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Abstract. Natural fault patterns formed in response to a
single tectonic event often display significant variation in
their orientation distribution. The cause of this variation is
the subject of some debate: it could be “noise” on underly-
ing conjugate (or bimodal) fault patterns or it could be in-
trinsic “signal” from an underlying polymodal (e.g. quadri-
modal) pattern. In this contribution, we present new statisti-
cal tests to assess the probability of a fault pattern having two
(bimodal, or conjugate) or four (quadrimodal) underlying
modes and orthorhombic symmetry. We use the eigenvalues
of the second- and fourth-rank orientation tensors, derived
from the direction cosines of the poles to the fault planes,
as the basis for our tests. Using a combination of the exist-
ing fabric eigenvalue (or modified Flinn) plot and our new
tests, we can discriminate reliably between bimodal (conju-
gate) and quadrimodal fault patterns. We validate our tests
using synthetic fault orientation datasets constructed from
multimodal Watson distributions and then assess six natural
fault datasets from outcrops and earthquake focal plane so-
lutions. We show that five out of six of these natural datasets
are probably quadrimodal and orthorhombic. The tests have
been implemented in the R language and a link is given to
the authors’ source code.

1 Introduction

1.1 Background

Faults are common structures in the Earth’s crust, and they
rarely occur in isolation. Patterns of faults, and other frac-
tures such as joints and veins, control the bulk transport and
mechanical properties of the crust. For example, arrays of

low-permeability (or “sealing”) faults in a rock matrix of
higher permeability can produce anisotropy of permeability
and preferred directions of fluid flow. Arrays of weak faults
can similarly produce anisotropy, i.e. directional variations,
of bulk strength. It is important to understand fault patterns,
and quantifying the geometrical attributes of any pattern is
an important first step. Faults, taken as a class of brittle shear
fractures, are often assumed to form in conjugate arrays, with
fault planes more or less evenly distributed about the largest
principal compressive stress, σ1, and making an acute angle
with it. This model, an amalgam of theory and empirical ob-
servation, predicts that conjugate fault planes intersect along
the line of σ2 (the intermediate principal stress) and the fault
pattern overall displays bimodal symmetry (Fig. 1a). A fun-
damental limitation of this model is that these fault patterns
can only ever produce a plane strain (intermediate principal
strain ε2 = 0), with no extension or shortening in the direc-
tion of σ2. This kinematic limitation is inconsistent with field
and laboratory observations that document the existence of
polymodal or quadrimodal fault patterns and which produce
triaxial strains in response to triaxial stresses (e.g. Aydin and
Reches, 1982; Reches, 1978; Blenkinsop, 2008; Healy et
al., 2015; McCormack and McClay, 2018). Polymodal and
quadrimodal fault patterns possess orthorhombic symmetry
(Fig. 1b and c).

Fault patterns are most often visualised through maps of
their traces and equal-angle (stereographic) or equal-area
projections of poles to fault planes or great circles. Azimuthal
projection methods (hereafter “stereograms”) provide a mea-
sure of the orientation distribution, including the attitude and
the shape of the overall pattern. However, these plots can
be unsatisfactory when they contain many data points or
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Figure 1. Schematic diagrams to compare conjugate fault patterns
displaying bimodal symmetry with quadrimodal and polymodal
fault patterns displaying orthorhombic symmetry. (a–c) Block di-
agrams showing patterns of normal faults and their relationship to
the principal stresses. (d–f) Stereographic projections (equal area,
lower hemisphere) showing poles to fault planes for the models
shown in (a)–(c). Natural examples of all three patterns have been
found in naturally deformed rocks.

the data are quite widely dispersed. Woodcock (1977) de-
veloped the idea of the fabric shape, based on the fabric or
orientation tensor of Scheidegger (1965). The eigenvalues of
this second-rank tensor can be used in a modified Flinn plot
(Flinn, 1962; Ramsay, 1967) to discriminate between clus-
ters and girdles of poles. These plots can be useful for three
of the five possible fabric symmetry classes – spherical, ax-
ial and orthorhombic – because the three fabric eigenvectors
coincide with the three symmetry axes. However, there are
issues with the interpretation of distributions that are not uni-
axial (Woodcock, 1977). We address these issues in this pa-
per. Reches (Reches, 1978, 1983; Aydin and Reches, 1982;
Reches and Dieterich, 1983) has exploited the orthorhom-
bic symmetry of measured quadrimodal fault patterns to ex-
plore the relationship between their geometric–kinematic at-
tributes and tectonic stress. More recently, Yielding (2016)
measured the branch lines of intersecting normal faults from
seismic reflection data and found they aligned with the bulk
extension direction – a feature consistent with their formation
as polymodal patterns. Bimodal (i.e. conjugate) fault arrays
have branch lines aligned perpendicular to the bulk extension
direction.

1.2 Rationale

The fundamental underlying differences in the symmetries
of the two kinds of fault pattern – (i) bimodal and bilateral
or (ii) and polymodal and orthorhombic – suggest that we
should test for this symmetry using the orientation distribu-
tions of measured fault planes. The results of such tests may
provide further insight into the kinematics and/or dynam-
ics of the fault-forming process. This paper describes new

Figure 2. Stereographic projections (equal area, lower hemisphere)
showing two natural fault datasets. (a) Poles to deformation bands
(small offset faults; n= 75) measured in Triassic sandstones at Gru-
inard Bay, NW Scotland (Healy et al., 2006a, b). These data were
collected from a small contiguous outcrop approximately 10 m2 in
area. (b) Poles to faults measured in Cretaceous chalk at Flambor-
ough Head, NE England (n= 346). These data have been taken
from a figure published in Peacock and Sanderson (1992) and re-
plotted in the same format as those from Gruinard.

tests for fault pattern orientation data and includes the pro-
gramme code for each test written in the R language (R Core
Team, 2017). The paper is organised as follows: Sect. 2 re-
views the kinematic and mechanical issues raised by conju-
gate and polymodal fault patterns, in particular the implica-
tions for their orientation distributions. Section 3 describes
the datasets used in this study, including synthetic and natu-
ral fault orientation distributions. Section 4 presents tests for
assessing whether an orientation distribution has orthorhom-
bic symmetry, including a description of the mathematics
and the R code. The examples used include synthetic orien-
tation datasets of known attributes (with and without added
“noise”) and natural datasets of fault patterns measured in a
range of rock types. A discussion of the issues raised is pro-
vided in Sect. 5 and is followed by a short summary. The
R code is available from http://www.mcs.st-andrews.ac.uk/
~pej/2mode_tests.html (last access: 17 August 2018).

2 Bimodal (conjugate) versus quadrimodal fault
patterns

Conjugate fault patterns should display bimodal or bilateral
symmetry in their orientation distributions on a stereogram
and ideally show evidence of central tendency about these
two clusters (Fig. 1d; Healy et al., 2015). Quadrimodal fault
patterns should show orthorhombic symmetry and, ideally,
evidence of central tendency about the four clusters of poles
on stereograms (Fig. 1e). More general polymodal patterns
should show orthorhombic symmetry with an even distribu-
tion of poles in two arcs (Fig. 1f). For data collected from
natural fault planes some degree of intrinsic variation, or
“noise”, is to be expected. Two natural example datasets are
shown in Fig. 2. The Gruinard dataset is from a small area
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Figure 3. Stereographic projections (equal area, lower hemisphere) showing the eight synthetic datasets designed to model conjugate (bi-
modal) fault patterns in this study. (a–d) Synthetic fault datasets derived from equal mixtures of two Watson distributions with mean pole
directions separated by an inter-fault dip angle of 60◦. These models represent a “low fault count” scenario, with n= 52 and κ (the Watson
dispersion parameter) varying from 10 to 100. (e–h) These models represent a “high fault count” scenario, with n= 360 and κ varying from
10 to 100.

Figure 4. Stereographic projections (equal area, lower hemisphere) showing the eight synthetic datasets designed to model quadrimodal
fault patterns in this study. (a–d) Synthetic fault datasets derived from equal mixtures of four Watson distributions with mean pole directions
separated by an inter-fault dip angle of 60◦ and a strike separation of 52◦. These models represent a “low fault count” scenario, with n= 52
and κ (the Watson dispersion parameter) varying from 10 to 100. (e–h) These models represent a “high fault count” scenario, with n= 360
and κ varying from 10 to 100.

(∼ 5 m2) in one outcrop of Triassic sandstone and shows
poles to deformation bands with small normal offsets (mil-
limetres to centimetres). The Flamborough dataset is taken
from Peacock and Sanderson (1992; their Fig. 2a) and shows
poles to normal faults in the Cretaceous chalk along a coast-
line section of about 1.8 km. The authors clearly state that
the approximately E–W orientation of the coastline may
have generated a sampling bias in the measured data (i.e. a
relative under-representation of E–W-oriented fault planes).
Both datasets illustrate the nature of the problem addressed
in this paper: given variable, incomplete and noisy data of

different sample sizes, how can we assess the symmetry of
the underlying fault pattern?

3 Datasets used in this study

3.1 Synthetic datasets

We use two sets of synthetic data to test our new statisti-
cal methods, both based on the Watson orientation distribu-
tion (Fisher et al., 1987 Sect. 4.4.4; Mardia and Jupp, 2000
Sect. 9.4.2). This is the simplest non-uniform distribution for
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Figure 5. Stereographic projections (equal area, lower hemisphere) showing the six natural datasets used in this study. All plots show poles to
faults, the majority of which are inferred to be normal. (a) Data from deformation bands measured in faulted Triassic sandstones at Gruinard
Bay, Scotland (Healy et al., 2006a, b). (b) Data from faults and measured in sandstones at Chimney Rock in the San Rafael Swell, Utah,
USA. Data digitised from Krantz (1989). (c) Data from faults measured in cliffs of Cretaceous chalk at Flamborough Head, NE England.
Data digitised from Peacock and Sanderson (1992). (d) Data from faults measured in the Apennines of central Italy. Data digitised from
Roberts (2007). (e) Data from focal mechanism nodal planes derived from the CMT catalogue for the Aegean region (Ekström et al., 2012).
(f) Data from focal mechanism nodal planes derived from the CMT catalogue for the Tibet region (Ekström et al., 2012).

Figure 6. Graphs showing the ratios of eigenvalues of the orientation matrices for the synthetic datasets (Flinn, 1962; Ramsay, 1967;
Woodcock, 1977). (a) Synthetic conjugate (i.e. bimodal; filled red symbols) and quadrimodal (hollow blue symbols) fault data. Note that the
conjugate and quadrimodal data lie on either side of the line k = 1, where k = loge(S1/S2)/loge(S2/S3). (b) Eigenvalue ratios from a Monte
Carlo simulation of conjugate fault orientations using the two Watson mixture model; 1000 simulations were run for each of four different κ
values (10, 20, 50 and 100; a total of 4000 data points) corresponding to the range of the discrete datasets shown in (a). (c) Eigenvalue ratios
from a Monte Carlo simulation of quadrimodal fault orientations using the four Watson mixture model; 1000 simulations were run for each
of four different κ values (10, 20, 50 and 100; a total of 4000 data points) corresponding to the range of the discrete datasets shown in (a).

describing undirected lines, and has probability density

f (±x;µ,κ) ∝ exp
{
κ
(
µT x

)2
}
,

where κ is a measure of concentration (low κ is dispersed,
high κ is concentrated) and µ is the mean direction. To ob-
tain a synthetic conjugate fault pattern dataset of size n we
combined two datasets of size n/2, each from a Watson dis-
tribution, the two mean directions being separated by 60◦.

We generated synthetic bimodal datasets with κ = 10, 20, 50
and 100 and n= 52 and 360 (Fig. 3). This variation in κ pro-
vides a useful range of concentrations encompassing those
observed in measured natural data and can be considered as
a measure of “noise” within the distribution. Many natural
datasets are often small due to limitations of outcrop size,
and the two sizes of synthetic distribution (n= 52 and 360)
allow for this fact. For synthetic polymodal fault patterns,
we generated quadrimodal datasets of size n by combining
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four Watson distributions of size n/4 with their mean direc-
tions separated by 60◦ in dip (as above) and 52◦ in strike (see
Healy et al., 2006a, b). By varying n from 52 to 360 we cater
for comparisons with smaller and larger natural datasets; as
for the synthetic bimodal datasets, we varied κ in the range
of 10, 20, 50 and 100 (Fig. 4).

3.2 Natural datasets

We use six natural datasets of fault plane orientations from
regions that have undergone or are currently undergoing ex-
tension; i.e. we believe the majority of these faults display
normal kinematics (Fig. 5). The Gruinard dataset (Fig. 5a)
is from Gruinard Bay in NW Scotland (UK) and featured in
previous publications (Healy et al., 2006a, b). The most im-
portant thing about this dataset is that the fault planes were all
measured from a small area (∼ 5 m2) of contiguous outcrop
of a single sandstone bed. This means it is highly unlikely
that the orientation data are affected by any local stress vari-
ations and subsequent possible rotations. The data were mea-
sured in normal-offset deformation bands with displacements
of a few millimetres to centimetres. The next three datasets
have been digitised from published papers on normal faults in
Utah (Fig. 5b; Chimney Rock; Krantz, 1989), northern Eng-
land (Fig. 5c; Flamborough; Peacock and Sanderson, 1992)
and Italy (Fig. 5d; central Italy; Roberts, 2007). In each case,
the published stereograms were digitised to extract Cartesian
(x, y) coordinates of the poles to faults, and these were then
converted to plunge and plunge direction using the standard
equations for the projection used (e.g. Lisle and Leyshon,
2004). Slight differences in the number of data plotted for
each of these three with respect to the original publication
arise due to the finite resolution of the digitised image of the
stereograms. The last two datasets for the Aegean and Tibet
(Fig. 5e and f) are derived from earthquake focal mechanisms
using the CMT catalogue (Ekström et al., 2012). In each
case the steepest-dipping nodal plane was selected in the ab-
sence of convincing evidence for low-angle normal faulting
in these regions.

4 Testing for orthorhombicity

4.1 Eigenvalue fabric (modified Flinn) plots

We calculated the second-rank orientation tensor (Wood-
cock, 1977) for each of the synthetic datasets shown in
Figs. 3 and 4 (bimodal and quadrimodal, respectively). The
eigenvalues of this tensor (S1, S2 and S3, where S1 is the
largest and S3 is the smallest) are used to plot the data on a
modified Flinn diagram (Fig. 6), with loge(S2/S3) on the x
axis and loge(S1/S2) on the y axis. The points correspond-
ing to the bimodal (shown in red) and quadrimodal (shown in
blue) datasets lie in distinct areas. Bimodal (conjugate) fault
patterns lie below the 1 : 1 line, on which S1/S2 = S2/S3.
This is due to the S3 eigenvalue being very low (near 0)

for these distributions, which for high values of κ begin to
resemble girdle fabric patterns confined to the plane of the
eigenvectors corresponding to eigenvalues S1 and S2 (Wood-
cock, 1977). In contrast, the quadrimodal patterns lie above
the 1 : 1 line, as S3 for these distributions is large relative to
the equivalent bimodal pattern (i.e. for the same values of κ
and n). The modified Flinn plot therefore provides a poten-
tially rapid and simple way to discriminate between bimodal
(conjugate) and quadrimodal fault patterns. Note, however,
that the spread of the bimodal patterns in Fig. 6a along the
x axis is a function of the κ value of the underlying Wat-
son distribution, with low values of κ – low concentration,
highly dispersed – lying closer to the origin. Dispersed or
noisy bimodal (conjugate) patterns may therefore lie closer
to quadrimodal patterns (see the discussion below).

4.2 Randomisation tests using second- and fourth-rank
orientation tensors

4.2.1 Underlying distributions

To get a suitable general setting for our tests, we formalise
the construction of the bimodal and quadrimodal datasets
considered in Sect. 3.1. Whereas the datasets considered in
Sect. 3.1 necessarily have equal numbers of points around
each mode, for datasets arising from the distributions here,
this is true only on average. The very restrictive condition of
having a Watson distribution around each mode is relaxed
here to that of having a circularly symmetric distribution
around each mode.

Suppose that axes ±x1, . . .± xn are independent observa-
tions from some distribution of axes. If the parent distribution
is thought to be multimodal, then two appealing models are
the following.

i. The bimodal equal mixture model can be thought of in-
tuitively as obtained by “pulling apart” a unimodal dis-
tribution into two equally strong modes, angle α apart.
More precisely, the probability density is

f2 (±x; {±µ1,±µ2})=
1
2
{g (±x; ±µ1)

+ g (±x; ±µ2)} , (1)

where ±µ1 and ±µ2 are axes angles, α apart, and
g(·;±µ) is the probability density function of some ax-
ial distribution that has rotational symmetry about its
mode ±µ.

ii. The quadrimodal equal mixture model can be thought
of intuitively as obtained by “pulling apart” a bimodal
equal mixture distribution into two bimodal equal mix-
ture distributions with planes angle γ apart so that it has
four equally strong modes. More precisely, the proba-
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Table 1. The p values and corresponding decisions at the 5 % significance level of randomisation tests of bimodality for bimodal equal
mixtures of synthetic Watson distributions; n is the total sample size and B = 999 further randomisation samples per dataset (see text for
details).

True number S1–S3 test S11–S33 test

of modes κ n p value No. of modes p value No. of modes

2 10 52 0.37 2 0.51 2
2 10 360 0.27 2 0.33 2
2 20 52 0.66 2 0.69 2
2 20 360 0.20 2 0.25 2
2 50 52 0.45 2 0.48 2
2 50 360 0.35 2 0.42 2
2 100 52 0.34 2 0.41 2
2 100 360 0.60 2 0.63 2

Table 2. The p values and corresponding decisions at the 5 % significance level of randomisation tests of bimodality for quadrimodal equal
mixtures of Watson distributions; n is the total sample size and B = 999 further randomisation samples per dataset (see text for details).

True number S1–S3 test S11–S33 test

of modes κ n p value No. of modes p value No. of modes

4 10 52 0.00 > 2 0.00 > 2
4 10 360 0.00 > 2 0.00 > 2
4 20 52 0.00 > 2 0.00 > 2
4 20 360 0.00 > 2 0.00 > 2
4 50 52 0.00 > 2 0.00 > 2
4 50 360 0.00 > 2 0.00 > 2
4 100 52 0.00 > 2 0.00 > 2
4 100 360 0.00 > 2 0.00 > 2

bility density is

f4 (±x; {±µ1,±µ2} , γ )=
1
4

∑
ε,η
g
(
±x; ±µε,η

)
, (2)

where

µε,η = č (cν1+ εsν2)+ ηšν3, (3)

with c = cos(α/2) ,s = sin(α/2) , č = cos(γ /2) , š =
sin(γ /2),cos(α)= µ1

′µ2 and (ε, η) runs through
{±1}2. If γ = 0, then Eq. (3) reduces to Eq. (2).

The problem of interest is to decide whether the parent
distribution is Eq. (1) or Eq. (2).

4.2.2 The tests

Given axes ±x1, . . .± xn we denote by ±ν̂1 and ±ν̂3, re-
spectively, the principal axes of the orientation tensor corre-
sponding to the largest and smallest eigenvalues, S1 and S3.
We can also define

S11 = n
−1
∑n

i=1

(
ν̂1
′xi
)4
,S33 = n

−1
∑n

i=1

(
ν̂3
′xi
)4
.

S1 and S3 are the second moments of±x1, . . .±xn along the
first and third principal axes, respectively, whereas S11 and

S33 are the fourth moments along these principal axes. There-
fore, both S1–S3 and S11–S33 are measures of the anisotropy
of ±x1, . . .± xn.

Some algebra shows that

T1− T3 = cos(γ )
{
E
[
x2
]
−E

[
ν2
]}
, (4)

where T1 and T3 are the population versions of S1 and S3,
respectively, and ±x and ±ν are the components of ±x in
the quadrimodal equal mixture model Eq. (2) along its first
and third principal axes, respectively. Then Eq. (4) gives

cos(γ )≈
S1− S3

E
[
x2
]
−E

[
ν2
] ,

and therefore it is sensible to

reject bimodality for small values ofS1− S3. (5)

Further algebra shows that

T11− T33 = cos(γ )
{
E
[
x4
]
−E

[
ν4
]}
, (6)

where T11 and T33 are the population versions of S11 and S33,
respectively. Then Eq. (6) gives

cos(γ )≈
S11− S33

E
[
x4
]
−E

[
ν4
] ,
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Table 3. The p values and corresponding decisions at the 5 % significance level of randomisation tests of bimodality for natural datasets; n
is the total sample size and B = 999 further randomisation samples per dataset (see text for details).

Field S1–S3 test S11–S33 test

location n p value No. of modes p value No. of modes

Gruinard 75 0.00 > 2 0.00 > 2
Chimney Rock 86 0.99 2 1.00 2
Flamborough 346 0.00 > 2 0.00 > 2
Central Italy 1182 0.00 > 2 0.00 > 2
Aegean 156 0.00 > 2 0.00 > 2
Tibet 168 0.00 > 2 0.00 > 2

and so it is sensible to

reject bimodality for small values ofS11− S33. (7)

The significance of tests (5) or (7) is assessed by compar-
ing the observed value of the statistic with the randomisation
distribution. This is achieved by creating further B pseudo-
samples (for a suitable positive integer B), in each of which
the ith observation is obtained from ±xi by rotating ±xi
about the closer of the two fitted modes through a uniformly
distributed random angle. The p value is taken as the propor-
tion of the B+1 values of the statistic that are smaller than
(or equal to) the observed value.

4.3 Results for synthetic datasets

Table 1 gives the p values and corresponding decisions (at
the 5 % level) obtained by applying the tests to some syn-
thetic datasets simulated from the bimodal equal mixture
model. Table 2 does the same for some datasets simulated
from the quadrimodal equal mixture model. In each case,
both tests come to the correct conclusion.

4.4 Results for natural datasets

Table 3 gives the p values and corresponding decisions (at
the 5 % level) obtained by applying the tests to the natural
datasets discussed in Sect. 3.2. For each dataset, the two tests
come to the same conclusion, which is plausible in view of
Fig. 5. Figure 7 shows the fabric eigenvalue plot for these
datasets.

5 Discussion

In the analysis described above and the tests we performed
with synthetic datasets, we assumed that bimodal and quadri-
modal Watson orientation distributions provide a reasonable
approximation to the distributions of poles to natural fault
planes. In terms of the underlying statistics this is unproven,
but we know of no compelling evidence in support of alter-
native distributions. New data from carefully controlled lab-
oratory experiments on rock or analogous materials might

Figure 7. Eigenvalue ratio plot for the natural datasets shown in
Fig. 5. All but one dataset (central Italy) lie above the line for k = 1.
The best-constrained quadrimodal fault dataset (Gruinard) has the
highest ratio of loge(S1/S2).

provide important constraints for the underlying statistics of
shear fracture plane orientations.

We have tested our new methods on synthetic and natural
datasets. Arguably, six natural datasets are insufficient to es-
tablish firmly the primacy of polymodal orthorhombic fault
patterns in nature (Fig. 7). However, we reiterate the key rec-
ommendation from Healy et al. (2015): to be useful for this
task, fault orientation datasets need to show clear evidence
of contemporaneity among all fault sets through tools such
as matrices of cross-cutting relationships (Potts and Reddy,
2000). In addition, as shown above, larger datasets (n> 200)
tend to show clearer patterns. Scope exists to collect fault or
shear fracture orientation data from sources other than out-
crops: Yielding (2016) has measured normal faults in seismic

www.solid-earth.net/9/1051/2018/ Solid Earth, 9, 1051–1060, 2018
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Figure 8. Eigenvalue ratio plots of synthetic data to illustrate the impact of dispersion on the ability of this plot to discriminate between
conjugate (bimodal) and quadrimodal fault data. (a) Monte Carlo ensemble of 2000 conjugate fault populations (mixtures of two equal
Watson distributions), with κ varying from 5 (dark blue) to 10 (yellow). (b) Monte Carlo ensemble of 2000 quadrimodal fault populations
(mixtures of four equal Watson distributions), with κ varying from 5 (dark blue) to 10 (yellow). (c) Data from (a) and (b) merged onto the
same plot and enlarged to show the region close to the origin. Note the considerable overlap between the conjugate (bimodal) data with the
quadrimodal data, especially for κ = 5 (dark blue).

Figure 9. Eigenvalue ratio plots comparing the relative performance of the two tests proposed in this paper. The red lines denote p values for
either test at p = 0.05, and the diagonal black line is the locus of points where p(S1−S3)= p(S11−S33). (a) For bimodal synthetic datasets
with size (n) varying from 32–360 and concentration (κ) varying from 5–100, both tests perform well and reject the majority of the datasets
(p� 0.05). The p values for the S11–S33 test are, on average, slightly higher than those for the S1–S3 test across a range of dataset sizes
and concentrations. (b) For quadrimodal synthetic datasets, many of the p values are < 0.05, and this is especially true for the larger datasets
(higher n, green–yellow). Smaller datasets (blue) can return p values > 0.05.

reflection data from the North Sea and Ghaffari et al. (2014)
measured faults in centimetre-sized samples deformed in the
laboratory and then scanned by X-ray computerised tomog-
raphy.

The Chimney Rock dataset is probably not orthorhombic
according to the two tests and lies close to the line for k = 1
in Fig. 7. It is interesting to note that the Chimney Rock
data, and other fault patterns from the San Rafael area of
Utah, are considered as displaying orthorhombic symmetry
by Krantz (1989) and Reches (1978). However, a subsequent
reinterpretation by Davatzes et al. (2003) has ascribed the
fault pattern to overprinting of earlier deformation bands by
later sheared joints. This may account for the inconsistent re-
sults of our tests when compared to the position of the pattern

on the eigenvalue plot. The central Italy dataset (taken from
Roberts, 2007) is very large (n= 1182) and the data were
measured over a wide geographical area. The dataset lies be-
low the line for k = 1 on the fabric eigenvalue plot (Fig. 7),
which might suggest it is bimodal. However, for fault planes
measured over large areas there is a significant chance that
regional stress variations may have produced systematically
varying orientations of fault planes.

A final point concerns dispersion (noise) in the data. Syn-
thetic datasets of bimodal (conjugate) and quadrimodal pat-
terns with low values of κ , the Watson concentration param-
eter, fall into overlapping fields on the eigenvalue fabric plot.
We ran 1000 Monte Carlo simulations of bimodal and quad-
rimodal Watson distributions each with n= 52 poles and
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κ = 5 and 10, and the results are shown in Fig. 8. Bimodal
(conjugate) datasets for these dispersed and sparse patterns
lie across the 1 : 1 line on the fabric plot (Fig. 8a; κ = 5 in
blue, κ = 10 in yellow). Quadrimodal datasets for these pa-
rameters are also noisy, with some fabrics lying below the
1 : 1 line (Fig. 8b; κ = 5 in blue, κ = 10 in yellow). Under
these conditions of low κ (dispersed) and low n (sparse), it
can be difficult to separate bimodal (conjugate) from quad-
rimodal fault patterns. However, we assert that this may not
matter: a noisy and dispersed “bimodal” conjugate fault pat-
tern is in effect similar to a polymodal pattern; i.e. slip on
these dispersed fault planes will produce a bulk 3-D triaxial
strain.

To assess the relative performance of the two tests pre-
sented in this paper, we generated synthetic bimodal and
quadrimodal distributions and compared the resulting p val-
ues from applying both the S1–S3 and S11–S33 tests to the
same data. The results are shown in Fig. 9, displayed as
cross-plots of p(S1–S3) versus p(S11–S33). While there is
a slight tendency for the p values from the S11–S33 test to
exceed those of the S1–S3 test (i.e. the points tend on average
to plot above the 1 : 1 line), neither of the tests can be said to
be “better” or more “accurate”. We therefore recommend the
S1–S3 test as simpler and sufficient.

6 Summary

Bimodal (conjugate) fault patterns form in response to a bulk
plane strain with no extension in the direction parallel to the
mutual intersection of the two fault sets. Quadrimodal and
polymodal faults form in response to bulk triaxial strains
and constitute the more general case for brittle deforma-
tion on a curved Earth (Healy et al., 2015). In this contribu-
tion, we show that distinguishing bimodal from quadrimodal
fault patterns based on the orientation distribution of their
poles can be achieved through the eigenvalues of the second-
and fourth-rank orientation tensors. We present new meth-
ods and new open source software written in R to test for
these patterns. Tests on synthetic datasets in which we con-
trolled the underlying distribution to be either bimodal (i.e.
conjugate) or quadrimodal (i.e. polymodal, orthorhombic)
demonstrate that a combination of fabric eigenvalue (mod-
ified Flinn) plots and our new randomisation tests can suc-
ceed. Applying the methods to natural datasets from a vari-
ety of extensional normal-fault settings shows that five out
of the six fault patterns considered here are probably poly-
modal. The most tightly constrained natural dataset (Gru-
inard) displays clear orthorhombic symmetry and is unequiv-
ocally polymodal. Most map-scale natural faults evolve and
grow through interaction, splaying and coalescence, and in
some cases through reactivation under stress rotation. Vari-
ation within fault orientation datasets is therefore inherent.
Statistical tests can help to discern this variation and guide
the interpretation of any underlying pattern. We encourage

other workers to apply these tests to their own data, assess
the symmetry in the brittle fault pattern and to consider what
this means for the causative deformation.
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