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Abstract 9 

The objectives of this work were to selectidentify the possible best texture-based method to estimate soil erodibility 10 

(K) and understand possible indirect environmentalthe influencing factors of soil erodibility. In this study, 151 soil 11 

samples were collected during soil surveys in the Ansai watershed. Five methods of estimating K value were used 12 

to estimate soil erodibility, including thethe Loess Plateau of China. The K values were estimated by five methods: 13 

erosion-productivity impact model (EPIC), the nomograph equation (NOMO), the modified nomograph equation 14 

(M-NOMO), the Torri model and the Shirazi model. The main conclusions of this paper are (1) K values in the 15 

Ansai watershed ranged between 0.009 and 0.092 t·hm2·hr/(MJ·mm·hm2). The K values based on Torri, NOMO, 16 

and Shirazi models were similar), and the maximum values were 1.872-7.333 times larger than the corresponding 17 

minimum values, and were located close to each other in the Taylor diagrams. By combining the measured soil 18 

erodibility, we suggested Shirazi and Torri model asmodels were considered the optimal models for the Ansai 19 

watershed. (2) Different land use types had different levels of importance; PC accounted for 100% (native 20 

grassland), 48.88% (sea buckthorn), 62.05% (Caragana korshinskii) and 53.61% (pasture grassland) of the 21 

variance in soil erodibility. (3) The correlations between soil erodibility and the selected environmental variables 22 
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changed fordiffered among different vegetation typetypes. For native grasslands, soil erodibility had significant 23 

correlations with terrain factors. For the most artificially managed vegetation types (e.g., apple orchards) and 24 

artificially restored vegetation types (e.g., sea buckthorn), the soil erodibility had significant correlations with the 25 

growing conditions of vegetation. The dominant factors that influenced soil erodibility differed with different 26 

vegetation types. Soil erodibility had indirect relationship withrelationships not only with environmental factors 27 

(e.g., elevation and slope),) but also human activities, which potentially altered soil erodibility. 28 

Keywords: Influencing factors, Soil erodibility, Variation features, Shirazi model, Torri model 29 

1 Introduction 30 

Soil erodibility (K), as one of the key factors of soil erosion (Igwe, 2003; Fu et al., 2005; Ferreira et al., 2015), 31 

is defined as the susceptibility of soil to erosional processes (Bagarello et al., 2012; Bryan et al., 1989). It has been 32 

extensively used in both theoretical and practical approaches to measure soil erosion. YetHowever, it is a complex 33 

concept and is affected by many factors, including soil properties (e.g., soil texture, permeability and structural 34 

stability) (Chen et al., 2013; Wang et al., 2015; Manmohan et al., 2012);), terrain (Wang et al., 2012; Mwaniki et 35 

al., 2015; Parajuli et al., 2015);), climate (Hussein et al., 2013; Sanchis et al., 2010);), vegetation (Sepúlveda-36 

Lozada et al., 2009);), and land use (Cerdà et al., 1998; Tang et al., 2016). In order toTo calculate soil erodibility, 37 

many strategies have been used to perform researchresearches to understand soil erodibility, including 38 

measurements of physical and chemical soil properties, instrumental measurements, mathematical models and 39 

graphical methods (Wei et al., 20172017a). Although athe direct measurement of soil erosion within large plots 40 

under natural rainfall over long-term periodperiods can provide more accurate estimates of soil erodibility, this 41 

method is time consuming and very expensivecostly (Bonilla et al., 2012; Vaezi et al., 2016a, b). Therefore, 42 

mathematical models are more commonly used to estimate soil erodibility.  43 

Some of the most common estimation models are the nomogram model (NOMO) and the modified nomogram 44 
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model, (M-NOMO), which were established by Wischmeier (Wischmeier et al., 1971, 1978); the erosion-45 

productivity impact model (EPIC), which was developed by Williams (Williams et al., 1990); the best nonlinear 46 

fitting formula using the physical and chemical properties of the soil, which was developed by Torri (Torri et al., 47 

1997); and the estimation model developed by Shirazi that is usinguses the average size of the soil geometry 48 

(Shirazi et al., 1988). Each estimation method may differdiffers in terms of their applicability, even within the 49 

same area, because the different estimation methods include different physical and chemical soil properties (Lin 50 

et al., 2017; Wang et al., 2013b; Kiani et al., 2016). Consequently, the estimated results can differ significantly 51 

among methods because soil conditions vary by region (Lin et al., 2017; Wang et al., 2013b). Selecting the optimal 52 

estimation method of soil erodibility is therefore critical to estimate the amount of soil erosion. 53 

Soil erosion inon the Loess Plateau of China is among the highest in the world (Fu et al., 2009; Huang et al., 54 

2016). The area affected by soil and water loss is as large as 4.5× × 105 km2 (~71% of the local land area)), and 55 

the long-term average sediment loss is up to 1.6× × 109 t (Fu et al., 2017). To maintain water quality and to control 56 

soil erosion (Fu et al., 2011), the Chinese government has implemented a large-scale policy to convert farmlands 57 

to forests and grasslands since the 20th century (Lü et al., 2012; Feng et al., 2013b; Wu et al., 2016). Although 58 

thisthe large-scale introduction of vegetation should reduceis expected to have reduced soil erosion, the extent of 59 

the reduction remains unclear. AccordinglyTherefore, different estimation methods should be used to calculate 60 

erosion factors, including the soil erodibility factor. In this article,study, the Ansai watershed inof the Loess Plateau 61 

of China was chosen as a case study, and the five above five-mentioned estimation methods of estimating K value 62 

were used, and theapplied. The objectives of this study arewere (1) to estimate the soil erodibility factor with 63 

different methods;, (2) to select the possible best texture-basedoptional method to estimate K;, and (3) to 64 

understand possible indirect environmentalthe influencing factors onof soil erodibility for the local area.  65 

2 Materials and methods 66 
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2.1 Study area 67 

The Ansai watershed (108°5′44″-109°26′18″E, 36°30′45″-37°19′3″N) is located inaround the upper reaches 68 

of the Yanhe River., in the inland hinterland of the northwestern Loess Plateau. This watershed lies in the northern 69 

part of Shanxi provinceProvince and the inland hinterland of the northwestern Loess Plateau and at the edge 70 

ofborders the Ordos basin. It belongs to the typical loess hilly-gully region and covers an area of approximately 71 

1334 km2. The soil type in the study area is loess soil, with low fertility and high vulnerability to erosion (Zhao et 72 

al., 2012; Yu et al., 2015).topography is complex and varied, and the ground surface is fragmented. The elevations 73 

within the watershed are high in the northwest and low in the southeast, and these elevations range from 997 to 74 

1731 m above sea level.  The topography is complex and varied, and the land surface is fragmented into different 75 

land uses, dominated byThe watershed belongs to the mid-temperate continental semi-arid monsoon climate region. 76 

The average annual precipitation is 505.3 mm, and 74 percent of the rainfall occurs from June to September. The 77 

predominant land use types in the Ansai watershed are rain-fed farmland, apple orchard, native grassland, pasture 78 

grassland, shrubland, and forest (Feng et al., 2013a). The elevations within the watershed are high in the northwest 79 

and low in the southeast, ranging between 997 and 1731 m above sea level. The watershed belongs to the mid-80 

temperate continental semi-arid monsoon climate region. The soil type in this study area is loess soilThe average 81 

annual precipitation is 505.3 mm, and 74% of the rainfall occurs from June to September.  with low fertility and 82 

high vulnerability to erosion (Zhao et al., 2012; Yu et al., 2015). 83 

2.2 Sample point setting 84 

The soil data used in this study came from 151 typical sample data sets that were obtained during soil surveys 85 

conducted from July to September in 2014. The soil typestype of all 151 sample points areis loess soil. 86 

Representative vegetation types were selected, which included: (1) natural vegetation, including: native 87 

grasslandgrasslands (NG); (2) artificially managed vegetation types, including: apple orchards (AO) and farmland 88 
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(FL); and (3) artificially restored vegetation types, including: pasture grasslandgrasslands (PG), sea buckthorn 89 

(SB), Caragana korshinskii (CK), David’s peach (DP),) and black locust (BL). The distance between each 90 

vegetation sampling site sampled was at least 2 km, and the area of each vegetation type was greater than 30 m by 91 

30 m, and the. The selected sample plots were distributed evenly within the study area. The sample plots within 92 

the farmland and grassland had a size of 2 m by× 2 m, whereas the corresponding dimensions for the sample plots 93 

within the shrubland and forest areas were 5 m by× 5 m and 10 m by× 10 m, respectively. Each sample plot was 94 

repeatedreplicated three times. The locations of the sampling points were determined using a GPS unit (Garmin 95 

eTrex 309X)., Garmin Ltd. subsidiary in Shanghai, China). The collected soil samples were taken back to the 96 

laboratory, dried naturally, ground and filteredsieved with a 2-mm sieve. The grainsoil particle size distributions 97 

of the soil samples were evaluated using the hydrometer method. The size classes of thesoil particles in this study 98 

were based on USDA classes and were as follows: sand (0.005-2.0 mm), silt (0.002-0.05 mm) and clay (< 0.002 99 

mm) (Wang, et al., 2012). 100 

To fully explore the primary factors influencing soil erodibility in the Ansai watershed, we chose four types 101 

of environmental factors, including: physicochemical soil properties, topographic factors, climate factors and 102 

vegetation factors. WhileAlthough soil erodiblityerodibility does not directly depend on environmental factors, 103 

soil properties such as soil particle size distribution and soil organic matter can be affected by environmental 104 

factors. Soil erodibility ; thus has indirect relationship with the, environmental factors. have indirect relationships 105 

with soil erodibility. These environmental factors covered 20 independent variables, specifically: elevation (Ele), 106 

slope position (SP), slope aspect (SA), slope gradient (SG), slope shape (SS), clay (Cla) content,(Cla), silt (Sil) 107 

content,(Sil), sand (San) content,(San), organic matter (OM) content, soil bulk density (SBD), porosity (Por), 108 

average annual rainfall (AAR), vegetation coverage (VC), aboveground biomass (AB), vegetation height (VH), 109 

litter biomass (LB), plant density (PD), crown width (Cro), basal diameter (BD), and branch number (BN). All of 110 
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the data on environmental factors were derived from the field surveys. The main characteristics and sampling 111 

numbers for the study area are shown in Table 1, and the sampling points are shown in Fig. 1. Based on the results 112 

of the Spearman correlation analysis, we then retained some environmental variables that displayed significant 113 

correlations (P < 0.05) with soil erodibility to perform a principal component analysis (PCA) and to obtain the 114 

minimum data set (MDS) (Xu et al., 2008). Only those principal components (PCs) with eigenvalues N > 1.0 and 115 

only those variables with highly weighted factor loadings (i.e., those with absolute values within 10% of the highest 116 

value) were retained for the MDS (Mandal et al., 2008).  117 

2.3 Research methods 118 

Soil erodibility indicates the degree of difficulty thatwith which soil becomes separated, eroded and 119 

transported by rainfall erosionerosivity (Wang et al., 2013a; Cerdà et al., 2017). SoilThe soil erodibility factor, 120 

which is commonly known as the K-factor in the modelmodels, is defined as the average rate of soil loss per unit 121 

of rainfall erosivity index from a cultivated continuous fallow plot on a 22.1-m-long, 9% slope in the universal 122 

soil loss equation (Zhang et al., 2008). To minimize bias from using only oneany single estimation method, we 123 

estimated the K values using five estimation models (i.e., EPIC, NOMO, M-NOMO, Torri and Shirazi), thatwhich 124 

have been widely applied in the research on soil erodibility (Wischmeier et al., 1971, 1978; Williams et al., 1990; 125 

Torri et al., 1997; Shirazi et al., 1988). 126 

2.3.1 K value estimation using the EPIC model  127 

The erosion-productivity impact model (EPIC) developed by Williams (Williams et al. 1990) is as follows: 128 
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(1) 

where SAN is the percent sand content, SIL is the percent silt content, CLA is the percent clay content, C is the 129 
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percent organic carbon content, and SN1 = 1- - SAN/ / 100. The resulting K value is reported in United States 130 

customary units of [short ton·ac·h / (100 ft·short ton·ac·in)]. 131 

2.3.2 K value estimation using the NOMO model 132 

Wischmeier (Wischmeier et al., 1971) proposed this model after analyzing the relationshiprelationships 133 

between soil erosion and five soil characteristic indicators, including the,: percent silt+ + very fine sand fraction 134 

(0.05-0.1 mm), the percent sand fraction, the soil organic matter content, a code for soil structure, and a code for 135 

soil permeability:  136 

( ) ( ) 100/]35.2)2(25.312101.2[ 14.14 −+−+−×= − PSOMMK

( ) ( ) 100/]35.2)2(25.312101.2[ 14.14 −+−+−×= − PSOMMK  
 (2)  

where M is the product of the percent of silt+ + very fine sand and the percent of all soil fractions other than clay, 137 

OM is the soil organic matter content (%), S is the soil structure code, and P is the soil permeability code. The 138 

resulting K value is reported in United States customary units of [short ton·ac·h/( / (100 ft·short ton·ac·in)]. 139 

2.3.3 K value estimation using the M-NOMO model 140 

On the basis of the universal soil loss equation (USLE) model, the RUSLE model was modified for calculating 141 

soil erodibility; that is, athe revised nomograph equation was devisedmodified from the previous nomograph 142 

equation (Wischmeier et al., 1978) based on the nomograph equation.). The revised nomograph equation is as 143 

follows:  144 

( ) ( ) 100/]35.2)2(25.312101.2[ 14.14 −+−+−×= − PSOMMK

( ) ( ) 100/]35.2)2(25.312101.2[ 14.14 −+−+−×= − PSOMMK  
 (3)  

where M is the product of the percent of silt+ + very fine sand and the percent of all soil fractions other than clay, 145 

OM is the soil organic matter content (%), S is the soil structure code, and P is the soil permeability code. The 146 

resulting K value is reported in United States customary units of [short ton·ac·h/( / (100 ft·short ton·ac·in)]. 147 
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2.3.4 K value estimation using the Torri model 148 

Torri (Torri et al., 1997) established this model in 1997 using data describing soil particle size and soil organic 149 

matter content. The model has few parameters, and simple data acquisition of the relevant data is simple.. The 150 

formula used in evaluatingfor this model is as follows: 151 
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where OM is theand c are percent content of soil organic matter, and c is the percent content of clay. In addition, 152 

the content, respectively. Dg can be calculated by using the following formula: 153 

1lg −∑= iiig ddfD 1lg −∑= iiig ddfD   (5)  

where Dg is the Napierian logarithm of the geometric mean of the particle size distribution, di (mm) is the maximum 154 

diameter of the i-th class, di-1 (mm) is the minimum diameter and fi is the mass fraction of the corresponding 155 

particle size class. We calculate thecalculated Dg based on three particle -size classes, namely: sand, silt, and clay. 156 

The resulting K values are reported in the international units of [(t·hm2·h)/() / (MJ·mm·hm2)]. 157 

2.3.5 K value estimation using the Shirazi model 158 

Shirazi (Shirazi et al., 1988) put forward a model that is appropriate for situations involving fewerfew physical 159 

and chemical properties of the soil materials. HeThe authors suggested that K values can be calculated through 160 

consideringby using only the geometric mean diameter (Dg) of the soil grains. The relevant formula is: 161 
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ii mfemmD ln01.0
g )( ∑= Meanwhile, Dg in this model can be calculated by using the following 

formula: 
 (7)  
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ii mfemmD ln01.0
g )( ∑=  

where Dg is the geometric mean diameter of the soil particles,where fi is the weight percentage of the i-th particle 162 

size fraction (%), mi is the arithmetic mean of the particle size limits for the i-th fraction (mm), and n is the number 163 

of particle size fractions. The resulting K value is reported in United States customary units of [short ton·ac·h/( / 164 

(100 ft·short ton·ac·in)]. 165 

2.3.6 K value comparisons  166 

To increase the comparability of the results from the different estimation models, our research adopted the 167 

international units for the K values, [t·hm2·hr/( / (MJ·mm·hm2)]. The international K value is equal to the K value 168 

reported in the United States customary units multiplied by 0.1317. To clarify the form of the distribution, we 169 

collected the frequency distribution figures of soil erodibility for each model (Wei et al., 2017a, b). The K values 170 

obtained using the five methods were normally distributed (P > 0.05). Therefore, the soil erodibility K values 171 

measured within the study area were statistically analyzed directly, without the need for data conversion (Fang et 172 

al., 2016). , multiplied by 0.1317.To discuss the possible best texture-based method to estimate K, related research 173 

on K estimation, especially that involving measured values of K on the Loess Plateau of China, was consulted. A 174 

Taylor diagram was also used to compare the models.  175 

To clarify the form of the distribution, we adopted the Kolmogorov-Smirnov test (Table 2) and made the 176 

frequency distribution figures of soil erodibility for each model (Fig. 2). The P >0.05 showed that the K values 177 

obtained using the five methods were normally distributed. Therefore, the soil erodibility K values measured within 178 

the study area can be analyzed directly using statistical methods without data conversion (Fang et al. 2016).  179 

2.3.6 K value comparisons  180 

In order to discuss the possible best texture-based method to estimate K, related researches on K estimation, 181 

especially the measured value of K in Loess Plateau of China, have been collected. Taylor Diagram was also used 182 
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to compare the difference between models.  183 

3 Results 184 

3.1 Soil erodibility in the Ansai watershed based on five different models in Ansai watershed 185 

We found that the obtained different values when calculating descriptive statistics of the K valuesvalue in the 186 

Ansai watershed differed when among the different models were used (Table 2). The range of K values based on 187 

the five methods were between 0.032 and 0.060, 0.046 and 0.092, 0.047 and 0.088, 0.009 and 0.066, and 0.018 188 

and 0.044 [t·hm2·hr/( / (MJ·mm·hm2)] for KEPIC, KNOMO, KM-NOMO, KTorri, and KShirazi, respectively. The range of the 189 

maximum values were 1.875, 2.000, 1.872, 7.333 and 2.444 times larger than the corresponding minimum values 190 

(Table 2). The differences between the mean and median values were 0.001, -0.001, 0.000, 0.000, and 0.000 191 

[t·hm2·hr/( / (MJ·mm·hm2)],)] for KEPIC, KNOMO, KM-NOMO, KTorri, and KShirazi, respectively. The standard deviations 192 

(SDs) of the K values were 0.408, -0.447, -1.079, -2.639, and 0.059 for KEPIC, KNOMO, KM-NOMO, KTorri, and KShirazi, 193 

respectively, and the skewnesses . The skewness values of the K values were 0.946, 0.956, 4.353, 16.872, and 194 

0.009 for KEPIC, KNOMO, KM-NOMO, KTorri, and KShirazi, respectively. The Cv value of KM-NOMO was 0.067 ＜ 10 %; 195 

in addition,%, and the Cv values of KEPIC, KNOMO, KTorri, and KShirazi were 0.109, 0.110, 0.113, and 0.182, respectively, 196 

all of which werecorresponded to between 10 % and 100 %.  197 

In the Taylor diagrams (Taylor, 2001) (Fig. 32), the K values based on the EPIC model iswere used as the 198 

reference objectobjects. The K values based on the Torri, NOMO, and Shirazi models were similar and were 199 

located close to each other. In contrast, there was inconsistency in the K values estimated by the M-NOMO and 200 

EPIC models were inconsistent with the other K values. 201 

3.2 Spearman correlation coefficients betweenof soil erodibility and environmental variables in the Ansai 202 

watershed 203 

The correlations between soil erodibility and the environmental variables varied withamong the different 204 
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vegetation types (Table S1-S4). In general, soil erodibility in artificially managed vegetation types (apple orchards 205 

and David’s peach) and artificially restored vegetation types (e.g., sea buckthorn and black locust) had significant 206 

correlationcorrelations with vegetation properties. For example, soil erodibility in areas planted with apple 207 

orchards had a significant positive correlation with plant density (P < 0.05, Table S1). The soilSoil erodibility ofin 208 

areas with sea buckthorn had significant negative correlations with the slope gradient and plant density, whereas 209 

it had  and significant positive correlations with the average annual rainfall and aboveground biomass (P < 0.05, 210 

Table S3). The soilSoil erodibility of areas with David’s peach had a significant positive correlation with the 211 

aboveground biomass, whereas it had and significant negative correlations with the slope gradient, vegetation 212 

coverage, vegetation height, crown width and basal diameter (P < 0.05, Table S4). The soilSoil erodibility ofin 213 

areas with black locust had a significant negative correlation with the elevation, whereas it had and significant 214 

positive correlations with the slope position, slope gradient, soil bulk density, vegetation coverage, litter biomass 215 

and branch number (P < 0.05, Table S4). Meanwhile, soilSoil erodibility in areas under differentother vegetation 216 

types, such as grasslandsgrassland or farmlands werefarmland, was more strongly correlated with soil or landscape 217 

properties. than other impact factors. The results of the correlation analysisanalyses of correlations between 218 

estimated K values and the selected environmental variables showed that soil erodibility in farmlands had 219 

significant positive correlations with the slope position, slope shape and average annual rainfall and displayed a 220 

significant negative correlation with the slope gradient (P < 0.05, Table S1). SoilThe soil erodibility of areas with 221 

native grasslands had a significant a negative correlation with the elevation, whereas it had  and significant 222 

positive correlations with the average annual rainfall and slope gradient (P < 0.05, Table S2). SoilThe soil 223 

erodibility of areas with pasture grasslands did not have significant correlations with the environmental variables 224 

other than soil organic matter content and the soil particle size (P < 0.05, Table S2). The soilSoil erodibility ofin 225 

areas with Caragana korshinskii had a significant positive correlation with the elevation, whereas it had and a 226 
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significant negative correlation with the average annual rainfall (P < 0.05, Table S3).  227 

3.3 Principal component analysis of soil erodibility under different vegetation types 228 

Our results showed theThe PCA identified one PC each for apple orchards, native grasslands, sea buckthorn, 229 

Caragana korshinskii and pasture grasslands, which accounted for 100%, 48.88%, 62.05% and 53.61 of the 230 

variances, respectively (Table S5). The PCA identified two PCs each for farmland and David’s peach; the 231 

corresponding cumulative variances were 73.93 % and 81.07 %, respectively. For black locust, the PCA identified 232 

three PCs that accounted for 70.25 % of the variance (Table S5). In farmland, PC1 included two variables that had 233 

highly weighted factor loadings, the slope shape and slope position, and PC2 included only the slope gradient, 234 

which had a highly weighted factor loading. In apple orchards, the highly weighted factor loading was the plant 235 

density. In was the primary contributor to the high factor loading. For native grasslands, PC1 included two 236 

variables that had highly weighted factor loadings, including the slope gradient and elevation. The pasturePasture 237 

grasslands had no variables with highly weightedhigh factor loadings because it had no significant environmental 238 

variables except the soil particle size and soil organic matter. The highly weighted factor loadings in areas with 239 

sea buckthorn were the slope gradient, aboveground biomass and plant density. In areas planted with Caragana 240 

korshinskii, two variables had highly weighted factor loadings, including the average annual rainfall and elevation. 241 

In areas planted with black locust, the highly weighted factor loadings of PC1 were the slope position, elevation 242 

and litter biomass; for PC2, the slope gradient and soil bulk density had high factor loadings, whereas only 243 

vegetation coverage had a high weighted factor loading for PC3. In areas planted with David’s peach, PC1 included 244 

three variables that had highly weighted factor loadings, specifically the crown width, vegetation height and 245 

vegetation coverage, whereas only the basal diameter had a high factor loading for PC2high factor loadings: 246 

average annual rainfall and elevation (Table S5). 247 

The PCA identified two PCs each for farmland and David’s peach; the corresponding cumulative variances 248 
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were 73.93% and 81.07%, respectively. The PC1 for farmland included two variables that had high factor loadings, 249 

slope shape and slope position, whereas PC2 only included slope gradient. In areas planted with David’s peach, 250 

crown width, vegetation height and vegetation coverage contributed to the high factor loading of PC1, whereas 251 

basal diameter alone had a high factor loading for PC2. In areas planted with black locust, the PCA identified three 252 

PCs that accounted for 70.25% of the variance (Table S5). PC1 had slope position, elevation and litter biomass as 253 

parameters with high factor loadings. The parameters with high factor loadings for PC2 were slope gradient and 254 

soil bulk density, and vegetation coverage had a high factor loading for PC3 (Table S5). 255 

The MDS of the soil erodibility included six environmental variables for black locust, four for David’s peach, 256 

three each for farmland and sea buckthorn, two each for native grasslands and Caragana korshinskii, one for apple 257 

orchards and none for pasture grasslands (Table 3).S1, Table S2, Table S3). In addition to the soil organic matter 258 

and soil particle size, which arewere included in the K value estimation equations, the dominant factors affecting 259 

the soil erodibility for farmland were slope shape, slope gradient and slope position. For apple orchards, the only 260 

dominant factor affecting soil erodibility (except theother than soil organic matter and soil particle size) was plant 261 

density. For areas with native grasslands, the dominant factors affecting soil erodibility were soil organic matter, 262 

soil particle size, slope gradient and elevation. For areas with sea buckthorn, the dominant factors affecting soil 263 

erodibility were aboveground biomass, slope gradient and plant density in addition to the two soil properties. The 264 

dominant factors affecting soil erodibility in areas with Caragana korshinskii were soil particle size, soil organic 265 

matter, average annual rainfall and elevation. For areas with black locust, the dominant factors were the slope 266 

gradient, slope position, elevation, litter biomass, soil bulk density and vegetation coverage in addition to the soil 267 

organic matter and soil particle size. The dominant factors affecting soil erodibility in areas with David’s peach 268 

included the soil organic matter, soil particle size, crown width, vegetation height and vegetation coverage. 269 

4 Discussion 270 
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4.1 The optimal methods for estimating K values in the Ansai watershed 271 

In this study, we found that different models resulted in different estimationsestimates of soil erodibility 272 

(Table 2). Since the different estimation methods use different soil attributes as input parameters; even if the input 273 

parameters are the same, the decision coefficients of the same input parameters are different.will differ. For 274 

example, the EPIC model focuses on the features of the soil particleparticles and soil nutrients, whilewhereas the 275 

NOMO model focuses on not only the soil particle size and soil nutrient characteristics, but also the soil 276 

structurestructural characteristics, such as soil structure code and soil permeability code. The existing soil 277 

erodibility estimation equations are used to calculate soil erodibility based on data on the physicochemical soil 278 

properties, such as soil texture, soil structure, soil permeability and soil organic matter content (Wischmeier et al., 279 

1971, 1978; Williams et al., 1990; Torri et al., 1997; Shirazi et al., 1988). Among these factors, the main physical 280 

soil property is the soil particle composition, such as the contents of sand, silt and clay, and the main chemical soil 281 

property is the soil organic matter content (Wei et al., 2017).  282 

Our results showed that the K values based on the Torri, NOMO, and Shirazi models were are located close 283 

to each other in the Taylor diagrams (Fig.3 2) and thosethat these three models could therefore represent the soil 284 

erodibility in the Ansai watershed. Based on previous studies, these models have also been recommended as the 285 

optimal models in Chinesefor China's subtropical zone, China's purple hilly region, Northeast China, and Chinese 286 

LossChina's Loess Plateau (Table 4). We, however, suggested However, we suggest that the Torri and Shirazi 287 

models as better representatives ofare the best models, based on their estimated K values and thederived from these 288 

models and actual (measured) soil erodibility data infrom the Ansai watershed (Zhang et al., 2001; Table S6). The 289 

estimated K valuevalues based on the Torri and Shirazi models were closer to the measured soil erodibility data 290 

among those of the three possible appropriate models (Table 2 and Table S6). Our suggestions were alsofindings 291 

are supported by a study by Lin et al. (2017) who showedshowing that the estimated K valuevalues based on the 292 
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Torri and Shirazi models waswere closer to the measured value. than NOMO model and M-NOMO model.  293 

4.2 Environmental factors that influenced the soil erodibility 294 

Based on the definition of K factor by Wischmeier et al. (1971), soil erodiblityerodibility is estimated byfrom 295 

texture data, organic matter content, soil structure index, and the soil permeability index. While soil 296 

erodiblityerodibility does not directly depend on environmental factors, soil properties such as soil particle size 297 

distribution and soil organic matter can be affected by environmental factors. Soil erodibility thus has indirect 298 

relationshiprelationships with the environmental factors, particularly vegetation type that, which influences the 299 

generation of soil organic matter and the composition of soil particleparticles. Soil erodibility had different 300 

correlationvarious correlations with the selected environmental variables, which resulted in changes inaffected the 301 

dominant factors that influenced theinfluencing soil erodibility (Tables S1-S5, Table 3). In native grasslands, soil 302 

erodibility had significant correlations with terrain factors (e.g., elevation, slope degree) (Table S1, Table S4), and 303 

the dominant factors influencing the soil erodibility were soil properties and topography. Terrain factors have close 304 

relationships with soil properties. With the increasechanges of elevation and slope, the physical and chemical soil 305 

properties of soil (e.g., soil permeability, soil bulk density, and soil nutrientnutrients) and soil surface conditions 306 

are changed, further lead(e.g., roughness, litter layer) change, leading to the changes ofin soil particle size 307 

composition and soil erodibility (Zhao et al., 2015). For example, Li et al. (2011) found that the silt content was 308 

higher than the sand content in low thanbut not high elevations, and Liu et al. (2005) found that slope gradient 309 

iswas negatively correlated with soil nutrients (e.g., soil organic matter, available nitrogen). 310 

For most artificially managed vegetation types (apple orchards and David’s peach) and artificially restored 311 

vegetation types (e.g., sea buckthorn and black locust), soil erodibility had significant correlations with the 312 

vegetation properties (Table S1, Table S3-S4). By changing theaffecting physicochemical soil properties and soil 313 

structure stability, vegetation properties could affect soil erodibility. For example, the dominant factor(s)factors 314 
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influencing the soil erodibility associated withwere plant density for apple orchards was plant density, sea 315 

buckthorn was, aboveground biomass, black locust were  for sea buckthorn litter biomass and vegetation 316 

coverage for black locust, and David’s peach were crown width, vegetation height, basal diameter and vegetation 317 

coverage for David’s peach (Table S1). Because all these vegetation types are more or less affected by 318 

humanHuman activities, soil erodibility can also indirectly be affected by (e.g., pruning) affect vegetation recovery 319 

and land cover change. These changes may then influence vegetation properties and thereby impact soil erodibility.  320 

5 Conclusions 321 

We evaluated soil erodibility in the Ansai watershed using five estimation models in Ansai watershed; the . 322 

The estimated K values based on differed among the different models were different from one another and the 323 

resulting K values ranged between 0.009 and 0.092 t·hm2·hr/( / (MJ·mm·hm2). Based on Taylor diagrams and 324 

previous studies, we considered the Shirazi and Torri modelmodels the optimal models for the Ansai watershed. 325 

Since soil erodibility is estimated by soil properties, soil erodibilityit has indirect relationshiprelationships with 326 

environmentenvironmental factors, including elevation and slope degree, and, to a lesser extent, human activities. 327 

By changing vegetation density, biomass, and cover, humanhumans can indirectly affect soil erodibility.  328 
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Table 1 Landscape and soil characteristics in the study area 447 
Vegetation 

typestype 

Natural vegetation Artificially managed vegetation Artificially restored vegetation 

NG FL AO PG SB CK BL DP 

SamplingSample 

number  
25 22 10 11 15 18 38 12 

Ele (m) 1392.60 1380.14 1370.10 1401.00 1435.67 1350.61 1326.54 1377.58 

SG (°) 16.72 6.27 19.90 11.91 16.40 17.56 27.24 24.17 

Cla (%) 7.44 7.93 7.05 7.88 6.70 7.21 8.30 8.34 

Sil (%) 45.08 52.63 48.57 42.73 45.05 48.08 51.75 49.69 

San (%) 47.48 39.44 44.38 49.39 48.25 44.71 39.95 41.97 

OM ( g/kg) 7.04 5.31 5.75 6.30 8.91 13.30 8.10 5.99 

SBD (g/cm3) 1.26 1.29 1.25 1.28 1.23 1.26 1.23 1.26 

Por (%) 0.48 0.46 0.48 0.47 0.48 0.49 0.49 0.49 

AAR (mm) 473.99 479.01 479.85 471.75 476.44 474.66 474.43 472.58 

VC (%) 57.36 53.14 39.70 67.82 66.07 46.28 59.58 33.75 

AB (g/m2) 28.96 95.61 12.24 73.56 28.59 45.63 23.92 16.20 

VH (m) 0.59 1.83 3.58 0.67 2.16 1.81 11.49 3.02 

LB (g/m2) 15.70 — 8.64 12.06 25.10 34.05 72.50 14.44 

PD (/m2) — — 30.50 — 262.40 131.89 58.66 36.17 

Cro (cm) — — 398.39 — 184.85 205.20 448.72 293.40 

BD (cm) — — 6.32 — 3.76 1.59 10.16 4.98 

BN — — 10.17 — — 27.88 12.86 8.13 

Annotation: NG refers todenotes native grassland, AO refers todenotes apple orchard, FL refers todenotes farmland, PG refers todenotes pasture 448 
grassland, SB refers todenotes sea buckthorn, CK refers todenotes Caragana korshinskii, DP refers todenotes David’s peach, BL refers todenotes black 449 
locust, Ele refers todenotes elevation, SP refers todenotes slope position, SA refers todenotes slope aspect, SG refers todenotes slope gradient, SS refers 450 
todenotes slope shape, Cla refers todenotes clay, Sil refersdenotes silt, San refers todenotes sand, OM refers todenotes organic matter, SBD refers 451 
todenotes soil bulk density, Por refers todenotes porosity, AAR refers todenotes average annual rainfall, VC refers todenotes vegetation coverage, AB 452 
refers todenotes aboveground biomass, VH refers todenotes vegetation height, LB refers todenotes litter biomass, PD refers todenotes plant density, Cro 453 
refers todenotes crown, BD refers todenotes basal diameter, and BN refers todenotes branch number.  454 

455 
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Table 2 Statistics of soil erodibility in the Ansai watershed 456 

MethodsMetho

d 
Mean Max Min Median SD 

Skewn

essSke

w 

KurtKurt

osis 
Cv 

EPIC 0.046 0.060 0.032 0.045 0.005 0.408 0.946 0.109 

NOMO 0.073 0.092 0.046 0.074 0.008 -0.447 0.956 0.110 

M-NOMO 0.075 0.088 0.047 0.075 0.005 -1.079 4.353 0.067 

Torri 0.053 0.066 0.009 0.053 0.006 -2.639 16.872 0.113 

Shirazi 0.033 0.044 0.018 0.033 0.006 0.059 0.009 0.182 

Annotation: EPIC refers todenotes the erosion-productivity impact model, NOMO refers todenotes the nomograph equation, M-NOMO refers todenotes 457 
the modified nomograph equation, Torri refers todenotes the K value estimation model established by Torri, Shirazi refers todenotes the K value 458 
estimation model established by Shirazi, SD refers todenotes the standard deviation, Skew refers to the and Skewness, Kurt refers to the kurtosis, Cv 459 
refers todenotes the coefficient of variation, and P referes to p-value of Kolmogorov-Smirnov test. . 460 
  461 
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Table 3 Principal component analysis (PCA) of environmental attributes 462 
Vegetation typestype Main influencing factors 

Farmland SS, SP, SG 

Apple orchard PD 

Native grassesgrasslands SG, Ele 

Pasture grassesgrasslands — 

Sea buckthorn AB, SG, PD 

Caragana korshinskii AAR, Ele 

Black locust SG, SP, Ele, LB, SBD, VC 

David’s peach Cro, VH, BD, VC 

Annotation: SS refers todenotes slope shape, SP refers todenotes slope position, SG refers todenotes slope gradient, PD refers todenotes plant density, 463 
Ele refers todenotes elevation, AB refers todenotes aboveground biomass, AAR refers todenotes average annual rainfall, LB refers todenotes litter 464 
biomass, SBD refers todenotes soil bulk density, VC refers todenotes vegetation coverage, Cro refers todenotes crown width, VH refers todenotes 465 
vegetation height, and BD refers todenotes basal diameter. 466 
 467 

468 
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Table 4 Suggested soil erodibility estimation models in China 469 
Study area optimal modelsOptimal 

model(s) 

References 

Hilly area of Chinese China's subtropical 

zone 
Torri Zhang et al., 2009 

Purple hilly region inof Sichuan Basin EPIC and NOMO, Shi et al., 2012 

typicalTypical black soil region in Northeast 

China 
EPIC and NOMO, Wang et al., 2012 

Hilly and gully area of Chinese LossChina's 

Loess Plateau  
Torri and Shirazi Lin et al., 2017 

Hilly and gully area of Chinese LossChina's 

Loess Plateau 
Shirazi Wei et al., 2017 

 470 

471 
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Fig. 1 LocationLocations of the study area and the sampling points 472 

Fig. 2 Frequency distributions of soil erodibility 473 

Fig. 32 Taylor diagram were used to compare the estimatingestimated K values among models 474 

475 



28 

Figure 1 476 

 477 

478 



29 

Figure 2 479 

 480 

 481 
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Figure 3 483 
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