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Abstract. The forward modeling of a scalar wave equation
plays an important role in the numerical geophysical com-
putations. The finite-difference algorithm in the form of a
second-order wave equation is one of the commonly used
forward numerical algorithms. This algorithm is simple and
is easy to implement based on the conventional grid. In or-
der to ensure the accuracy of the calculation, absorption lay-
ers should be introduced around the computational area to
suppress the wave reflection caused by the artificial bound-
ary. For boundary absorption conditions, a perfectly matched
layer is one of the most effective algorithms. However, the
traditional perfectly matched layer algorithm is calculated
using a staggered grid based on the first-order wave equation,
which is difficult to directly integrate into a conventional-
grid finite-difference algorithm based on the second-order
wave equation. Although a perfectly matched layer algorithm
based on the second-order equation can be derived, the for-
mula is rather complex and intermediate variables need to be
introduced, which makes it hard to implement. In this pa-
per, we present a simple and efficient algorithm to match
the variables at the boundaries between the computational
area and the absorbing boundary area. This new boundary-
matched method can integrate the traditional staggered-grid
perfectly matched layer algorithm and the conventional-grid
finite-difference algorithm without formula transformations,
and it can ensure the accuracy of finite-difference forward
modeling in the computational area. In order to verify the
validity of our method, we used several models to carry out
numerical simulation experiments. The comparison between
the simulation results of our new boundary-matched algo-
rithm and other boundary absorption algorithms shows that
our proposed method suppresses the reflection of the artificial
boundaries better and has a higher computational efficiency.

1 Introduction

Modeling of a seismic wave field is accomplished by sim-
ulating the pattern of the seismic waves as they propagate
through various geologic media and computing the simu-
lated measurements at observation points on the Earth’s sur-
face or underground, given that the underground medium’s
structure and the relevant physical parameters are known.
Numerical modeling of a seismic wave field is an important
tool for seismic data processing and interpretation and for
geodynamic studies of the Earth’s interior. In recent years,
many full waveform inversion methods have been widely
proposed and applied to seismic exploration. In the wave-
form inversion process, wave field modeling is one of the
key algorithms because it must be performed first to obtain
the predicted wave field that is used to compute the resid-
ual errors between the predicted and the actual wave field
records. In addition, the information provided by the residual
errors, which is required for refinement of the initial model,
is actually calculated by a modeling algorithm that uses the
residual errors as virtual sources. After many iterations of the
above processes, an optimized approximate model of the un-
derground medium can be acquired. Numerical modeling of
a wave field will be executed thousands of times throughout
the waveform inversion process, so a wave field modeling
algorithm is crucial in many ways when performing a wave-
form inversion algorithm, such as for computational preci-
sion, speed, and storage requirements.

The main numerical techniques for seismic wave field
modeling include the finite-element method (Marfurt, 1984;
Yang et al., 2008), the pseudo-spectral method (Kreiss
and Oliger, 1972; Dan and Baysal, 1982), and the finite-
difference method (Kelly et al., 2012; Virieux, 1984; Yang
et al., 2002; Moczo et al., 2007; Zhang et al., 2013). Due to
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Figure 1. Schematic of our method: (a) the entire region and
(b) partial enlargement of the yellow rectangle in panel (a).

its easy implementation and the satisfactory compromise be-
tween accuracy and efficiency, the finite-difference method
is the preferred method. For a comprehensive overview of
applications of the finite-difference methods, see Moczo
et al. (2014). Over the last several decades, many studies
have focused on determining the coefficients of the finite-
difference method and designing computational templates
(Li et al., 2017).

According to the formulation of the wave equations, the
finite-difference methods can be implemented based on the
first-order velocity–stress equations or the second-order dis-
placement equations, which lead to different computational
templates. A staggered grid (SG) is usually set up for the
first-order wave equations and has been widely used with the
acoustic and elastic wave equations (Virieux, 1984, 1986;
Moczo et al., 2014; Madariaga, 1976; Gold et al., 1997;
Saenger et al., 2000; O’Brien, 2010). Many methods of op-
timizing the differential coefficients, based on a SG, have
been proposed to increase the accuracy of the numerical so-
lution, such as the time–space domain dispersion-relation-

Figure 2. (a) Velocity profiles in depth and (b) distribution of source
and receivers.

based method (Liu and Sen, 2011), the simulated anneal-
ing algorithm (Zhang and Yao, 2013), and the least-squares
method (Yang et al., 2015). However, a conventional grid
(CG) is often directly obtained from the second-order wave
equation. These methods include the central scheme (Alford
et al., 1974; Igel et al., 1995), the high-order compact finite-
difference method (Fornberg, 1990), the Lax–Wendroff cor-
rection (LWC) scheme (Lax and Wendroff, 1964; Dablain,
1986; Blanch and Robertsson, 2010), the nearly analytical
discrete method (Yang et al., 2003), and the nearly analytical
central difference method (Yang et al., 2012).

The algorithm design of the CG scheme is easier to use
than that of the SG scheme because the variable definition
is uniform throughout the grid. However, it is hard to de-
termine which of the two schemes is more accurate and ef-
ficient. Although the SG scheme has sometimes been re-
garded as more precise than the CG scheme (Huang and
Dong, 2009), there is also some theoretical and experimen-
tal proof in the literature that does not support this proposi-
tion. Moczo et al. (2011) compared the accuracy of the differ-
ent finite-difference schemes with respect to the P -wave to
S-wave speed ratio using theoretical analysis and numerical
experiments. Their investigation showed that the relative lo-
cal errors of the CG scheme are almost equal to those of the
SG scheme when modeling planar S waves propagating in
an unbounded homogeneous elastic isotropic medium with a
low P -wave to S-wave velocity ratio (Vp/Vs = 1.42). They
showed that only at higher P -wave to S-wave velocity ra-
tios (Vp/Vs = 5,10) will the relative local error of the CG
scheme increase faster than that of the SG scheme, but the
difference in the relative local errors of the two schemes will
decrease when using a higher-order spatial scheme, i.e., from
second-order to fourth-order in space. Moczo et al. (2011)
also showed that the insufficient accuracy of the CG scheme
at higher P -wave to S-wave speed ratios can be compensated
for by using a higher spatial sampling ratio, i.e., a smaller
grid size. This means that a CG scheme with a sufficiently
small grid size will be as precise as the SG scheme or better,
even if the P -wave to S-wave speed ratio is high. The com-
putational cost of the SG scheme is significantly higher than
that of an equal-sized CG scheme, as two variables (velocity
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Figure 3. Comparison of the analytical solution (red solid line) with the proposed (second-order conventional grid (CG) scheme) and classic
staggered-grid (SG) perfectly matched layer (PML) methods (second-order SG scheme) (blue dotted line) at different receivers, d = 12 m.
(a) Proposed method at receivers 1, 2, and 3 for the first 2 s; (b) proposed method at receivers 1, 2, and 3 after 2 s; (c) classic SG PML method
at receivers 1, 2, and 3 for the first 2 s; (d) classic SG PML method at receivers 1, 2, and 3 after 2 s.
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Figure 4. d = 10 m; the rest is the same as in Fig. 3.
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Figure 5. Comparison of the relative errors between the analytical solutions and the proposed method (second-order CG scheme) (red
solid line) or the classic SG PML method (second-order SG scheme) (blue dotted line) at different receivers and different grid spacings.
(a) d = 12 m, receivers 1, 2, and 3; (b) d = 10 m, receivers 1, 2, and 3.

and stress) have to be calculated in the SG scheme and only
one variable (displacement) have to be computed in the CG
scheme.

Reflection from the artificial boundaries introduced by the
limited computational area is another numerical source of er-
ror. Over the past 30 years, many techniques have been de-
veloped for boundary processing: paraxial conditions (Clay-
ton and Engquist, 1977; Reynolds, 1978; Higdon, 2012), the
sponge boundary (Cerjan et al., 1985; Sochacki et al., 1987),
the perfectly matched layer (PML) (Berenger, 1994), and the
hybrid absorbing boundary conditions (hybrid ABC) (Ren
and Liu, 2012). Among these, the PML is one of the most
efficient and most commonly used methods. The PML was
first introduced for boundary processing of electromagnetic
wave equation modeling, after which, it was applied to the
elastic–dynamic problem (Chew and Liu, 1996) and acous-
tic simulations (Liu and Tao, 1998). Many modified versions
of the PML, such as the convolutional PML (Komatitsch and
Martin, 2007), were subsequently proposed. Gao et al. (2017)
compared most of the typical artificial absorbing boundary
processing approaches for use with acoustic wave equations
and came to the conclusion that a 20-layer PML is ideal for

most practical applications using general size models, even in
the presence of strong nearly grazing waves, which demon-
strates the high performance and efficiency of the PML ap-
proach.

In the field of real wave field simulation, most researchers
are devoted to unifying the format of the boundary pro-
cessing algorithm and the wave equation within the com-
putational region. The classic PML is naturally formulated
based on the first-order wave equations for velocity and stress
(Collino and Tsogka, 1998), which has proven to be very ef-
ficient. It is easy to integrate PML boundary processing into a
SG finite-difference algorithm. So, some scholars use the SG
scheme in the computational region to match the PML equa-
tions, while for many CG-based schemes, they need to adopt
other boundary processing methods, such as the hybrid ABC
method. However, in recent years, some scholars have also
made efforts to formulate a PML for a second-order system
to match the second-order wave equation. Komatitsch and
Tromp (2003) reformulated the classic PML conditions in
order to use it with numerical schemes that are based on the
elastic wave equation written as a second-order system with
displacement. Grote and Sim (2010) proposed a PML formu-
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Figure 6. Comparison of the analytical solution (red solid line) with the proposed (fourth-order CG scheme) and classic SG PML methods
(fourth-order SG scheme) (blue dotted line) at different receivers and d = 12 m. (a) Proposed method at receivers 1, 2, and 3 during the first
2 s; (b) proposed method at receivers 1, 2, and 3 after 2 s; (c) classic SG PML method at receivers 1, 2, and 3 during the first 2 s; (d) classic
SG PML method at receivers 1, 2, and 3 after 2 s.
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Figure 7. d = 10 m; the rest is the same as in Fig. 6.
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Figure 8. Comparison of the relative errors between the analytical solutions and the proposed method (fourth-order CG scheme) (red solid
line) or the classic SG PML method (fourth-order SG scheme) (blue dotted line) at different receivers and different grid spacings. (a) d =
12 m, receivers 1, 2, and 3; (b) d = 10 m, receivers 1, 2, and 3.

lation for the acoustic wave equation in its standard second-
order form, while Pasalic and McGarry (2010) extended the
convolutional PML to accommodate the second-order acous-
tic wave equation. Nevertheless, all of these second-order
PML formulations require the derivation of complicated for-
mulas, the introduction of auxiliary variables, and the mod-
ification of existing second-order numerical codes in order
to handle the first-order equations describing the auxiliary
variables, which increases the computational cost and com-
plexity.

In order to preserve the original efficiency of the PML
boundary processing method as well as the accuracy and
efficiency of the CG scheme, it is worth trying to inte-
grate the classic first-order PML algorithm into the CG
finite-difference scheme in a second-order system and make
it easy to implement. In this paper, we propose a new
boundary-matched algorithm that uses a CG finite-difference
scheme within a limited computational area and an SG finite-
difference scheme in a PML area. Our approach enables the
inner area and the PML condition to be independent during
computation, while preserving the individual advantages of
the two methods. The algorithm matches the computational

area and the absorbing boundary layers simply by point up-
dating along the boundaries of the computational area and
avoids complex formula conversion. Thus, none of the orig-
inal formulas of the CG scheme or the PML equations are
modified and no unnecessary variables are added. The assess-
ment of the proposed algorithm is composed of two parts.
First, we compared the accuracy and efficiency of the pro-
posed algorithm with those of the classic SG PML method
(SG scheme both in computational area and PML area),
which demonstrated the rationality of our decision to use the
CG scheme in the computational area. To simulate the actual
underground medium, a medium with a linearly increasing
velocity gradient was selected for the experiment. The exper-
imental results indicated that the accuracy of the two meth-
ods for equal grid sizes is almost equal, but the efficiency
of our method is approximately 30 %–50 % higher than that
of the classic SG PML method. Next, the proposed algo-
rithm was evaluated by comparing its absorption efficiency
and computational cost with those of the classic SG PML
method, the second-order PML method (CG scheme both in
computational area and PML area) introduced by Pasalic and
McGarry (2010), and the hybrid ABC method (CG scheme
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Figure 9. Comparison of the analytical solutions of the proposed (10th-order CG scheme) (red solid line) and the classic SG PML methods
(10th-order SG scheme) (blue dotted line) at different receivers, d = 10 m. (a) Proposed method at receivers 1, 2, and 3 during the first 2 s;
(b) proposed method at receivers 1, 2, and 3 after 2 s; (c) classic SG PML method at receivers 1, 2, and 3 during the first 2 s; (d) classic SG
PML method at receivers 1, 2, and 3 after 2 s.

www.solid-earth.net/9/1277/2018/ Solid Earth, 9, 1277–1298, 2018



1286 X. Zhang et al.: Second-order scalar wave field modeling

Figure 10. Comparison of the relative errors between the analytical
solutions and the proposed method (10th-order CG scheme) (red
solid line) or the classic SG PML method (10th-order SG scheme)
(blue dotted line) at different receivers and different grid spacings
(d = 10 m, receivers 1, 2, and 3).

Figure 11. (a) Velocity profiles in depth; (b) distribution of source
and receivers.

in computational area and hybrid ABC scheme in boundary
area) introduced by Ren and Liu (2012). The numerical ex-
perimental results indicated that our algorithm provides an
excellent absorption effect and was easier to implement.

2 Methodology

Although the elastic wave equation can describe the propa-
gation of seismic waves more comprehensively, modeling an
elastic wave field is complex and computationally expensive.
In practice, the acoustic wave equation is also popularly used
to approximate seismic wave propagation. For the convenient
error analysis of these methods, we consider a scalar wave
field p propagating through an unbounded three-dimensional
medium where the wave field satisfies Eq. (1) (Engquist and
Runborg, 2003):

∂2p

∂x2 +
∂2p

∂y2 +
∂2p

∂z2 =
1
c2 ·

∂2p

∂t2
, (1)

where the wave field p is a function of the space variables
x, y, z, and the time variable t , and c is the velocity of the
medium. Numeric modeling of Eq. (1) is expressed as fol-
lows.

2.1 Conventional-grid finite-difference scheme

The discretization of the acoustic wave (Eq. 1) with a 2M-
order finite-difference scheme is (Chu and Stoffa, 2012)
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, (2)

where cm for all m are finite-difference coefficients. i,j , and
k denote the discrete spatial variables, and n denotes the dis-
crete time variable. The increments1x,1y, and1z are grid
spacings, and1t is the time step. In many applications, a reg-
ular rectangular grid with a grid spacing1x =1y =1z= d
is a natural and reasonable choice (Moczo et al., 2007).

Numerical analyses show that grid dispersion increases
with increasing grid size, but decreasing the grid size in-
creases the computational cost. High-order finite-difference
schemes are able to control this numerical dispersion using
a larger grid spacing compared with low-order schemes (Tan
and Huang, 2014).

Because the subscripts i,j , and k used in Eq. (2) have
integer values, it is convenient to define and calculate the
medium’s parameters and wave field p for the same grid
points, which leads to the CG scheme. The pressure source
s is an additive item (Hustedt et al., 2004); i.e., it can be di-
rectly added in the corresponding equations.
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Figure 12. Receiver records of the four methods for a different number of absorbing layers: (a) 0 absorbing layers, (b) 10 absorbing layers,
and (c) 20 absorbing layers.

2.2 Boundary conditions

Due to limitations in the capacity and speed of computer fa-
cilities, the numerical simulation of a wave field can only be
implemented for a limited area. The computational area is
surrounded by artificial boundaries, except for the free sur-
face. As described above, the PML boundary condition can
effectively absorb the wave field reflections from the artificial
boundaries in order to simulate wave field propagation in an
open space. In a PML medium, the wave field p is assumed
to be decomposed into subcomponents. The PML formula-
tion based on the acoustic equations is as follows (Liu and
Tao, 1998):

∂vx

∂t
+αxvx =−

1
ρ

∂p

∂x
,

∂vy

∂t
+αyvy =−

1
ρ

∂p

∂y
,

∂vz
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+αzvz =−

1
ρ

∂p
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,

∂px

∂t
+αxpx =−c

2ρ
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,
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2ρ
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∂y
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∂pz
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2ρ
∂vz

∂z
,

p = px +py +pz. (3)

Here, αx , αy , and αz are the attenuation coefficients in the
PML medium. In this paper, the attenuation coefficient was
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Figure 13. Values of the absorption coefficient R at each receiver for our method (red line), the classic SG PML method (black line), the
second-order PML method (blue line), and the hybrid ABC method (magenta line): (a) 10 absorbing layers and (b) 20 absorbing layers.

Figure 14. (a) Velocity profiles in depth; (b) distribution of source
and receivers.

set using the following function (Wang, 2003):

αij = B

[
1− sin

(
jπ

2Pml

)]
, i = xyz;j = 0,1, . . .,Pml. (4)

B is the amplitude of attenuation coefficient, i.e., the max-
imum value of the coefficient, which we set as 400 in the
numerical experiment; Pml is the thickness of the PML layer.

Using the SG finite-difference scheme to discretize
Eq. (3), the results are as follows:
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2.3 Implementation of our new boundary-matched
algorithm

A finite-difference scheme based on a CG requires no com-
putation of intermediate variables, and thus the computa-
tional cost is lower than that of an SG scheme. We will show
in the next section that the accuracy of the CG scheme can
reach the same level as that of the SG scheme but with lower
computational costs. However, it is difficult to incorporate
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Figure 15. Receiver records for the four methods for a different number of absorbing layers: (a) 0 absorbing layers, (b) 10 absorbing layers,
and (c) 20 absorbing layers.

a naturally formulated PML boundary processing algorithm
based on an SG scheme into a CG finite-difference scheme.
In this paper, we propose a new boundary-matched algorithm
that can bridge the gap between an SG-based PML algorithm
and a CG-based numerical simulation of a seismic wave field
with neither introduction of intermediary variables nor refor-
mulation of the PML equations. The core idea of the scheme
is to interface the wave field reasonably along the boundaries
between the CG area and the SG absorbing layers. A detailed
description of the method is given below.

As shown in Fig. 1, the entire domain consists of two parts:
the computational area and the boundary absorbing area. The

computational area is located in the center and is surrounded
by the absorbing layers. The algorithm uses a CG finite-
difference scheme within the computational area and an SG
finite-difference scheme within the boundary absorbing area.
If we can reasonably interface the computed values of the
wave field between the computational area and the boundary
absorbing area, then the scheme can perform satisfactorily.
For a clearer explanation, we start with a two-dimensional
model.

We let the computational area and the PML area overlap
each other for one layer. As shown in Fig. 1a, the bold red
boundary line is both the outermost boundary of the compu-
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Figure 16. Values of the absorption coefficient R at each receiver for our method (red line), the classic SG PML method (black line), the
second-order PML method (blue line), and the hybrid ABC method (magenta line): (a) 10 absorbing layers and (b) 20 absorbing layers.

Figure 17. Marmousi velocity model.

tational area and the innermost boundary of the PML area.
On this overlapped layer, both the particle velocity v and the
wave field p in the PML area are calculated using the value
of wave field p in the computational area. Using this method,
the two areas can be connected. This avoids the introduction
of intermediate variables and saves storage space. In order
to distinguish, we use pn+1

i,j to represent the wave field value
in the computational area, and pnx (ij) and pnz (ij) to repre-
sent the wave field value in the PML area. In the PML area,
the values of attenuation coefficients αx and αz can be calcu-
lated using Eq. (4). When the grid points are located on the
four corners of the PML area, the values of αx and αz are not
zero. When they are on the left- and right-hand sides of the
PML area, αx 6= 0 and αz = 0; when they are on the upper
and bottom sides of the PML area, αx = 0 and αz 6= 0. The
specific steps of our method are as follows.

1. At the beginning of iteration, take n= 1, and let the
initial wave field values pni,j and pn−1

i,j in the compu-

tational area, the particle velocity v
n− 1

2
x

(
i+ 1

2 ,j
)

and

v
n− 1

2
z

(
i,j + 1

2

)
, the wave field pnx (ij) and pnz (ij) in the

PML area all be zero.

2. Calculate the wave field pn+1
i,j in the computational area.

In this step, we do not calculate the value of wave field
pn+1
i,j located on the red boundary line; instead, we only

calculate them on the blue boundary line and in its in-
ner region in Fig. 1 using the two-dimensional form
of Eq. (2). For the high-order difference scheme in the
computational area, we use the second-order difference
scheme for the grid points on the blue rectangular line,
the fourth-order difference scheme for the grid points on
the inner green rectangular line, the sixth-order differ-
ence scheme on the inner layer, and so on, until we reach
the required order of difference. In this way, the compu-
tational area and the PML area can be independent, and
the number of overlapping layers does not increase with
the increase of order of difference. The numerical ex-
periments in Sect. 4.1 will prove that our treatment to
the boundary does not bring much additional dispersion
and error.

3. Calculate the particle velocity and wave field in the
PML area layer by layer. Calculate the values of all

particle velocity v
n+ 1

2
x

(
i+ 1

2 ,j
)

and v
n+ 1

2
z

(
i,j + 1

2

)
in

the PML area (including those on the red line) using the
two-dimensional forms of the first and third formulas in
Eq. (5). Calculate all of the wave field values pn+1

x (ij)

and pn+1
z (ij) in the PML area (including those on the

red line) using the two-dimensional forms of the fourth
and sixth formulas in Eq. (5).

It is important to note that the particle velocities in the
area between the blue and red lines are calculated from
the wave field pnx (irjr) and pnz (irjr) on the red line in
the PML area and the wave field pnib,jb

on the blue line
in the computational area. As shown in Fig. 1b, we can
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Figure 18. Receiver records for the four methods for a different number of absorbing layers: (a) 0 absorbing layers, (b) 10 absorbing layers,
and (c) 20 absorbing layers.

obtain v
n+ 1

2
x

(
ir+

1
2 ,jr

)
for the line between the left-

hand line of the red rectangle and blue rectangle us-
ing Eq. (6); the subscript r stands for the grid points
on the red lines, and b stands for the blue lines. Simi-

larly, we can obtain v
n+ 1

2
x

(
ir−

1
2 ,jr

)
between the right-

hand line of two rectangles using Eq. (7); for the line be-

tween the upper lines, we obtain v
n+ 1

2
z

(
ir,jr+

1
2

)
using

Eq. (8); for the line between the lower lines, we obtain

v
n+ 1

2
z

(
ir,jr−

1
2

)
using Eq. (9):

v
n+ 1

2
x

(
ir+

1
2
,jr

)
= v

n− 1
2

x

(
ir+

1
2
,jr

)

−αx1tv
n− 1

2
x

(
ir+

1
2
,jr

)
−

1t

ρ1x

[
pnib,jb

−pnx (ir,jr)−p
n
z (ir,jr)

]
, (6)

v
n+ 1

2
x

(
ir−

1
2
,jr

)
= v

n− 1
2

x

(
ir−

1
2
,jr

)
−αx1tv

n− 1
2

x

(
ir−

1
2
,jr

)
−

1t

ρ1x

[
pnx (ir,jr)+p

n
z (ir,jr)−p

n
ib,jb

]
, (7)

v
n+ 1

2
z

(
ir,jr+

1
2

)
= v

n− 1
2

z

(
ir,jr+

1
2

)
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Figure 19. Wave field snapshots with different PML at different time; the three coordinate axes represent the number of grids in three
directions: (a) PML is 0 at 250, 350, and 450 ms; (b) PML is 20 at 250, 350, and 450 ms.

−αz1tv
n− 1

2
z

(
ir,jr+

1
2

)
−

1t

ρ1z

[
pnib,jb

−pnx (ir,jr)−p
n
z (ir,jr)

]
, (8)

v
n+ 1

2
z

(
ir,jr−

1
2

)
= v

n− 1
2

z

(
ir,jr−

1
2

)
−αz1tv

n− 1
2

z

(
ir,jr−

1
2

)
−

1t

ρ1z

[
pnx (ir,jr)+p

n
z (ir,jr)−p

n
ib,jb

]
. (9)

After calculating the complete PML area, let the value
of the wave field pn+1

i,j on the red line in the com-
putational area be equal to the sum of the wave field
pn+1
x (irjr) and pn+1

z (irjr) on the red line in the PML
area.

4. Update the value of pn−1
i,j with the value of pni,j , and

update the value of pni,j with the value of pn+1
i,j ; then, let

n= n+ 1.

5. Repeat steps 2–4 until n reaches the required time
length.

The two-dimensional algorithm described above can
easily be generalized to three-dimensional. In the three-
dimensional model, we need to add a particle velocity com-

ponent vy and a space position label k. The red and blue
boundary lines become the red and blue boundary surfaces,
respectively. In addition, the computational area becomes a
cube surrounded by the PML area.

3 Performance analysis

As described in the introduction, the errors in the wave field
numerical model are mainly caused by differential dispersion
and reflected waves that are not fully absorbed by the bound-
ary processing algorithm. In order to verify the validity of
our algorithm, we used a variety of models to compare the
computational accuracy, the efficiency of the absorption of
the reflected waves, and the computational efficiency of the
proposed algorithm to the other methods.

3.1 Computational accuracy

In order to obtain a more convincing result when comparing
the computational accuracy, we used a constant-gradient ve-
locity model, the velocity of which increases linearly with
depth. This model is closer to the actual velocity distribu-
tion of an underground medium than a homogeneous model.
We calculated the relative error between our method and the
classic SG PML method using the analytical solutions for
different grid spacings and the order of difference, and then
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we performed a comparative analysis of the two methods.
The relative error between the two methods and the analyti-
cal solution is defined by the following time function:

error(t)= 20log

∣∣∣∣∣p(t)−panal (t)

max
[
panal (t)

] ∣∣∣∣∣ . (10)

In Eq. (10), p(t) represents the value of wave field calculated
by the numerical methods at a receiver, and panal(t) is the
value of wave field calculated by the analytic solution at the
same receiver.

For the two-dimensional scalar (Eq. 1), the wave field ana-
lytic solution for a constant-gradient medium can be obtained
from the integral form of the three-dimensional solution us-
ing the dimension reduction method (Cerveny, 2001). The
velocity distribution is c (z)= c (z0)

1+γ z
1+γ z0

= c(0)(1+ γ z),
where z0 is the depth of source, c (z0) is the velocity of
the source layer, c(0) is the velocity of the layer z= 0, and
γ = 1

h
, h is the distance from depth z= 0 to the level where

the propagation velocity is null (c (−h)= 0). When the line
source s = δ(t−t0)δ(x−x0)δ(z−z0) is located at (x0z0), and
the density in the method of Sanchez-Sesma et al. (2001) is
a constant, a two-dimensional scalar Green function can be
obtained by

G(xzt)≈3 ·
H(t − t0− τ)

2π
√
(t − t0)2− τ 2

, (11)

where 3=
√

1+γ z0
1+γ z ·

c(z0)τ
Rw

.
H(t) is the Heaviside step function (equal to 0 when

t < 0 and equal to 1 when t > 0). For fixed t , the radius
Rw of the wavefront circle is Rw = (z0+h)sinh(γ c(0)τ )
and the travel time τ can be computed by means
(Cerveny, 2001) of τ = | 1

γ c(0)arccosh[1+ (γ c(0)r)2
2c(z)c(z0)

]|, r =√
(x− x0)2+ (z− z0)2. This is an approximate solution, but

usually the error is less than 1 % (Sanchez-Sesma et al.,
2001). In the next numerical experiment, we use a sym-
metric Ricker wavelet with a peak frequency of 20 Hz as
the source. In this paper, the expression is usually s (t)=
{1−2[20π(t− t0−1/20)]2}e−[20π(t− t0−1/20)]2, and t0
is equal to 200 ms. The final result of the analytic solution is

panal (x,z, t)=G(x,z, t)× δ(x− x0)δ(z− z0)S(t). (12)

3.2 Absorption efficiency of the reflected waves

When comparing the absorption efficiency, we used three dif-
ferent geological models to determine the reflected wave ab-
sorption effect of our algorithm: the homogeneous, constant-
gradient velocity and the Marmousi models. We compared
the absorption effects of our algorithm with the classic SG
PML method, the second-order PML method, and the hybrid
ABC method using the same conditions to prove whether our
algorithm can effectively combine the CG scheme with the
SG scheme PML boundary condition and achieve the same

or better effect as other methods do. In the computational
area, the reflection coefficient R of a receiver is defined as

R = 20log
∣∣∣∣max[p(t)−pref (t)]

max[pref (t)]

∣∣∣∣ , (13)

where the wave field value p(t) is calculated by the numeri-
cal methods at a receiver, and pref (t) is the wave field value
that has no boundary reflection on the same receiver calcu-
lated using the numerical methods, which can be obtained by
expanding the model. The value of R reflects the reflected
wave absorption effect of the algorithm. The smaller the R
value, the better the absorption effect.

3.3 Computational efficiency index

In the comparison of the computational accuracy and effi-
ciency of the absorption of the reflected waves, we deter-
mined the computation time of the three methods separately,
which can reflect the advantages and disadvantages of all of
the methods in terms of the computational efficiency.

4 Numerical experiment

Based on the discussion of the performance analysis, in this
section, we present the results of the numerical experiments.
All of the numerical experiments were run on a desktop per-
sonal computer with a 3.40 GHz Intel Core i5-3570 proces-
sor, 32 GB of DDR3 memory, on a 64 bit Windows 7 operat-
ing system, using algorithmic software written in C ++.

4.1 Computational accuracy and computation time

As shown in Fig. 2, the constant-gradient velocity model has
a size of 6000 m× 6000 m, a velocity distribution of c =
500 m s−1 for z= 0 m and c = 5300 m s−1 for z= 6000 m,
and a velocity gradient of 0.8. In order to determine the sta-
bility of the differential form throughout the computational
process, the time step was set as 0.001 s and the total simula-
tion time as 10 s. The sources are located in the middle of the
model (3000, 3000 m), and the three receivers are located at
(600, 1800 m), (1800, 1800 m), and (3000, 1800 m). We com-
pared the errors of the numerical solution and the analytical
solution at the receivers of the method we proposed with the
classic SG PML methods. The number of PMLs is set as 10.
Figures 3 and 4 show the comparison of the analytical solu-
tions at the three receivers of the proposed method (second-
order CG scheme in the computational area) and the clas-
sic SG PML method (second-order SG scheme in the com-
putational area) when the grid spacing (d) is 12 and 10 m,
respectively. Figure 5 shows the relative errors between the
analytical solutions and the two methods for the conditions
described above where the relative error was calculated using
Eq. (10).

From Figs. 3 and 4, we can see that both of the methods
have obvious errors during the first 2 s. In particular, when
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the grid spacing is 12 m, the error is the largest, and there is
significant numerical dispersion. Reducing the grid spacing
can reduce the error and the dispersion. When the grid spac-
ing is 10 m, the result improves. In addition, the results for a
longer simulation time also prove the numerical stability of
our method. Further comparison of the relative error curves
shown in Fig. 5 indicates that although neither method is par-
ticularly good; the amplitude of relative errors with their an-
alytical solutions are almost the same.

In theory, the error of the numerical solution can be re-
duced by using a higher-order difference. We compared the
experimental results of the proposed method (fourth-order
CG scheme in the computational area) and classic SG PML
methods (fourth-order SG scheme in the computational area)
with the analytic solution, as shown in Figs. 6–8.

From Figs. 6 and 7, we can see that when the fourth-order
difference is used, the relative errors between the analytical
solution and both methods are significantly reduced com-
pared with when the second-order difference is used. In addi-
tion, as with the second-order result above, the relative error
also decreases as the grid spacing decreases. Figure 8 illus-
trates the fact that the relative error curves of our algorithm
and the classic SG PML method are also very similar for
the fourth-order difference, In addition, it is difficult to dis-
tinguish the advantages and disadvantages of the two algo-
rithms. Although the results of the two methods still exhibit
a small error at this time, we can continue to use the higher
difference order or we can reduce the grid spacing to reduce
the error. The laws of the two methods are the same.

In Figs. 9 and 10, we adopt a 10th-order difference scheme
and d = 10 m. At this time, the numerical results are very
close to the analytical solution and the relative error is very
low. Based on this, we can conclude that the accuracies of
the proposed method and the classic SG PML method for the
same conditions with a constant-gradient velocity are similar.
Meanwhile, it also demonstrates an additional advantage of
our method. When the computational area and the PML area
are independent of each other, we can easily optimize the
numerical algorithm of the computational area to improve
the accuracy of the algorithm. When the grid spacing and
the order of difference are appropriate, our method yields the
expected results. Because our method uses the CG scheme
in the computational area, the experimental results also show
that in the scalar wave field simulation, the accuracy of the
SG scheme is not higher than that of the CG scheme. This
conclusion is in agreement with the experimental results of
the elastic wave field simulated by Moczo et al. (2011) at a
low P -wave to S-wave speed ratio (Vp/Vs = 1.42).

Table 1 presents the computation times of the two meth-
ods at different grid spacings and difference orders. The
efficiency percentage is the total computation time of our
method divided by the total computation time of the SG
method. Under the same circumstances, the total computa-
tion time of our method is only 57 %–70 % that of the clas-
sic SG PML method. It is noteworthy that the result of our

Table 1. Computation time for our and the classic SG PML meth-
ods.

Condition Our method The classic Efficiency
SG PML method percentage

Second-order 10 m 19 s 15 m 17 s 67.5 %
d = 12 m
Second-order 14 m 41 s 21 m 01 s 69.8 %
d = 10 m
Fourth-order 11 m 13 s 17 m 56 s 62.5 %
d = 12 m
Fourth-order 16 m 58 s 25 m 54 s 64.3 %
d = 10 m
10th-order 25 m 48 s 44 m 54 s 57.4 %
d = 10 m

method for the 10th-order difference and a grid spacing of
10 m is much better than that of the classic SG PML method
for the fourth-order difference and a 10 m grid spacing, while
the computation time is nearly the same. Also, the result of
our method for the fourth-order difference and a grid spac-
ing of 12 m is much better than that of the classic SG PML
method for the second-order difference and a 10 m grid spac-
ing, while the former computation time is only 53.3 % of the
latter. Therefore, for the same computation time as the classic
SG PML method, our method always achieves a higher accu-
racy for a smaller grid spacing and a higher-order difference.
We obtained these conclusions in a constant-gradient veloc-
ity medium. Therefore, the algorithm we propose works well
when the CG scheme is used in the computational area. Next,
we discuss the absorption efficiency of the reflected waves of
our method in a series of simple and complex models.

4.2 Absorption efficiency and computation time

4.2.1 Homogeneous model

First, we used a two-dimensional homogeneous model
to verify the reflected wave absorption efficiency of our
new boundary-matched algorithm. As shown in Fig. 11,
the model size is 2000 m× 2000 m at a velocity of c =
2500 m s−1 and a grid spacing of 10 m. The source is
the same as previously described and is located at (1000,
1000 m) with a time step of 0.001 s and a total simulation
time of 1.5 s. A total of 201 receivers are evenly distributed
on a horizontal line with a depth of 500 m, and the distance
between each receiver is set as 10 m. In Fig. 12, we com-
pared the receiver records of our method, the classic SG PML
method, the second-order PML method, and the hybrid ABC
method for a different number of absorbing layers. In gen-
eral, the amplitude of the reflected wave will be reduced to
less than 1 % of that of the normal wave field after the bound-
ary conditions are processed. Thus, in order to illustrate the
reflected wave more clearly, we set the range of the color bar
of the wave field to be −0.001 to 0.001. For further com-
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Table 2. Computation times for the four methods.

Condition Our method Classic SG PML method Second-order PML method Hybrid ABC method

Homogeneous model 20 s 28 s 24 s 20 s
PML= 10
Homogeneous model 24 s 34 s 28 s 25 s
PML= 20
Constant-gradient velocity model 21 s 30 s 26 s 21 s
PML= 10
Constant-gradient velocity model 25 s 35 s 30 s 26 s
PML= 20
Marmousi model 6 m 57 s 10 m 31 s 8 m 20 s 7 m 14 s
PML= 10
Marmousi model 6 m 05 s 9 m 05 s 7 m 18 s 6 m 25 s
PML= 20

parison, we also calculated the value of the reflection coef-
ficient R using Eq. (13) and plotted the corresponding curve
in Fig. 13.

As can be seen in Figs. 12 and 13, all of the four meth-
ods can absorb the reflected waves to a certain degree. For
the same number of absorbing layers, the absorption per-
formance of our method and that of the classic SG PML
method are almost the same and both methods are superior
to the other two methods, while the hybrid ABC method is
the worst. Specifically, when the number of absorbing layers
equals 10, the absorption coefficients of our method and clas-
sic SG PML method are both −60 dB, which means that the
amplitude of the reflected wave after absorbing is only 0.1 %
of that before absorbing. Increasing the number of absorbing
layers can improve the absorption effect of the four methods.
In addition, the 20-layer second-order PML method performs
similarly to the 10-layer proposed method and the 10-layer
classic SG PML method. This indicates that the second-order
PML method always requires more absorbing layers than the
first-order PML does. Although the core idea of the second-
order PML method is the same as that of the first-order PML
method, there are very different ways to deal with mathe-
matical equations. In the second-order method, the original
PML equations are transformed and some additional non-
physical variables are added, which greatly reduces the ef-
ficiency of boundary conditions. Moreover, the second-order
PML method still needs to handle the first-order system, i.e.,
a Euler or a Runge–Kutta time scheme has to be used (Ko-
matitsch and Tromp, 2003). So, in this case, the second-order
PML method is naturally less effective than our first-order
PML method and requires more absorbing layers. For hy-
brid ABC, it has poor absorbing performance compared to
the PML method since it is based on a one-way equation.
So, it would have limited improvement due to the phase and
the amplitude errors that are associated with the expansion of
one-way wave equation.

4.2.2 Constant-gradient velocity model

Taking into account the fact that the homogeneous model is
relatively simple and quite different from the actual distri-
bution of an underground medium, the second model that
we use is the constant-gradient velocity model, as shown
in Fig. 14. The velocity is 1500 m s−1 at z= 0 m and
3500 m s−1 at z= 2000 m, and the velocity gradient is 1. The
source and receiver locations are exactly the same as those in
the first homogeneous model. Figures 15 and 16 compare the
receiver records and the reflection coefficients R of the four
methods for different boundary conditions. It can be seen that
the absorption effect of this model is not as good as that of
the homogeneous model, but the results are the same. For the
same number of absorbing layers, our method has the same
absorbing ability as that of the classic SG PML and performs
better than the other two methods. Also, we still need to use
more layers for the second-order PML method instead of us-
ing the thin method we proposed. In addition, we see that the
10-layer proposed method is much better than the 20-layer
hybrid ABC method.

4.2.3 Marmousi model

We next compared the absorption efficiency of the four meth-
ods for a complex Marmousi model. The Marmousi model
has a size of 9200 m× 3000 m, a grid spacing of 12.5 m, a
time step of 0.001 s, and a total recording time of 8 s. The
velocity distribution is shown in Fig. 17. Taking the first shot
of the Marmousi model as an example, we can see that the
shot is located on the ground surface at a horizontal distance
of 3000 m and that the 185 receivers are evenly distributed
between 0 and 9200 m on the surface. The results in Fig. 18
show that the absorption effect of our method is equal to or
better than the absorption effect of the other methods. When
the number of PMLs is 20, the reflected wave is relatively
small. Therefore, the method we propose is also suitable for
simulating complex models.
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Based on the above numerical experiments, although the
hybrid ABC method is often used as the boundary condi-
tion of the CG-based method because it is easy to deduce its
second-order form, its absorption performance is obviously
worse than that of the other three PML methods since it is
based on a one-dimensional wave equation. Among the three
PML methods, the 10-layer classic SG PML method (first-
order PML is used inside) for the first-order wave equation
is enough to suppress the edge reflections, while the 20-layer
second-order PML method is sufficient for the second-order
wave equation. However, our first-order PML method only
requires a thickness of 10 grid spacings to absorb the outgo-
ing wave entirely. It may have a significant advantage over
the second-order PML method. Table 2 shows the computa-
tion times of the four methods for different numbers of ab-
sorbing layers. Among them, the computation time of our
method is the shortest and that of the classic SG PML method
is the longest. Given that our method uses the CG scheme
in the computational area, it requires much less computation
time than the classic SG PML method does. In addition, the
second-order PML method requires the transformation of the
original first-order PML equation into a second-order form.
The required complex formulas and extra variables without
physical meaning increase the computation time. In addition,
our method naturally implements high-order temporal dis-
cretization if necessary, while the second-order PML method
does not. Therefore, our method is ideal for seismic wave
forward modeling.

4.3 Three-dimensional homogeneous model

In order to facilitate the experiments and comparative
analyses, we used the two-dimensional models described
in the above numerical experiments. To further illus-
trate the effectiveness of our method, Fig. 19 shows
the experimental results of this method for a three-
dimensional homogeneous velocity model. The model size
is 1000 m× 1000 m× 1000 m, the grid spacing is 10 m, and
the velocity is 2000 m s−1. The source is located at (500, 500,
500 m) with a time step of 0.001 s. Figure 19 shows snap-
shots of the wave field at different times. From this, we find
that when the number of PMLs is 20, the wave field record is
very clear, and almost no reflected waves are seen.

5 Conclusions

We propose a new boundary-matched algorithm that ef-
fectively combines the CG scheme in the computational
area and the SG scheme in the PML boundary conditions,
while preserving the high computational efficiency of the
CG scheme and the good absorption effect of PML boundary
conditions. Our proposed method is easy to implement, and
we only perform appropriate wave field matching at the grid
points, which avoids complicated modifications to the PML

formulas and the introduction of unnecessary variables. The
numerical experiments of the different models indicate that
our method is applicable to a variety of simple and complex
two-dimensional and three-dimensional geological models.
For the same conditions, our method can achieve similar
or better accuracy and reflected wave absorption efficiency
compared to other boundary absorption methods, while it re-
quires less computation time. Because our method keeps the
independence of the computational area and the boundary ab-
sorption area, it can also be combined with other CG-based
seismic wave numerical algorithms, such as the nearly ana-
lytical center difference method with PML boundary condi-
tions, to achieve better numerical simulation accuracy.

Our work is based on the numerical simulation of a scalar
equation. Because the elastic wave equation includes more
wave field information, it is also widely used in the numeri-
cal simulation of seismic waves. The simulation of the elas-
tic wave equation requires more computations and greater
storage capacity, while our proposed method can reduce the
computational cost. The next step of our work will be the
numerical simulation of the elastic wave equation and is ex-
pected to significantly improve its computational efficiency.
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