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Abstract. In recent years, the use of radiographic inspec-
tion with cosmic-ray muons has spread into multiple research
and industrial fields. This technique is based on the high-
penetration power of cosmogenic muons. Specifically, it al-
lows the resolution of internal density structures of large-
scale geological objects through precise measurements of the
muon absorption rate. So far, in many previous works, this
muon absorption rate has been considered to depend solely
on the density of traversed material (under the assumption
of a standard rock) but the variation in chemical composition
has not been taken seriously into account. However, from our
experience with muon tomography in Alpine environments,
we find that this assumption causes a substantial bias in the
muon flux calculation, particularly where the target consists
of high {Z2/A} rocks (like basalts and limestones) and where
the material thickness exceeds 300 m. In this paper, we derive
an energy loss equation for different minerals and we addi-
tionally derive a related equation for mineral assemblages
that can be used for any rock type on which mineralogical
data are available. Thus, for muon tomography experiments
in which high {Z2/A} rock thicknesses can be expected, it
is advisable to plan an accompanying geological field cam-
paign to determine a realistic rock model.

1 Introduction

The discovery of the muon (Neddermeyer and Anderson,
1937) entailed experiments to characterise its propagation
through different materials. The fact that muons lose energy
proportionally to the mass density of the traversed matter (see
Olive et al., 2014) inspired the idea of using their attenuation
to retrieve information on the traversed material. This was
first done by George (1955) for the estimation of the over-
burden upon building of a tunnel, and then later by Alvarez
et al. (1970) to search for hidden chambers in the pyramids in
Giza (Egypt). In a related study, Fujii et al. (2013) employed
this technology to locate the reactor of a nuclear power plant.
Recently, Morishima et al. (2017) successfully accomplished
quest of Alvarez’s team in the Egyptian pyramids.

Besides these applications, which have mainly been de-
signed for archaeological and civil engineering purposes, sci-
entists have begun to deploy particle detectors to investigate
and map geological structures. In recent years, this has been
done for various volcanoes in Japan (Nishiyama et al., 2014;
Tanaka et al., 2005, 2014), including the Shinmoedake vol-
cano (Kusagaya and Tanaka, 2015), the lava dome at Unzen
(Tanaka, 2016) and most recently the Sakurajima volcano
(Oláh et al., 2018). Further experiments have been conducted
in the Caribbean, in France (Ambrosino et al., 2015; Jourde
et al., 2013, 2015; Lesparre et al., 2012; Marteau et al., 2015)
and in Italy on Etna (Lo Presti et al., 2018) and Stromboli
(Tioukov et al., 2017). Recently, Barnaföldi et al. (2012) used
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this technology to examine karstic caves in the Hungarian
mountains. Our group is presently carrying out an experi-
mental campaign in the central Swiss Alps for the purpose of
imaging glacier–bedrock interfaces (Nishiyama et al., 2017).

Inferences about subsurface structures from observed
muon flux (i.e. the number of recorded muons normalised by
the exposure time and the detector acceptance) necessitate a
comparison of the measurement data with muon flux simula-
tions for structures with various densities. Such a simulation
consists of a cosmic-ray muon energy spectrum model and
a subsequent transportation of these muons through matter.
The former describes the abundance of cosmic-ray muons
for different energies and zenith angles at the surface of the
Earth. This has been well documented in literature (see, for
example, Lesparre et al., 2010). The differences between
models and experimental data, and hence the systematic
model uncertainty, can be as large as 15 % for vertical muons
(Hebbeker and Timmermans, 2002). On the other hand, the
attenuation of the muon flux is assumed to depend only on
the density of the traversed material. In this context, however,
potential effects of its chemical composition have not been
taken into account specifically. Instead, previous works em-
ploy a certain representative rock, so-called “standard rock”,
for which the rate of muon energy loss has been tabulated
(e.g. Groom et al., 2001).

The origin of this peculiar rock type can be traced back
to Hayman et al. (1963), Miyake et al. (1964), Mandò and
Ronchi (1952) and George (1952), who gave slightly dif-
ferent definitions of its physical parameters (mass density
ρ, atomic weight A and atomic number Z). A comprehen-
sive compilation thereof can be found in Table 1 of Higashi
et al. (1966). Various corrections to the energy loss equa-
tion were then added in the framework of follow-up studies,
which particularly include a density effect correction (see,
for example, Sternheimer et al., 1984). Richard-Serre (1971)
listed data relevant for muon attenuation for (i) soil from
the CERN (European Organization for Nuclear Research)
premises near Geneva (Switzerland), (ii) molasse-type ma-
terial (e.g. Matter et al., 1980) and (iii) a “rock” that is equiv-
alent to the one from Hayman et al. (1963). These latter au-
thors assigned additional energy loss parameters to this par-
ticular rock type, which were similar to those of pure quartz.
Lohmann et al. (1985) then adjusted these parameters to en-
ergy loss variables for calcium carbonate (i.e. calcite) and
gave the standard rock its present shape. In summary, this
fictitious material consists of a density of crystalline quartz
(i.e. ρqtz = 2.65 gcm−3), a Z and A of 11 and 22, respec-
tively (which is almost sodium), and density effect parame-
ters that have been measured on calcium carbonate.

However, when the material’s Z and A differ greatly from
standard rock parameters as for carbonates, basalts or peri-
dotites, a substantial bias would be introduced to the cal-
culation of the muon flux. Such a situation is easily en-
countered in geological settings such as the European Alps
where igneous intrusions, thrusted and folded sedimentary

Figure 1. Thin sections of two representative types of rock in
crossed polarised light: (a) granite and (b) limestone. The crystal
sizes are generally below 4–5 mm and a few orders of magnitude
smaller in the limestone.

covers and recent Quaternary deposits are found in close
vicinity (e.g. Schmid et al., 1996). Currently, our collabo-
ration is performing a muon tomography experiment in the
Jungfrau region, in the central Swiss Alps, aiming at imaging
the glacier–bedrock interface (Ariga et al., 2018; Nishiyama
et al., 2017). There, we face a variety of lithologies rang-
ing from gneissic to carbonatic rocks that have a thickness
larger than 500 m (Mair et al., 2018). In this context, it turned
out that the analyses based on the standard rock assumption
might cause an over- or an underestimation of the bedrock
position in the related experiment. Such an uncertainty aris-
ing from the chemical composition of the actual rock has to
be reduced at least to the level of the statistical uncertainty
inherent in the measurement as well as in the systematic un-
certainty of the muon energy spectrum model.

To achieve this, we investigate how different rock types
potentially influence the results of a muon tomographic ex-
periment. We particularly compare the lithologic effect on
simulated data with standard rock data to estimate a system-
atic error that is solely induced by a too-simplistic assump-
tion on the composition of the bedrock.

2 Methods

2.1 Rock types

In this study, we chose 10 different rock types that cover
the largest range of natural lithologies, spanning the entire
range from igneous to sedimentary rocks. The simplest rocks
have a massive fabric in the sense that they do not exhibit
any planar or porphyritic texture. Typical lithologies with
these characteristics are igneous rocks or massive limestones
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Table 1. Physical parameters of the 10 studied rock types and of standard rock.

Rock Density {Z/A} {Z2/A} {Z2/A}/{Z/A} {I }

(gcm−3) (eV)

Standard rock 2.650 0.5000 5.500 11.0 136.40

Igneous rocks

Granite/rhyolite 2.650 0.4968 5.615 11.30 145.09
Andesite/diorite 2.812 0.4960 5.803 11.70 147.77
Gabbro/basalt 3.156 0.4945 6.258 12.66 154.91
Peridotite 3.340 0.4955 5.788 11.68 149.98

Sedimentary rocks

Arkose 2.347 0.4980 5.563 11.17 143.73
Arenite (sandstone) 2.357 0.4993 5.392 10.80 141.04
Shale 2.512 0.4993 5.384 10.78 139.09
Limestone 2.711 0.4996 6.275 12.56 136.40
Dolomite 2.859 0.4989 5.423 10.87 127.65
Aragonite 2.939 0.4996 6.275 12.56 136.40

(not sandstones, as they might have a planar fabric such as
laminations and ripples). Exemplary thin sections of granite
and limestone are shown in Fig. 1. Note that rocks featuring
strong heterogenic, metamorphic textures are not treated in
the framework of this study for simplicity purposes and will
be the subject of future research. Also, for simplicity pur-
poses, we do not consider spatial variations in crystal sizes
in our calculations (i.e. a porphyritic texture). We justify this
approach because a related inhomogeneity is likely to be av-
eraged out if one considers a several-metre-thick rock col-
umn. Additionally, the rock is considered to consist only of
crystalline components; i.e. glassy materials such as obsidian
have to be treated separately. Porous media can be approxi-
mated by assigning one of the constituents as air or (in the
case of a pore fluid) water. This is explicitly done for the
case of arkoses (10 % air) and arenites (11 % air).

We compare the energy loss of muons in these rocks and
hence the resultant muon flux attenuation depending on depth
with those of the standard rock. The analysed lithologies,
together with their relevant physical parameters, are listed
in Table 1. Among these parameters, {Z/A} and {Z2/A},
i.e. the ratio of the atomic number (and its square) to the
mass number averaged over the entire rock, are most rele-
vant to the energy loss of muons (Groom et al., 2001). The
former is almost proportional to the ionisation energy loss
that occurs predominantly at low energies, whereas the latter
is mostly proportional to the radiation energy loss that be-
comes dominant for muons faster than their critical energy at
around 600 GeV. The volumetric mineral fractions of these
10 rocks can be found in Appendix A.

2.2 Cosmic-ray flux model

We perform our calculations with the muon energy spectrum
model proposed by Reyna (2006), at sea level and for vertical
incident muons. This model describes the kinetic energy dis-
tribution of the muons before they enter the rock. The calcu-
lation of the integrated muon flux after having crossed a cer-
tain amount of material is done in two steps. First, the min-
imum energy required for muons to penetrate a given thick-
ness of rock is calculated considering the chemical composi-
tion effects (see Sect. 2.3). Afterwards, the energy spectrum
model, dF/dE, is integrated above the obtained minimum
energy (which we call from here on “cut-off energy”, Ecut)
to infinity, i.e.

Fcalc =

∞∫
Ecut

dF (E)
dE

dE. (1)

The integration is necessary, as most detectors, which have
been used for muon tomography, record only the integrated
muon flux. As already stated in the introduction, we attribute
a systematic uncertainty of ±15 % to the integrand dF/dE.
All the calculations in this work have been verified with an-
other flux model (Tang et al., 2006) and are presented in the
Supplement.

2.3 Muon propagation in rocks

As soon as muons penetrate a material, they start to inter-
act with the material’s electrons and nuclei and lose part of
their kinetic energy. The occurring processes can be cate-
gorised into an ionisation process, i.e. a continuous interac-
tion with the material’s electrons, and radiative interactions
with the material’s nuclei (i.e. bremsstrahlung, electron–
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positron pair production and photonuclear processes), which
are of a stochastic nature. All these processes are governed by
the material density ρ and the atomic number Z and atomic
weight A (see Groom et al., 2001, for details). Our general
strategy for the calculation of the energy loss in a rock is to
use its decomposition into energy losses for the correspond-
ing minerals. Accordingly, the energy loss of muons travel-
ling a unit length, dE/dx, in a rock can be described by a
volumetrically averaged energy loss through its mineral con-
stituents:{

dErock

dx

}
=

∑
j
ϕj

〈
dEmineral,j

dx

〉
, (2)

where ϕj is the volumetric fraction of the j th mineral within
the rock. The derivation of Eq. (2) can be found in Ap-
pendix B.

In order to exploit this abstraction efficiently, we have to
assume a homogeneous mineral distribution within the rock.
This is a strong simplification, considering, for example, ef-
fects related to a local intrusion, tectonic processes like fold-
ing and thrusting, or spatial differences in sedimentation pat-
terns. These concerns can be addressed through averaging
over a large enough volume. Figure 1 shows two typical thin
sections from rock samples of our experimental site that ex-
hibit crystal sizes well below 4–5 mm. As muon tomography
for geological purposes generally operates at scales of 10–
1000 m, it is safe to assume that small-scale variations are
averaged out. Thus, the term on the right-hand side of Eq. (2),
i.e. the energy loss across each mineral, can be written as

−

〈
dEmineral

dx

〉
= ρmineral · (〈a〉+E · 〈b〉) , (3)

where 〈a〉 and 〈b〉 are the ionisation and radiative energy
losses across a given mineral, respectively. These two pa-
rameters are in turn calculated by averaging the contribution
of each element (i.e. atom) constituting the mineral by their
mass (see Eqs. B5 to B15 in Appendix B for details). The
density of the minerals, ρmineral, is estimated from its crystal
structures (see Appendix A for more detailed instructions).
Once the energy losses are obtained for all minerals, each
contribution is summed up according to Eq. (2). The energy
loss within the rock can then be expressed in a similar way, as
in Eq. (3) (for a detailed discussion, we refer to Appendix B):

−

{
dErock

dx

}
= ρrock · ({a}+E · {b}) . (4)

Again, the values {a} and {b} indicate the averaged ionisation
and radiative energy losses across the whole rock, respec-
tively. Equation (4), an ordinary nonlinear differential equa-
tion, is usually given as a final value problem; i.e. we know
that the muon, after having passed through the rock column,
still needs some energy to penetrate the detector, Edet. This
can be turned into an initial value problem by reversing the

sign of Eq. (4) and defining the detector energy threshold as
initial condition.{

dErock

dx

}
= ρrock · ({a}+E · {b}) (5)

E(x = 0)= Edet

The problem has been transformed into the one of finding the
final energy, the cut-off energy,Ecut, after a predefined thick-
ness of rock. This is a well-investigated problem, for which a
great variety of numerical solvers are available. In this work,
we employ a standard Runge–Kutta integration scheme (see,
for example, Stoer and Bulirsch, 2002).

The energy loss equations are subject to systematic un-
certainties, mainly because the experimentally determined
interaction cross-sections have an attributed error. Accord-
ing to Groom et al. (2001), the error on ionisation losses is
“mostly smaller than 1 % and hardly ever greater than 2 %”.
These authors also state that, in the case of compounds, the
uncertainties might be thrice as large. Therefore, we con-
sidered an ionisation loss uncertainty of ±6 % as appropri-
ate for our calculations. The errors on the cross-sections of
bremsstrahlung, pair production and photonuclear interac-
tions are ±1 %, ±5 % and ±30 %, respectively. Appendix C
shows in detail how we propagated these errors to the cut-off
energy, Ecut.

3 Results

Figures 2 and 3 show the muon flux simulations as a function
of rock thicknesses up to 2 km for igneous and sedimentary
rocks, respectively. The depth–intensity relation is described
by a power law, as it is the integration of the differential en-
ergy spectrum of muons, which also follows a power law.

To better visualise the difference between the fluxes after
having passed these 10 rock types and the standard rock, we
report the ratio between fluxes calculated after the different
materials and that after the standard rock in Fig. 4:

f rrock =
Fcalc,rock

Fcalc,SR
. (6)

The attenuation of the muon flux expectedly depends pre-
dominantly on the rock density, as we can see in Figs. 2 to
4. Rocks exhibiting a high material density result in a larger
muon flux attenuation than lithologies with a lower density.
This, however, only depicts the overall differences, includ-
ing density and compositional variations, between real and
standard rocks. In this regard, Groom et al. (2001) apply
an explicit treatment of density variations of known mate-
rials. Thus, the flux data can be simulated for a standard
rock with the exact density as its real counterpart. Such a
density normalisation enables us to isolate the compositional
influence on the computed data. Figures 5 and 6 show the
muon flux simulations for each rock compared to a density-
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Figure 2. Simulated muon intensity vs. thickness of the four igneous rocks from Table 1 and standard rock. The mean flux is indicated by a
bold line and 1σ bounds are indicated by the shaded area.

Figure 3. Simulated muon intensity vs. thickness of the six sedimentary rocks from Table 1 and standard rock. The mean flux is indicated by
a bold line and 1σ bounds are indicated by the shaded area.

www.solid-earth.net/9/1517/2018/ Solid Earth, 9, 1517–1533, 2018
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Figure 4. Ratio of the calculated rock fluxes to a standard rock (ρSR = 2650 gcm−3) muon flux for the rocks reported in Table 1 as a function
of rock thickness.

Figure 5. Simulated muon intensity vs. thickness of the four igneous rocks from Table 1 and a density-modified standard rock. The mean
flux is indicated by a bold line and 1σ bounds are indicated by the shaded area.

normalised standard rock, and Fig. 7 summarises this infor-
mation by representing the ratio between muon fluxes after
passing through real rocks and the muon flux after passing
through a density-normalised standard rock. It is important
to note that the standard rock muon flux in each flux ratio

has been normalised with respect to the density of the orig-
inal rock (i.e. the peridotite is compared to a standard rock
of density ρ = 3.340 gcm−3; the limestone is compared to
a standard rock of density ρ = 2.711 gcm−3). One notices
that the flux ratios are rather close together, mainly within
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Figure 6. Simulated muon intensity vs. thickness of the six sedimentary rocks from Table 1 and a density-modified standard rock. The mean
flux is indicated by a bold line and 1σ bounds are indicated by the shaded area.

Figure 7. Ratio of the simulated rock fluxes to a standard rock muon flux with the same density as the rock (ρSR = ρRock) for all the
lithologies in Table 1 as a function of rock thickness.

2.5 % of the standard rock flux, before they start to diverge
towards larger (dolomite, shale and arenite) and smaller (ig-
neous rocks, arkose, limestone and aragonite) flux ratios be-
yond 300 m thickness of penetrated rock. Even though the
errors on the fluxes are relatively large and sometimes even
overlap with the standard rock fluxes, the propagated errors
on the flux ratios remain well bounded near their means. This
effect is due to the correlation of the errors in the numera-
tor and the denominator in Eq. (6). A detailed discussion of
how uncertainties have been propagated is presented in Ap-
pendix C.

4 Discussion

The differences in the calculated muon flux illustrated in
Figs. 2 and 3 become even more pronounced in Fig. 4, where
the fluxes are compared to the case where cosmic fluxes are
attenuated by a standard rock. One notices a direct correla-
tion with material density. This is reinforced by the fact that
the granite (Fig. 2) has the same density as the standard rock
(2.650 gcm−3) and shows an overall similar flux magnitude
as the standard rock, i.e. a flux ratio of 1. This can be ex-
plained by Eq. (4), as the energy loss is almost directly pro-
portional to the density, while the presence of density in the
ionisation loss term (i.e. {a(E,ρ,A,Z)}) is negligible com-
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pared to this factor. Thus, if the rock flux data are compared
to a standard rock with equal density, this effect should be re-
moved, and one is left with the composition difference only.

A closer look at Fig. 7 reveals that the muon fluxes for ev-
ery rock below 300 m do not depart more than 2.5 % from
their respective density-modified standard rock flux. The
chemical composition effect can thus be considered negli-
gible when compared to the systematic uncertainty originat-
ing from the muon flux model. We explain this through the
dominance of the ionisation energy loss in this thickness re-
gion. Muons that penetrate down to 300 m of rock are still
slow enough to predominantly lose their kinetic energy for
the ionisation of the rock’s electrons. As the number of elec-
trons per unit volume is given by the product, ρrock · {Z/A},
ionisation losses are proportional to this term. When compar-
ing a density-normalised standard rock with a real rock, the
only difference can emerge from the second part, i.e. {Z/A}.
According to Table 1, these values do not change more than
1 % with respect to each other.

When the rock thicknesses become larger than 300 m, the
flux ratios start to exceed ±2.5 % and the ratio patterns di-
verge. This corresponds to the point where radiative losses
start to become the dominant energy loss processes. The lat-
ter are interactions of the muon with the nuclei of the atoms
within the rock and its cross-section is mainly proportional
to the square of the nucleus’ charge (i.e. {Z2/A}). Hence,
rocks that exhibit a lower {Z2/A} value than a standard rock
(e.g. dolomite, arenite and shale) attenuate the muon flux less
(i.e. flux ratio > 1), while all igneous rocks as well as lime-
stone, aragonite and arkose, that have a higher {Z2/A} value,
attenuate the muon flux more, which results in a lower flux
ratio.

The above results reflect only the most striking connec-
tions to the chemical composition of a rock. In reality, how-
ever, the nature of muonic energy loss processes is much
more complex than the shape of the flux ratios in Fig. 4 below
300 m suggests. The actual ionisation energy loss, Eq. (B27),
is an interplay of the mean excitation energy {I }, i.e. the
mean energy needed to ionise a material’s electrons, the ma-
terial density ρrock, {Z/A} and various correction terms that
depend on these parameters. These additional factors are also
responsible for the nonlinear behaviour of the flux ratios be-
tween 100 and around 600 m, as effects from radiative losses
start to become significant. However, as the resulting differ-
ences due to these processes remain smaller than 2.5 %, a
detailed discussion of these matters falls beyond the scope of
this paper.

As we see above, the muon flux calculation is significantly
biased when one employs the standard rock assumption and
thus neglects the effect of the chemical composition, espe-
cially when the thickness of the rock is beyond 300 m. This
systematic error would then later turn into an over- or an un-
derestimation in the assessment of density structures. We can
roughly estimate the error on a thickness estimation of a cer-

tain structure by employing the following formula:

εd (xro (F ))=
xSR (F )− xRo (F )

xRo (F )
. (7)

Here, xSR (F ) and xRo(F ) denote the thickness of standard
rock and a real rock, respectively, needed to attenuate the
cosmic-ray muon flux to F . This is possible because the flux,
as a function of rock thickness, is a strictly decreasing func-
tion. The domain of this function ranges from zero to infinite
thickness, where its image takes the values from the initial
flux, F0, to zero. On these two sets, the function is a bijection,
and therefore an inverse function, x(F ), exists. Although its
functional form might be unknown, it is still possible to in-
terpolate between the simulated points. For our rocks, this is
shown in Fig. 8.

As an example, in the case where the target is 600 m thick
and made of limestone (ρ = 2.711 gcm−3), the standard
rock assumption underestimates the flux by 7 %–8 % and
thus overestimates the thickness by around 15 m or 2.5 %.
The same is valid for basalt and aragonite.

The above discussion concentrates on calculations of the
mean values of model parameters. A full description encloses
also the propagation of their uncertainties. The rather large
error bounds on single flux calculations stem from the un-
certainties in the flux model and in the interaction cross-
sections. However, by taking a ratio, i.e. Eq. (6), of quantities
with correlated errors, the resulting uncertainty on the ratio
tends to cancel out. If the errors were propagated by linear
operations, they would even cancel out perfectly. The small
error bars which are still present in Figs. 4, 7 and 8 can be
seen as effects of the nonlinearity in the differential equation,
Eq. (5).

Because this is a pure sensitivity study, we cannot offer
distinct measurements to verify our predictions. The reason
for this is mainly because dedicated experimental campaigns
have not yet been conducted, and thus such data are not avail-
able. We suggest that future studies in this field will address
the composition issue and try to experimentally constrain this
theoretical model. Nevertheless, our inferences are based on
the same conceptual framework that has already been used
for other materials, including standard rock. As a result of
this, we find significant differences if the rock parameters are
changed, especially for rock thicknesses larger than 300 m.

5 Conclusions

Our results suggest that it is safe to use the standard rock ap-
proximation for all rock types up to thicknesses of ∼ 300 m,
as the flux ratio will mainly remain within 2.5 % of the stan-
dard rock flux, which generally lies within the cosmic-ray
flux model error. However, we also find that beyond these
thicknesses the use of the standard rock approximation and
its density-modified version could lead to a serious bias. This
mainly concerns basaltic and carbonate rocks. The flux error
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Figure 8. Relative error which is made in the thickness estimation of a block of rock by assuming a density-modified standard rock vs. the
actual rock thickness.

for these rock types increases with growing material thick-
ness. It can be extrapolated that the errors grow even further
beyond 600 m of material thickness up to a point where any
inference based upon this approximation becomes difficult.
This is, however, a thickness range where muon tomography
becomes increasingly hard to perform, as lower fluxes have
to be counterbalanced by larger detectors and longer expo-
sure times.

In order to account for the composition of rock, it is advis-
able to undertake a geological study of the region alongside
the muon tomography measurements, especially when faced
with basaltic rocks or carbonates, which includes at the least
the analysis of local rock samples. Auxiliary data could com-
prise rock density measurements (i.e. helium pycnometer or
buoyancy experiments), chemical composition and miner-
alogical information (i.e. X-ray diffractometry/fluorescence
measurements) as well as microfabric analyses (i.e. mineral
and fabric identification on thin sections). This additional in-
formation may help to constrain solutions of a subsequent
inversion to a potentially smaller set. The use of additional
information, such as spatial information in the form of a ge-
ological map or a 3-D model of the geologic architecture,
is strongly encouraged, because it might greatly improve the
state of knowledge about the physical parameters that are to
be unravelled.

Data availability. All data necessary to reproduce our results are
included in the paper.

Mineralogical information is available from Tables A1 and A2 in
Appendix A.

The equations to calculate the physical parameters for the differ-
ent rock types and the simulated fluxes are listed in the main body
of the text as well as in Appendix B.
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Appendix A

To estimate the mineral density, we assume that it can be
calculated by dividing the mass of the atoms within the crys-
tal unit cell by the volume of the latter (see, for example,
Borchardt-Ott, 2009):

ρmineral =
Q ·M

NA ·VUnit Cell
. (A1)

In this equation, M is the total molar mass of one mineral
“formula unit”, Q is the number of formula units per unit
cell, and VUnit Cell is the volume of the unit cell. The latter is
calculated by the volume formula of a parallelepiped:

VUnit Cell = ‖a× (b× c)‖ . (A2)

Equation (A2) can be rewritten as

VUnit Cell = ‖a‖‖b‖‖c‖√
1+ 2cos(α)cos(β)cos(γ )− cos2 (α)− cos2 (β)− cos2 (γ ).

(A3)

Here, a, b, c denote the unit cell vectors and their lengths; ‖·‖
is measured in Ångströms, i.e. 10−10 m, whereas α, β, γ are
the internal angles between those vectors. These six parame-
ters can be looked up for each mineral in the crystallographic
literature (e.g. Strunz and Nickel, 2001).

The volumetric percentages of the minerals that consti-
tute the 10 investigated rock types are shown in Tables A1
and A2. They were chosen as a reasonable compromise from
literature values (e.g. Best, 2003; Tuttle and Bowen, 1958;
Folk, 1980).

Table A1. Volumetric percentages of the rock-forming minerals
within six sedimentary rocks. Qtz: quartz, Or: orthoclase, Ab: al-
bite, An: anorthite, Cal: calcite, Dol: dolomite, Kln: kaolinite, Mnt:
montmorillonite, Ill: illite, Clc: clinochlore.

Mineral Arkose Arenite Shale Limestone Dolomite Aragonite

Qtz 56.0 89.0 17.0
Or 34.0 2.5
Ab 1.8
An 0.7
Cal 100.0 100.0
Dol 100.0
Kln 1.7
Mnt 52.7
Ill 22.2
Clc 1.4
Air 10.0 11.0

Table A2. Volumetric percentages of the rock-forming minerals
within four igneous rocks. Qtz: quartz, Or: orthoclase, Ab: albite,
An: anorthite, Phl: phlogopite, Ann: annite, Mg-Hbl: magnesium
hornblende, Fe-Hbl: iron hornblende, Aug: augite, En: enstatite, Fs:
ferrosilite, Fo: forsterite, Fa: fayalite, Jd: jadeite, Hd: hedenbergite,
Di: diopside, Spl: spinel, Hc: hercynite.

Mineral Granite Andesite Basalt Peridotite

Qtz 36.1 11.7
Or 28.2
Ab 27.3 37.7 17.7
An 25.3 24.6
Phl 2.95 4.5
Ann 2.95 2.1
Mg-Hbl 2.25 4.2
Fe-Hbl 2.25 6.4
Aug 8.1 33.8
En 11.4 18.4
Fs 11.1 2.0
Fo 0.6 60.4
Fa 0.8 7.9
Jd 1.8
Hd 0.3
Di 8.0
Spl 0.9
Hc 0.3
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Appendix B

B1 Energy loss in elements

The average spatial differential energy loss can be written in
a rather simple form (Barrett et al., 1952):

−

(
dE(ρ,A,Z)

dx

)
= ρ · (a (E,ρ,A,Z)+E · b (E,A,Z)) .

(B1)

Here, ρ,A and Z denote the mass density, atomic weight and
atomic number of the penetrated material, while E is the ki-
netic energy of the penetrating, charged particle, and x is the
position coordinate. The function a (E,ρ,A,Z) in Eq. (B1)
is the differential ionisation energy loss that accounts for
the ionisation of electrons of the penetrated material. In the
case of incident muons (i.e. electric charge qµ =−1C and
mass mµ = 105.7 MeVc−2), the relationship expressed in
Eq. (B1) takes the form

a (E,ρ,A,Z)=K
Z

A

1
β2

[
1
2

ln
(

2mec
2β2γ 2Qmax (E)

I(Z)2

)
−β2
−
δ (ρ,Z,A)

2
+

1
8
Q2

max (E)(
γmµc2

)2
]

+1

∣∣∣∣dEdX

∣∣∣∣(Z,A). (B2)

In this equation, βγ are the relativistic factors and are there-
fore a function of the kinetic energy E. The constant me de-
notes the mass of the electron, and c is the speed of light.
Qmax is the highest possible kinetic recoil energy of scat-
tered electrons in the medium, while K is a constant incor-
porating information about the electron density. The function
δ (ρ,Z,A) is a correction factor, which considers the mecha-
nisms where the material becomes polarised at higher muon
energies, with the consequence that the energy loss is weaker
(Sternheimer, 1952). The last term in Eq. (B2) is another cor-
rection factor, which considers bremsstrahlung from atomic
electrons (not the incident muon, which would be the term
in Eq. 3) that also appears at higher muon energies. A more
detailed explanation of this equation and its parameters can,
for example, be found in Olive et al. (2014). In contrast to
Eq. (B2), the function b (E,A,Z) describes all the radiative
processes that become dominant at higher velocities (above
∼ 600 GeVc−1 for muons). This term includes energy losses
due to bremsstrahlung, electron–positron pair production as
well as photonuclear interactions. These different contribu-
tions can be written independently of each other:

b (E,A,Z)= bbrems (E,A,Z)+ bpair (E,A,Z)

+ bphotonucl (E,A,Z). (B3)

Each process in Eq. (B3) is computed by integrating its dif-
ferential cross-section with respect to every possible amount

of transferred energy:

bprocess =
NA

A

1∫
0

ν
dσprocess

dν
dν. (B4)

Here, NA is the Avogadro number and ν = ε/E the frac-
tional energy loss (whereas ε is the absolute energy loss) for
this process. Specific cross-sections for bremsstrahlung (Kel-
ner et al., 1995, 1997), photonuclear (Bezrukov and Bugaev,
1981) and pair production (Nikishov, 1978) energy losses
are used by Groom et al. (2001) for the calculations of
their tables. As this pair production cross-section involves
the calculation of many computationally extensive diloga-
rithms, an equivalent cross-section (Kelner, 1998; Kokoulin
and Petrukhin, 1969, 1971), which is used in GEANT4
(Agostinelli et al., 2003) by default, is used in our study.

B2 Energy loss in minerals

Since the above equations are valid for pure elements, adjust-
ments are needed for compounds (e.g. minerals) and mix-
tures thereof (e.g. rocks). Generally, it is advised to use
the physical parameters for materials that have already been
measured (see Seltzer and Berger, 1982, for a compilation).
However, except for calcium carbonate (i.e. calcite) and sili-
con dioxide (i.e. quartz), no other minerals have been inves-
tigated. This also means that there is no standard approach
available for considering natural rocks. Fortunately, for such
materials, a theoretical framework has been proposed (see,
for example, Appendix A of Groom et al., 2001). The basic
idea is to consider the compound as a single “weighted aver-
age” material and the energy loss therein as a mass-weighted
average of its constituents’ energy loss:〈

dEmineral

dχ

〉
=

∑
i
wi

(
dEelement,i

dχ

)
. (B5)

The weights wi are calculated according to the atomic
weights Ai of the elements:

wi =
niAi∑
knkAk

=
melement,i

mmineral
, (B6)

and can then be used to calculate an average 〈Z/A〉 value:〈
Z

A

〉
=

∑
i
wi
Zi

Ai
. (B7)

Equivalently, the average 〈Z2/A〉 value can be calculated ac-
cording to〈
Z2

A

〉
=

∑
i
wi
Z2
i

Ai
. (B8)

One more change must be made to the ionisation loss
Eq. (B2) in order to appropriately account for the change in
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the atomic structure that emerged due to chemical bonding
of the elementary constituents. This is reflected in a modi-
fied mean excitation energy 〈I 〉, which can be calculated by
taking the exponential of the function

ln〈I 〉 =

∑
iwi

Zi
Ai

ln(Ii)∑
jwj

Zj
Aj

, (B9)

which is basically a weighted geometric average of the ele-
mentary mean excitation energies:

〈I 〉 =
∑
j wj

Zj

Aj

√√√√∏
i

I
wi

Zi
Ai

i . (B10)

One has to pay attention that the mean excitation energies for
some elements, Ii , can change quite significantly when they
are part of a chemical bond. A guideline to address this issue
can be found in Seltzer and Berger (1982). Equations (B7) to
(B10) are still a consequence of Eq. (B5). However, there is
one term in the function δ(ρZ/A) in Eq. (B2) that is calcu-
lated differently from Eq. (B5). This concerns the logarithm
of the plasma energy of the compound, which for an element
is given by (e.g. Olive et al., 2014)

ln
(
}ωp

)
= ln

(
28.816 ·

√
ρ
Z

A

)
. (B11)

According to Eq. (B5), the plasma energy for a compound
should be calculated the same way as the mean excitation
energy in Eq. (B9). However, Sternheimer et al. (1982) and
Fano (1963) explicitly advise us to use the arithmetic mean
within the logarithm when dealing with an atomic mixture
(i.e. a molecule), yielding

ln〈}ωp〉 = ln

(
28.816

√
ρmineral

〈
Z

A

〉)
. (B12)

This results in the modified ionisation energy loss:

〈a(E,ρmineral,A,Z)〉

=K

〈
Z

A

〉
1
β2

[
1
2

ln
(

2mec
2β2γ 2Qmax (E)

〈I (Z)〉2

)
−β2
−
δ
(
ρmineral, 〈

Z
A
〉
)

2
+

1
8
Q2

max (E)(
γmµc2

)2
]
+1

∣∣∣∣dEdX

∣∣∣∣(〈ZA
〉)
.

(B13)

The radiation loss for the compound, on the other hand, is
only a linear combination of the radiation losses of its ele-
mentary constituents, Eq. (B3), yielding

〈b〉 =
∑

i
wibi . (B14)

The resulting Eq. (B15),

−

〈
dEmineral

dx

〉
= ρmineral · (〈a〉+E · 〈b〉) , (B15)

has now the same form as the energy loss Eq. (B1) for ele-
ments and can be solved accordingly.

B3 Energy loss in rocks

To obtain an energy loss equation for rocks, a similar pro-
cedure as for forming minerals through the assembly of el-
ements can be applied. Starting from Eq. (B5), we consider
the energy loss for a rock as the mass-weighted average of
the energy losses of its mineral constituents:{

dErock

dχ

}
=

∑
j
qj

〈
dEmineral,j

dχ

〉
, (B16)

where qj are the mass fractions of the j th mineral within the
rock, analogous to Eq. (B6),

qj =
njAj∑
lnlAl

=
mmineral,j

mrock
. (B17)

Using dχ = ρ · dx, Eq. (B16) then takes the following form:

1
ρrock

{
dErock

dx

}
=

∑
j

qj

ρmineral,j

〈
dEmineral,j

dx

〉
. (B18)

By inserting Eq. (B17) into Eq. (B18), one obtains

1
ρrock

{
dErock

dx

}
=

1
mrock

∑
j

mmineral,j

ρmineral,j

〈
dEmineral,j

dx

〉
.

(B19)

Multiplying both sides with ρrock and applying the definition
of the density, ρ =m/v, that can also be written as v =m/ρ,
Eq. (B19) becomes{

dErock

dx

}
=

1
vrock

∑
j
vmineral,j

〈
dEmineral,j

dx

〉
. (B20)

If one sets ϕj = vmineral,j/vrock, the volumetric fraction of
the j th mineral within the rock, Eq. (B20) transforms into
the compound equation for rocks:{

dErock

dx

}
=

∑
j
ϕj

〈
dEmineral,j

dx

〉
. (B21)

Analogously to the mineral case, we can now define new av-
erage energy loss parameters for the rock, beginning with its
overall density:

ρrock =
∑

j
ϕjρmineral,j . (B22)

The average {Z/A} is given by{
Z

A

}
=

∑
j

ρmineral,j

ρrock
ϕj

〈
Z

A

〉
j

, (B23)

and similarly, the average {Z2/A} can be calculated accord-
ing to{
Z2

A

}
=

∑
j

ρmineral,j

ρrock
ϕj

〈
Z2

A

〉
j

. (B24)
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The rock’s mean excitation energy is

ln {I } =

∑
j

ρmineral,j
ρrock

ϕj
〈
Z
A

〉
j

ln〈I 〉j∑
l
ρmineral,l
ρrock

ϕl
〈
Z
A

〉
l

. (B25)

The only difference between the rock calculation and the
mineral calculation enters in the calculation of the plasma
energy. While in the mineral case we were advised to use
Eq. (B11) instead of what would naturally follow from the
weighted average in Eq. (B5), we prefer to use the weighted
average, Eq. (B21),

ln
{
}ωp

}
=

∑
j

ρmineral,j
ρrock

ϕj
〈
Z
A

〉
j

ln〈}ωp〉j∑
l
ρmineral,l
ρrock

ϕl
〈
Z
A

〉
l

, (B26)

for the case of rocks. The reason for this lies in the fact that
the density effect operates on a nanometric scale, whereas
minerals generally have sizes between several micrometres
and a few centimetres. In the case of a mineral compound,
the molecular structure comprises also a nanometric scale.

These parameters can then be rearranged into an ionisation
loss term for a rock:

{a (E,ρrock,A,Z)} =K

{
Z

A

}
1
β2[

1
2

ln
(

2mec
2β2γ 2Qmax (E)

{I (Z)}2

)
−β2
−
δ
(
ρrock,

{
Z
A

})
2

+
1
8
Q2

max (E)(
γmµc2

)2
]

+1

∣∣∣∣dEdX

∣∣∣∣({ZA
})
. (B27)

Like Eq. (B14), the radiative losses can be rewritten as a
weighted average of the mineral radiative losses:

{b} =
∑

j

ρmineral,j

ρrock
ϕj 〈b〉j . (B28)

Equations (B27) and (B28) can then be joined together to
form again a similar term to Eqs. (B1) and (B15):

−

{
dErock

dx

}
= ρrock · ({a}+E · {b}) , (B29)

the energy loss equation for rocks.
We want to stress that the starting point of the derivation of

the energy loss equation for rocks is a mass averaging of min-
eral energy losses. Therefore, the mass-averaging approach is
inherently included in this approach. In fact, mass-averaging
and volumetric averaging are two equivalent descriptions of
the same problem. For the mass-averaged formulae, we refer
to the Supplement to this paper.
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Appendix C

Uncertainty propagation

The first step in our uncertainty treatment includes a prop-
agation of the interaction cross-section errors (σa =±6 %,
σbbrems =±1 %, σbpair =±5 %, σbphotonucl =±30 %) to the
cut-off energy, i.e. by solving the differential equation
Eq. (5). Generally, a higher cross-section yields a higher cut-
off energy, as the muon needs more initial kinetic energy,
which it then loses on the way, and vice versa. In order to esti-
mate a lower and an upper error bound on the cut-off energy,
Ecut, we use a conservative approach. This means that the
lower cut-off energy error bound is calculated by setting all
cross-sections to their lower 1σ bound and running the sim-
ulation with these modified values. The upper error bound is
calculated accordingly. Of course, this overestimates the ef-
fective error; however, if our calculations remain valid within
this conservative error, then they can also be trusted with a
conventional error.

The second step is the estimation of the error regarding
the integrated flux. Here, we need to propagate the errors
through Eq. (1) to the simulated flux. There are two different
errors present at this stage. The first one includes the error on
the lower integration boundary, i.e. Ecut, which has just been
calculated above. The second error addresses the integrand,
i.e. the flux model. Figure C1 visualises the concept behind
the propagation of these two errors. The simulated flux error
is equivalent to the error which is made by calculating the
area under the graphs. We estimate the lower error bound on
the simulated flux (i.e. smallest area) by taking the upper er-
ror bound onEcut and the lower error bound on dF/dE. Sim-
ilarly, the upper error bound on the simulated flux (i.e. largest
area) is calculated by settingEcut to its lower error bound and
dF/dE to its upper error bound. Again, this is a conservative
approach, which we justify with the same rationale as above.

Figure C1. Differential muon flux as a function of muon kinetic
energy. Blue lines indicate the simulated cut-off energy for 300 m
of andesite and its respective propagated error bounds. Red lines
show the flux model and its 1σ error bounds.

The last step addresses the propagation of the simulated
flux errors to the flux ratio in Eq. (6). Here, we can make
use of the fact that the errors in both simulations are per-
fectly correlated. In other words, if we knew the errors on
all affected quantities in one simulation, we would instanta-
neously know the corresponding values for any other simula-
tion. This allows us, for example, to calculate the upper error
bound on the flux ratio by dividing the upper error bound of
the simulated flux in the numerator by the upper error bound
of the simulated flux in the denominator. The same is valid
for any other constellation of errors, including the lower error
bound and the mean.
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