
N∑
e=1

2deyU̇
e
sx,2+

N∑
e=1

(
dey

)2
U e

sx,2

+(M1)
−1

N∑
e=1

Ke
yyU

e
sx = Px,2,

Ṗx,2+
N∑
e=1

deyPex,2+ (M1)
−1

N∑
e=1

Ke
yU

e
sx = 0,

Ü sx,3+
N∑
e=1

2dez U̇
e
sx,3+

N∑
e=1

(
dez
)2

U e
sx,3

+(M1)
−1

N∑
e=1

Ke
zzU

e
sx = Px,3,

Ṗx,3+
N∑
e=1

dezPex,3+ (M1)
−1

N∑
e=1

Ke
zU

e
sx = 0,

Ü sx,4+
N∑
e=1

(
dex + d

e
y

)
U̇ e

sx,4+
N∑
e=1

dexd
e
yU

e
sx,4

+(M1)
−1

N∑
e=1

(
Ke
xy +Ke

yx

)
U e

sy = 0,

Ü sx,5+
N∑
e=1

(
dex + d

e
z

)
U̇ e

sx,5+
N∑
e=1

dexd
e
zU

e
sx,5

+(M1)
−1

N∑
e=1

(
Ke
xz+Ke

zx

)
U e

sz = 0,

U sx = U sx,1+U sx,2+U sx,3+U sx,4+U sx,5.

(16)

From Eq. (16), we observe that the element damping matri-
ces do not need to be stored. It should be noted that the value
of the damping coefficient is divided by Ne if the node lo-
cated on the element surface is shared by Ne elements. In
each element, the stiffness matrix can also be written as a
tensor product of matrices, which is similar to Eq. (10).

2.3 Discussion of the EBE-SEM

Although the EBE-SEM is specially designed for teleseismic
wave modeling (i.e., Eq. 9 is for teleseismic total wave field
propagation if the proper teleseismic incident boundary con-
dition is added and Eq. 16 is for absorbing the scatted wave
field), EBE-SEM can be directly used for wave field simu-
lation of an earthquake that occurred in the interior of the
model (computational domain) if a source term is added to
Eq. (9).

Seriani (1997) is the seminal work that introduced the
EBE-SEM. In the 2-D case, the element-by-element scheme
is combined with the Chebyshev orthogonal polynomial-
based SEM. Because the Chebyshev orthogonal polynomial
is orthogonal and associated with the weight 1/

√
1− ξ2, the

Chebyshev orthogonal polynomial-based SEM cannot lead

to a diagonal mass matrix and an iterative algorithm is gen-
erally used to solve a large spare linear system of equations,
which may not be efficient for larger-scale seismic waveform
modeling. Another aspect of the EBE algorithm of Seriani
(1997) is that it is only appropriate for use with only rect-
angular elements of a fixed shape; this restriction may be
problematic for curved elements. In contrast, EBE-SEM in
the paper can be used for general cases.

The recent improvements in the SPECFEM3D software
also incorporate the tensor products of the element stiffness
matrix (Peter et al., 2011). Geology models can be decom-
posed by fully unstructured hexahedral meshes. Great load
balancing is achieved based on graph partitioning. This soft-
ware does not explicitly assemble the global stiffness matrix.
The main contribution of this paper is the detailed introduc-
tion of EBE-SEM for high-efficient teleseismic wave model-
ing.

If appropriate boundary conditions are added for the com-
putational domain and the PML domain, then the computa-
tion will be isolated in the counterpart domain, i.e., Eq. (9)
for the computational domain and Eq. (16) for the PML do-
main. The boundary conditions are discussed presented be-
low.

3 Teleseismic wave incident boundary conditions

For the completeness of this paper, we first simply intro-
duce the FK method for determining the 3-D elastic-wave-
equation-based plane-wave propagation in layered media.
For more details, the reader is referred to Haskell (1953) and
Tong et al. (2014a). Our focus is to construct the teleseis-
mic wave incident boundary conditions and develop a highly
efficient method for the storing the boundary wave fields.

3.1 Plane-wave propagation in 1-D layered media

Transforming the elastic wave equation into the
(
ω,kx,ky

)
domain, we obtain the following equation:

−ρω2

 uFKx
uFKy
uFKz

=
 ikxσxx + ikyσxy + ∂zσxz
ikxσxy + ikyσyy + ∂zσyz
ikxσxz+ ikyσyz+ ∂zσzz

 (17)

where uFK =
(
uFKx,uFKy,uFKz

)
is the plane wave in layered

media, kx and ky are the wavenumbers in the x and y di-
rections, respectively, and ω is the angular frequency. We
assign uFK the same notation in both the time–space and
frequency–wavenumber domains to avoid clustering. If we
define uFKHeH = uFKxex + uFKyey and keH = kxex + kyey ,

where k =
√
k2
x + k

2
y and eH is the horizontal normal vector,

then Eq. (17) can be written as

−ω2
[
uFKH
uFKz

]
=

[
ikHσHH+ ∂zσHz
ikHσHz+ ∂zσzz

]
. (18)
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Figure 2. 1-D layered background model. The thickness, P wave
velocity, S wave velocity, and density of each layer are shown.

If we define y1 = iuFKH,y2 = uFKz,y3 = iσHz, and y4 =

σzz, Eq. (18) can be changed to the following ordinary dif-
ferential equations:

d

dz


y1
y2
y3
y4

=


0 k
1
µ

0

−
λk

λ+ 2µ
0 0

1
λ+ 2µ

4k2µ(λ+µ)

λ+ 2µ
− ρω2 0 0

kλ

λ+ 2µ
0 −ρω2

−k 0



·


y1
y2
y3
y4

= Fy. (19)

By calculating the eigenvalues and eigenvectors of F , the
general solution of Eq. (19) can be written as

y =



1 1 1 1

−i
k

υS
i
k

υS
i
υP

k
−i
υP

k

i
µγ

υS
−i
µγ

υS
−2iµυP 2iµυP

−2kµ −2kµ −
µγ

k
−
µγ

k



·


e−iυSz 0 0 0
0 eiυSz 0 0
0 0 e−iυP z 0
0 0 0 eiυP z



C1
C2
C3
C4

 , (20)

where C1, C2, C3, and C4 correspond to the amplitudes of
the upgoing S wave, downgoing S wave, upgoing P wave,

downgoing P wave, respectively; p = k
ω

, υP = ω
√

1
α2 −p

2,

υS = ω
√

1
β2 −p

2, and γ = (2k2
−
ω2

β2 ) are the ray parame-
ters. As shown in Fig. 2, the velocities, density, and thick-
ness of the mth layer are denoted as VPm, VSm, ρm, and hm,
respectively. We define the following matrices for the mth

layer:

Rm =



1 1 1 1

−i
k

υSm
i
k

υSm
i
υPm

k
−i
υPm

k

i
µmγ

υS
−i
µmγ

υS
−2iµmυPm 2iµmυPm

−2kµm −2kµm −
µmγm

k
−
µmγm

k

 ,
(21)

H (hm)=


e−iυSz 0 0 0
0 eiυSz 0 0
0 0 e−iυP z 0
0 0 0 eiυP z

 . (22)

The relationship between the wave fields at z= zm−1 and z=
zm can be written as

ym−1 =RmH(−hm)R−1
m ym. (23)

In Eq. (23), Lm = RmH(−hm)R−1
m is the propagation ma-

trix. The wave field at the free surface can be represented by

y0 = L1· · ·LnRn+1C. (24)

If we consider that the incident plane wave is an upgoing P
wave with unit amplitude, then we have{
C1 = 0,
C3 =±i sin(θ). (25)

We define

A= L1· · ·LnRn+1 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 . (26)

The values of y3 and y4 at the free surface can be written as

[
y3
y4

]
z=0
=

[
a31 a32 a33 a34
a41 a42 a43 a44

]
0
C2
C3
C4

 . (27)

Based on the free surface boundary condition y3 = y4 = 0,
we have[
C2
C4

]
=−C3

[
a32 a34
a42 a44

]−1[
a33
a43

]
. (28)

Substituting Eqs. (25) and (28) into Eq. (23), we obtain the
wave field at z= zm. Based on Eq. (23), we can calculate the
wave field in each layer.
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3.2 Incident boundary conditions

We assume that the infinite space is composed of the follow-
ing hexahedron set:

B =
{
e1, . . .,eN1 ,eN1+1, . . .,eN1+N2 , . . .

}
. (29)

The first N1 elements of B compose the computational do-
main (the domain bounded by the blue lines in Fig. 1), and
the elements from N1+ 1 to N1+N2 compose the PML do-
main. We define the set of elements in the computational do-
main as

BC =
{
e1, . . .,eN1

}
. (30)

A total of N3 elements in BC that contact the boundary of
PML domain are collected in the following set:

BC,B =
{
ej1 , . . .,ejN3

}
. (31)

The set of N2 elements that compose the PML domain is
given by

BP =
{
eN1+1, . . .,eN1+N2

}
. (32)

A total ofN4 elements in BP that contact the boundary of the
computational domain are gathered in the following set:

BP,B =
{
ek1 , . . .,ekN4

}
. (33)

We define an operator that maps the elements of vector A to
a target vector At according to the numbering set An. The
index number of each elements of set At in set A is gathered
in An, and we define

〈A〉An =At. (34)

From Eq. (9), we have

〈
Ü t
〉
AC
=

〈
−
∑
e∈B

(
T e(M1)

−1KeT e (U t)
)〉
AC

=

〈
−

∑
e∈BC∪BP,B

(
T e(M1)

−1KeT e (U t)
)〉
AC

,

(35)

where AC is the numbering set of the nodes in the computa-
tional domain. Equation (35) shows that only matrix–vector
products in the elements of the computational domain and
the elements of the PML domain in contact with the bound-
ary of the computational domain contribute to the accelera-
tion wave field on the nodes in the computational domain.

Based on Eq. (35), we have

〈
Ü t
〉
AC,B

=

〈
−

∑
e∈BC∪BP,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

=

〈
−

∑
e∈BC,B∪BP,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

=

〈
−

∑
e∈BC,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

+

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

,

(36)

where AC,B is the numbering set of nodes of the computa-
tional domain located on the interface between the computa-
tional and PML domains. The second term of the right side
of Eq. (36) can be written as

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

=

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e

(
UFK+U s

))〉
AC,B

=

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (UFK)

)〉
AC,B

+

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (U s)

)〉
AC,B

.

(37)

Equation (37) is the plane-wave incident condition
for the computational domain. Based on Eq. (37),
we only need to store the boundary wave field〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (UFK)

)〉
AC,B

to construct the

incident boundary condition for the computational domain.

The length of

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (UFK)

)〉
AC,B

is 3

times as long as the number of nodes located on the interface
between the computational and PML domains; and it is not
necessary to store UFK on the nodes of the elements in BP,B .
This storage technique can decreased the amount of memory
required by n−1

n
× 100%, which is extremely important for

large-scale models. This storage technique is similar to the
method of the linear combination of a boundary wave field,
which was proposed in our previous work (Liu et al., 2015).
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To simplify the discussion, the boundary condition of the
first equation of Eq. (16) is discussed. From Eq. (16), we have

〈
Ü sx,1

〉
AP
+

〈∑
e∈B

2dexU̇
e
sx,1

〉
AP

+

〈∑
e∈B

(
dex
)2

U e
sx,1

〉
AP

+

〈∑
e∈B

T e(M)−1Ke
xxU

e
sx

〉
AP

=
〈
P x,1

〉
AP
, (38)

where AP is the numbering set of nodes in the PML domain.
The scattered wave on the interface between the computa-
tional domain and the PML domain can be obtained by the
following equation:

〈U sx〉AP,B = 〈U tx〉AP,B −〈UFKx〉AP,B , (39)

where AP,B is the numbering set of the nodes of the PML
domain on the interface. 〈U sx〉AP,B does not need to be cal-
culated by Eq. (16). From Eqs. (38) and (39), we have

〈
Ü sx,1

〉
AP−AP,B

+

〈 ∑
e∈BP

(
2dexU̇

e
sx,1+

(
dex
)2

U e
sx,1

)〉
AP−AP,B

+

〈 ∑
e∈BP

T e(M)−1Ke
P,xxU

e
sx

〉
AP−AP,B

= 〈P x〉AP−AP,B .

(40)

Considering the other equations of PML ABC, the boundary
condition of PML ABC to absorb the scattered waves is

〈U s〉AP,B = 〈U t〉AP,B −〈UFK〉AP,B . (41)

In addition to the boundary condition given by Eq. (41), the
Dirichlet boundary condition is added to the outer bound-
aries of the PML domain, and the natural boundary condi-
tion is added to the planes that connect the free surface of
the computational domain. Because of the boundary condi-
tions, the element-level matrix–vector product is restricted to
only the element in the computational domain and the PML
domain. Because the boundary conditions in Eqs. (37) and
(41) involve the plane-wave fields, we call Eqs. (37) and (41)
teleseismic wave incident conditions.

4 Analysis of the computational costs

We use the model in Fig. 1 to quantitatively discuss the com-
putational cost of EBE-SEM for teleseismic wave modeling.
Because the thickness of the PML domain in our numerical
examples is only three elements wide, the number of floating
point operations is trivial compared with the computational
domain, and the main computational cost of the PML domain

is from the storage requirement of the boundary condition
(Eq. 41).

The model is decomposed into 75 000 cubic elements with
a size of 2km× 2km× 2km. The fourth-order interpolation
polynomial is used in the space. The time interval is 0.01 s,
and the total time for the numerical modeling is 100 s.

The floating point operations in the computational domain
are mainly from the element matrix–vector product. A total
of 1.0546875× 1010 floating point multiplication operations
are required in each time step. If a global stiffness matrix is
assembled, then the product of the global stiffness matrix and
the global solution vector requires a total of 9.35974× 109

floating point multiply operations. The computational burden
of EBE-SEM is greater than that of the conventional SEM for
two reasons: the element stiffness matrix and solution vec-
tor product are decomposed into a total of 189 submatrix
and solution vector products (Eq. 10), and the acceleration
on common nodes shared by the adjacent elements is calcu-
lated more than once. However, the number of operations of
EBE-SEM increases by only 11.26 %. This increased com-
putational amount may be compensated for by the high load
balance of EBE-SEM in parallel computing, as will be dis-
cussed in the numerical examples.

The memory requirements of EBE-SEM and the conven-
tional SEM for teleseismic wave modeling are presented in
Table 1. A total of 13.12 GB is required to store the boundary
wave field to construct the teleseismic incident conditions.
If the classical compressed sparse row (CSR) storage for-
mat (Greathouse and Daga, 2014) is used to store the spare
stiffness matrix of the conventional SEM, then the storage
requirement is 38.76 GB, which is nearly 25 times as large
as the storage requirement of EBE-SEM to store the 45 ele-
ment submatrices. Two factors contribute to this storage dif-
ference. First, CSR must store the row and column informa-
tion of the global stiffness matrix in addition to the storage of
nonzero elements. Nearly 0.018 and 3.87 GB are required to
store the row and column information, respectively. Second,
the 45 submatrices for each element are diagonal, i.e., only
(n+ 1)3 nonzero elements of each submatrix must be stored.

5 Numerical examples

Three numerical examples are provided to validate the ef-
ficiency of EBE-SEM for teleseismic wave modeling. All
three examples use the Gaussian source–time function with
a cutoff frequency of 2 Hz (Tong et al., 2014a).

5.1 Benchmark for the 1-D crust–upper-mantle model

Except for the model parameters presented in Sect. 4, the
material parameters are shown in Table 2; the incidence angle
is 15◦, and the azimuth angle is 100◦. The cross section of
the plane-wave front with the Moho is located at (−400 km,
0 km, 30 km) at the initial time t = 0. A seismic station is
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the errors are multiplied by 20.
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Table 1. Memory requirements of EBE-SEM and the conventional SEM for teleseismic wave modeling. All the values are stored in memory
with single float precision. GB denotes gigabyte.

Method Stiffness matrix

〈
−

∑
e∈BP,B

(
T e(M)−1KeT e (U t)

)〉
AC,B

〈UFK〉AP,B

EBE-SEM 1.57 GB 6.56 GB 6.56 GB
General SEM 38.76 GB 6.56 GB 6.56 GB

0

2.5

5

7.5

10
104

242 8 14 20

Figure 5. Parallel efficiency of the EBE-SEM. The red line denotes
the theoretical CPU time, and the blue line with circles represents
the actual CPU times. The red arrows designate the abnormal CPU
times compared with the neighboring CPU times.

Table 2. Material parameters of the crust–upper-mantle model.

Density ρ VP VS
(kgm3) (ms−1) (ms−1)

Crust 2700 5800 3200
Mantle 3500 8045 4500

located at (60 km, 60 km, 0 km). The computed results are
shown in Figs. 3–5.

Figure 3 shows snapshots at four instants. When t = 10 s,
the plane wave is still outside the domain (Fig. 3a–c). When
t = 16 s, the incident plane wave enters the lower layer of
the model (Fig. 3d–f). When t = 18 s, the transmitted and
reflected P waves are very clear in the plane at y = 50 km
(Fig. 3h). Figure 3i clearly illustrates that the wavelength in
the upper mantle is greater than that in the crust because the
velocity of the upper mantle is approximately 1.39 times the
velocity of the crust. When t = 22 s, the transmitted P wave
is reflected by the free surface, and the Moho-reflected waves
are propagating outside the model (Fig. 3k).

To qualitatively evaluate the accuracy of EBE-SEM for
teleseismic wave modeling, the synthetic seismology at the
station is compared with the reference solution, which is gen-
erated by the FK technique. The results are shown in Fig. 4.
As depicted in Fig. 4a, the synthetic and reference waveforms
show excellent agreement. The direct wave with the largest
amplitude is followed by the converted S wave and the crust
multiples with relatively small amplitudes. Although the am-
plitudes of the crust multiples are small, their phases, ampli-

tudes, and travel times are correctly modeled. The error curve
is shown in the right panel of Fig. 4. The maximum relative
difference between the numerical solution and the reference
solution is less than 5 %, although the numerical method uses
only fourth-order interpolation in the space and nearly one
spectral-element sampling for the minimal wavelength.

The computation was performed on a workstation with 2
Intel Xeon CPUs (E5-2680 v3) and 128 GB of RAM, and
24 CPU cores were used. The master-slave communication
pattern is used in our parallel algorithm, which is similar
to that of Komatitsch and Tromp (2002). The parallel effi-
ciency is shown in Fig. 5. Because the master–slave commu-
nication pattern requires at least two CPU cores to perform
the parallel algorithm, the computation time of single CPU
core is not shown in Fig. 5. When 2 CPU cores are used, the
amount of communication between the CPU cores is negli-
gible compared to the amount of computation. If we denote
the CPU time when 2 CPU cores are used in parallel compu-
tation as T2, the CPU time of n CPU cores can be estimated
by Tn = 2

n
T2. The red line in Fig. 5 represents the estimated

CPU times (theoretical times), and the blue line with circles
is the practical CPU times. It can be clearly observed that the
actual CPU times are extremely close to the theoretical times,
even if the number of CPU cores is 24. The red arrows in
Fig. 5 indicate the abnormal CPU times. This phenomenon is
attributed to the excessive communication amount when the
numbers of CPU cores are 18 and 19. However the anomaly
is not large compared with the neighboring CPU times.

5.2 Plane-wave incidence to a 3-D model

To demonstrate that EBE-SEM works well in 3-D hetero-
geneous models, an abnormal structure with cube shape of
an additional 15 % plus wave speeds and density are added
at the center of the model in Fig. 1. The size of the abnor-
mal structure is 20km× 20km× 20km. Except for velocity
structure, the other computational parameters are the same as
those of the first numerical example. The simulation results
are shown in Fig. 6.

The black arrows in the upper plots of Fig. 6 indicate the
distortion of the wave front because of the velocity anomaly
in the media. Because of the positive velocity anomaly, the
distorted wave front travels faster than the undistorted plane
wave. The lower plots in Fig. 6 show strong scattered waves.
As the yellow arrows indicates, the strong scattered waves
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Figure 6. Snapshots in a heterogeneous model. The snapshots in the upper and lower panels are taken at t = 18 and 22 s, respectively. The
left, middle, and right panels are snapshots of planes at x = 50 km, y = 50 km, and z= 30 km, respectively. The black arrows in the upper
plots indicate the distortion of the wave front because of the velocity anomaly in the media. The yellow arrows in (a) and (b) indicate the
scattered waves. The yellow arrows in (d) and (e) denote the scattered waves that are efficiently absorbed by the constructed PML ABC. The
color scale is shown on the right side of the figure.

do not reflect back to the interior of the model because of the
efficiency of the PML ABC used in this paper.

5.3 Teleseismic waveform misfit gradient

One key advantage of the EBE-SEM is its convenience for
constructing the misfit gradient because the element stiffness
matrix can easily be assembled based on the tensor product of
the submatrices. To illustrate this advantage, we first define
the misfit function:

E(m)=
1
2

∑
s

∑
r

T∫
0

[d (t,xr ;xs)− s (t,xr ;xs)]2dt, (42)

where m= (lnρ, lnλ, lnµ) represents model parameters, xr
is the station location, xs is the teleseismic incident parame-
ters, d is the observed dataset, and s is the synthetic dataset.
The cross section between the plane wave and the Moho at
y = 0, the incident angle, and the azimuth angle constitute
the teleseismic incident parameters. To simplify the discus-
sion, this example only considers one source and one station.
Based on the continuous adjoint method discussed by Ficht-
ner (2011), the adjoint equation is

ρẅt−∇ ·
[
λ(∇ ·wt)I+µ

(
∇wt+∇wT

t

)]
= (d (T − t,xr ;xs)− s (T − t,xr ;xs))δ (x− xr) ,

(43)

where wt is the adjoint total wave field. The misfit gradient
∇mE obeys the following equations (Monteiller et al., 2015):

∂E

∂(lnρ)e
=−

NT∑
k=0

[
W e

t (T − k1t)M
eÜ e

t (k1t)1t
]
, (44)

∂E

∂(lnλ)e
=−

NT∑
k=0

[
λeW

e
t (T − k1t)K

e
λU

e
t (k1t)1t

]
, (45)

∂E

∂(lnµ)e
=−

NT∑
k=0

[
2µeW e

t (T − k1t)K
e
µU e

t (k1t)1t
]
,

(46)

where e represents the eth element; W is the discrete vec-
tor of w; Ke

λ and Ke
µ are the element stiffness matrices for

the misfit gradient calculation, which are presented in Ap-
pendix C; and NT is the total time step. Ke

λ and Ke
µ can also

be written as a combination of the tensor product of the sub-
matrices, which leads to an easy construction of the misfit
gradient. The misfit gradients can be written as the gradients
with respect to lnρ, lnVP , and lnVS by simple combinations
of Eqs. (44)–(46).

We consider the model in the second numerical example to
be the real model and the 1-D layered model in Fig. 1 as the
initial model. The observed and synthetic waveforms at the
station (red triangle in Fig. 1) are shown in Fig. 7a. As Fig. 7b
shows, the time-reversed waveform differences between the
observed data and the theoretical data act as the source term
in Eq. (43).

Figure 8 shows the constructed misfit gradients in the
plane at y = 61 km at two time slices. Because of the sin-
gularity of the source, large amplitudes are distributed in the
vicinity of the adjoint source. The misfit gradient no longer
has a banana–doughnut shape (Tromp et al., 2005) but rather
is similar to the Greek letter 3 (Fig. 8e, f) because of the
plane-wave source. The misfit gradient with respect to lnρ is
much weaker than those for lnVP and lnVS . The extremely
strong negative misfit gradients of lnVP distribute along the
ray path of the direct P wave.

6 Discussion and conclusions

Teleseismic wave adjoint tomography has the ability to im-
age the deep structure of the lithosphere. Thus, a highly ef-
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ficient method for teleseismic wave forward-modeling and
misfit calculation is important. In this work, the EBE-SEM
was specially tailored to teleseismic wave modeling and mis-
fit gradient calculation. In this approach, the PML ABC is
discretized by EBE-SEM, and the method can efficiently ab-
sorb scattered teleseismic waves. Teleseismic wave incident
conditions are constructed for the computational and PML
domains. An economic technique for boundary wave field
storage is introduced that can greatly reduce the required
amount of computer memory.

The numerical results from the first and second numeri-
cal examples demonstrate not only the efficiency of EBE-
SEM in modeling teleseismic waves but also the validity of
the constructed teleseismic wave incident boundary condi-
tion. As shown in the third numerical example, hardly any

extra effort is required to construct the misfit gradient. The
EBE-SEM has advantages over the traditional SEM in three
respects: the reduction in the required computer memory re-
quirement, easy calculation of the misfit gradient, and signif-
icant parallelization efficiency.

Code and data availability. The original source codes for the nu-
merical examples are written in C. To obtain these source codes,
please contact the first author (email: slliu@math.tsinghua.edu.cn)
or the corresponding author by email. The MPI library was down-
loaded from http://www.mpich.org/downloads.
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Appendix A: Element matrices for the computational
domain

The element matrices for the computational domain are listed
below:

Me
=

 Me
1

Me
1

Me
1

 , (A1)

Me
1 =

δij∫
�e

ρφiφjd�

 , (A2)

Ke
=

 Ke
11 Ke

12 Ke
13

Ke
21 Ke

22 Ke
23

Ke
31 Ke

32 Ke
33

 , (A3)

Ke
11 =

∫
�

(λ+ 2µ)
∂φi

∂x

∂φj

∂x
+µ

(
∂φi

∂y

∂φj

∂y
+
∂φi

∂z

∂φj

∂z

)
d�

 ,
(A4)

Ke
12 =

∫
�

λ
∂φi

∂x

∂φj

∂y
+µ

∂φi

∂y

∂φj

∂x
d�

 , (A5)

Ke
13 =

∫
�

λ
∂φi

∂x

∂φj

∂z
+µ

∂φi

∂z

∂φj

∂x
d�

 , (A6)

Ke
21 =

∫
�

µ
∂φi

∂x

∂φj

∂y
+ λ

∂φi

∂y

∂φj

∂x
d�

 , (A7)

Ke
22 =

∫
�

(λ+ 2µ)
∂φi

∂y

∂φj

∂y
+µ

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)
d�

 ,
(A8)

Ke
23 =

∫
�

λ
∂φi

∂y

∂φj

∂z
+µ

∂φi

∂z

∂φj

∂y
d�

 , (A9)

Ke
31 =

∫
�

µ
∂φi

∂x

∂φj

∂z
+ λ

∂φi

∂z

∂φj

∂x
d�

 , (A10)

Ke
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∫
�

µ
∂φi
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∂φj

∂z
+ λ

∂φi

∂z

∂φj

∂y
d�

 , (A11)

Ke
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∫
�

(λ+ 2µ)
∂φi

∂z

∂φj

∂z
+µ

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)
d�

 .
(A12)

Appendix B: Element matrices for the PML domain

The element matrices for the PML domain are listed below:

Ke
xx =

∫
�e

(λ+ 2µ)
∂φi

∂x

∂φj

∂x
d�

 , (B1)

Ke
yy =

∫
�e

µ
∂φi
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∂φj

∂y
d�
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Ke
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∫
�e

µ
∂φi
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∂φj
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d�

 , (B3)

Ke
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∫
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λ
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d�

 , (B4)

Ke
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∂φi
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 , (B5)

Ke
xz =

∫
�e

λ
∂φi

∂x

∂φj
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 , (B6)

Ke
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∫
�e
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∂φi
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∂φj
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 , (B7)

Ke
x =

∫
�e

(λ+ 2µ)d ′xφi
∂φj
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d�

 , (B8)

Ke
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∫
�e

µd ′yφi
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∂y
d�, (B9)

Ke
z =

∫
�e

µd ′zφi
∂φj

∂z
d�

 , (B10)

Dex =

2δij

∫
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dexρφiφjd�

 (B11)
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2δij

∫
�e

deyρφiφjd�
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2δij

∫
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 , (B13)

www.solid-earth.net/8/969/2017/ Solid Earth, 8, 969–986, 2017



984 S. Liu et al.: Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

Dexx =

δij∫
�e

ρ
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dex
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φiφjd�
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where de represents the average value of the damping coeffi-
cient on the element e.

Appendix C: Element matrices for the misfit gradient

In Eqs. (44) and (45), Ke
λ and Ke

µ are given by

Ke
λ =

 Ke
λ11 Ke

λ12 Ke
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Ke
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