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Abstract. I present in this work the GHOST (Geoscientific
Hollow Sphere Tessellation) software which allows for the
fast generation of computational meshes in hollow sphere
geometries counting up to 100 million cells. Each mesh is
composed of concentric spherical shells which are built out
of quadrilaterals or triangles. I focus here on three commonly
used meshes used in geodynamics/geophysics and demon-
strate the accuracy of shell surfaces and mesh volume mea-
surements as a function of resolution. I further benchmark
the built-in gravity and gravitational potential procedures in
the simple case of a constant density geometry and finally
show how the produced meshes can be used to visualise the
S40RTS mantle tomography model. The code is open source
and is available on the GitHub sharing platform.

1 Introduction

In the last 40 years, numerical mantle convection studies
have improved our understanding of mantle dynamics as a
whole (Schubert et al., 2001). While early studies looked
at aspects of fluid dynamics (Busse, 1975; Christensen and
Harder, 1991), more recent studies have been exploring a
wide variety of topics – for example, mantle mixing (van
Keken et al., 2002), melting (Tackley, 2012; van Heck et al.,
2016; Dannberg and Heister, 2016), the effect of plate mo-
tion history on the longevity of deep mantle heterogeneities
(Bull et al., 2014) or assimilating lithosphere and slab history
in 4-D Earth models (Bower et al., 2015).

To a first approximation, the Earth is a sphere: the Earth’s
polar diameter is about 43 km shorter than its equatorial di-
ameter, a negligible difference of about 0.3 %. As a conse-
quence, modelling physical processes which take place in the
planet require the discretisation of a sphere. Furthermore, be-
cause core dynamics occur on vastly difference timescales

than mantle dynamics, mantle modelling usually leaves the
core out, thereby requiring simulations to be run on a hol-
low sphere mesh (with the noticeable exception of Gerya and
Yuen, 2007).

Although so-called latitude–longitude grids would seem
appealing, they suffer from the convergence of meridians
at the poles (resulting in oversampling at poles) and the
juxtaposition of triangles near the poles and quadrilaterals
elsewhere. As a consequence, more regular, but more com-
plex, grids have been designed over the years which tessel-
late the surface of the sphere into triangles or quadrilater-
als (sometimes overlapping). There is the “cubed sphere”
(Ronchi et al., 1996; Choblet et al., 2007), the yin–yang
grid (Kageyama and Sato, 2004; Yoshida and Kageyama,
2004; Kameyama et al., 2008; Tackley, 2008; Crameri and
Tackley, 2014, 2016), the spiral grid (Hüttig and Stemmer,
2008), an icosahedron-based grid (Baumgardner and Freder-
ickson, 1985; Tabata and Suzuki, 2002) or a grid composed
of 12 blocks further subdivided into quadrilaterals (Zhong
et al., 2000) as used in the CitcomS code. Note that Oldham
et al. (2012) have also presented a method for generating a
numerical grid on a spherical surface which allows the grid
to be based on several different regular polyhedrons (includ-
ing the octahedron, cube, icosahedron and rhombic dodeca-
hedron).

How such meshes are built is often not discussed in the
literature. It is a tedious exercise of three-dimensional geom-
etry and it can be time-consuming, especially the connectiv-
ity array generation. In this paper, I present an open-source
mesh generator for three hollow sphere meshes: the “cubed
sphere” mesh, the CitcomS mesh and the icosahedral mesh.

I first present the basic workflow which has been imple-
mented to arrive at such meshes; then, I showcase its ef-
ficiency and how accurate surfaces and volumes are repre-
sented. Finally, I provide a simple example of gravity and
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Figure 1. Reference square and triangle meshes at level 5 .

Figure 2. From left to right: HS06, HS12 and HS20 shells coloured
by block number.

gravity potential calculations on such meshes and compare
the obtained values with the analytical solution derived in
the Appendix.

2 Building the hollow sphere meshes

The open-source code library GHOST allows three differ-
ent types of hollow sphere meshes to be built, i.e. meshes
bounded by two concentric spheres:

– The cubed sphere (HS06) is composed of six
blocks which are themselves subdivided into Nb×

Nb quadrilateral-shaped cells (Sadourny, 1972; Ronchi
et al., 1996; Hernlund and Tackley, 2003; Burstedde
et al., 2013). Four types of cubed sphere meshes have
been proposed: the conformal, elliptic, gnomonic and
spring types (Putman and Lin, 2007). However, only
gnomonic meshes are considered here: these are ob-
tained by inscribing a cube within a sphere and expand-
ing to the surface of the sphere. The cubed sphere has re-
cently been used in large-scale mantle convection sim-
ulation in conjunction with adaptive mesh refinement
(Alisic et al., 2012; Burstedde et al., 2013).

– The CitcomS mesh (HS12) is composed of 12 blocks
also subdivided into Nb×Nb quadrilateral-shaped cells
(Zhong et al., 2000; Stemmer et al., 2006; Zhong et al.,
2008; Arrial et al., 2014). Note that ASPECT (Kron-
bichler et al., 2012; Heister et al., 2017), a relatively
new code aimed at superseding CitcomS, can generate
and use this type of mesh (Thieulot, 2017) but is not
limited to it.

Figure 3. (a) HS06 mesh composed of 6 blocks containing each
63 cells; (b) HS12 mesh composed of 12 blocks containing each
63 cells; (c) HS20 mesh composed of 20 blocks containing each 63

cells.

Table 1. Number of nodes (N ) and elements/cells (Nel) for the three
types of meshes and for various levels. HS06: cubed sphere; HS12:
CitcomS mesh; HS20: icosahedral mesh.

Type Level N Nel Structure

HS06 2 78 48 6× 23

HS06 4 490 384 6× 43

HS06 8 3474 3072 6× 83

HS06 16 26 146 24 576 6× 163

HS06 32 202 818 196 608 6× 323

HS06 64 1 597 570 1 572 864 6× 643

HS06 128 12 681 474 12 582 912 6× 1283

HS06 256 101 057 026 100 663 296 6× 2563

HS12 2 150 96 12× 23

HS12 4 970 768 12× 43

HS12 8 6930 6144 12× 83

HS12 16 52 258 49 152 12× 163

HS12 32 405 570 393 216 12× 323

HS12 48 1 354 850 1 327 104 12× 483

HS12 64 3 195 010 3 145 728 12× 643

HS12 128 25 362 690 25 165 824 12× 1283

HS12 256 202 113 538 201 326 592 12× 2563

HS20 2 126 160 20× 23

HS20 4 810 1280 20× 43

HS20 8 5778 10 240 20× 83

HS20 16 43 554 81 920 20× 163

HS20 32 337 986 655 360 20× 323

HS20 64 2 662 530 5 242 880 20× 643

HS20 128 21 135 618 41 943 040 20× 1283

HS20 256 168 428 034 335 544 320 20× 2563
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Figure 4. Measured times to build and assemble the mesh as a func-
tion of its number of nodes (N ).
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Figure 5. Relative shell area error as a function of its number of
nodes (N ).

– The icosahedral mesh (HS20) is composed of 20 tri-
angular blocks (Baumgardner and Frederickson, 1985;
Baumgardner, 1985) subdivided into triangles, which
is used in the TERRA code (Bunge et al., 1996, 1997,
1998; Davies et al., 2013).

Given the regularity and symmetry of these meshes, deter-
mining the location of the mesh nodes in space is a relatively
straightforward task. Building the mesh connectivity in an
efficient manner is where the difficulty lies.

The approach to building all three meshes is identical:

1. A reference square or triangle is populated with cells, as
shown in Fig. 1, parameterised by a level l: the square
is subdivided into l× l quadrilaterals, while the trian-
gle is subdivided into l2 triangles (implemented in the
block_node_layout subroutine).

2. This reference square or triangle is then replicated
nblock times (6, 12 or 20) and mapped onto a portion of
a unit sphere. The blocks are such that their union cov-
ers a full sphere, but they cannot overlap except at the
edges; see Fig. 2. This takes place in the map_blocks
subroutine.

3. All block meshes are then merged together to generate
a shell mesh. This task is rather complex as duplicate
nodes must be removed and all connectivity arrays of
the blocks must then be mended accordingly. This task
is carried out in the merge_blocks subroutine.

4. Shell meshes are replicated nlayer+1 times out-
wards with increasing radii. The nlayer shells are
then merged together to form a hollow sphere
mesh, as shown in Fig. 3. This is carried out in
build_hollow_sphere.

More information on these steps is available in the manual
of the code. In Table 1, the number of nodes and cells for
a variety of resolutions for all three mesh types is reported.
Looking at the CitcomS literature of the past 20 years, we
find that the mesh data presented in this table cover the var-
ious resolutions used, e.g. 12× 483 (McNamara and Zhong,
2004; Arrial et al., 2014), 12×643 (Bull et al., 2014) 12×963

(Bull et al., 2010) and 12× 1283 (Becker, 2006; Weller and
Lenardic, 2016; Weller et al., 2016). Note that, in the case
of the HS06 and HS12 meshes, the mesh nodes are mapped
out to the 6 or 12 blocks following either an equidistant or
equiangular approach as shown in Fig. 6 (see Putman and
Lin, 2007 for details on both approaches).

It is also worth mentioning that the aspect ratio of the cells
usually influences the accuracy of the computed solution. As
such, the user should strive to generate a mesh where cells’
aspect ratios are (on average) close to unity by making nlayer
a function of l.

2.1 Mesh generation performance

The total time to generate the coordinates and the connectiv-
ity of the final hollow sphere mesh was timed for all three
mesh types and is shown in Fig. 4. The reported times scale
ideally with the number of nodes, i.e. linearly or O(N), up
to 100 million mesh nodes and a mesh containing a million
or so nodes can be built in less than a second on a laptop.

2.2 Areas and volume measurements

The area of the shell of unit radius can be calculated by sum-
ming the areas of each cell. In the case of triangles, Heron’s
formula is used, which states that the area of a triangle whose
sides have lengths a, b and c is

A=
√
s(s− a)(s− b)(s− c), (1)

where s is the semi-perimeter of the triangle:

s = (a+ b+ c)/2. (2)

In the case of quadrilaterals, the four points composing
each of them are not necessarily coplanar and the definition
of the surface is ill-posed. Each quadrilateral is therefore de-
composed into four triangles sharing a vertex in the middle
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Figure 6. Elemental area for the (a) equiangular HS06 mesh, (b) equiangular HS12 mesh, (c) equidistant HS06 mesh, (d) equidistant
HS12mesh and (e) HS20 (level 7).

given by the barycentre of the four points. The area of each
quadrilateral is then approximated by the sum of the areas of
all four inscribed triangles.

The relative error on the shell outer area, eA = (Ameas−

Ath)/Vth, where Ameas is the total measured area and Ath =

4πR3
2 , is shown in Fig. 5, and the error is found to de-

crease linearly with the number of points for all three types
of meshes.

Figure 6 shows shells which approximately count the same
number of nodes. We see that the equiangular projection of
the nodes for the HS06 and HS12 meshes yields cells whose
area is homogenous in value compared to when the equidis-
tant projection is used.

Although the volume of the hexahedra could have been
computed directly with the formula of Grandy (1997), a
Gaussian quadrature rule is used since it is also needed in
the next section. The total volume of the spherical mesh is
given by

V =

∫ ∫ ∫
�

dV =
∑
c

∫ ∫ ∫
�c

dV, (3)

where � stands for the volume inside the spherical shell; �c
is the volume of a cell. The sum runs over all the cells c =
1, . . .Nel, and a 2×2×2 quadrature rule is used in each cell.

The measured hollow sphere mesh volume and its rela-
tive error eV = (Vmeas−Vth)/Vth, where Vmeas is the total
measured volume and Vth = 4π(R3

2 −R
3
1)/3, are shown in

Fig. 7a, b, and the error is found to decrease with the number
of points for all three types of meshes with a−2/3 exponent.

3 Gravity field and potential measurements

The gravity potential U can be computed by means of the
Poisson equation (∇2U = 4πGρ), where ρ is the density and
G is the gravitational constant (see Turcotte and Schubert,
2012, Chap. 5). The analytical solution of this equation in
the case of a constant density spherical shell is given in Ap-
pendix A.

The gravity vector and potential at location r ′ can also be
computed by means of volume integrals:

g(r ′)=

∫
�

G
ρ(r)

|r ′− r|3
(r ′− r)dr (4)

U(r ′)=−

∫
�

G
ρ(r)

|r ′− r|
dr, (5)

and both expressions can then be computed using the numer-
ical quadrature described in the previous section.

In what follows, I set the inner radius to R1 = 1 and the
outer radius to R2 = 2; the density of the material is ρ0 =

106 and G = 6.673848×10−11 m3 kg−1 s−2. Figures 8 and 9
show the gravity g = |g| and potential U measured at 256
points along a line between r = 0 and r = 4R2 for all three
mesh types. Data points align along the analytical curves,
and the error is found to decrease as a function of the mesh
resolution.

Solid Earth, 9, 1169–1177, 2018 www.solid-earth.net/9/1169/2018/
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Figure 7. (a) Measured total volume for all three shells as a function of the number of nodes (N ). (b) Corresponding total volume relative
error as a function of N .
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Figure 10. HS06 grid with 64 layers and level= 64. (a) δ lnVs at the surface of the model (R = 6346 km) and at depth down to the core
mantle boundary (R = 3480 km); (b) absolute density variation δρ (kg m−3).

4 Application: visualisation of a tomography dataset

The S40RTS model is one of the most widely used to-
mographic models of the mantle (Ritsema et al., 2011).
It is based on a 20 million Rayleigh wave dispersion,
500 000 shear-wave travel time and 1100 normal-mode split-
ting function measurements. The data are widely avail-
able, for instance, on the website of the main author (http:
//jritsema.earth.lsa.umich.edu//Research.html, last access: 7
October 2018) or as part of the SPECFEM 3Dglobe code
(https://github.com/geodynamics/specfem3d_globe, last ac-
cess: 7 October 2018).

I have adapted the Fortran interface provided with the
dataset and for each node of the grid the shear-velocity vari-
ation δ lnVs is computed, as well as the relative density vari-
ation δ lnρ = ξδ lnVs, where ξ = 0.25 is assumed to be con-
stant with depth for simplicity (see Fig. 6 of Steinberger and
Calderwood, 2006). The absolute density variation with re-
gards to the PREM model (Dziewonski and Anderson, 1981)
is then obtained as follows: δρ = ρPREM× δ lnρ. Results are
shown in Fig. 10.

5 Conclusions

The three types of hollow sphere meshes presented in this
work are currently in use in the ELEFANT code (http://
cedricthieulot.net/elefant.html, last access: 7 October 2018).
Furthermore, the HS12 mesh was recently used in Thieulot
(2017) in which a family of analytical solutions for viscous
incompressible Stokes flow in a spherical shell is presented.

Following the example of CitcomS, each block of the final
mesh could actually be built and used by a different Mes-
sage Passing Interface (MPI) thread in the context of parallel
calculations (Burstedde et al., 2013). Each block could then

subsequently be divided to allow for more threads to be used
than the original number of blocks.

Other tomography models than S40RTS (Ritsema et al.,
2011) could have been chosen, such as UUP07 (van der Meer
et al., 2017; Hall and Spakman, 2015) and other geophysical
databases could have been coupled with it, such as the crust
and lithospheric model, Litho1.0 (Pasyanos et al., 2014), to
arrive at a more complete high resolution of the Earth. Grav-
ity (anomaly) and geoid measurements could then be carried
out.

Finally, this library is aimed at students and researchers
alike. It provides the essential building block for many geo-
physical applications: a non-overlapping tessellation of the
mantle. It also provides the starting point for any finite-
element or finite-volume method-based geodynamical code.
Which of the three mesh types is best may be problem-
specific, and potential users are encouraged to explore var-
ious combinations of resolutions and mesh types. However,
under the assumption that the quality of the numerical solu-
tion correlates with the uniformity of the mesh cells’ volume,
it appears that an equiangular projection should always be
preferred to an equidistant one.

Code availability. The code is written in Fortran90, and the de-
velopment version is freely downloadable at https://github.com/
cedrict/GHOST (last access: 7 October 2018). GHOST v1.0 was re-
leased 11 May 2018 with https://doi.org/10.5281/zenodo.1245533
as is available at https://github.com/cedrict/GHOST/releases/tag/
v1.0 (last access: 7 October 2018).
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Appendix A: Analytical solution for the gravity and
gravitational potential fields inside and outside a
constant density spherical shell

The gravity potential can be computed by means of the Pois-
son equation (∇2U = 4πGρ), where G is the gravitational
constant (Turcotte and Schubert, 2012). The density is non-
zero only inside the domain parameterised by R1 ≤ r ≤ R2.
Outside, the spherical shell one then needs to solve the
Laplace equation, 1U = 0, which simplifies to

1
r2
∂

∂r

(
r2 ∂U

∂r

)
= 0 (A1)

by symmetry, which has the simple solution

g =
∂U

∂r
=
C

r2 , (A2)

where C is a constant. In order to avoid an infinite gravity
field at r = 0, we need to impose C = 0; i.e. the gravity is
zero for r <= R1. Inside the shell, ρ = ρ0, and we easily ob-
tain

g =
∂U

∂r
=

4π
3
Gρ0r +

A

r2 , (A3)

where A is an integration constant. We know that g = 0 at
the inner boundary r = R1 (no mass within a radius r ≤ R1),
so we can compute A, and finally

g =
∂U

∂r
=

4π
3
Gρ0(r −

R3
1
r2 ). (A4)

The branch for r ≥ R2 is given by Eq. (A2) and requiring the
gravity field to be continuous at r = R2:

g(r)=
GM
r2 , (A5)

where M = 4π
3 πρ0(R

3
2 −R

3
1) is the mass contained in the

shell. Turning to the potential, we obtain its expression for
r>=R2 by integrating Eq. (A5):

U(r)=−
GM
r
+D, (A6)

whereD is an integration constant which has to be zero since
we require the potential to vanish for r→∞.

For R1 ≤ r ≤ R2, Eq. (A4) yields

U(r)=
4π
3
Gρ0(

r2

2
+
R3

1
r
)+F, (A7)

where F is a constant. Continuity of the potential at r = R2
requires that

F =−2πρ0GR2
2 . (A8)

Since gravity is zero for r ≤ R1, the potential is then constant
and continuity requirements yield

U(r)= 2πGρ0(R
2
1 −R

2
2). (A9)
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